
Polugrupe

Definicija polugrupe

Grupoid (S, ·) u kojem je operacija · asocijativna naziva se polugrupa. Drugim
rečima, zahtevamo da za sve a, b, c ∈ S važi

(a · b) · c = a · (b · c).

Ukoliko S ima jedinicu, tj. neutralni element 1 u odnosu na · tako da je 1 · a =

a · 1 = a za sve a ∈ S, tada je S monoid.

Primer 1. Monoidi su, na primer, (N,+), (Z,+), (N, ·) i (Z, ·). U prva dva
monoida neutralni element je broj 0, dok je u druga dva to broj 1. Za proizvoljan
skup A, monoidi su i (P(A),∪) i (P(A),∩); za prvi, neutralni element je ∅, a
za drugi je to ceo skup A.

Monoidi transformacija i teorema reprezentacije

Kao što je vrlo dobro poznato, ako su f : A → B, g : B → C i h : C → D

funkcije (gde su A,B,C,D neki neprazni skupovi), tada važi

(f ◦ g) ◦ h = f ◦ (g ◦ h).

(Tako -de, sličan zaključak sledi i za proizvoljne tri binarne relacije.) Prema tome,
transformacije skupa A, funkcije f : A → A, čine monoid, pun monoid trans-
formacija TA, u odnosu na operaciju kompozicije funkcija i identičkim pres-
likavanjem idA kao jedinicom. Kada je A konačan skup, |A| = n, odgovarajući
pun monoid transformacija označavamo i sa Tn.
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Značaj monoida TA ogleda se u teoremi reprezentacije: za svaku polugrupu
S postoji potapanje S → TA za pogodno odabran skup A. Na taj način, do na
izomorfizam, svaka polugrupa/monoid je polugrupa/monoid transformacija.

Teorema 2. Za svaku polugrupu S postoji skup A takav da postoji potapanje
(injektivni homomorfizam) ψ : S → TA.

Dokaz. Najpre pokazujemo da se svaka polugrupa S može potopiti u monoid.
Ako S već sadrži jedinični element, nema šta da se dokazuje U suprotnom,
posmatrajmo skup S1 = S ∪ {1} gde je 1 6= S novi element, i na njemu
definišimo novu operaciju ∗ sa 1∗s = s∗1 = s za sve s ∈ S, kao i a∗b = ab za
sve a, b ∈ S. Rutinski se pokazuje da je ovako definisana operacija asocijativna,
tj. da dodavanje novog elementa neće “pokvariti asocijativnost” stare operacije.
(Na primer, ako je a, c ∈ S i b = 1 tada je (ab)c = ac = a(bc).)

Stoga je dovoljno dokazati teoremu pod pretpostavkom da je S monoid.
Biramo A = S i definišemo preslikavanje ψ : S → TS sa

ψ(a) = ρa

za sve a ∈ S, gde je ρa : S → S desna translacija monoida S u odnosu na
element a:

ρa(x) = xa

za sve x ∈ S. Preslikavanje ψ je injektivno, zato što pretpostavka da je ψ(a) =
ψ(b) znači da je ρa = ρb, pa tako, specijalno, važi i

a = ρa(1) = ρb(1) = b.

(Odavde se vidi značaj pretpostavke da je S monoid.) Tako -de, za proizvoljno
x ∈ S važi

ρab(x) = x(ab) = (xa)b = ρb(xa) = ρb(ρa(x)) = (ρa ◦ ρb)(x),

zbog čega je ρab = ρa ◦ ρb, to jest

ψ(ab) = ψ(a) ◦ ψ(b).

Prema tome, ψ je injektivni homomorfizam, što je i trebalo dokazati.
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Polugrupe reči

Neka je X neki (konačan ili beskonačan) skup simbola, u čiju prirodu ne ulazi-
mo; takav skup nazivamo alfabet, a njegove elemente slova. Reč nad X je bilo
koji konačan niz slova iz X , na primer:

(x1, . . . , xn),

gde su x1, . . . , xn ∈ X (ne nužno različiti). Ovo uključuje u prazan niz, (),
niz dužine 0. koji zovemo prazna reč. Ipak, uobičajenije je da reči pišemo bez
zagrada i zareza, prosto x1 . . . xn, a da praznu reč označavamo sa λ. Skup svi
reči nad X se označava sa X∗.

Na skupuX∗ se definiše vrlo jednostavna, prirodna operacija konkatenacije,
dopisivanja reči, definisana sa:

x1 . . . xm · y1 . . . yk = x1 . . . xmy1 . . . yk

za sve x1, . . . , xm, y1, . . . , yk ∈ X . Odmah se uočava da je reč o asocija-
tivnoj operaciji na X∗ u odnosu na koju λ predstavlja neutralni element, pa
tako X∗ dobija strukturu monoida koji zovemo monoid reči. Operacija konka-
tencije tako -de daje skupu X+ = X∗ \ {λ} svih nepraznih reči nad X strukturu
polugrupe, polugrupe reči nad X .

Drugo ime za X∗ i X+ su, redom, slobodan monoid i slobodna polugrupa.
Razlog za to je što su ove strukture posebne u klasama svih monoida odnosno
polugrupa: one imaju tzv. svojstvo slobodnog preslikavanja – bilo koja funkcija
iz skupa X u neki monoid odnosno polugrupu S se jedinstveno proširuje do
homomorfizma X∗ → S (odn. X+ → S). Ovde navodimo samo monoidnu
verziju odgovarajućeg tvr -denja.

Teorema 3. Neka jeX alfabet, S proizvoljan monoid, i ϕ : X → S proizvoljno
preslikavanje. Tada postoji jedinstven homomorfizam monoida ϕ : X∗ → S

takav da je
ϕ(x) = ϕ(x)

za svaku jednoslovnu reč x (reč dužine 1, koju u ovom smislu identifikujemo sa
slovom x ∈ X).

Dokaz. Jasno, jedini “kandidat” za traženi homomorfizam može biti samo pres-
likavanje ϕ : X∗ → S definisano sa ϕ(λ) = 1 i

ϕ(x1 . . . xn) = ϕ(x1) · · ·ϕ(xn),
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gde sa desne strane primenjujemo operaciju iz S. Me -dutim, lako se vidi da ϕ
zaista jeste homomorfizam monoida:

ϕ(x1 . . . xm)ϕ(y1 . . . yk) = ϕ(x1) · · ·ϕ(xm) · ϕ(y1) · · ·ϕ(yk)
= ϕ(x1 . . . xmy1 . . . yk).

Uopšteni asocijativni zakon

Kao što smo ranije definisali, polugrupe su grupoidi koji zadovoljavaju asocija-
tivni zakon, tj. u kojima važi

(xy)z = x(yz)

sa svaka tri elementa x, y, z. U ovom odeljku pokazujemo da je u svakoj polu-
grupi i za svaki grupoidni izraz (term) proizvoljne složenosti (odnosno dužine)
raspored zagrada u izrazu potpuno irelevantan. Odgovarajuće tvr -denje u tom
smislu zovemo uopšteni asocijativni zakon.

Za grupoidni term t, neka wt označava reč koja se od t dobija brisanjem
svih zagrada.

Teorema 4. Neka su t1, t2 grupoidni termi (nad nekim skupom promenljivihX)
takvi da je wt1 = wt2 . Tada identitet t1 = t2 važi u svakoj polugrupi.

Dokaz. Za grupoidni term t, označimo sa t grupoidni term koji se od reči wt

dobija grupisanjem zagrada na levoj strani. Na primer, ako je t(x, y, z) =

x((xy)(zy)) tada je t = (((xx)y)z)y. Jasno, tvr -denje teoreme će biti dokazano
ako pokažemo da identitet t = t važi u svakoj polugrupi, jer pretpostavka teo-
reme povlači da su t1 i t2 jedan isti term.

Opisano pomoćno tvr -denje dokazujemo indukcijom po složenosti terma t.
Zaista, ako se t sastoji od samo jednog slova, tvr -denje je trivijalno. Zato, neka
je t = t1 · t2 pri čemu za t1, t2 važi induktivna pretpostavka: t1 = t1 i t2 = t2
su identiteti koji važe u svakoj polugrupi. Prema tome, u svakoj polugrupi važi

t = t1 · t2.

Ako se t2 sastoji od jednog slova iz X , dokaz je završen pošto je desna strana
gornje jednakosti upravo term t. U suprotnom, rečwt2 ima neko poslednje slovo
x koje prethodi neprazan prefiks p, pa se tako term t2 zapravo poklapa sa p′ · x,
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gde je p′ grupoidni term koji se od reči p dobija grupisanjem zagrada na levoj
strani. Prema tome, u svakoj polugrupi važe identiteti

t = t1 · (p′ · x) = (t1 · p′) · x,

gde smo u drugom koraku primenili običan asocijativni zakon (uz odgovarajuće
uvrštavanje termova). No, term t1 · p′ je sada kraći od početnog terma t (sadrži
jedno pojavljivanje promenljive manje), pa je na njega primenljiva induktivna
pretpostavka; prema tome, svaka polugrupa zaodovoljava identitet

t1 · p′ = t1 · p′.

Me -dutim, desna strana ovog identiteta je term koji se dobija od reči wt1p grupi-
sanjem zagrada na levoj strani. Stoga, množenjem tog terma promenljivom x

upravo dobijamo t (pošto je wt = wt1wt2 = wt1px). No, time smo upravo
dokazali da t = t važi u svakoj polugrupi.

Ideali u polugrupama

Neka je S polugrupa. Za ∅ 6= I ⊆ S kažemo da je desni ideal ako za sve a ∈ I
i sve s ∈ S važi as ∈ I; drugim rečima IS ⊆ I . Analogno, I je levi ideal ako
je SI ⊆ I . Ukoliko je I ⊆ S istovremeno i desni i levi ideal polugrupe S, on je
njen ideal. Jasno, (desni, levi) ideali polugrupa su nužno potpolugrupe.

Tvr -denje 5. Neka je S polugrupa i ∅ 6= X ⊆ S. Tada je

(1) XS1 = S ∪XS najmanji desni ideal od S koji sadrži X;

(2) S1X = S ∪ SX najmanji levi ideal od S koji sadrži X;

(3) S1XS1 = S ∪XS ∪ SX ∪ SXS najmanji ideal od S koji sadrži X .

Dokaz. Primera radi, dokažimo samo (1), pošto se preostala dva tvr -denja doka-
zuju vrlo slično.

Ako je, dakle, I desni ideal od S koji sadrži X , tada za sve s ∈ S i x ∈ X
mora biti xs ∈ I . Stoga je XS1 = X ∪XS ⊆ I . S druge strane, XS1 je zaista
desni ideal, jer ako je x ∈ X i s, s′ ∈ S, tada je (xs)s′ = x(ss′) ∈ XS. Prema
tome, XS1 je najmanji desni ideal od S koji sadrži X .

Za (desne, leve) ideale iz tačaka (1)–(3) gornjeg tvr -denja kažemo da su
generisani skupom X .

Kada je generišući skup jednoelementan, X = {a}, govorimo o glavnim
(desnim, levim) idealima. Tako su aS1, S1a i S1aS1 redom desni, levi, odnosno
dvostrani ideal generisani elementom a ∈ S.
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Grinove relacije

Naravno, može se dogoditi da različiti elementi neke polugrupe generišu isti
desni, levi ili dvostrani ideal. Grinove relacije su relacije ekvivalencije na da-
toj polugrupi koje vrše kalsifikaciju njenih elemenata prema tome koji (desni,
levi) ideal generišu. Kako ćemo ubrzo videti, ovo vodi ka različitim pojmovima
deljivosti u polugrupama. Grinove relacije često predstvljaju koristan alat da se
detaljnije sagleda struktura posmatrane polugrupe.

Ove relacije uobičajeno označavamo pisanim slovima R,L ,J ,H i D .
Prve tri su osnovne, i definisane su sa

aR b akko aS1 = bS1,

aL b akko S1a = S1b,

aJ b akko S1aS1 = S1bS1.

Dalje, H = R ∩ L i D = R ∨ L . Kako nije teško pokazati da uvek važi
R ◦ L = L ◦ R, sledi da se relacija D zapravo poklapa sa ovom kompozi-
cijom relacija R i L . Upravo zbog toga, D-klase neke polugrupe je zgodno
prikazati kao pravougaonu tablicu u kojoj su vrste R-klase, kolone L -klase, a
kvadratna polja (koja nastaju u preseku R-klasa i L -klasa) reprezentuju H -
klase. Napominjemo da je D ⊆J , ali da u opštem slučaju ne važi jednakost.

Neposredno iz definicija sledi sledeći opis Grinovih relacija.

Tvr -denje 6. U svakoj polugrupi S i za sve a, b ∈ S važi:

(i) aR b ako i samo ako a = b ili postoje x, y ∈ S tako da je b = ax i
a = by.

(ii) aL b ako i samo ako a = b ili postoje x, y ∈ S tako da je b = xa i
a = yb.

(iii) aJ b ako i samo ako postoje p, q, x, y ∈ S1 tako da je b = paq i a =

xby.

Na primer, u monoidu (polugrupi) reči X∗ (X+) sve Grinove relacije su
trivijalne: na primer, ako za dve reči u, v ∈ X∗ važi v = ux i u = vy za neke
x, y ∈ S∗ tada je u = uxy, odakle odmah sledi da obe reči x, y moraju biti
prazne, tj. u = v.
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Idempotenti i regularne polugrupe

Element e ∈ S polugrupe S je idempotent ako je e2 = e. Skup svih idempo-
tentnih elemenata S označavamo sa E(S).

Tvr -denje 7. Transformacija f ∈ TX je idempotentna ako i samo ako je svaka
njena slika ujedno i njena fiksna tačka, tj. ako je f |Im(f) = idIm(f).

Dokaz. Neka je y ∈ Im(f) ⊆ X . Tada postoji x ∈ X tako da je y = f(x).
Ako pretpostavimo da je f ◦ f = f , tada je f(f(x)) = f(x), tj. f(y) = y.
Obratno, za sve x ∈ X mora biti f(f(x)) = f(x), budući da je f(x) ∈ Im(f);
no, tada je f ◦ f = f .

Sledeći rezultat dovodi u vezu idempotente i Grinove relacije.

Tvr -denje 8. (1) Svaki idempotent e ∈ E(S) je leva jedinica u odnosu na
svoju R-klasu: ako je eR a onda je ea = a.

(2) Svaki idempotent e ∈ E(S) je desna jedinica u odnosu na svoju L -klasu:
ako je eL a onda je ae = a.

(3) Svaki idempotent e ∈ E(S) je dvostrana jedinica u odnosu na svoju H -
klasu: ako je eH a onda je ae = ea = a.

(4) Svaka H -klasa sadrži najviše jedan idempotent.

Dokaz. (1): Ako je eR a tada je a = ex za neko x ∈ S, pa je ea = e2x = ex =

a. Tvr -denje (2) se dokazuje analogno, a (3) je posledica od (1) i (2). Najzad, ako
bi neka H -klasa H sadržala idempotente e1, e2, tada bi po prethodnom važilo
e1 = e1e2 = e2 (jer je e1 leva jedinica u svojoj R-klasi, a e2 desna jedinica u
svojoj L -klasi, pri čemu obe navedene klase sadrže H kao podskup).

U ranije opisanoj pravougaonoj skici tipične D-klase uobičajeno je da se
idempotenti označe zvezdicom (a ponekad se H -klase koje ih sadrže i osenče).
Na taj način dobijamo ono što se u teoriji polugrupa obično naziva egg-box
dijagram (zbog tačke (4) iz prethodnog tvr -denja). Uvo -denje jedne dodatne,
a ključne osobine polugrupa i njenih elemenata nam omogućava da o izgledu
takvih dijagrama kažemo nešto više.

Za element a polugrupe S kažemo da je regularan ako postoji x ∈ S tako
da je axa = a. (Primetimo da tada postoji i element y ∈ S sa osobinom da je
aya = a i y = yay – i takav element zovemo inverz od a – naime, y = xax

ima u osobinu ako je axa = a.)
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Polugrupa S je regularna ako je regularan svaki njen element.

Tvr -denje 9. (1) Neka je a ∈ S regularan element, pri čemu je x ∈ S takav
da je axa = a. Tada su ax, xa ∈ E(S), pri čemu je aR ax i aL xa.

(2) Ako je aR e za neki e ∈ E(S) tada je a regularan element.

(3) Ako je aL e za neki e ∈ E(S) tada je a regularan element.

Dokaz. Iz axa = a očigledno sledi (ax)2 = axax = ax i (xa)2 = xaxa = xa.
Tako -de, a = (ax)a = a(xa) povlači da je aR ax i aL xa. Ako je aR e za
neki e ∈ E(S) tada je e = ax za neko x ∈ S, pa je po tački (1) prethodnog
tvr -denja

a = ea = axa,

što pokazuje da je element a regularan. Slično se dokazuje i (3).

Posledica 10. Ako neka D-klasa polugrupe S sadrži bar jedan regularan ele-
ment, onda su svi elementi te D-klase regularni. (Takve D-klase zovemo re-
gularnim D-klasama.) U regularnoj D-klasi, svaka R-klasa i svaka L -klasa
sadrži bar jedan idempotent. Prema tome, regularne D-klase su tačno one koje
sadrže idempotente.

Dokaz. Neka je a regularan element polugrupe S i D njena D-klasa. Ako je
b ∈ D tada zbog D = R ◦ L postoji c ∈ D tako da je aR cL b. No, tada
postoji idempotent u R-klasi od a, pa je po prethodnom tvr -denju element c
regularan. Dualno, tada u L -klasi od c postoji idempotent, pa je i element b
regularan. Ostala tvr -denja slede sada neposredno.

Može se pokazati da su H -klase polugrupe S koje sadrže idempotente pod-
grupe od S. Štaviše, u pitanju su maksimalne podgrupe od S, i svaka maksi-
malna podgrupa svake polugrupe S nastaje tako: kao H -klasa nekog idempo-
tenta e ∈ E(S). Tako -de, sve ove maksimalne podgrupe sadržane u istoj D-klasi
su me -dusobno izomorfne.

Grinove relacije u TX
Teorema 11. Neka je X proizvoljan neprazan skup i f, g : X → X .

(1) f R g ako i samo ako je ker(f) = ker(g).

(2) f L g ako i samo ako je Im(f) = Im(g).
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(3) f J g ako i samo ako je rank(f) = | Im(f)| = | Im(g)| = rank(g).

(4) U TX važi D = J .

Dokaz. (1): Uslov f R g ekvivalentan je postojanju transformacija h1, h2 tako
da je f ◦ h1 = g i g ◦ h2 = f . Dokazaćemo da je postojanje h1 sa osobi-
nom f ◦ h1 = g ekvivalentno uslovu ker(f) ⊆ ker(g) (pa je onda drugi uslov
ekvivalentan sa ker(g) ⊆ ker(f), odakle tv -denje (1) sledi).

Prema tome, pretpostavimo najpre da je f ◦ h1 = g. Tako -de, pretpostavimo
da su x, y ∈ X takvi da je (x, y) ∈ ker(f), što znači da je f(x) = f(y). No,
tada je

g(x) = h1(f(x)) = h1(f(y)) = g(y),

pa je (x, y) ∈ ker(g).
Obratno, po -dimo od pretpostavke da je ker(f) ⊆ ker(g), a sa ciljem da

konstruišemo h1 : X → X tako da je f ◦ h1 = g. Naime, za sve x 6∈
Im(f) definišimo h1(x) = x. S druge strane, ako je x ∈ Im(f) odaberimo
proizvoljno z ∈ f−1(x) (dati uslov obezbe -duje da desna strana nije prazan
skup) i definišimo h1(x) = g(z). Primetimo da je ovde izbor elementa z ∈ X
irelevantan jer f(z1) = x = f(z2) povlači g(z1) = g(z2) (zbog ker(f) ⊆
ker(g)), pa je time funkcija h1 potpuno odre -dena. Štaviše, iz istog razloga za
sve x ∈ X važi

h1(f(x)) = g(x),

jer je x ∈ f−1(f(x)).
(2): Uslov f L g ekvivalentan je postojanju transformacija h1, h2 tako da

je h1 ◦ f = g i h2 ◦ g = f . Dokazujemo da je uslov postojanja transformacije
h1 koja zadovoljava h1 ◦ f = g ekvivalentan sa Im(g) ⊆ Im(f), odakle, slično
kao i u prethodnoj tački, sledi tvr -denje.

Zaista, ako je h1 ◦ f = g i y ∈ Im(g), tada je, za neko x ∈ X , y = g(x) =

f(h1(x)) ∈ Im(f). Obratno, pretpostvimo da je Im(g) ⊆ Im(f). Tada za sve
z ∈ Im(g) odaberimo po jedno yz ∈ f−1(z) (desni skup je neprazan jer je zbog
datog uslova z ∈ Im(f)) i definišimo transformaciju h1 na X tako što je

h1(x) = yz kad god je g(x) = z.

Tada je, za proizvoljno x ∈ X , u skladu sa svim prethodnim definicijama,

f(h1(x)) = f(yg(x)) = g(x),

tj. h1 ◦ f = g.
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(3) i (4): Kako je uvek D ⊆ J , ova dva tvr -denja dokazujemo tako što
najpre proveravamo da f J g povlači rank(f) = rank(g), a zatim da potonji
uslov povlači f D g.

Prva implikacija lsedi iz jednostavne primedbe da je, za bilo koje dve trans-
formacije h1, h2,

rank(h1 ◦ h2) ≤ min (rank(h1), rank(h2)) ,

tj. da kompozicijom funkcija ne možemo dobiti funkciju koja ima kardinalnost
slike veću od kardinalnosti slika bilo koje od pojedinačnih funkcija. S druge
strane, neka je ker(f) = {Ai : i ∈ I} i Im(f) = {xi : i ∈ I} za neki skup
I , tako da je f(x) = xi za sve x ∈ Ai i sve i ∈ I . Po pretpostavci, g ima
sliku iste kardinalnosti kao i f , pa se ta slika može indeksirati istim skupom
I: Im(g) = {yi : i ∈ I}. Posmatrajmo sada transformaciju h definisanu sa
h(x) = yi ako i samo ako x ∈ Ai. Kako je ker(f) = ker(h) i Im(h) = Im(g),
po tačkama (1) i (2) sledi da je f R hL g. Stoga je f D g.

Posledica 12. TX je regularna polugrupa.

Dokaz. Neka je f proizvoljna transformacija na X , i neka je

ker f = {Ai : i ∈ I}.

Odaberimo neku transverzalu ove particije, xi ∈ Ai (i ∈ I), i definišimo trans-
formaciju e sa e(x) = xi ako i samo ako je x ∈ Ai. Transformacija e je
idempotentna, a zbog ker(f) = ker(e) važi f R e. Prema tome, f je regularan
element od TX .


