Polugrupe

Definicija polugrupe

Grupoid (5, -) u kojem je operacija - asocijativna naziva se polugrupa. Drugim
reCima, zahtevamo da za sve a, b, ¢ € S vazi

(a-b)-c=a-(b-c).

Ukoliko .S ima jedinicu, tj. neutralni element 1 u odnosu na - takodaje 1 - a =
a-1=azasvea € 9, tadaje S monoid.

Primer 1. Monoidi su, na primer, (N, +), (Z,+), (N,-) i (Z,-). U prva dva
monoida neutralni element je broj 0, dok je u druga dva to broj 1. Za proizvoljan
skup A, monoidi sui (P(A),U) i (P(A),N); za prvi, neutralni element je &, a
za drugi je to ceo skup A.

Monoidi transformacija i teorema reprezentacije

Kao sto je vrlo dobro poznato, akosu f : A -+ B,g: B+ Cih:C — D
funkcije (gde su A, B, C, D neki neprazni skupovi), tada vazi

(fog)oh=fo(goh).

(Takode, sli¢an zakljucak sledi i za proizvoljne tri binarne relacije.) Prema tome,
transformacije skupa A, funkcije f : A — A, ¢ine monoid, pun monoid trans-
formacija T4, u odnosu na operaciju kompozicije funkcija i identickim pres-
likavanjem id 4 kao jedinicom. Kada je A konacan skup, |A| = n, odgovarajuci
pun monoid transformacija oznacavamo i sa 7.
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2 POLUGRUPE

Znacaj monoida T4 ogleda se u teoremi reprezentacije: za svaku polugrupu
S postoji potapanje S — T4 za pogodno odabran skup A. Na taj nacin, do na
izomorfizam, svaka polugrupa/monoid je polugrupa/monoid transformacija.

Teorema 2. Za svaku polugrupu S postoji skup A takav da postoji potapanje
(injektivni homomorfizam) ¢ : S — Ty.

Dokaz. Najpre pokazujemo da se svaka polugrupa S moZe potopiti u monoid.
Ako S ve¢ sadrzi jedini¢ni element, nema Sta da se dokazuje U suprotnom,
posmatrajmo skup S = S U {1} gde je 1 # S novi element, i na njemu
definiSimo novu operaciju xsa 1xs = sx1 = szasve s € S, kaoiaxb = abza
sve a,b € S. Rutinski se pokazuje da je ovako definisana operacija asocijativna,
tj. da dodavanje novog elementa nece “pokvariti asocijativnost” stare operacije.
(Na primer, ako je a,c € S'ib = 1 tada je (ab)c = ac = a(bc).)

Stoga je dovoljno dokazati teoremu pod pretpostavkom da je .S monoid.
Biramo A = S i definiSemo preslikavanje ¢ : S — Tg sa

Y(a) = pa

zasve a € S, gde je p, : S — S desna translacija monoida .S u odnosu na
element a:

pa(x) = za

zasve x € S. Preslikavanje v je injektivno, zato Sto pretpostavka da je ¢ (a) =
w(b) znaci da je p, = pp, pa tako, specijalno, vazi i

(Odavde se vidi znacaj pretpostavke da je .S monoid.) Takode, za proizvoljno
x € S vazi

pab(z) = x(ab) = (za)b = py(xa) = py(pa(x)) = (pa © po)(x),
zbog Cega je pap = Pa © Pp, tO jest
P(ab) = P(a) o Y(b).

Prema tome, 1) je injektivni homomorfizam, §to je i trebalo dokazati. O
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Polugrupe reci

Neka je X neki (konacan ili beskonacan) skup simbola, u ¢iju prirodu ne ulazi-
mo; takav skup nazivamo alfabet, a njegove elemente slova. Re¢ nad X je bilo
koji konacan niz slova iz X, na primer:

(I‘l, s 7:1:71)7

gde su x1,...,z, € X (ne nuzno razli¢iti). Ovo ukljuCuje u prazan niz, (),
niz duzine 0. koji zovemo prazna re¢. Ipak, uobicajenije je da reci piSemo bez
zagrada i zareza, prosto xj ...x,, a da praznu re¢ oznaCavamo sa A. Skup svi
reci nad X se oznacava sa X™.

Na skupu X* se definisSe vrlo jednostavna, prirodna operacija konkatenacije,
dopisivanja reci, definisana sa:

L1+ TmY1---Yp =T1-.-TmlY1..--Yk

Za SVe T1,...,Tm,Y1,---,Yr € X. Odmah se uoCava da je re¢ o asocija-
tivnoj operaciji na X* u odnosu na koju A\ predstavlja neutralni element, pa
tako X* dobija strukturu monoida koji zovemo monoid reci. Operacija konka-
tencije takode daje skupu X = X* \ {\} svih nepraznih re¢i nad X strukturu
polugrupe, polugrupe re¢i nad X.

Drugo ime za X* i Xt su, redom, slobodan monoid i slobodna polugrupa.
Razlog za to je Sto su ove strukture posebne u klasama svih monoida odnosno
polugrupa: one imaju tzv. svojstvo slobodnog preslikavanja — bilo koja funkcija
iz skupa X u neki monoid odnosno polugrupu S se jedinstveno proSiruje do
homomorfizma X* — S (odn. X* — S). Ovde navodimo samo monoidnu
verziju odgovarajuéeg tvrdenja.

Teorema 3. Neka je X alfabet, S proizvoljan monoid, i p : X — S proizvoljno
preslikavanje. Tada postoji jedinstven homomorfizam monoida @ : X* — S
takav da je

?(z) = ¢(x)
za svaku jednoslovnu rec¢ x (rec¢ duZine 1, koju u ovom smislu identifikujemo sa
slovomzx € X).

Dokaz. Jasno, jedini “kandidat” za traZzeni homomorfizam mozZe biti samo pres-
likavanje @ : X* — S definisano sa p(\) = 11

P(w1...xn) = (1) P(Tn),
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gde sa desne strane primenjujemo operaciju iz S. Medutim, lako se vidi da
zaista jeste homomorfizam monoida:

P zm)PWr - yk) = o(x1) - p(Tm) - o(y1) - @(yk)
=0(x1 ... TmY1 - Yk)-

UopSteni asocijativni zakon

Kao $to smo ranije definisali, polugrupe su grupoidi koji zadovoljavaju asocija-
tivni zakon, tj. u kojima vazi

(zy)z = z(y=)

sa svaka tri elementa z, y, z. U ovom odeljku pokazujemo da je u svakoj polu-
grupi i za svaki grupoidni izraz (term) proizvoljne sloZenosti (odnosno duZine)
raspored zagrada u izrazu potpuno irelevantan. Odgovarajuée tvrdenje u tom
smislu zovemo uopsteni asocijativni zakon.

Za grupoidni term ¢, neka w; oznacava re¢ koja se od t dobija brisanjem
svih zagrada.

Teorema 4. Neka su ty,to grupoidni termi (nad nekim skupom promenljivih X )
takvi da je wy, = wy,. Tada identitet t1 = to vaZi u svakoj polugrupi.

Dokaz. Za grupoidni term ¢, ozna¢imo sa ¢ grupoidni term koji se od reci wy
dobija grupisanjem zagrada na levoj strani. Na primer, ako je t(z,y,z) =
z((zy)(zy)) tada je t = (((xx)y)z)y. Jasno, tvrdenje teoreme Ce biti dokazano
ako pokazemo da identitet ¢ = ¢ vazi u svakoj polugrupi, jer pretpostavka teo-
reme povladi da su ¢; i 5 jedan isti term.

Opisano pomo¢no tvrdenje dokazujemo indukcijom po sloZenosti terma ¢.
Zaista, ako se t sastoji od samo jednog slova, tvrdenje je trivijalno. Zato, neka
jet =ty - t pri Cemu za tq, to vaZi induktivna pretpostavka: t; = t1 ity = to
su identiteti koji vaZe u svakoj polugrupi. Prema tome, u svakoj polugrupi vazi

Ako se to sastoji od jednog slova iz X, dokaz je zavrSen poSto je desna strana
gornje jednakosti upravo term ¢. U suprotnom, re¢ wy, ima neko poslednje slovo
x koje prethodi neprazan prefiks p, pa se tako term ¢y zapravo poklapa sa p’ - x,
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gde je p’ grupoidni term koji se od re¢i p dobija grupisanjem zagrada na levoj
strani. Prema tome, u svakoj polugrupi vaze identiteti
t=t1-(p)-2)=(t-p) =,
gde smo u drugom koraku primenili obic¢an asocijativni zakon (uz odgovarajuce
uvrStavanje termova). No, term 7 - p’ je sada kra¢i od pocetnog terma ¢ (sadrzi
jedno pojavljivanje promenljive manje), pa je na njega primenljiva induktivna
pretpostavka; prema tome, svaka polugrupa zaodovoljava identitet
=ty

Medutim, desna strana ovog identiteta je term koji se dobija od re¢i wy, p grupi-
sanjem zagrada na levoj strani. Stoga, mnoZenjem tog terma promenljivom z
upravo dobijamo ¢ (posto je w; = wywy, = wypx). No, time smo upravo
dokazali da ¢t = ¢ vaZi u svakoj polugrupi. O

Ideali u polugrupama

Neka je S polugrupa. Za @ # I C S kaZemo da je desni ideal ako za sve a € |
isve s € Svazi as € I; drugim re¢ima IS C I. Analogno, I je levi ideal ako
je ST C I. Ukoliko je I C S istovremeno i desni i levi ideal polugrupe S, on je
njen ideal. Jasno, (desni, levi) ideali polugrupa su nuZno potpolugrupe.

Tvrdenje 5. Neka je S polugrupa i @ + X C S. Tada je
(1) XS' = S U XS najmanji desni ideal od S koji sadr?i X,
(2) S'X = SUSX najmanji levi ideal od S koji sadrzi X ;
(3) S'XS!'=SUXSUSX USXS najmanji ideal od S koji sadri X.

Dokaz. Primera radi, dokazimo samo (1), poSto se preostala dva tvrdenja doka-
zuju vrlo sli¢no.

Ako je, dakle, I desni ideal od S koji sadrzi X, tadazasve s € Six € X
mora biti 25 € I. Stogaje XS' = X UXS C I. S druge strane, X S! je zaista
desni ideal, jer ako je x € X i s,s' € S, tada je (xs)s’ = x(ss’) € X S. Prema
tome, X S! je najmanji desni ideal od S koji sadrZi X. O

Za (desne, leve) ideale iz tacaka (1)—(3) gornjeg tvrdenja kazemo da su
generisani skupom X.

Kada je generiSuci skup jednoelementan, X = {a}, govorimo o glavnim
(desnim, levim) idealima. Tako su aS', S1ai.5'aS! redom desni, levi, odnosno
dvostrani ideal generisani elementom a € S.
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Grinove relacije

Naravno, moZe se dogoditi da razliCiti elementi neke polugrupe generisu isti
desni, levi ili dvostrani ideal. Grinove relacije su relacije ekvivalencije na da-
toj polugrupi koje vrSe kalsifikaciju njenih elemenata prema tome koji (desni,
levi) ideal generiSu. Kako ¢emo ubrzo videti, ovo vodi ka razli¢itim pojmovima
deljivosti u polugrupama. Grinove relacije Cesto predstvljaju koristan alat da se
detaljnije sagleda struktura posmatrane polugrupe.

Ove relacije uobicajeno oznacavamo pisanim slovima Z,.%, 7, 1 9.
Prve tri su osnovne, i definisane su sa

aZb akko aS'=0bS",
a?b akko S'a=S',
a Zb akko S'aS'=S'bS'.

Dalje, 7 = ZNXL 19 = %V . Kako nije tesko pokazati da uvek vazi

X ol =L o, sledi da se relacija & zapravo poklapa sa ovom kompozi-

cijom relacija # i .£. Upravo zbog toga, Z-klase neke polugrupe je zgodno

prikazati kao pravougaonu tablicu u kojoj su vrste Z#-klase, kolone .#-klase, a

kvadratna polja (koja nastaju u preseku Z-klasa i .Z-klasa) reprezentuju 52°-

klase. Napominjemo da je Z C ¢, ali da u opStem slucaju ne vaZzi jednakost.
Neposredno iz definicija sledi sledeci opis Grinovih relacija.

Tvrdenje 6. U svakoj polugrupi S i za sve a,b € S vaZi:

(i) aZb ako i samo ako a = b ili postoje x,y € S tako da je b = ax i
a = by.

(ii) a £ b ako i samo ako a = b ili postoje x,y € S tako da je b = xa i
a = yb.

(iii) a # b ako i samo ako postoje p,q,x,y € St tako da je b = paqia =
xby.

Na primer, u monoidu (polugrupi) re¢i X* (X ™) sve Grinove relacije su
trivijalne: na primer, ako za dve re¢i u,v € X vazi v = ux i u = vy za neke
x,y € S* tada je v = uzy, odakle odmah sledi da obe re¢i x,y moraju biti
prazne, tj. u = v.
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Idempotenti i regularne polugrupe

Element e € S polugrupe S je idempotent ako je e = e. Skup svih idempo-
tentnih elemenata S oznacavamo sa E(.5).

Tvrdenje 7. Transformacija f € Tx je idempotentna ako i samo ako je svaka
njena slika ujedno i njena fiksna tacka, tj. ako je f|iy(p) = idim(s)-

Ako pretpostavimo da je f o f = f, tada je f(f(z)) = f(z), 4. f(y) =y
Obratno, za sve z € X mora biti f(f(x)) = f(z), buduéidaje f(x) € Im(f
no, tadaje fo f = f. O

>

Dokaz. Neka je y € Im(f) C X. Tada postoji z € X tako da je y = f(x).
).

Sledecdi rezultat dovodi u vezu idempotente i Grinove relacije.

Tvrdenje 8. (1) Svaki idempotent e € E(S) je leva jedinica u odnosu na
svoju Z-klasu: ako je e Z a onda je ea = a.

(2) Svakiidempotent e € E(S) je desna jedinica u odnosu na svoju £ -klasu:
ako je e £ a onda je ae = a.

(3) Svaki idempotent e € E(S) je dvostrana jedinica u odnosu na svoju -
klasu: ako je e 7€ a onda je ae = ea = a.

(4) Svaka F€-klasa sadrZi najvise jedan idempotent.

Dokaz. (1): Akoje e Z atadajea = ex zanekox € S, pajeea = e’z = ex =

a. Tvrdenje (2) se dokazuje analogno, a (3) je posledica od (1) i (2). Najzad, ako
bi neka 7#-klasa H sadrzala idempotente eq, e, tada bi po prethodnom vazilo
e; = ejea = ez (jer je e; leva jedinica u svojoj Z-klasi, a ex desna jedinica u
svojoj -Z-klasi, pri ¢emu obe navedene klase sadrze H kao podskup). O

U ranije opisanoj pravougaonoj skici tipicne Z-klase uobicajeno je da se
idempotenti oznace zvezdicom (a ponekad se .77-klase koje ih sadrZe i osence).
Na taj nacin dobijamo ono $to se u teoriji polugrupa obi¢no naziva egg-box
dijagram (zbog tacke (4) iz prethodnog tvrdenja). Uvodenje jedne dodatne,
a klju¢ne osobine polugrupa i njenih elemenata nam omogucava da o izgledu
takvih dijagrama kaZemo nesto viSe.

Za element a polugrupe S kaZzemo da je regularan ako postoji x € S tako
da je aza = a. (Primetimo da tada postoji i element y € S sa osobinom da je
aya = a1y = yay — 1 takav element zovemo inverz od a — naime, y = xax
ima u osobinu ako je ara = a.)
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Polugrupa S je regularna ako je regularan svaki njen element.

Tvrdenje 9. (1) Neka je a € S regularan element, pri cemu je x € S takav
da je axa = a. Tada su ax,xa € E(S), pri cemu je a Z ax i a L za.

(2) Ako je a % e za neki e € E(S) tada je a regularan element.

(3) Ako je a L e za neki e € E(S) tada je a regularan element.

Dokaz. 1z axa = a oigledno sledi (az)? = arazx = ax i (va)? = zava = za.

Takode, a = (ax)a = a(za) povladi da je a Z ax i a £ xa. Ako je a Z e za
neki e € E(S) tada je e = ax za neko z € S, pa je po tacki (1) prethodnog
tvrdenja

a = ea = azxa,

Sto pokazuje da je element a regularan. Sli¢no se dokazuje i (3). O

Posledica 10. Ako neka Z-klasa polugrupe S sadrZi bar jedan regularan ele-
ment, onda su svi elementi te 9-klase regularni. (Takve 9-klase zovemo re-
gularnim Z-klasama.) U regularnoj P-klasi, svaka Z%-klasa i svaka £ -klasa
sadrzi bar jedan idempotent. Prema tome, regularne 9-klase su tacno one koje
sadrZe idempotente.

Dokaz. Neka je a regularan element polugrupe S i D njena Z-klasa. Ako je
b € D tada zbog ¥ = Z o £ postoji ¢ € D tako da je a Z c.Z b. No, tada
postoji idempotent u %-klasi od a, pa je po prethodnom tvrdenju element ¢
regularan. Dualno, tada u Z-klasi od ¢ postoji idempotent, pa je i element b
regularan. Ostala tvrdenja slede sada neposredno. O

Moze se pokazati da su .7#-klase polugrupe S koje sadrZe idempotente pod-
grupe od S. StaviSe, u pitanju su maksimalne podgrupe od S, i svaka maksi-
malna podgrupa svake polugrupe S nastaje tako: kao .7-klasa nekog idempo-
tenta e € E(S). Takode, sve ove maksimalne podgrupe sadrzane u istoj Z-klasi
su medusobno izomorfne.

Grinove relacije u 7y

Teorema 11. Neka je X proizvoljan neprazan skup i f, g : X — X.
(1) fZ% g akoisamo ako je ker(f) = ker(g).
(2) % g ako isamo ako je Im(f) =TIm(g).



POLUGRUPE 9

(3) f 7 gakoisamo ako je rank(f) = |Im(f)| = |Im(g)| = rank(g).
(4) UTxvaii 2 = J.

Dokaz. (1): Uslov f % g ekvivalentan je postojanju transformacija hq, ho tako
daje fohy = gigohy = f. DokazaCemo da je postojanje hi sa osobi-
nom f o h; = g ekvivalentno uslovu ker(f) C ker(g) (pa je onda drugi uslov
ekvivalentan sa ker(g) C ker(f), odakle tvdenje (1) sledi).

Prema tome, pretpostavimo najpre da je f o hy = g. Takode, pretpostavimo
dasuz,y € X takvi daje (x,y) € ker(f), $to znaci da je f(x) = f(y). No,
tada je

g(x) = h1(f(x)) = hi(f(v)) = 9(y),

paje (z,y) € ker(g).

Obratno, podimo od pretpostavke da je ker(f) C ker(g), a sa ciljem da
konstruiSemo h; : X — X tako da je f o hy = g. Naime, za sve z ¢
Im(f) defini§imo hq(z) = z. S druge strane, ako je z € Im(f) odaberimo
proizvoljno z € f~!(z) (dati uslov obezbeduje da desna strana nije prazan
skup) i defini§imo hi(x) = g(z). Primetimo da je ovde izbor elementa z € X
irelevantan jer f(z1) = = = f(z2) povladi g(z1) = g(z2) (zbog ker(f) C

ker(g)), pa je time funkcija hy potpuno odredena. StaviSe, iz istog razloga za
sve x € X vazi

jerjex € f7H(f()).

(2): Uslov f.Z g ekvivalentan je postojanju transformacija hq, he tako da
jehiof =gihgog= f. Dokazujemo da je uslov postojanja transformacije
h1 koja zadovoljava hy o f = g ekvivalentan sa Im(g) C Im(f), odakle, sli¢no
kao i u prethodnoj tacki, sledi tvrdenje.

Zaista, akoje hy o f = giy € Im(g), tada je, zanekoz € X,y = g(z) =
f(h1(z)) € Im(f). Obratno, pretpostvimo da je Im(g) C Im(f). Tada za sve
z € Im(g) odaberimo po jedno 3, € f~'(z) (desni skup je neprazan jer je zbog
datog uslova z € Im(f)) i defini§imo transformaciju h; na X tako $to je

hi(x) =y, kadgodje g(x)==z.
Tada je, za proizvoljno x € X, u skladu sa svim prethodnim definicijama,

tj.hiof=g.
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(3) i (4): Kako je uvek 2 C _¢Z, ova dva tvrdenja dokazujemo tako Sto
najpre proveravamo da f _# g povladi rank(f) = rank(g), a zatim da potonji
uslov povladi f Z g.

Prva implikacija Isedi iz jednostavne primedbe da je, za bilo koje dve trans-
formacije hy, ho,

rank(hj o hy) < min (rank(hy ), rank(hs)),

tj. da kompozicijom funkcija ne moZemo dobiti funkciju koja ima kardinalnost
slike vecu od kardinalnosti slika bilo koje od pojedinacnih funkcija. S druge
strane, neka je ker(f) = {A; : i € I} iIm(f) = {z; : i € I} za neki skup
I, tako da je f(x) = x; zasve x € A; isvei € I. Po pretpostavci, g ima
sliku iste kardinalnosti kao i f, pa se ta slika moZe indeksirati istim skupom
I: Tm(g) = {y; : i € I}. Posmatrajmo sada transformaciju h definisanu sa
h(z) = y; ako i samo ako = € A;. Kako je ker(f) = ker(h) i Im(h) = Im(g),
po tackama (1) i (2) sledidaje f Zh.Z g. Stogaje f Z g. O

Posledica 12. Tx je regularna polugrupa.
Dokaz. Neka je f proizvoljna transformacija na X, i neka je
ker f ={A;: i€ I}.

Odaberimo neku transverzalu ove particije, x; € A; (i € I), i definiSimo trans-
formaciju e sa e(r) = z; ako i samo ako je x € A;. Transformacija e je
idempotentna, a zbog ker(f) = ker(e) vazi f % e. Prema tome, f je regularan
element od Tx. O



