# Recent developments in combinatorial inverse semigroup theory

#### Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

Matematični kolokvij, FMF, Univerza v Ljubljani Ljubljana, Slovenia, 14 November 2024



# Most of the original results presented here...



...are obtained in collaboration with Robert D. Gray (University of East Anglia, Norwich, UK)

Assume we have given a (finitely generated) group  $G = \langle A \rangle$ 

Assume we have given a (finitely generated) group  $G = \langle A \rangle$  (e.g. by a presentation,  $G = \text{Gp}\langle A | \mathfrak{R} \rangle$ , etc.).

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word  $w \in \overline{A}^*$ .

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word  $w \in \overline{A}^*$ .

QUESTION: Does w represent the identity element 1 in G?

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word  $w \in \overline{A}^*$ .

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for semigroups / monoids / inverse monoids / ...,

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word  $w \in \overline{A}^*$ . QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for semigroups / monoids / inverse monoids / ..., with the difference being that the input requires two words u, v (over  $A^*$  or  $\overline{A}^*$ , respectively),

```
Assume we have given a (finitely generated) group G = \langle A \rangle (e.g. by a presentation, G = \operatorname{Gp}\langle A \mid \mathfrak{R} \rangle, etc.).
So, elements of G are represented by words over \overline{A} = A \cup A^{-1}.
```

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word  $w \in \overline{A}^*$ .

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for semigroups / monoids / inverse monoids / ..., with the difference being that the input requires two words u, v (over  $A^*$  or  $\overline{A}^*$ , respectively), and then we want to decide if u = v holds in the corresponding semigroup / monoid.

#### Some easy word problems:

 $ightharpoonup \operatorname{\mathsf{Mon}}\langle a,b\,|\,ab=ba\rangle=\mathbb{N}\times\mathbb{N}$ 

#### Some easy word problems:

- $ightharpoonup \operatorname{\mathsf{Mon}}\langle a,b\,|\,ab=ba\rangle=\mathbb{N}\times\mathbb{N}$
- ightharpoonup  $\operatorname{\mathsf{Gp}}\langle a,b\,|\,a^{-1}b^{-1}ab=1
  angle = \operatorname{\mathsf{Gp}}\langle a,b\,|\,ab=ba
  angle = \mathbb{Z}\times\mathbb{Z}$

#### Some easy word problems:

- $ightharpoonup \operatorname{\mathsf{Mon}}\langle a,b\,|\,ab=ba
  angle=\mathbb{N} imes\mathbb{N}$
- $ightharpoonup \operatorname{\mathsf{Gp}}\langle a,b\,|\,a^{-1}b^{-1}ab=1
  angle = \operatorname{\mathsf{Gp}}\langle a,b\,|\,ab=ba
  angle = \mathbb{Z} imes\mathbb{Z}$

#### H. H. Wilhelm Magnus (1932):

The word problem for every one-relator group  $\operatorname{Gp}\langle A \,|\, r=1 \rangle$  is decidable.

#### Some easy word problems:

- $ightharpoonup \operatorname{\mathsf{Mon}}\langle a,b\,|\,ab=ba
  angle=\mathbb{N} imes\mathbb{N}$
- $ightharpoonup \operatorname{\mathsf{Gp}}\langle a,b\,|\,a^{-1}b^{-1}ab=1
  angle = \operatorname{\mathsf{Gp}}\langle a,b\,|\,ab=ba
  angle = \mathbb{Z} imes\mathbb{Z}$

### H. H. Wilhelm Magnus (1932):

The word problem for every one-relator group  $\operatorname{Gp}\langle A \,|\, r=1 \rangle$  is decidable.

#### Further examples:

Baumslag-Solitar groups  $B(m, n) = \operatorname{Gp}\langle a, b \mid b^{-1}a^mba^{-n} = 1\rangle$ 

#### Some easy word problems:

- $ightharpoonup \operatorname{\mathsf{Mon}}\langle a,b\,|\,ab=ba
  angle=\mathbb{N} imes\mathbb{N}$
- $\blacktriangleright \ \mathsf{Gp}\langle \mathsf{a},\mathsf{b}\,|\,\mathsf{a}^{-1}\mathsf{b}^{-1}\mathsf{a}\mathsf{b}=1\rangle = \mathsf{Gp}\langle \mathsf{a},\mathsf{b}\,|\,\mathsf{a}\mathsf{b}=\mathsf{b}\mathsf{a}\rangle = \mathbb{Z}\times\mathbb{Z}$

#### H. H. Wilhelm Magnus (1932):

The word problem for every one-relator group  $\operatorname{Gp}\langle A \,|\, r=1 \rangle$  is decidable.

#### Further examples:

- ► Baumslag-Solitar groups  $B(m, n) = \operatorname{Gp}\langle a, b \mid b^{-1}a^mba^{-n} = 1\rangle$
- (orientable) surface groups  $\mathsf{Gp}\langle a_1,\ldots,a_g,b_1,\ldots,b_g\,|\,[a_1,b_1]\ldots[a_g,b_g]=1\rangle$



▶ Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group  $G = \text{Gp}\langle A | r = 1 \rangle$ ;

- ▶ Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group  $G = \text{Gp}\langle A | r = 1 \rangle$ ;
- ▶ This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup  $L = \operatorname{Gp}\langle A' \mid r' = 1 \rangle$  w.r.t. a pair of free subgroups of L, where |r'| < |r|;

- ▶ Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group  $G = \text{Gp}\langle A | r = 1 \rangle$ ;
- ▶ This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup  $L = \operatorname{Gp}\langle A' \mid r' = 1 \rangle$  w.r.t. a pair of free subgroups of L, where |r'| < |r|;
- Such an embedding suffices to reduce the WP for G to that of L;

- ▶ Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group  $G = \text{Gp}\langle A | r = 1 \rangle$ ;
- ▶ This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup  $L = \operatorname{Gp}\langle A' \mid r' = 1 \rangle$  w.r.t. a pair of free subgroups of L, where |r'| < |r|;
- Such an embedding suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.

- ▶ Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group  $G = \text{Gp}\langle A | r = 1 \rangle$ ;
- ▶ This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup  $L = \operatorname{Gp}\langle A' \mid r' = 1 \rangle$  w.r.t. a pair of free subgroups of L, where |r'| < |r|;
- Such an embedding suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.

"Da sind Sie also blind gegangen!"

Max Dehn (Magnus' PhD advisor)

Open problem (as of 14 November 2024): Does every one-relator monoid  $\mathsf{Mon}\langle A\,|\, u=v\rangle \ \ \textit{have a decidable WP?}$ 

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for  $Mon\langle A | u = v \rangle$  is decidable for:

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for  $Mon\langle A | u = v \rangle$  is decidable for:

**special monoids** – the def. relation is of the form u = 1,

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$  is decidable for:

- **special monoids** the def. relation is of the form u = 1,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$  is decidable for:

- **special monoids** the def. relation is of the form u = 1,
- ► the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$  is decidable for:

- **>** special monoids the def. relation is of the form u = 1,
- ► the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

 $\qquad \qquad \mathsf{Mon}\langle a,b \,|\, aUb = aVa\rangle,$ 

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$  is decidable for:

- **>** special monoids the def. relation is of the form u = 1,
- ► the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

- $\qquad \qquad \mathsf{Mon}\langle a,b \,|\, aUb = aVa\rangle,$
- ▶ Mon $\langle a, b | aUb = a \rangle$  (the "monadic" case).

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A | u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$  is decidable for:

- **>** special monoids the def. relation is of the form u = 1,
- ► the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

- $\qquad \qquad \mathsf{Mon}\langle a,b \,|\, aUb = aVa\rangle,$
- ► Mon $\langle a, b | aUb = a \rangle$  (the "monadic" case).

NB. These presentations define right cancellative monoids.

Structures  $(S, ^{-1})$  where S is a semigroup / monoid, and the unary operation satisfies the laws:

$$(x^{-1})^{-1} = x,$$
  $(xy)^{-1} = y^{-1}x^{-1},$   
 $xx^{-1}x = x,$   $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$ 

Structures  $(S, ^{-1})$  where S is a semigroup / monoid, and the unary operation satisfies the laws:

$$(x^{-1})^{-1} = x,$$
  $(xy)^{-1} = y^{-1}x^{-1},$   
 $xx^{-1}x = x,$   $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$ 

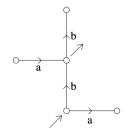
Just as groups capture the concept of a symmetry of mathematical objects, so do inverse semigroups for their partial symmetries.

Structures  $(S, ^{-1})$  where S is a semigroup / monoid, and the unary operation satisfies the laws:

$$(x^{-1})^{-1} = x,$$
  $(xy)^{-1} = y^{-1}x^{-1},$   
 $xx^{-1}x = x,$   $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$ 

Just as groups capture the concept of a symmetry of mathematical objects, so do inverse semigroups for their partial symmetries.

Free inverse monoid FIM(X): Munn, Scheiblich (1973/4)



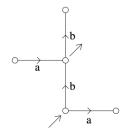
Elements of FIM(X) are represented as Munn trees = birooted finite subtrees of the Cayley graph of FG(X).

Structures  $(S, ^{-1})$  where S is a semigroup / monoid, and the unary operation satisfies the laws:

$$(x^{-1})^{-1} = x,$$
  $(xy)^{-1} = y^{-1}x^{-1},$   
 $xx^{-1}x = x,$   $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$ 

Just as groups capture the concept of a symmetry of mathematical objects, so do inverse semigroups for their partial symmetries.

### Free inverse monoid FIM(X): Munn, Scheiblich (1973/4)



Elements of FIM(X) are represented as Munn trees = birooted finite subtrees of the Cayley graph of FG(X). The Munn tree on the left illustrates the equality

$$aa^{-1}bb^{-1}ba^{-1}abb^{-1} = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b.$$

### Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv(A \mid \mathfrak{R})$ .

### Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv\langle A \mid \mathfrak{R} \rangle$ . When all defining relators are of the form w=1, we have special inverse monoids.

### Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv\langle A \mid \mathfrak{R} \rangle$ . When all defining relators are of the form w=1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001): The (right cancellative) monoid  $\operatorname{Mon}\langle A \mid aUb = aVc \rangle$  ( $b \neq c$ ) embeds (as the monoid of right units) into  $\operatorname{Inv}\langle A \mid aUbc^{-1}V^{-1}a^{-1} = 1 \rangle.$ 

## Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv\langle A \mid \mathfrak{R} \rangle$ . When all defining relators are of the form w=1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001):

The (right cancellative) monoid Mon $\langle A \, | \, aUb = aVc \rangle \, (b \neq c)$  embeds (as the monoid of right units) into

$$Inv\langle A \mid aUbc^{-1}V^{-1}a^{-1} = 1 \rangle.$$

Similarly,  $Mon\langle A \mid aUb = a \rangle$  embeds into  $Inv\langle A \mid aUba^{-1} = 1 \rangle$ .

### Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv\langle A \mid \mathfrak{R} \rangle$ . When all defining relators are of the form w=1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001):

The (right cancellative) monoid  $\operatorname{Mon}\langle A\,|\, aUb=aVc\rangle$  ( $b\neq c$ ) embeds (as the monoid of right units) into

$$Inv\langle A \mid aUbc^{-1}V^{-1}a^{-1} = 1 \rangle.$$

Similarly,  $Mon\langle A \mid aUb = a \rangle$  embeds into  $Inv\langle A \mid aUba^{-1} = 1 \rangle$ .

Hence, the WP for one-relator monoids reduces to the WP for one-relator (special) inverse monoids.

|              | $Gp\langle X  w=1 angle$ | $\mid Mon\langle X     w = 1 \rangle$ | $ \operatorname{Inv}\langle X   w=1 \rangle$ |
|--------------|--------------------------|---------------------------------------|----------------------------------------------|
| decidable WP | ✓                        | ✓                                     | ?                                            |
|              | (Magnus, 1932)           | (Adyan, 1966)                         |                                              |

|              | $ \operatorname{Gp}\langle X  w=1 angle$ | $\mid Mon\langle X     w = 1 \rangle$ | $ \operatorname{Inv}\langle X   w=1\rangle$ |
|--------------|------------------------------------------|---------------------------------------|---------------------------------------------|
| decidable WP | ✓                                        | ✓                                     | X                                           |
|              | (Magnus, 1932)                           | (Adyan, 1966)                         | (Gray, 2019)                                |

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

|              | $ \operatorname{Gp}\langle X  w=1 angle$ | $\mid Mon\langle X     w = 1 \rangle$ | $ \operatorname{Inv}\langle X \mid w = 1\rangle$ |
|--------------|------------------------------------------|---------------------------------------|--------------------------------------------------|
| decidable WP | ✓                                        | ✓                                     | X                                                |
|              | (Magnus, 1932)                           | (Adyan, 1966)                         | (Gray, 2019)                                     |

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

This still does not invalidate the IMM-approach, as the counterexample is of a different from (e.g. the relator word is not reduced).

|              | $ \operatorname{Gp}\langle X  w=1 angle$ | $ Mon\langle X w=1\rangle$ | $ \operatorname{Inv}\langle X \mid w=1\rangle$ |
|--------------|------------------------------------------|----------------------------|------------------------------------------------|
| decidable WP | ✓                                        | ✓                          | X                                              |
|              | (Magnus, 1932)                           | (Adyan, 1966)              | (Gray, 2019)                                   |

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

This still does not invalidate the IMM-approach, as the counterexample is of a different from (e.g. the relator word is not reduced). But it does show that there are great difficulties ahead.

## Gray's Anatomy :-)

At the heart of the proof is Lohrey-Steinberg's result (2008) that the right-angled Artin group  $A(P_4)$  has a fixed finitely generated submonoid with undecidable membership problem;

## Gray's Anatomy :-)

- At the heart of the proof is Lohrey-Steinberg's result (2008) that the right-angled Artin group  $A(P_4)$  has a fixed finitely generated submonoid with undecidable membership problem;
- Then,  $A(P_4)$  embeds into a one-relator group  $G = \operatorname{Gp}\langle a, b | \ldots \rangle$ ;

## Gray's Anatomy :-)

- At the heart of the proof is Lohrey-Steinberg's result (2008) that the right-angled Artin group  $A(P_4)$  has a fixed finitely generated submonoid with undecidable membership problem;
- Then,  $A(P_4)$  embeds into a one-relator group  $G = \operatorname{Gp}\langle a, b | \ldots \rangle$ ;
- ▶ Finally, a one-relator SIM  $M = \text{Inv}\langle a, b, t | \ldots \rangle$  is constructed so that  $u \in \{a, b, a^{-1}, b^{-1}\}^*$  represents an element of the "critical" undecidable f.g. submonoid of G

$$\longleftrightarrow$$
  $tut^{-1}$  is right invertible in  $M$  (i.e.  $tut^{-1}tu^{-1}t^{-1}=1$ ).

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G.

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi: S \to G$  be the corresponding natural homomorphism.

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi:S\to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e\in S$  we must have  $\phi(e)=1$ .

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi:S\to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e\in S$  we must have  $\phi(e)=1$ .

However, if the converse holds:  $\phi(s) = 1 \implies s^2 = s$ , then S is said to be E-unitary.

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi:S\to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e\in S$  we must have  $\phi(e)=1$ .

However, if the converse holds:  $\phi(s) = 1 \implies s^2 = s$ , then S is said to be E-unitary.

For example,  $M = \text{Inv}\langle A \mid w = 1 \rangle$  is *E*-unitary if:

- w = 1 holds in any group (i.e. w is a Dyck word),
- w is cyclically reduced (IMM, 2001).

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi:S\to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e\in S$  we must have  $\phi(e)=1$ .

However, if the converse holds:  $\phi(s) = 1 \implies s^2 = s$ , then S is said to be E-unitary.

For example,  $M = \text{Inv}\langle A \mid w = 1 \rangle$  is E-unitary if:

- w = 1 holds in any group (i.e. w is a Dyck word),
- w is cyclically reduced (IMM, 2001).

IMM (2001): If  $M = \text{Inv}\langle A \,|\, w = 1\rangle$  is E-unitary then the WP for M reduces to the prefix membership problem (PMP) for its greatest group image  $G = \text{Gp}\langle A \,|\, w = 1\rangle$ 

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi:S\to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e\in S$  we must have  $\phi(e)=1$ .

However, if the converse holds:  $\phi(s) = 1 \implies s^2 = s$ , then S is said to be E-unitary.

For example,  $M = \text{Inv}\langle A \mid w = 1 \rangle$  is E-unitary if:

- w = 1 holds in any group (i.e. w is a Dyck word),
- w is cyclically reduced (IMM, 2001).

IMM (2001): If  $M=\operatorname{Inv}\langle A\,|\, w=1\rangle$  is E-unitary then the WP for M reduces to the prefix membership problem (PMP) for its greatest group image  $G=\operatorname{Gp}\langle A\,|\, w=1\rangle=$  the membership problem for the submonoid of G generated by all prefixes of w.

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x,y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

However, there are groups  $G = \operatorname{Gp}\langle A \mid w = 1 \rangle$  with:

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

However, there are groups  $G = Gp\langle A | w = 1 \rangle$  with:

 $\triangleright$  w reduced and undecidable PMP for G (IgD, RDG, 2021);

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

However, there are groups  $G = Gp\langle A | w = 1 \rangle$  with:

- $\triangleright$  w reduced and undecidable PMP for G (IgD, RDG, 2021);
- ▶  $w = uv^{-1}$  reduced  $(u, v \in A^+)$  and undecidable PMP for G (Foniqi, RDG, Nyberg-Brodda, to appear);

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

However, there are groups  $G = Gp\langle A | w = 1 \rangle$  with:

- $\blacktriangleright$  w reduced and undecidable PMP for G (IgD, RDG, 2021);
- ▶  $w = uv^{-1}$  reduced  $(u, v \in A^+)$  and undecidable PMP for G (Foniqi, RDG, Nyberg-Brodda, to appear);
- ▶  $w \in A^+$  and undecidable submonoid membership problem for G (again, F+G+NB).

### Guba (1997):

For any monadic  $M = \operatorname{Mon}\langle a, b \mid aUb = a \rangle$  constructs  $G_M = \operatorname{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$  related, but not trivially, to U) such that the WP for M reduces to PMP for  $G_M$ .

However, there are groups  $G = Gp\langle A | w = 1 \rangle$  with:

- $\blacktriangleright$  w reduced and undecidable PMP for G (IgD, RDG, 2021);
- ▶  $w = uv^{-1}$  reduced  $(u, v \in A^+)$  and undecidable PMP for G (Foniqi, RDG, Nyberg-Brodda, to appear);
- ▶  $w \in A^+$  and undecidable submonoid membership problem for G (again, F+G+NB).

Problem: What about the case when w is cyclically reduced?

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

#### Applications:

Assume a conservative factorisation  $w \equiv w_1 \cdots w_k$ ;

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

#### Applications:

- Assume a conservative factorisation  $w \equiv w_1 \cdots w_k$ ;
- ► Unique marker letters: pieces axb, ayb,

$$Gp\langle a, b, x, y \mid (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1\rangle;$$

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

#### Applications:

- Assume a conservative factorisation  $w \equiv w_1 \cdots w_k$ ;
- ► Unique marker letters: pieces axb, ayb,

$$Gp\langle a, b, x, y \mid (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1\rangle;$$

Sometimes, the application is not immediate, e.g. in the O'Hare example:

$$Gp\langle a, b, c, d \mid (abcd)(acd)(ad)(abbcd)(acd) = 1 \rangle;$$

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

#### Applications:

- Assume a conservative factorisation  $w \equiv w_1 \cdots w_k$ ;
- ► Unique marker letters: pieces axb, ayb,

$$Gp\langle a, b, x, y \mid (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1\rangle;$$

Sometimes, the application is not immediate, e.g. in the O'Hare example:

$$Gp\langle a, b, c, d \mid (abcd)(acd)(ad)(abbcd)(acd) = 1\rangle;$$

but the same group (and resulting with the same prefix monoid!) is defined by

$$\mathsf{Gp}\langle a,b,c,d \,|\, (aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad)(ad) \\ (aba^{-1})(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad) = 1 \rangle$$

Disjoint alphabets:

$$Gp\langle a, b, c, d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1\rangle;$$

▶ Disjoint alphabets:

```
Gp\langle a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1\rangle;
```

**Exponent sum zero**:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0.

- Disjoint alphabets:  $Gp(a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1);$
- Exponent sum zero:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|.

- Disjoint alphabets: Gp(a, b, c, d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1);
- **Exponent sum zero**:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|. If  $G_0$  is free and w is prefix t-positive  $\Rightarrow G$  has decidable PMP;

12

- Disjoint alphabets:  $Gp\langle a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1\rangle;$
- Exponent sum zero:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|. If  $G_0$  is free and w is prefix t-positive  $\Rightarrow G$  has decidable PMP;
- ▶ Cyclically pinched groups:  $Gp\langle A, B | uv^{-1} = 1 \rangle$   $(u \in \overline{A}^*, v \in \overline{B}^*)$

12

Disjoint alphabets:

```
Gp\langle a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1\rangle;
```

- Exponent sum zero:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|. If  $G_0$  is free and w is prefix t-positive  $\Rightarrow G$  has decidable PMP;
- ► Cyclically pinched groups:  $\operatorname{Gp}\langle A, B \mid uv^{-1} = 1 \rangle \ (u \in \overline{A}^*, \ v \in \overline{B}^*)$ 
  - Orientable surface groups (known):

$$\mathsf{Gp}\langle a_1,\ldots,a_n,b_1,\ldots,b_n\,|\,[a_1,b_1]\ldots[a_n,b_n]=1\rangle;$$

► Non-orientable surface groups (new):

$$\mathsf{Gp}\langle a_1,\ldots,a_n\,|\,a_1^2\ldots a_n^2=1\rangle;$$

- Disjoint alphabets:  $Gp(a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1);$
- Exponent sum zero:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|. If  $G_0$  is free and w is prefix t-positive  $\Rightarrow G$  has decidable PMP;
- ▶ Cyclically pinched groups:  $\operatorname{Gp}\langle A, B \mid uv^{-1} = 1 \rangle \ (u \in \overline{A}^*, \ v \in \overline{B}^*)$ 
  - Orientable surface groups (known):

$$\mathsf{Gp}\langle a_1,\ldots,a_n,b_1,\ldots,b_n\,|\,[a_1,b_1]\ldots[a_n,b_n]=1\rangle;$$

Non-orientable surface groups (new):

$$\mathsf{Gp}\langle a_1,\ldots,a_n\,|\,a_1^2\ldots a_n^2=1\rangle;$$

▶ Conjugacy pinched groups:  $\operatorname{Gp}\langle X,t \mid t^{-1}utv^{-1}=1\rangle$   $(u,v\in\overline{X}^*$  non-empty and reduced) – include the Baumslag-Solitar groups;

Disjoint alphabets:

```
Gp\langle a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1\rangle;
```

- Exponent sum zero:  $G = \operatorname{Gp}\langle A, t \mid w = 1 \rangle$ , where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group  $G_0 = \operatorname{Gp}\langle A' \mid w' = 1 \rangle$  where |w'| < |w|. If  $G_0$  is free and w is prefix t-positive  $\Rightarrow G$  has decidable PMP;
- ▶ Cyclically pinched groups:  $\operatorname{Gp}\langle A, B \mid uv^{-1} = 1 \rangle \ (u \in \overline{A}^*, \ v \in \overline{B}^*)$ 
  - Orientable surface groups (known):

$$\mathsf{Gp}\langle a_1,\ldots,a_n,b_1,\ldots,b_n\,|\,[a_1,b_1]\ldots[a_n,b_n]=1\rangle;$$

► Non-orientable surface groups (new):

$$\mathsf{Gp}\langle a_1,\ldots,a_n\,|\,a_1^2\ldots a_n^2=1\rangle;$$

- ▶ Conjugacy pinched groups:  $\operatorname{Gp}\langle X, t \mid t^{-1}utv^{-1} = 1\rangle$  ( $u, v \in \overline{X}^*$  non-empty and reduced) include the Baumslag-Solitar groups;
- Some Adian-type groups:  $\operatorname{Gp}\langle X \mid uv^{-1} = 1 \rangle$ ,  $u, v \in X^*$  are positive words such that the first letters of u, v are different and also the last letters of u, v are different.

### Two questions

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

## Two questions

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

(1) What can the prefix monoids of f.p. groups be?

## Two questions

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

- (1) What can the prefix monoids of f.p. groups be?
- (2) What can the RU-monoids of f.p. SIMs be?

13

## Two questions

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

- (1) What can the prefix monoids of f.p. groups be?
- (2) What can the RU-monoids of f.p. SIMs be?

13

A group *G* is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \mid w_i = 1 \ (i \in I) \rangle$$

where A is finite and  $\{w_i: i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ .

A group G is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \mid w_i = 1 \ (i \in I) \rangle$$

where A is finite and  $\{w_i: i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ .

Similarly, a monoid is recursively presented if

$$M = \mathsf{Mon}\langle A | u_i = v_i \ (i \in I) \rangle$$

where A is finite and  $\{(u_i, v_i): i \in I\}$  is a r.e. subset of  $A^* \times A^*$ .

A group G is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \, | \, w_i = 1 \, (i \in I) \rangle$$

where A is finite and  $\{w_i: i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ .

Similarly, a monoid is recursively presented if

$$M = \mathsf{Mon}\langle A | u_i = v_i \ (i \in I) \rangle$$

where A is finite and  $\{(u_i, v_i): i \in I\}$  is a r.e. subset of  $A^* \times A^*$ .

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

A group G is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \mid w_i = 1 \ (i \in I) \rangle$$

where A is finite and  $\{w_i: i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ .

Similarly, a monoid is recursively presented if

$$M = \operatorname{\mathsf{Mon}}\langle A \,|\, u_i = v_i \ (i \in I) \rangle$$

where A is finite and  $\{(u_i, v_i): i \in I\}$  is a r.e. subset of  $A^* \times A^*$ .

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.

A group G is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \mid w_i = 1 \ (i \in I) \rangle$$

where A is finite and  $\{w_i: i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ .

Similarly, a monoid is recursively presented if

$$M = \operatorname{\mathsf{Mon}}\langle A \,|\, u_i = v_i \ (i \in I) \rangle$$

where A is finite and  $\{(u_i, v_i): i \in I\}$  is a r.e. subset of  $A^* \times A^*$ .

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

- A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.
- Every prefix monoid (of a f.p. group) is f.g. it is recursively presented.

### Two (easy) facts:

Every group-embeddable f.p. monoid arises as a prefix monoid.

### Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- ▶ If a group arises as a prefix monoid then it is f.p.

### Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- ► If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

## Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- ► If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

### Theorem (IgD, RDG, 2023):

For every group-embeddable recursively presented monoid M there is a natural number  $\mu_M$  such that

$$M * \Sigma_k^*$$

is a prefix monoid (with  $|\Sigma_k| = k$ ) if and only if  $k \ge \mu_M$ .

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative.

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

RU-monoids are recursively presented (as monoids);

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

- RU-monoids are recursively presented (as monoids);
- ▶ if a group G arises as an RU-monoid  $\Rightarrow G$  is finitely presented;

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

- RU-monoids are recursively presented (as monoids);
- ▶ if a group G arises as an RU-monoid  $\Rightarrow G$  is finitely presented;
- ▶ quite recently it seems we (IgD, RGD, Sept 2024) have shown that if  $G * \Sigma^*$  is an RU-monoid  $\Rightarrow G$  is finitely presented.

M – inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

- RU-monoids are recursively presented (as monoids);
- ▶ if a group G arises as an RU-monoid  $\Rightarrow G$  is finitely presented;
- ▶ quite recently it seems we (IgD, RGD, Sept 2024) have shown that if  $G * \Sigma^*$  is an RU-monoid  $\Rightarrow G$  is finitely presented.

16

So, there is evidence that the (open) problem of characterising RU-monoids might be actually quite difficult.

$$M = \mathsf{MonRC}\langle A \,|\, \mathfrak{R} \rangle$$

$$M = \mathsf{MonRC}\langle A \mid \mathfrak{R} \rangle$$

$$\Leftrightarrow M\cong A^*/\mathfrak{R}^{\mathrm{RC}}$$
,

$$M = \mathsf{MonRC}\langle A \mid \mathfrak{R} \rangle$$

 $\Leftrightarrow M \cong A^*/\mathfrak{R}^{RC}$ , where  $\mathfrak{R}^{RC}$  is the intersection of all congruences  $\sigma$  of  $A^*$  such that

- $\triangleright \mathfrak{R} \subseteq \sigma$ ,
- $ightharpoonup A^*/\sigma$  is right cancellative.

$$M = \mathsf{MonRC}\langle A \mid \mathfrak{R} \rangle$$

 $\Leftrightarrow M \cong A^*/\mathfrak{R}^{RC}$ , where  $\mathfrak{R}^{RC}$  is the intersection of all congruences  $\sigma$  of  $A^*$  such that

- $\triangleright \mathfrak{R} \subseteq \sigma$ ,
- ▶  $A^*/\sigma$  is right cancellative.

Theorem (IgD, RDG, 2023):

Every finitely RC-presented monoid is an RU-monoid.

$$M = \mathsf{MonRC}\langle A \mid \mathfrak{R} \rangle$$

 $\Leftrightarrow M \cong A^*/\mathfrak{R}^{RC}$ , where  $\mathfrak{R}^{RC}$  is the intersection of all congruences  $\sigma$  of  $A^*$  such that

- $\triangleright \mathfrak{R} \subseteq \sigma$ ,
- $ightharpoonup A^*/\sigma$  is right cancellative.

Theorem (IgD, RDG, 2023):

Every finitely RC-presented monoid is an RU-monoid.

In a way, this is a generalisation of the Ivanov-Margolis-Meakin result.

Ingredients: A group G and a f.g. submonoid  $T \leq G$ .

Ingredients: A group G and a f.g. submonoid  $T \leq G$ .

Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

▶ a one-relator SIM whose group of units is not one-relator;

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- ▶ a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- ▶ a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!)

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid,

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

If U is the group of units of a monoid M and  $M \setminus U$  is an ideal

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

If U is the group of units of a monoid M and  $M \setminus U$  is an ideal (which is always the case when M is right cancellative)

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An E-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

#### Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

If U is the group of units of a monoid M and  $M \setminus U$  is an ideal (which is always the case when M is right cancellative) M f.p. as a monoid  $\Rightarrow U$  f.p. as a group

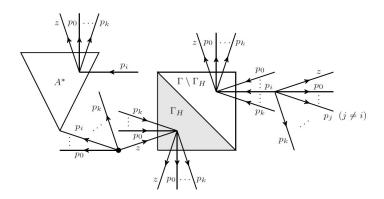
RDG, Kambites (2023/24, JEMS, to appear): The groups of units of f.p. SIMs are precisely the recursively presented groups.

RDG, Kambites (2023/24, JEMS, to appear): The groups of units of f.p. SIMs are precisely the recursively presented groups.

Their construction takes a f.g. subgroup H of a f.p. group G and produces a f.p. SIM  $M_{G,H}$  such that  $U(M_{G,H}) \cong H$ .

RDG, Kambites (2023/24, JEMS, to appear): The groups of units of f.p. SIMs are precisely the recursively presented groups.

Their construction takes a f.g. subgroup H of a f.p. group G and produces a f.p. SIM  $M_{G,H}$  such that  $U(M_{G,H}) \cong H$ .



IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $M_{T,S}$ .

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $M_{T,S}$ .

► This monoid is practically never finitely RC-presented;

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $\mathcal{M}_{T,S}$ .

- ► This monoid is practically never finitely RC-presented;
- The group of units might or might not be f.p., it might even be trivial.

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $M_{T,S}$ .

- This monoid is practically never finitely RC-presented;
- The group of units might or might not be f.p., it might even be trivial.

Conclusion 1: There are non-finitely RC-presented RU-monoids out there!

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $M_{T,S}$ .

- This monoid is practically never finitely RC-presented;
- The group of units might or might not be f.p., it might even be trivial.

Conclusion 1: There are non-finitely RC-presented RU-monoids out there!

Conclusion 2: Right cancellative monoids and RC-presentations are strange animals!

# Thank you!





