
Osnovni rezultati teorije brojeva

Deljenje celih brojeva sa ostatkom

U najužem smislu, zadatak teorije brojeva (artimetike) jeste izučavanje strukture
prstena celih brojeva (Z,+, ·). Zapravo, ovaj prsten je integralni domen, tj. u
pitanju je komutativan prsten sa jedinicom koji nema delitelje nule: zaista, za
dva cela broja a, b ∈ Z važi ab = 0 ako i samo ako je a = 0 ili b = 0.
Posmatrano šire, predmet teorije brojeva je u tesnoj vezi sa ispitivanjem oso-
bina relacije deljivosti u različitim integralnim domenima (ne samo u Z) čiji su
elementi kompleksni brojevi. Na primer, ova relacija u integralnom domenu
Z[
√
2] = {a + b

√
2 : a, b ∈ Z} ima sasvim drugačija svojstva nego u Z, no

upravo ta informacija u odre -denim situacijama može imati značajne posledice
po pitanja koja se tiču celih brojeva.

Za ceo broj b kažemo da je delilac broja a ∈ Z, odnosno da deli a (u oznaci
b | a), ako postoji q ∈ Z tako da je

a = bq.

Na primer, 0 je deljivo svim celim brojevima, budući da je 0 = b·0 za sve b ∈ Z.
Takodje, 2 | 4, dok 3 - 5.

Broj ε ∈ Z koji deli svaki ceo broj zovemo jediničnim elementom Z.

Tvr -denje 1. Prsten Z ima tačno dva jedinična elementa: 1 i −1.

Dokaz. Očigledno, 1 i −1 su jedinični elementi u Z, budući da za sve a ∈ Z
važi a = ±1 · ±a.

S druge strane, neka je ε jedinični ceo broj. Tada, specijalno, važi ε | 1, pa
je 1 = εq za neko q ∈ Z. Jasno, ni ε ni q ne mogu biti 0, pa je |ε|, |q| ≥ 1. Tako
1 = εq povlači da je |ε| = 1, tj. ε ∈ {1,−1}.
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S druge strane, ako na analogan način definišemo deljivost u prstenu Z[
√
2],

dobijamo da on ima beskonačno mnogo jediničnih elemenata: na primer, ele-
ment a+ b

√
2 je jedinični kad god važi a2 − 2b2 = 1. (Ova jednačina koja pri-

pada klasi diofantskih jednačina poznatih kao Pelove jednačine ima beskonačno
mnogo rešenja.) Me -dutim, prsten parnih brojeva 2Z (koji je potprsten od Z)
uopšte nema jedinične elemente: svaki paran broj k koji nije deljiv sa 4 (na
primer, 10) uopšte nema nijedan delitelj u ovom prstenu, jer ne postoje parni
brojevi `1 i `2 tako da je k = `1`2.

Tvr -denje 2. Ako su ε, δ jedinični celi brojevi i važi b | a, tada važi i εb | δa.

Dokaz. Kako ε | 1, to je 1 = εα za neko α ∈ Z. Stoga, ako važi b | a, odnosno
a = bq za neko q ∈ Z, tada je δa = δ · bq · 1 = (εb)(αδq). Dakle, εb | δa.

Prethodno tvr -denje nam u stvari omogućava da ispitivanje deljivosti brojeva
svedemo, po potrebi, isključivo na nenegativne cele, odnosno prirodne brojeve.
Predznak (tj. množenje jediničnim elementom) nema nikakvu bitnu ulogu kada
je u pitanju deljivost celih brojeva.

Tvr -denje 3.

(1) Za sve a ∈ Z važi a | a.

(2) Za sve a, b, c ∈ Z, ako a | b i b | c, tada a | c.

(3) Za sve a, b, c ∈ Z, ako a | b i b | a, tada postoji jedinični element ε tako
da je a = bε.

(4) Ako c | a i c | b za neke a, b, c ∈ Z tada c | (a+ b), c | (a− b) i c | ka za
sve k ∈ Z. Zapravo, tada za sve α, β ∈ Z važi c | (αa+ βb).

Dokaz. Dokazujemo samo stavku (3), pošto se ostala tvr -denja dokazuju nepos-
redno na osnovu definicije deljivosti. Zaista, ako važi a | b i b | a, tada je b = aq

i a = bs za neke q, s ∈ Z. Otuda je b = b(sq). Ako je b = 0, tada je nužno
a = 0, pa je a = b · 1. U suprotnom, sledi sq = 1, pa je element s jedinični, što
uz a = bs daje željeni rezultat.

Prema tome, ako relaciju deljivosti | ograničimo na skup Z+ pozitivnih celih
brojeva, dobijamo relaciju poretka, tj. parcijalno ure -denje ovog skupa.

Naredni rezultat prirodno vodi ka poznatim pojmovima celobrojnog količ-
nika i ostatka pri deljenju nekim celim brojem različitim od nule.
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Teorema 4. Za sve a, b ∈ Z, b 6= 0, postoje jedinstveni brojevi q, r ∈ Z tako da
je

a = qb+ r i 0 ≤ r < |b|.

Dokaz. Razmotrimo najpre slučaj b > 0. Dati uslovi su očito ekvivalentni
egzistenciji i jedinstvenosti celih brojeva q, r tako da je

0 ≤ r = a− qb < b,

što je, dalje, ekvivalentno dvostrukoj nejednakosti

qb ≤ a < (q + 1)b,

tj. a/b ∈ [q, q + 1). Me -dutim, postoji jedinstven ceo broj q sa prethodnom
osobinom: to je baš q = ba/bc, najveći ceo broj koji nije veći od a/b. Pri tome
odmah sledi da je i tražno r jedinstveno; naime, mora biti

r = a−
⌊a
b

⌋
b.

S druge strane, ako je b < 0, tada uslovi

0 ≤ r = a− bq < |b| = −b

analogno kao i malopre vode dvostrukoj nejednakosti q ≥ a/b > q − 1, što
ponovo jedinstveno odre -duje q; naime, mora biti q = da/be. Jedinstvenost r
opet sledi neposredno.

Gornji postupak kojim se za date brojeve a, b ∈ Z dobijaju jedinstveni bro-
jevi q, r zovemo deljenje sa ostatkom; pri tome je q celobrojni količnik (pri
deljenju a sa b) dok je r ostatak. Primetimo da važi b | a ako i samo ako je
ostatak pri deljenju a sa b jednak 0.

Postupak deljenja sa ostatkom nam omogućava da, izme -du ostalog, prirod-
ne brojeve izražavamo u brojevnim sistemima sa datom osnovom (binarnom,
dekadnom, . . . ). Ovo je precizirano narednim tvr -denjem.

Posledica 5. Neka je B > 1 ceo broj. Tada se svako A ∈ Z+ na jedinstven
način može zapisati u obliku

A = anB
n + an−1B

n−1 + · · ·+ a1B + a0, (1)

gde je an 6= 0 i 0 ≤ ai < B za sve 0 ≤ i ≤ n.
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Za reprezentaciju (zapis) broja A u obliku (1) kažemo da je u sistemu sa
osnovom B, dok su ai cifre tog zapisa. Kraće, možemo pisati i

A = anan−1 . . . a1a0[B],

s tim da se u dekadnom sistemu (sistemu sa osnovom 10) indeks [10] najčešće
izostavlja.

NZD i Euklidov algoritam

Kažemo da je d ∈ Z najveći zajednički delilac (NZD) celih brojeva a i b ako
važi:

(i) d | a, d | b.

(ii) Za sve c ∈ Z takve da c | a i c | b važi |c| ≤ |d|.

Primetimo da par (0, 0) nema najveći zajednički delilac; me -dutim, za svaki
drugi par celih brojeva postoje tačno dva cela broja koji zadovoljavaju gornje
uslove, i oni su jedan drugom suprotni. Ako je d najveći zajednički delilac za
a, b, to pišemo d = (a, b), pri čemu se ova notacija najčešće odnosi na poziti-
van NZD za a i b (što ćemo od sada i podrazumevati, ukoliko eksplicitno nije
naznačeno suprotno).

Po upravo datoj definiciji, d = (a, b) je najveći po apsolutnoj vrednosti
element skupa Da,b = {c ∈ Z : c | a, c | b} svih zajedničkih delitelja brojeva
a, b koji je (sem u slučaju a = b = 0) konačan. Me -dutim, ova definicija se
vrlo retko koristi u operativnom smislu, budući da se ona poziva na poredak na
celim brojevima, a ne na njihove artimetičke osobine koje proizilaze iz relacije
deljivosti. Srećom, NZD dva cela broja ima jednu izuzetnu osobinu, koju u
gotovo svim relevantnim situacijama u teoriji brojeva koristimo kao alternativnu
definiciju najvećeg zajedničkog delioca: naime, NZD za a, b je (do na pred-
znak jedinstveni) broj koji je deljiv svim zajedničkim deliocima a i b (tj. svim
elementima skupa Da,b).

Teorema 6. Neka su a, b, c ∈ Z takvi da (a, b) postoji, c | a i c | b. Tada
c | (a, b).

Dokaz. Ovo značajno tvr -denje dokazujemo primenom jednog od najstarijih al-
goritama u matematici – u pitanju je Euklidov algoritam za nalaženje NZD-a
dva broja. On se sastoji u tome da se po -de od datih brojeva a, b i da se jedan



TEORIJA BROJEVA 5

od njih celobrojno podeli drugim uz odgovarajući ostatak. U svakom koraku,
broj kojim smo prethodno delili postaje broj koji se deli (deljenik), a ostatak iz
prethodnog koraka se uzima kao novi delitelj. Postupak se nastavlja sve dok
neki od ostataka ne bude jednak 0; pri tome je poslednji nenula ostatak u nizu
upravo traženi NZD. Dakle, ako je, na primer, b 6= 0, tada smo izvršili sledeća
celobrojna deljenja:

a = q1b+ r1, gde je 0 ≤ r1 < |b|,
b = q2r1 + r2, gde je 0 ≤ r2 < r1,

r1 = q3r2 + r3, gde je 0 ≤ r3 < r2,

...
...

rk−1 = qk+2rk + rk+1, gde je 0 ≤ rk+1 < rk,

...
...

rn−2 = qnrn−1 + rn, gde je 0 ≤ rn < rn−1,

rn−1 = qn+1rn (rn+1 = 0).

Primetimo da se postupak sigurno završava u konačno mnogo koraka, budući
da niz

|b| > r1 > r2 > · · · > rk > · · ·

mora biti konačan.
Tvrdimo da je rn = (a, b), odakle odmah sledi tvr -denje teoreme, budući da

se lako pokazuje da za svaki zajednički delilac c brojeva a, b mora biti c | rk za
sve k (pa tako i za k = n); naime, iz rk−2 = qk+1rk−1 + rk dobijamo rk =

rk−2 − qk+1rk−1, pa zaključujemo da iz (induktivne) pretpostavke c | rk−2,
c | rk−1 sledi c | rk.

Pošto malopre -dašnji sled zaključaka važi za svaki zajednički delilac c bro-
jeva a, b, sledi da on važi i za c = (a, b); zbog toga odmah imamo (a, b) | rn, a
samim tim i (a, b) ≤ rn. S druge strane, pokažimo da rn jeste zajednički delilac
za a i b. Neposredno, imamo da rn | rn−1. Sada pretpostavka da rn | rk+1

i rn | rk+2 povlači, na osnovu jednakosti rk = qk+2rk+1 + rk+2, da rn | rk.
Tako dolazimo da zaključka da rn | a i rn | b. Po definiciji NZD-a, odavde sledi
rn ≤ (a, b). Prema tome, rn = (a, b), kao što se i tražilo.

Posledica 7. Za sve a, b ∈ Z, c ∈ Z+ važi (ca, cb) = c(a, b).

Dokaz. Zapravo, ovo je više posledica dokaza nego samog tvr -denja prethodne
teoreme. Naime, posmatrajmo jednakosti koje smo dobili tokom Eukidovog
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algoritma za izračunavanje (a, b): ovaj algoritam rezultuje poslednjim nenula
ostatkom rn = (a, b). Pomnožimo sada sve te jednakosti sa c; na taj način
dobijamo upravo jednakosti koje proističu iz instance Euklidovog algoritma
za nalaženje (ca, cb). Poslednji nenula ostatak koji taj algoritam daje je baš
(ca, cb) = crn = c(a, b).

Tvr -denje 8. Najveći zajednički delilac brojeva a, b ∈ Z se može izraziti u ob-
liku

(a, b) = αa+ βb

za pogodno odabrane α, β ∈ Z.

Dokaz. Indukcijom po k dokazujemo da se svaki ostatak rk u Euklidovom al-
goritmu za izračunavanje (a, b) može izraziti kao rk = αka + βkb za neke
αk, βk ∈ Z. Zaista, to je tačno za same brojeve a = 1 ·a+0 · b i b = 0 ·a+1 · b,
kao i za r1 = a − q1b = 1 · a + (−q1) · b. Zato pretpostavimo da važi
rk−1 = αk−1a + βk−1b i rk = αka + βkb za neke αk−1, αk, βk−1, βk ∈ Z.
Tada je

rk+1 = rk−1 − qk+1rk = (αk−1 − qk+1αk)a+ (βk−1 − qk+1βk)b,

pa je sada dovoljno definisati αk+1 = αk−1−qk+1αk i βk+1 = βk−1−qk+1βk.
Specijalno, sledi (a, b) = rn = αna + βnb, pa α = αn i β = βn predstavljaju
adekvatan izbor traženih koeficijenata.

Ovo tvr -denje ima značajnu posledicu u vezi sa rešivošću linearne diofantske
jednačine ax+ by = c.

Tvr -denje 9. Neka su a, b, c ∈ Z tako da je a 6= 0 ili b 6= 0. Tada diofantska
jednačina ax+ by = c ima rešenja ako i samo ako (a, b) | c.

Dokaz. (⇒): Neka je (x0, y0) neko rešenje date jednačine. Pošto (a, b) | a i
(a, b) | b, važi

(a, b) | ax0 + by0 = c.

(⇐): Pretpostavimo da (a, b) | c, tj. da je c = (a, b)c′. Po prethodnom
tvr -denju, postoje α, β ∈ Z tako da je (a, b) = αa+ βb. To znači da je

c = a(αc′) + b(βc′),

odnosno, x = αc′, y = βc′ je jedno rešenje date jednačine.
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Sada možemo definisati i najveći zajednički delilac za proizvoljan neprazan
skup celih brojeva: naime, ako je a1, . . . , ak ∈ Z (pri čemu je bar jedan od bro-
jeva nenula), tada je njihov NZD, u oznaci (a1, . . . , ak), najveći (po apsolutnoj
vrednosti) broj d takav da d | ai za sve 1 ≤ i ≤ k. Ponovo se pokazuje da je
posredi broj koji je deljiv svakim zajedničkim deliocem datih brojeva (pri čemu
je redosled njihovog navo -denja nebitan). Pri tome je

(a1, . . . , ak) = (. . . ((a1, a2), a3), . . . , ak).

Kažemo da su brojevi a1, . . . , ak ∈ Z (gde je k ≥ 2) uzajamno prosti
ako je (a1, . . . , ak) = 1. Ovi brojevi su po parovima uzajamno prosti ako je
(ai, aj) = 1 za sve indekse i, j, i 6= j. Svaki skup po parovima uzajamno
prostih brojeva čini ujedno i skup uzajamno prostih brojeva; primer brojeva
6, 10, 15 pokazuje da obratna implikacija ne važi.

Naredno tvr -denje povezano sa uzajamno prostim brojevima će u daljem
imati vešestruku primenu i značaj.

Lema 10. Neka su a, b, c ∈ Z takvi da c | ab. Ako je (c, a) = 1, tada c | b.

Dokaz. Očigledno, c | cb, pa je c zajednički delilac za ab i cb. Me -dutim, tada
po Teoremi 6 i njenoj Posledici 7 važi c | (ab, cb) = (a, c)b = b.

Prosti i nerazloživi brojevi, osnovna teorema aritmetike

Videli smo da u odnosu na relaciju deljivosti 0 kao i jedinični elementi 1,−1
imaju posebnu ulogu: nula je deljiva svim celim brojevima, dok jedinični ele-
menti dele sve brojeve: ε | a za svaki jedinični element ε i proizvoljno a ∈ Z.
Osim toga, važi i εa | a. Ovo su tzv. trivijalni delioci broja a. Nas će naročito
interesovati brojevi koji imaju isključivo trivijalne delioce – to su nerazloživi
brojevi. Preciznije, broj p različit od 0 i jediničnih elemenata je nerazloživ ako
za bilo koje razlaganje

p = ab

važi da je jedan od elemenata a, b jedinični. U suprotnom, p je složen broj.
S druge strane, za nenula i nejedničan broj p kažemo da je prost ako za sve

a, b ∈ Z takve da p | ab važi p | a ili p | b.

Tvr -denje 11. Ceo broj je prost ako i samo ako je nerazloživ.
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Dokaz. (⇒): Pretpostavimo da je p prost broj; posmatrajmo proizvoljnu fakto-
rizaciju p = ab. Kako sada p | ab, sledi da p | a ili p | b. U prvom slučaju
ab | a, tj. a = abq za neko q ∈ Z, odakle je bq = 1 i b mora biti jedinični broj.
Slično se u drugom slučaju zaključuje da a mora biti jedinični.

(⇐): Pretpostavimo sada da je broj p nerazloživ. Neka su a, b ∈ Z takvi
da p | ab. Ukoliko pri tome p | a, tvr -denje je dokazano; zato pretpostavimo da
p - a. Budući da važi (p, a) | p, zbog nerazloživosti p mora biti (p, a) = 1. No,
tada po Lemi 10 odmah sledi p | b.

S obzirom na prethodno tvr -denje, u daljem ćemo brojeve sa svojstvom ne-
razloživosti zvati prostim brojevima, kao što je to u teoriji (celih) brojeva i uobi-
čajeno.

Primedba 12. Pojmove nerazloživog odnosno prostog elementa je moguće de-
finisati u svakom integralnom domenu, pa i šire, u proizvoljnim prstenima.
Me -dutim, u opštem slučaju, nerazloživi i prosti elementi ne moraju da se pok-
lapaju. Na primer, u prstenu 2Z parnih brojeva svaki element oblika 4n + 2 je
nerazloživ (jer svaki složen element mora očito biti deljiv sa 4), ali nijedan od
njih nije prost: naime, 4n+2 | (4n+2)2, ali 4n+2 ne deli samog sebe u ovom
prstenu (što je posledica nepostojanja jediničnih elemenata u njemu).

Teorema 13 (Osnovna teorema aritmetike). Svaki prirodan broj a > 1 može se
prikazati kao proizvod (pozitivnih) prostih brojeva i pri tome je ta faktorizacija
jedinstvena do na poredak faktora: drugim rečima, ako važi

a = p1p2 . . . pr = q1q2 . . . qs,

gde su pi, qj prosti brojevi za sve 1 ≤ i ≤ r, 1 ≤ j ≤ s, tada je r = s i postoji
permutacija π skupa {1, 2, . . . , r} tako da je pi = qπ(i) za sve 1 ≤ i ≤ r.

Dokaz. Egzistencija: Tvr -denje da postoji razlaganje broja a > 1 na proste fak-
tore dokazujemo (totalnom) indukcijom. Ono je evidentno za a = 2, pošto je
posredi prost broj. Zato pretpostavimo da svi brojevi iz {2, . . . , a − 1} imaju
bar po jedno razlaganje u proizvod prostih brojeva.

Ako je sam broj a prost, tada nema šta da se dokazuje; u suprotnom, neka je
p > 1 najmanji netrivijalni delilac broja a. Očito, p mora biti prost broj, jer bi u
suprotnom a imao delilac manji od p, što je u suprotnosti sa izborom p. Prema
tome, važi a = pa′, gde je 1 < a′ < a; zbog toga je induktivna pretpostavka
primenljiva na a′, tj. a′ je proizvod prostih brojeva: a′ = p1 . . . pm. No, tada je

a = pp1 . . . pm,
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što okončava induktivni dokaz.
Jedinstvenost: Pretpostavimo da je a = p1p2 . . . pr = q1q2 . . . qs; bez

umanjenja opštosti, neka je r ≤ s. Pošto p1 | q1q2 . . . qs i p1 je prost broj,
zaključujemo da p1 | qj1 za neko j1; me -dutim, i qj1 je, kao i p1, (pozitivan)
prost broj, pa je p1 = qj1 . Isto zaključivanje se može ponoviti i za p2, . . . , pr,
pa za svako 1 ≤ i ≤ r postoji indeks ji tako da je pi = qji . Pri tome su svi
indeksi j1, . . . , jr me -dusobno različiti. Ukoliko bi bilo r < s, tada bismo, po
označavanju {k1, . . . , ks−r} = {1, . . . , s} \ {j1, . . . , jr}, dobili da je

1 = qk1 . . . qks−r ,

što je očito nemoguće. Dakle, mora biti r = s; osim toga, permutacija π defini-
sana sa π(i) = ji (1 ≤ i ≤ r) ima sve tražene osobine.

U razlaganju n = p1 . . . pr se jedan dati prost broj može pojaviti više puta
kao faktor. Zbog toga je uobičajeno da u razlaganju broja na proste činioce
identične faktore “okupimo” u stepene različitih prostih brojeva:

n = pα1
1 pα2

2 . . . pαk
k . (2)

Razlaganje (2) broja n se zove kanonički oblik za n > 1. Iz osnovne teoreme
aritmetike neposredno sledi da je on jedinstven do na poredak stepeni prostih
brojeva pαi

i (i zapravo je jedinstven ako, na primer, zahtevamo da je p1 < p2 <

· · · < pk). Primetimo da se zapravo i broj n = 1 može zapisati u ovom obliku,
kao 1 = p01 . . . p

0
k, ali se tada gubi na jedinstvenosti razlaganja. Ipak, u mnogim

situacijama je pogodno da se broj 1 prikazuje na ovakav način.
Kanonički oblik prirodnog broja nam omogućava veoma dobru “kontrolu”

nad njegovim deliocima, kao što to naredno tvr -denje pokazuje.

Tvr -denje 14. Neka je n > 1 prirodan broj čiji je kanonički oblik dat sa (2).
Tada d | n ako i samo ako je

d = pβ11 . . . pβkk ,

gde je 0 ≤ βi ≤ αi za sve 1 ≤ i ≤ k.

Dokaz. (⇒): Ako d | n, tada je n = dq za neko q ∈ Z+; stoga se kanonički
oblik broja n dobija množenjem kanoničkih oblika brojeva d i q. To znači,
izme -du ostalog, da je svaki prost faktor p koji se pojavljuje u kanoničkom obliku
broja d sa nenula eksponentom prisutan i u n sa nenula eksponentom, i pri tome
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se p pojavljuje u n sa najmanje onolikim stepenom kao u d. Otuda mora biti
0 ≤ βi ≤ αi za sve i.

(⇐): Ako je d oblika kao u formulaciji tvr -denja, tada za

q = pα1−β1
1 . . . pαk−βk

k ∈ Z+

važi n = dq, tj. d | n.

Broj delilaca prirodnog broja n > 0 označavamo sa d(n). Primetimo da
je broj n prost ako i samo ako je d(n) = 2. Funkcija d(n) se veoma lako
izračunava na osnovu kanoničkog oblika broja n.

Posledica 15. Broj delilaca broja n, izražnog u kanoničkom obliku (2), jednak
je

d(n) = (α1 + 1)(α2 + 1) . . . (αk + 1).

Dokaz. Po prethodnom tvr -denju, d je delilac broja n ako i samo ako je

d = pβ11 . . . pβkk

za neke 0 ≤ βi ≤ αi, 1 ≤ i ≤ k. Prema tome, svaki niz brojeva (β1, . . . , βk) sa
datim ograničenjima opisuje jedan delilac broja n; osnovna teorema aritmetike
obezbe -duje da različiti nizovi eksponenata daju različite delioce. Broj βi se u
tom nizu može izabrati na αi+1 načina; kako su svi ti izbori nezavisni, rezultat
sledi.

U sličnom stilu se može izraziti i NZD dva broja.

Tvr -denje 16. Neka su prirodni brojevi a, b > 0 dati u svojim “proširenim”
kanoničkim oblicima

a = pα1
1 . . . pαk

k , b = pβ11 . . . pβkk ,

što znači da je αi, βj ≥ 0 za sve 1 ≤ i, j ≤ k. Tada je

(a, b) = p
min(α1,β1)
1 . . . p

min(αk,βk)
k .

Dokaz. Neka je

d =

k∏
i=1

p
min(αi,βi)
i .
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Pošto je min(αi, βi) ≤ αi i min(αi, βi) ≤ βi, sledi da d | a i d | b, tj. d je
zajednički delilac za a i b. S druge strane, neka je c zajednički delilac za a i b.
Po Tvr -denju 14, tada je

c = pγ11 . . . pγkk ,

pri čemu je γi ≤ αi i γi ≤ βi za sve 1 ≤ i ≤ k. Prema tome, γi ≤ min(αi, βi),
odakle c | d. Stoga je d = (a, b).

Kažemo da je m ∈ Z+ najmanji zajednički sadržalac (NZS) celih brojeva
a, b > 0 ako važi:

(i) a | m, b | m.

(ii) Za sve c ∈ Z+ takve da a | c i b | c važi c ≥ m.

NZS brojeva a i b označavamo sa [a, b]. Očito, [a, b] ≤ ab, budući da je
ab svakako zajednički sadržalac za a i b, odakle je očita egzistencija (i jedin-
stvenost) NZS-a. Slično kao i u slučaju NZD-a može se pokazati da se uslov
c ≥ m iz tačke (ii) može zameniti sa m | c : NZS dva broja je delilac svakog
njihovog zajedničkog sadržaoca. Me -dutim, to se može sada i neposredno zak-
ljučiti iz osnovne teoreme aritmetike. Neka od najbitnijih svojstava NZS-a su
sumirana u narednom tvr -denju.

Tvr -denje 17.

(1) Za prirodne brojeve a, b > 0 date u svojim proširenim kanoničkim oblici-
ma

a = pα1
1 . . . pαk

k , b = pβ11 . . . pβkk ,

gde je αi, βj ≥ 0 za sve 1 ≤ i, j ≤ k, važi

[a, b] = p
max(α1,β1)
1 . . . p

max(αk,βk)
k .

(2) Za sve prirodne brojeve a, b, c > 0 važi a | c i b | c ako i samo ako
[a, b] | c.

(3) Za sve prirodne brojeve a, b, c > 0 važi

(a, b)[a, b] = ab.
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Dokaz. (1) Neka je

m =

k∏
i=1

p
max(αi,βi)
i .

Prema Tvr -denju 14, važi a | m i b | m, tako da je m zajednički sadržalac za
a i b. Ako je c pak proizvoljan sadržalac brojeva a i b, tada je, po istom tom
tvr -denju, c = pγ11 . . . pγkk , pri čemu je αi ≤ γi i βi ≤ γi za sve 1 ≤ i ≤ k. Sledi
da je max(αi, βi) ≤ γi, pa važi m | c, tj. m = [a, b].

(2) je direktna posledica tačke (1).
(3) sledi iz tačke (1), Tvr -denja 16, kao i činjenice da je

min(α, β) + max(α, β) = α+ β

za bilo koja dva realna broja α, β.

Prsteni ostataka po modulu, Vilsonova teorema

Imajući u vidu postupak deljenja sa ostatkom, prirodno je izvršiti klasifikaciju
skupa Z celih brojeva na klase brojeva koji daju isti ostatak pri deljenju nekim
fiksnim deliteljem m. Ovo se realizuje binarnom relacijom kongruencije po
modulu m. Naime, definišemo da je

a ≡ b (modm) ako i samo ako m | a− b.

Pri tome ne predstavlja nikakvo ograničenje opštosti ako pretpostavimo da je
m > 0, budući da m | a− b ako i samo ako −m | a− b.

Termin “kongruencija” ovde nije odabran slučajno; sledeće tvr -denje poka-
zuje da je · ≡ · (modm) zaista kongruencija prstena Z.

Tvr -denje 18. Za sve a, b, c, d ∈ Z i m > 0 važi:

(i) a ≡ a (modm).

(ii) a ≡ b (modm) ⇒ b ≡ a (modm).

(iii) a ≡ b (modm), b ≡ c (modm) ⇒ a ≡ c (modm).

(iv) a ≡ b (modm), c ≡ d (modm) ⇒
a+c ≡ b+d (modm), a−c ≡ b−d (modm).

(v) a ≡ b (modm), c ≡ d (modm) ⇒ ac ≡ bd (modm).
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Dokaz. Ilustracije radi, pokazaćemo samo (v). Po datim uslovima, imamo da
m | a− b i m | c− d. Zbog toga,

m | c(a− b) + b(c− d) = ac− bd,

tj. ac ≡ bd (modm).

Obratno, nije teško pokazati da su sve kongruencije prstena Z iscrpljene
kongruencijama po modulu m > 0.

Za a ∈ Z i fiksan modul m, klasu ekvivalencije elementa a u odnosu na
relaciju · ≡ · (modm) označavamo sa (a)m i zovemo je klasa ostatka. Na
taj način, imamo particiju skupa Z na m klasa, od kojih je svaka (dvostrano)
beskonačna aritmetička progresija. Proizvoljna transverzala ove particije (skup
brojeva takav da svakoj klasi pripada tačno jedan odabrani broj) je potpun sistem
ostataka. Očigledno, 0, 1, . . . ,m − 1 jeste jedan potpun sistem ostataka; njega
zovemo standardnim.

Na skupu svih klasa ostataka (a)m po modulu m definiše se algebarska
struktura uvo -denjem operacija + i · definisanih sa

(a)m + (b)m = (a+ b)m,

(a)m(b)m = (ab)m.

Ove definicije su logički dobre, tj. ne zavise od izbora predstavnika a, b, budući
da smo u Tvr -denju 18 pokazali da je · ≡ · (modm) zaista kongruencija prstena
Z. Na taj način, skup svih klasa ostataka {(a)m : 0 ≤ a ≤ m − 1} zajedno sa
opisanim operacijama tako -de čini prsten, koji zovemo prsten ostataka po mo-
dulu m i označavamo sa Zm. Naime, ako je mZ ideal od Z koji se sastoji od
svih celih brojeva deljivih sa m, tada je Zm ∼= Z/mZ. Drugim rečima, pres-
likavanje koje svakom celom broju dodeljuje njegovu klasu ostatka po modulu
m je sirjektivni homomorfizam prstena Z → Zm, i jezgro tog homomorfizma
je baš mZ. Prsten Zm je, baš kao i Z, komutativan i ima jedinicu – u pitanju je
klasa (1)m.

Aditivna grupa (Zm,+) prstena ostataka je uvek ciklična: ona je očito gene-
risana klasom (1)m, pošto je

(a)m = (1)m + · · ·+ (1)m︸ ︷︷ ︸
a sabiraka

i (0)m = (m)m. S druge strane, u odnosu na množenje imamo komutativni
monoid sa nulom (Zm, ·) koji u opšem slučaju nije grupa, budući da ne moraju
svi njegovi (nenula) elementi biti invertibilni u odnosu na jedinicu (1)m.
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Tvr -denje 19. (a)m je invertibilan element prstena Zm ako i samo ako važi
(a,m) = 1.

Kako je invertibilnost elementa (a)m, tj. postojanje klase (x)m takve da je
(a)m(x)m = (1)m, ekvivalentna egzistenciji rešenja kongruencije

ax ≡ 1 (modm),

prethodno tvr -denje je neposredna posledica sledećeg.

Tvr -denje 20. Kongruencijska jednačina

ax ≡ b (modm)

ima rešenja ako i samo ako (a,m) | b.

Dokaz. Neka je s ∈ Z tako da je as ≡ b (modm). Tada postoji c ∈ Z
tako da je as − b = mc, odnosno as +m(−c) = as −mc = b. Prema tome,
diofantska jednačina ax+my = b ima rešenja, što je po Tvr -denju 9 ekvivalentno
uslovu (a,m) | b. Obratno, ako važi ovaj uslov, tada i jednačina ax +my = b

ima rešenje (x0, y0). Ali, tada je ax0 ≡ b (modm), pa posmatrana linearna
kongruencija ima rešenje.

Klasa (a)m je redukovana ako je (a,m) = 1. Primetimo da je skup svih
redukovanih klasa zatvoren na množenje: ako je (a,m) = (b,m) = 1, tada je
i (ab,m) = 1, tj. (ab)m je tako -de redukovana klasa. Prema tome, redukovane
klase u odnosu na množenje čine podmonoid od (Zm, ·) u kojem svaki element
ima inverz; dakle, u pitanju je grupa, koju označavamo sa Um. Budući da su sve
nenula klase po modulu m redukovane ako i samo ako je m prost broj, odmah
imamo sledeći zaključak.

Posledica 21. Zm je polje ako i samo ako je m prost broj.

Kao što je poznato, u konačnom polju je proizvod svih nenula elemenata
jednak −1. Specijalan slučaj ovog tvr -denja za polje Zp ostataka po prostom
modulu p je u teoriji brojeva poznato kao Vilsonova teorema.

Teorema 22 (Vilsonova teorema). Neka je p prost broj. Tada je

(p− 1)! ≡ −1 (mod p).
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Dokaz. Tvr -denje teoreme je očito tačno za p = 2, 3, pa pretpostavimo da je
p ≥ 5. Dokazaćemo da se skup {2, 3 . . . , p − 2} može razbiti u (p − 3)/2

parova tako da proizvod svakog para daje ostatak 1 pri deljenju sa p.
Naime, za svako 2 ≤ a ≤ p−2, po Posledici 6.3, postoji tačno jedno rešenje

linearne kongruencije
ax ≡ 1 (mod p)

u skupu {0, 1, . . . , p − 1}. Me -dutim, to rešenje očito nije x = 0, kao ni
x ∈ {1, p − 1} (jer bi u suprotnom bilo a ≡ ±1 (mod p), što nije slučaj).
Prema tome, to rešenje, koje ćemo označiti sa f(a), tako -de pripada skupu
{2, 3, . . . , p−2}. Ovim smo definisali jednu transformaciju posmatranog skupa,
tj. funkciju f : {2, 3, . . . , p− 2} → {2, 3, . . . , p− 2}. Ova funkcija ima sledeća
svojstva:

1. af(a) ≡ 1 (mod p);

2. f(f(a)) = a, tj. ako je f(a) = b, tada je f(b) = a (ovo je posledica
prethodne tačke i jedinstvenosti rešenja kongruencije f(a)x ≡ 1 (mod p)

u skupu {2, 3, . . . , p− 2});

3. f(a) 6= a za sve a ∈ {2, 3, . . . , p − 2} (u suprotnom bi bilo a2 ≡
1 (mod p), tj. p | a2 − 1 = (a − 1)(a + 1), što je moguće samo ako
je a ≡ ±1 (mod p)).

Drugim rečima {{a, f(a)} : a ∈ {2, 3, . . . , p − 2}} predstavlja upravo traženo
sparivanje.

Otuda odmah sledi da je

(p− 1)! = 1 · [(2 · f(2)) · · · ] · (p− 1) ≡ 1 · (p− 1) ≡ −1 (mod p),

što se i tražilo.

Pri tome važi i obrat ove teoreme: ukoliko za neki prirodan broj n ≥ 2 važi
(n− 1)! ≡ −1 (modn), tada n mora biti prost; naime, ako je n složen i n 6= 4,
tada n | (n− 1)! (direktno se proverava da je 3! = 6 ≡ 2 (mod 4)).

Ojlerova funkcija i Ojlerova teorema

Ojlerova funkcija ϕ se definiše kao ϕ(n) = |Un|, broj redukovanih klasa os-
tataka po modulu n. Drugim rečima, ϕ(n) je broj svih a ∈ {1, . . . , n − 1}
takvih da je (a, n) = 1.

Kada je n stepen prostog broja, veoma je lako izračunati ϕ(n).
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Lema 23. Za svaki prost broj p i α ≥ 1 važi ϕ(pα) = pα − pα−1.

Dokaz. Za prirodan broj m < pα važi (m, pα) = 1 ako i samo ako je (m, p) =

1, odnosno, ako i samo ako p - m. Dakle, ϕ(pα) je broj svih elemenata skupa
{0, 1, . . . , pα − 1} koji nisu deljivi sa p, a što je očito pα − bpα/pc = pα −
pα−1.

Za kompleksnu funkciju f : Z → C jedne celobrojne promenljive (ovakve
funkcije se ponekad zovu i aritmetičke) kažemo da je multiplikativna ako za sve
a, b ∈ Z takve da je (a, b) = 1 važi

f(ab) = f(a)f(b).

Osim u slučaju kada je funkcija f konstantna nula-funkcija, imamo da je f(1) =
1 i f(−1) ∈ {1,−1} (iz tog razloga su zanimljivi jedino pozitivni argumenti,
budući da za a > 0 važi f(−a) = f(−1)f(a)).

Sledeće tvr -denje navodimo bez dokaza.

Lema 24. Ojlerova funkcija je multiplikativna.

Eksplicitna formula za ϕ(n) sada lako sledi iz zapažanja da, uz kanonički
oblik (2) broja n, multiplikativno svojstvo Ojlerove funkcije implicira da je

ϕ(n) =

k∏
i=1

ϕ(pαi
i ).

Teorema 25. Neka je n > 1 prirodan broj dat u kanoničkom obliku. Tada je

ϕ(n) =
k∏
i=1

(pαi
i − p

αi−1
i ) = n ·

∏
p|n

p prost

(
1− 1

p

)
.

Leonard Ojler (Leonhard Euler, 1707–1783) je 1736. dokazao tvr -denje u
kome funkcija koja danas nosi njegovo ime igra centralnu ulogu i koje pred-
stavlja uopštenje od ranije poznate “male” Fermaove teoreme.

Teorema 26 (Ojlerova teorema). Neka je a ∈ Z i m > 0 tako da je (a,m) = 1.
Tada je

aϕ(m) ≡ 1 (modm).
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Dokaz. Posledica Lagranžove teoreme je da u svakoj konačnoj grupi G i za
svako g ∈ G važi

g|G| = 1.

Tako, ako je (a,m) = 1, tj. (a)m ∈ Um je redukovana klasa, tada je

(a)|Um|m = (1)m.

No, kako je |Um| = ϕ(m), kongruencija u formulaciji teoreme je samo drugi
način da se zapiše gornja jednakost iz grupe Um invertibilnih elemenata prstena
Zm.

Posledica 27 (Mala Fermaova teorema). Neka je p prost broj i a ∈ Z takav da
p - a. Tada je

ap−1 ≡ 1 (mod p).

Drugim rečima, za sve cele brojeve a važi ap ≡ a (mod p).

Dokaz. Sledi direktno iz Ojlerove teoreme, pošto je ϕ(p) = p−1 za svaki prost
broj p.

Prethodna teorema nosi ime po Pjeru de Fermau (Pierre de Fermat, 1601–
1665), francuskom pravniku, jednom od najznačajnijih i najuspešnijih matema-
tičara-amatera svih vremena.


