Osnovni rezultati teorije brojeva

Deljenje celih brojeva sa ostatkom

U najuZem smislu, zadatak teorije brojeva (artimetike) jeste izucavanje strukture
prstena celih brojeva (Z, +, ). Zapravo, ovaj prsten je integralni domen, tj. u
pitanju je komutativan prsten sa jedinicom koji nema delitelje nule: zaista, za
dva cela broja a,b € Z vazi ab = 0 ako i samo ako je a = 01ili b = 0.
Posmatrano Sire, predmet teorije brojeva je u tesnoj vezi sa ispitivanjem 0so-
bina relacije deljivosti u razli¢itim integralnim domenima (ne samo u Z) ¢iji su
elementi kompleksni brojevi. Na primer, ova relacija u integralnom domenu
Z[V?2] = {a+ bv2 : a,b € Z} ima sasvim drugacija svojstva nego u Z, no
upravo ta informacija u odredenim situacijama moZe imati znacajne posledice
po pitanja koja se ticu celih brojeva.

Za ceo broj b kazemo da je delilac broja a € 7, odnosno da deli a (u oznaci
b | a), ako postoji g € Z tako da je

a=bq.

Na primer, 0 je deljivo svim celim brojevima, budué¢idaje O = b-0zasve b € Z.
Takodje, 2 | 4, dok 3 1 5.
Broj € € Z koji deli svaki ceo broj zovemo jedinicnim elementom Z.

Tvrdenje 1. Prsten Z ima tac¢no dva jedini¢na elementa: 11 —1.

Dokaz. Ocigledno, 1 i —1 su jedinic¢ni elementi u Z, budu¢i da za sve a € Z
vazia = *+1 - *+a.

S druge strane, neka je ¢ jedini¢ni ceo broj. Tada, specijalno, vazi € | 1, pa
je 1 = eq zaneko g € Z. Jasno, ni € ni ¢ ne mogu biti 0, pa je ||, |¢| > 1. Tako
1 =egpovlatidaje|e| = 1,4.€ € {1,—1}. O
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S druge strane, ako na analogan nacin definiSemo deljivost u prstenu Z[/2],
dobijamo da on ima beskonacno mnogo jedini¢nih elemenata: na primer, ele-
ment a + bv/2 je jedini¢ni kad god vaZi a? — 2b> = 1. (Ova jednacina koja pri-
pada klasi diofantskih jednaCina poznatih kao Pelove jednacine ima beskonacno
mnogo reSenja.) Medutim, prsten parnih brojeva 2Z (koji je potprsten od Z)
uopste nema jediniCne elemente: svaki paran broj k koji nije deljiv sa 4 (na
primer, 10) uopste nema nijedan delitelj u ovom prstenu, jer ne postoje parni
brojevi /1 i {5 tako da je k = £145.

Tvrdenje 2. Ako su ¢, 6 jedinicni celi brojevi i vaZi b | a, tada vaZi i €b | da.

Dokaz. Kakoe | 1,toje 1 = ea za neko a € Z. Stoga, ako vazi b | a, odnosno
a = bg zaneko g € Z, tada je 6a = 9 - bg - 1 = (¢b)(adq). Dakle, b | da. O

Prethodno tvrdenje nam u stvari omoguéava da ispitivanje deljivosti brojeva
svedemo, po potrebi, iskljucivo na nenegativne cele, odnosno prirodne brojeve.
Predznak (tj. mnoZenje jedini¢nim elementom) nema nikakvu bitnu ulogu kada
je u pitanju deljivost celih brojeva.

Tvrdenje 3.
(1) Za sve a € Z vaZia | a.

(2) Za sve a,b,c € Z, akoa | bib

¢ tada a | c.

(3) Za sve a,b,c € Z, ako a | bib | a, tada postoji jedinicni element € tako
da je a = be.

(4) Akoc|aic|bzanekea,b,c€ Ztadac|(a+b),c|(a—0b)ic|kaza
sve k € Z. Zapravo, tada za sve o, B € Z vaZi ¢ | (aa + ().

Dokaz. Dokazujemo samo stavku (3), posto se ostala tvrdenja dokazuju nepos-
redno na osnovu definicije deljivosti. Zaista, ako vazia | bib | a, tadaje b = aq
ia = bs zaneke ¢,s € Z. Otuda je b = b(sq). Ako je b = 0, tada je nuzno
a=0,pajea=>b-1. Usuprotnom, sledi sq = 1, pa je element s jedini¢ni, $to
uz a = bs daje zeljeni rezultat. O

Prema tome, ako relaciju deljivosti | ograni¢imo na skup Z* pozitivnih celih
brojeva, dobijamo relaciju poretka, tj. parcijalno uredenje ovog skupa.

Naredni rezultat prirodno vodi ka poznatim pojmovima celobrojnog koli¢-
nika i ostatka pri deljenju nekim celim brojem razli¢itim od nule.
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Teorema 4. Za sve a,b € Z, b # 0, postoje jedinstveni brojevi q, v € 7, tako da

Jje
a=qgb+r i 0<r<|b.

Dokaz. Razmotrimo najpre slucaj b > 0. Dati uslovi su ocito ekvivalentni
egzistenciji i jedinstvenosti celih brojeva g, r tako da je

0<r=a—qb<hb,
Sto je, dalje, ekvivalentno dvostrukoj nejednakosti
gb<a<(qg+1)b,

tj. a/b € [q,q + 1). Medutim, postoji jedinstven ceo broj ¢ sa prethodnom
osobinom: to je bas ¢ = |a/b], najveéi ceo broj koji nije veéi od a/b. Pri tome
odmabh sledi da je i traZzno r jedinstveno; naime, mora biti

r:a—{%Jb.

S druge strane, ako je b < 0, tada uslovi
0<r=a—-bg<|b=-b

analogno kao i malopre vode dvostrukoj nejednakosti ¢ > a/b > g — 1, §to
ponovo jedinstveno odreduje ¢; naime, mora biti ¢ = [a/b]. Jedinstvenost r
opet sledi neposredno. O

Gornji postupak kojim se za date brojeve a, b € Z dobijaju jedinstveni bro-
jevi q,r zovemo deljenje sa ostatkom; pri tome je q celobrojni koli¢nik (pri
deljenju a sa b) dok je r ostatak. Primetimo da vazi b | a ako i samo ako je
ostatak pri deljenju a sa b jednak 0.

Postupak deljenja sa ostatkom nam omogucava da, izmedu ostalog, prirod-
ne brojeve izraZavamo u brojevnim sistemima sa datom osnovom (binarnom,
dekadnom, ...). Ovo je precizirano narednim tvrdenjem.

Posledica 5. Neka je B > 1 ceo broj. Tada se svako A € Z* na jedinstven
nacin moZe zapisati u obliku

A=a,B"+ an_1B" '+ -+ a1 B+ ao, (1)

gdejea, #0i0<a; < Bzasve () <i<n.
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Za reprezentaciju (zapis) broja A u obliku (1) kaZemo da je u sistemu sa
osnovom B, dok su a; cifre tog zapisa. Krace, mozemo pisati i

A=a,a,-1... aiaop);

s tim da se u dekadnom sistemu (sistemu sa osnovom 10) indeks (1] najcesce
izostavlja.

NZD i Euklidov algoritam

KaZemo da je d € Z najveci zajednicki delilac (NZD) celih brojeva a i b ako
vazi:

(i) d|a,d]b.
(ii) Zasve c € Ztakvedac | aic|bvazi|c| <|d|.

Primetimo da par (0,0) nema najveéi zajedniCki delilac; medutim, za svaki
drugi par celih brojeva postoje tacno dva cela broja koji zadovoljavaju gornje
uslove, i oni su jedan drugom suprotni. Ako je d najveéi zajednicki delilac za
a, b, to pisSemo d = (a,b), pri ¢emu se ova notacija najcesée odnosi na poziti-
van NZD za a i b (Sto ¢emo od sada i podrazumevati, ukoliko eksplicitno nije
naznaceno suprotno).

Po upravo datoj definiciji, d = (a,b) je najveci po apsolutnoj vrednosti
element skupa Do, = {c € Z : ¢ | a, ¢ | b} svih zajednickih delitelja brojeva
a, b koji je (sem u slu¢aju a = b = 0) konacan. Medutim, ova definicija se
vrlo retko koristi u operativnom smislu, bududi da se ona poziva na poredak na
celim brojevima, a ne na njihove artimeticke osobine koje proizilaze iz relacije
deljivosti. Sre¢om, NZD dva cela broja ima jednu izuzetnu osobinu, koju u
gotovo svim relevantnim situacijama u teoriji brojeva koristimo kao alternativnu
definiciju najveceg zajednickog delioca: naime, NZD za a,b je (do na pred-
znak jedinstveni) broj koji je deljiv svim zajednickim deliocima a i b (tj. svim
elementima skupa D, p).

Teorema 6. Neka su a,b,c € Z takvi da (a,b) postoji, ¢ | aic | b. Tada
c| (a,b).

Dokaz. Ovo znacajno tvrdenje dokazujemo primenom jednog od najstarijih al-
goritama u matematici — u pitanju je Euklidov algoritam za nalazenje NZD-a
dva broja. On se sastoji u tome da se pode od datih brojeva a, b i da se jedan
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od njih celobrojno podeli drugim uz odgovarajudi ostatak. U svakom koraku,
broj kojim smo prethodno delili postaje broj koji se deli (deljenik), a ostatak iz
prethodnog koraka se uzima kao novi delitelj. Postupak se nastavlja sve dok
neki od ostataka ne bude jednak 0; pri tome je poslednji nenula ostatak u nizu
upravo trazeni NZD. Dakle, ako je, na primer, b # 0, tada smo izvrsili sledeca
celobrojna deljenja:

aleb+Tl7 gdej60§T1< ’b|7
b= gor1 + 12, gdeje 0 < ry < 71,
r1=q3r2 + 13, gdeje 0 < r3 < ro,
Th—1 = Qk+2Tk + Tk+1, gdeje 0 < rpqq1 < 7,
Th—2 = qnTn—1 1+ Tn, gde je 0<r, <rp_1,
Tn—1 = Gn+1Tn (Tn—s—l = 0)

Primetimo da se postupak sigurno zavrSava u konacno mnogo koraka, bududi
da niz
bl >r1 >rg > > >

mora biti konacan.

Tvrdimo da je r,, = (a,b), odakle odmah sledi tvrdenje teoreme, buduéi da
se lako pokazuje da za svaki zajedniCki delilac ¢ brojeva a, b mora biti ¢ | 7 za
sve k (pa tako i za kK = n); naime, iz 7y = qrp+17k—1 + 7% dobijamo ry =
Tk—2 — Qr+17k—1, pa zakljuCujemo da iz (induktivne) pretpostavke ¢ | ri_o,
¢ | rip—q sledic | rg.

Posto malopredasnji sled zakljucaka vazi za svaki zajednicki delilac ¢ bro-
jeva a, b, sledi da on vazi i za ¢ = (a, b); zbog toga odmah imamo (a, b) | r,, a
samim tim i (a, b) < 7,. S druge strane, pokazimo da r, jeste zajednicki delilac
za a i b. Neposredno, imamo da r,, | 7,—1. Sada pretpostavka da r,, | 741
ir, | Tkeo povladi, na osnovu jednakosti 7 = qrioTk+1 + Tre2, da Ty | 7.
Tako dolazimo da zaklju¢kada r,, | air, | b. Po definiciji NZD-a, odavde sledi
rn < (a,b). Prema tome, r,, = (a,b), kao $to se i trazilo. O

Posledica 7. Za sve a,b € Z, c € 7™ vazi (ca, cb) = c(a,b).

Dokaz. Zapravo, ovo je viSe posledica dokaza nego samog tvrdenja prethodne
teoreme. Naime, posmatrajmo jednakosti koje smo dobili tokom Eukidovog
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algoritma za izraCunavanje (a,b): ovaj algoritam rezultuje poslednjim nenula
ostatkom 7, = (a,b). Pomnozimo sada sve te jednakosti sa ¢; na taj nacin
dobijamo upravo jednakosti koje proisticu iz instance Euklidovog algoritma
za nalazenje (ca,cb). Poslednji nenula ostatak koji taj algoritam daje je bas
(ca,cb) = cry, = c(a,b). O

Tvrdenje 8. Najveci zajednicki delilac brojeva a,b € Z se moZe izraziti u ob-
liku
(a,b) = aa + Bb

za pogodno odabrane o, 3 € 7.

Dokaz. Indukcijom po k dokazujemo da se svaki ostatak 7, u Euklidovom al-
goritmu za izraCunavanje (a,b) moZe izraziti kao r, = apa + Pib za neke
ag, Br € Z. Zaista, to je tacno za same brojeve a = 1-a+0-bib=0-a+1-0,
kaoizar; = a—qb =1-a+ (—q) -b. Zato pretpostavimo da vazi
Tk—1 = Q10 + Br_1biry = aga + Bib za neke ag_1, g, Br—1, Bk € Z.
Tada je

Tkl = Th—1 — Qht17k = (-1 — Qep10%)a + (Br—1 — Qrt15k)b,

pa je sada dovoljno definisati g1 = ap—1 — Q10 1 Br+1 = Br—1 — Qk+15k-
Specijalno, sledi (a,b) = r, = ana + fpb, pa @ = o, i f = (3, predstavljaju
adekvatan izbor traZenih koeficijenata. O

Ovo tvrdenje ima znacajnu posledicu u vezi sa reSivoScu linearne diofantske
Jjednacine ax + by = c.

Tvrdenje 9. Neka su a,b,c € Z tako da je a # 0ili b # 0. Tada diofantska
Jednacina ax + by = c ima reSenja ako i samo ako (a,b) | c.

Dokaz. (=): Neka je (xo,yo) neko reSenje date jednacine. Posto (a,b) | a i
(a,b) | b, vazi
(a,b) | axo + byo = c.

(«<): Pretpostavimo da (a,b) | ¢, tj. da je ¢ = (a,b)c’. Po prethodnom
tvrdenju, postoje «, § € Z tako da je (a,b) = aa + Sb. To znadi da je

c = a(ad) 4+ b(B),

odnosno, x = ac’, y = ¢ je jedno resenje date jednacine. O
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Sada moZemo definisati i najveci zajednicki delilac za proizvoljan neprazan
skup celih brojeva: naime, ako je ay, ..., ax € Z (pri Cemu je bar jedan od bro-
jeva nenula), tada je njihov NZD, u oznaci (ay, . .., ax), najveéi (po apsolutnoj
vrednosti) broj d takav da d | a; za sve 1 < i < k. Ponovo se pokazuje da je
posredi broj koji je deljiv svakim zajedni¢kim deliocem datih brojeva (pri cemu
je redosled njihovog navodenja nebitan). Pri tome je

(al, e ,ak) = ( . ((al, ag), ag), e ,ak).
KaZemo da su brojevi ay,...,ax € Z (gde je k > 2) uzajamno prosti
ako je (ai,...,ax) = 1. Ovi brojevi su po parovima uzajamno prosti ako je
(aj,aj) = 1 za sve indekse 7,7, @ # j. Svaki skup po parovima uzajamno

prostih brojeva ¢ini ujedno i skup uzajamno prostih brojeva; primer brojeva
6, 10, 15 pokazuje da obratna implikacija ne vaZzi.

Naredno tvrdenje povezano sa uzajamno prostim brojevima ¢e u daljem
imati veSestruku primenu i znacaj.

Lema 10. Neka su a,b,c € Z takvi da c | ab. Ako je (c,a) =1, tada c | b.

Dokaz. Ocigledno, c | ¢b, pa je ¢ zajedniCki delilac za ab i cb. Medutim, tada
po Teoremi 6 i njenoj Posledici 7 vazi ¢ | (ab, cb) = (a,c)b = b. O

Prosti i nerazloZivi brojevi, osnovna teorema aritmetike

Videli smo da u odnosu na relaciju deljivosti 0 kao i jedini¢ni elementi 1, —1
imaju posebnu ulogu: nula je deljiva svim celim brojevima, dok jedini¢ni ele-
menti dele sve brojeve: ¢ | a za svaki jedini¢ni element ¢ i proizvoljno a € Z.
Osim toga, vazi i ea | a. Ovo su tzv. trivijalni delioci broja a. Nas ¢e narocito
interesovati brojevi koji imaju iskljucivo trivijalne delioce — to su nerazlozivi
brojevi. Preciznije, broj p razlicit od 0 i jedini¢nih elemenata je nerazloZiv ako
za bilo koje razlaganje

p=ab

vaZzi da je jedan od elemenata a, b jedinicni. U suprotnom, p je slozen broj.
S druge strane, za nenula i nejednican broj p kazemo da je prost ako za sve
a,b € Ztakvedap | abvazip|ailip|b.

Tvrdenje 11. Ceo broj je prost ako i samo ako je nerazloZiv.
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Dokaz. (=): Pretpostavimo da je p prost broj; posmatrajmo proizvoljnu fakto-
rizaciju p = ab. Kako sada p | ab, sledida p | aili p | b. U prvom sluaju
ab | a, tj. a = abq za neko g € Z, odakle je bg = 1 i b mora biti jedini¢ni broj.
Sli¢no se u drugom slucaju zakljucuje da a mora biti jedini¢ni.

(<): Pretpostavimo sada da je broj p nerazloziv. Neka su a,b € Z takvi
da p | ab. Ukoliko pri tome p | a, tvrdenje je dokazano; zato pretpostavimo da
p 1 a. Bududéi da vazi (p, a) | p, zbog nerazloZivosti p mora biti (p,a) = 1. No,
tada po Lemi 10 odmah sledi p | b. O

S obzirom na prethodno tvrdenje, u daljem ¢emo brojeve sa svojstvom ne-
razloZivosti zvati prostim brojevima, kao §to je to u teoriji (celih) brojeva i uobi-
¢ajeno.

Primedba 12. Pojmove nerazloZivog odnosno prostog elementa je moguce de-
finisati u svakom integralnom domenu, pa i Sire, u proizvoljnim prstenima.
Medutim, u opStem slu€aju, nerazloZivi i prosti elementi ne moraju da se pok-
lapaju. Na primer, u prstenu 27 parnih brojeva svaki element oblika 4n + 2 je
nerazloZiv (jer svaki sloZen element mora ocito biti deljiv sa 4), ali nijedan od
njih nije prost: naime, 4n +2 | (4n +2)2, ali 4n + 2 ne deli samog sebe u ovom
prstenu (Sto je posledica nepostojanja jedini¢nih elemenata u njemu).

Teorema 13 (Osnovna teorema aritmetike). Svaki prirodan broj a > 1 moZe se
prikazati kao proizvod (pozitivnih) prostih brojeva i pri tome je ta faktorizacija
Jjedinstvena do na poredak faktora: drugim recima, ako vaZi

a=p1p2...Pr = 4192 ...4s,

gde su p;, q; prosti brojevi za sve 1 < i < r, 1 < j < s, tada je r = s i postoji
permutacija w skupa {1,2,...,r} tako da je p; = Ir(iyzasvel <i <r.

Dokaz. Egzistencija: Tvrdenje da postoji razlaganje broja a > 1 na proste fak-
tore dokazujemo (totalnom) indukcijom. Ono je evidentno za a = 2, posto je
posredi prost broj. Zato pretpostavimo da svi brojevi iz {2,...,a — 1} imaju
bar po jedno razlaganje u proizvod prostih brojeva.

Ako je sam broj a prost, tada nema Sta da se dokazuje; u suprotnom, neka je
p > 1 najmanji netrivijalni delilac broja a. OCito, p mora biti prost broj, jer bi u
suprotnom a imao delilac manji od p, §to je u suprotnosti sa izborom p. Prema
tome, vazi a = pd’, gde je 1 < a’ < a; zbog toga je induktivna pretpostavka
primenljiva na a’, tj. a’ je proizvod prostih brojeva: a’ = p1 ... py,. No, tada je

a=pp1-..Pm,
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S§to okoncCava induktivni dokaz.

Jedinstvenost: Pretpostavimo da je a = pip2...pr = quq2--..qs; bez
umanjenja opstosti, neka je 7 < s. Posto p1 | qig2...qs i p1 je prost broj,
zakljuujemo da p; | g;, za neko ji; medutim, i ¢;, je, kao i p1, (pozitivan)
prost broj, pa je p1 = gj,. Isto zakljuCivanje se moZe ponoviti i za pa, ..., pr,
pa za svako 1 < ¢ < r postoji indeks j; tako da je p; = ¢;,. Pri tome su svi
indeksi 71, ..., 7, medusobno razliciti. Ukoliko bi bilo r» < s, tada bismo, po
oznalavanju {ki, ..., ks } ={1,...,s}\ {Jj1,...,Jr}, dobili da je

1= Qkq + - Gks_ s

Sto je ocito nemoguce. Dakle, mora biti » = s; osim toga, permutacija 7 defini-
sana sa 7(i) = j; (1 <14 < r)ima sve traZene osobine. O

U razlaganju n = p; ... p, se jedan dati prost broj moZe pojaviti viSe puta
kao faktor. Zbog toga je uobicajeno da u razlaganju broja na proste Cinioce
identi¢ne faktore “okupimo” u stepene razlicitih prostih brojeva:

n=pl'ps?...ppk. )

Razlaganje (2) broja n se zove kanonicki oblik za n > 1. 1z osnovne teoreme
aritmetike neposredno sledi da je on jedinstven do na poredak stepeni prostih
brojeva p;"* (i zapravo je jedinstven ako, na primer, zahtevamo da je p; < p2 <
-+ < pg). Primetimo da se zapravo i broj n = 1 moze zapisati u ovom obliku,
kao1 =p)... pg, ali se tada gubi na jedinstvenosti razlaganja. Ipak, u mnogim
situacijama je pogodno da se broj 1 prikazuje na ovakav nacin.

Kanonicki oblik prirodnog broja nam omogucava veoma dobru “kontrolu”
nad njegovim deliocima, kao Sto to naredno tvrdenje pokazuje.

Tvrdenje 14. Neka je n > 1 prirodan broj Ciji je kanonicki oblik dat sa (2).
Tada d | n ako i samo ako je

d:pfl...pgk,
gdeje0 < B, <aj;zasvel <i<k.

Dokaz. (=): Ako d | n, tada je n = dq za neko ¢ € Z™; stoga se kanonicki
oblik broja n dobija mnoZenjem kanonickih oblika brojeva d i q. To znaci,
izmedu ostalog, da je svaki prost faktor p koji se pojavljuje u kanonickom obliku
broja d sa nenula eksponentom prisutan i u n sa nenula eksponentom, i pri tome
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se p pojavljuje u n sa najmanje onolikim stepenom kao u d. Otuda mora biti
0<pB; <a;zasvei.
(<): Ako je d oblika kao u formulaciji tvrdenja, tada za

q= p(lll_ﬁl - .pgk_ﬂk c7t

vazin = dq, tj. d | n. O

Broj delilaca prirodnog broja n > 0 oznaavamo sa d(n). Primetimo da
je broj n prost ako i samo ako je d(n) = 2. Funkcija d(n) se veoma lako
izracunava na osnovu kanonickog oblika broja n.

Posledica 15. Broj delilaca broja n, izraznog u kanonickom obliku (2), jednak
je
d(n) = (a1 -+ 1)(0(2 + 1) ce (ak + 1)

Dokaz. Po prethodnom tvrdenju, d je delilac broja n ako i samo ako je
d=p"... pg’“

zaneke 0 < (; < oy, 1 < i < k. Prema tome, svaki niz brojeva (31, ..., i) sa
datim ogranicenjima opisuje jedan delilac broja n; osnovna teorema aritmetike
obezbeduje da razliditi nizovi eksponenata daju razliite delioce. Broj 5; se u
tom nizu moZe izabrati na o; + 1 nacina; kako su svi ti izbori nezavisni, rezultat
sledi. O

U sliénom stilu se moZe izraziti i NZD dva broja.

Tvrdenje 16. Neka su prirodni brojevi a,b > 0 dati u svojim “proSirenim”
kanonickim oblicima

a=pit.. . ek, b:pfl...pg’“,

Sto znacida je o, Bj > 0 za sve 1 < 1,5 < k. Tada je

(a,b) = prlnin(m,ﬁl) B .pglin(ak,ﬁk)

Dokaz. Neka je

k
d = [,
=1
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Posto je min(ay, 5;) < «a; i min(ay, 5;) < B, sledidad | aid | b, tj. d je
zajednicki delilac za a 1 b. S druge strane, neka je c zajednicki delilac za a i b.
Po Tvrdenju 14, tada je

c=p"...pl,
pri Cemu je v; < ;i < B zasve 1 < i < k. Prema tome, ; < min(ay, £;),
odakle ¢ | d. Stoga je d = (a,b). O

KaZemo da je m € ZT najmanji zajednicki sadrZalac (NZS) celih brojeva
a,b > 0 ako vazi:

() a|m,b|m.
(i) Zasvec € Z* takvedaa | cib | cvazic > m.

NZS brojeva a i b oznatavamo sa [a,b]. OCito, [a,b] < ab, buduéi da je
ab svakako zajedniCki sadrzalac za a i b, odakle je oCita egzistencija (i jedin-
stvenost) NZS-a. Sli¢no kao i u slu¢aju NZD-a moZe se pokazati da se uslov
¢ > m iz take (ii) moZe zameniti sa m | ¢ : NZS dva broja je delilac svakog
njihovog zajednickog sadrZzaoca. Medutim, to se moZe sada i neposredno zak-
ljuciti iz osnovne teoreme aritmetike. Neka od najbitnijih svojstava NZS-a su
sumirana u narednom tvrdenju.

Tvrdenje 17.

(1) Za prirodne brojeve a,b > 0 date u svojim proSirenim kanonickim oblici-

ma
a=np{t...ppk, b:pgl...p’gk,
gde je o, B; > 0zasve 1 <1i,j < k, vaZi
max(a1,81) max(ag,Bk)

[a,b] = p; Dy .

(2) Za sve prirodne brojeve a,b,c > O vaZia | cib | ¢ ako i samo ako
la,b] | c.

(3) Za sve prirodne brojeve a, b, c > 0 vaZi

(a,b)|a,b] = ab.
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Dokaz. (1) Neka je
k
m — Hp;nax(aivﬁi)'
i=1

Prema Tvrdenju 14, vazi a | m i b | m, tako da je m zajednicki sadrzalac za
a i b. Ako je c pak proizvoljan sadrZalac brojeva a i b, tada je, po istom tom
tvrdenju, ¢ = p;" ... p/*, pri Cemu je a; < ;1 B; < vy zasve 1 < i < k. Sledi
da je max(«y, 8;) < i, pavazim | ¢, tj. m = [a, b].

(2) je direktna posledica tacke (1).

(3) sledi iz tacke (1), Tvrdenja 16, kao i Cinjenice da je

min(«, §) + max(a, f) = a +

za bilo koja dva realna broja «, 3. O

Prsteni ostataka po modulu, Vilsonova teorema

Imajuéi u vidu postupak deljenja sa ostatkom, prirodno je izvrsiti klasifikaciju
skupa Z celih brojeva na klase brojeva koji daju isti ostatak pri deljenju nekim
fiksnim deliteljem m. Ovo se realizuje binarnom relacijom kongruencije po
modulu m. Naime, definiSemo da je

a=0b(modm) akoisamoako m |a—b.

Pri tome ne predstavlja nikakvo ogranicenje opstosti ako pretpostavimo da je
m > 0, buduéi da m | a — b ako i samo ako —m | a — b.

Termin “kongruencija” ovde nije odabran slucajno; sledeée tvrdenje poka-
zuje da je - = - (mod m) zaista kongruencija prstena Z.

Tvrdenje 18. Za sve a,b,c,d € Z i m > 0 vaZi:
(i) a = a (modm).
(ii)) a =b (modm) = b=a (modm).

( )
(iii)) a =b (modm), b =c (modm) = a = c (modm).
( )

(iv) a=b (modm), ¢c=d (modm) =
a+c=b+d (modm), a—c =b—d (modm).

(v) a=b(modm), c=d (modm) = ac=bd (modm).
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Dokaz. Ilustracije radi, pokazacemo samo (v). Po datim uslovima, imamo da
m|a—bim|c— d. Zbog toga,

m | c(a —b) + b(c — d) = ac — bd,
tj. ac = bd (mod m). O

Obratno, nije teSko pokazati da su sve kongruencije prstena Z iscrpljene
kongruencijama po modulu m > 0.

Za a € 7 i fiksan modul m, klasu ekvivalencije elementa a u odnosu na
relaciju - = - (modm) oznaavamo sa (a),, i zovemo je klasa ostatka. Na
taj nacin, imamo particiju skupa Z na m klasa, od kojih je svaka (dvostrano)
beskonacna aritmeticka progresija. Proizvoljna transverzala ove particije (skup
brojeva takav da svakoj klasi pripada ta¢no jedan odabrani broj) je potpun sistem
ostataka. Ocigledno, 0,1, ..., m — 1 jeste jedan potpun sistem ostataka; njega
zovemo standardnim.

Na skupu svih klasa ostataka (a),, po modulu m definiSe se algebarska
struktura uvodenjem operacija + i - definisanih sa

(@)m + (D)m = (@ + b)m,
(@)m(D)m = (ab)m.

Ove definicije su logicki dobre, tj. ne zavise od izbora predstavnika a, b, buduéi
da smo u Tvrdenju 18 pokazali da je - = - (mod m) zaista kongruencija prstena
Z. Na taj nain, skup svih klasa ostataka {(a),, : 0 < a < m — 1} zajedno sa
opisanim operacijama takode €ini prsten, koji zovemo prsten ostataka po mo-
dulu m i oznaCavamo sa Z,,. Naime, ako je mZ ideal od Z koji se sastoji od
svih celih brojeva deljivih sa m, tada je Z,, = 7Z/mZ. Drugim reCima, pres-
likavanje koje svakom celom broju dodeljuje njegovu klasu ostatka po modulu
m je sirjektivni homomorfizam prstena Z — Z,,, i jezgro tog homomorfizma
je bas mZ. Prsten Z,, je, bas kao i Z, komutativan i ima jedinicu — u pitanju je
klasa (1);,.

Aditivna grupa (Z,,, +) prstena ostataka je uvek cikli¢na: ona je oito gene-
risana klasom (1),,, posto je

(@m = D)m + -+ D)m

vV
a sabiraka

i (0)m, = (M)m. S druge strane, u odnosu na mnoZenje imamo komutativni
monoid sa nulom (Z,,, -) koji u opSem slucaju nije grupa, buduci da ne moraju
svi njegovi (nenula) elementi biti invertibilni u odnosu na jedinicu (1),,.
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Tvrdenje 19. (a),, je invertibilan element prstena L, ako i samo ako vaZi
(a,m) =1.

Kako je invertibilnost elementa (a),,, tj. postojanje klase (z),, takve da je
(@)m()m = (1)m, ekvivalentna egzistenciji reSenja kongruencije

ax =1 (modm),
prethodno tvrdenje je neposredna posledica sledeceg.

Tvrdenje 20. Kongruencijska jednacina
ax = b (modm)
ima reSenja ako i samo ako (a,m) | b.

Dokaz. Neka je s € Z tako da je as = b (modm). Tada postoji ¢ € Z
tako da je as — b = mec, odnosno as + m(—c) = as — mc = b. Prema tome,
diofantska jednacina ax+my = bima reSenja, Sto je po Tvrdenju 9 ekvivalentno
uslovu (a, m) | b. Obratno, ako vazi ovaj uslov, tada i jednacina ax + my = b
ima reSenje (x,yo). Ali, tada je azg = b (modm), pa posmatrana linearna
kongruencija ima reSenje. O

Klasa (a), je redukovana ako je (a,m) = 1. Primetimo da je skup svih
redukovanih klasa zatvoren na mnozenje: ako je (a,m) = (b,m) = 1, tada je
i (ab,m) = 1, tj. (ab),, je takode redukovana klasa. Prema tome, redukovane
klase u odnosu na mnoZenje ¢ine podmonoid od (Z,,, ) u kojem svaki element
ima inverz; dakle, u pitanju je grupa, koju oznacavamo sa U,,,. Budu¢i da su sve
nenula klase po modulu m redukovane ako i samo ako je m prost broj, odmah
imamo sledeci zakljucak.

Posledica 21. Z,, je polje ako i samo ako je m prost broj.

Kao §to je poznato, u konaénom polju je proizvod svih nenula elemenata
jednak —1. Specijalan slucaj ovog tvrdenja za polje Z, ostataka po prostom
modulu p je u teoriji brojeva poznato kao Vilsonova teorema.

Teorema 22 (Vilsonova teorema). Neka je p prost broj. Tada je

(p—1)!'=—1 (modp).
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Dokaz. Tvrdenje teoreme je ocCito tatno za p = 2,3, pa pretpostavimo da je
p > 5. Dokazaéemo da se skup {2,3...,p — 2} moze razbiti u (p — 3)/2
parova tako da proizvod svakog para daje ostatak 1 pri deljenju sa p.
Naime, za svako 2 < a < p—2, po Posledici 6.3, postoji tacno jedno resenje
linearne kongruencije
ax =1 (mod p)

u skupu {0,1,...,p — 1}. Medutim, to reSenje ocito nije x = 0, kao ni
x € {1,p — 1} (jer bi u suprotnom bilo a = +1 (mod p), $to nije slucaj).
Prema tome, to reSenje, koje ¢emo oznaliti sa f(a), takode pripada skupu
{2,3,...,p—2}. Ovim smo definisali jednu transformaciju posmatranog skupa,
tj. funkciju f : {2,3,...,p—2} — {2,3,...,p—2}. Ova funkcija ima sledeca
svojstva:

1. af(a) =1 (modp);

2. f(f(a)) = a, tj. ako je f(a) = b, tada je f(b) = a (ovo je posledica
prethodne tacke i jedinstvenosti reSenja kongruencije f(a)x = 1 (mod p)
uskupu {2,3,...,p—2});

3. f(a) # azasvea € {2,3,...,p — 2} (u suprotnom bi bilo a? =

1 (modp), tj.p | a®> =1 = (a — 1)(a + 1), $to je moguce samo ako
je a = 1 (modp)).

Drugim re¢ima {{a, f(a)} : a € {2,3,...,p — 2}} predstavlja upravo trazeno
sparivanje.

Otuda odmabh sledi da je
p-DI'=1-[2-f2)---]- (p-1)=1-(p—1) = —1 (modp),
Sto se i trazilo. O

Pri tome vaZzi i obrat ove teoreme: ukoliko za neki prirodan broj n > 2 vazi
(n—1)! = —1 (mod n), tada n mora biti prost; naime, ako je n slozenin # 4,
tadan | (n — 1)! (direktno se proverava da je 3! = 6 = 2 (mod 4)).

Ojlerova funkcija i Ojlerova teorema

Ojlerova funkcija ¢ se definise kao ¢(n) = |U,|, broj redukovanih klasa os-
tataka po modulu n. Drugim re¢ima, ¢(n) je broj svih a € {1,...,n — 1}
takvih da je (a,n) = 1.

Kada je n stepen prostog broja, veoma je lako izracunati ¢(n).
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o a—1

Lema 23. Za svaki prost broj pi a > 1 vazi o(p®) = p* — p

Dokaz. Za prirodan broj m < p® vazi (m,p®) = 1 ako i samo ako je (m,p) =
1, odnosno, ako i samo ako p 1 m. Dakle, ¢(p®) je broj svih elemenata skupa
{0,1,...,p“ — 1} koji nisu deljivi sa p, a $to je o¢ito p® — [p“/p| = p* —
pa—I. ]

Za kompleksnu funkciju f : Z — C jedne celobrojne promenljive (ovakve
funkcije se ponekad zovu i aritmeticke) kaZzemo da je multiplikativna ako za sve
a,b € Z takve da je (a,b) = 1 vazi

f(ab) = f(a)f(b).

Osim u sluéaju kada je funkcija f konstantna nula-funkcija, imamo daje f(1) =
11 f(—1) € {1,—1} (iz tog razloga su zanimljivi jedino pozitivni argumenti,
bududi da za a > 0 vazi f(—a) = f(—1)f(a)).

Sledece tvrdenje navodimo bez dokaza.

Lema 24. Ojlerova funkcija je multiplikativna.

Eksplicitna formula za ¢(n) sada lako sledi iz zapazanja da, uz kanonicki
oblik (2) broja n, multiplikativno svojstvo Ojlerove funkcije implicira da je

k

p(n) = [J @)

i=1

Teorema 25. Neka je n > 1 prirodan broj dat u kanonickom obliku. Tada je

k
p(n) =10 —p ) =n- ] <1 - ;) '
i=1 p|n
p prost
Leonard Ojler (Leonhard Euler, 1707-1783) je 1736. dokazao tvrdenje u
kome funkcija koja danas nosi njegovo ime igra centralnu ulogu i koje pred-
stavlja uopStenje od ranije poznate “male” Fermaove teoreme.

Teorema 26 (Ojlerova teorema). Neka je a € Z i m > 0 tako da je (a,m) = 1.
Tada je
a?™ =1 (modm).
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Dokaz. Posledica Lagranzove teoreme je da u svakoj konacnoj grupi G i za
svako g € G vazi
glG‘ =1

Tako, ako je (a, m) = 1, tj. (a)m € U, je redukovana klasa, tada je

()] = (1),

No, kako je |U,,| = ¢(m), kongruencija u formulaciji teoreme je samo drugi
nacin da se zapiSe gornja jednakost iz grupe U, invertibilnih elemenata prstena
Lo, O

Posledica 27 (Mala Fermaova teorema). Neka je p prost broj i a € Z takav da
p 1 a. Tada je
a?~! =1 (modp).

Drugim re¢ima, za sve cele brojeve a vaZi a? = a (mod p).

Dokaz. Sledi direktno iz Ojlerove teoreme, posto je ¢(p) = p— 1 za svaki prost
broj p. O

Prethodna teorema nosi ime po Pjeru de Fermau (Pierre de Fermat, 1601—
1665), francuskom pravniku, jednom od najznacajnijih i najuspesnijih matema-
ticara-amatera svih vremena.



