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Abstract

We introduce and study Maker/Breaker-type positional games on ran-
dom graphs. Our main concern is to determine the threshold probability
pF for the existence of Maker’s strategy to claim a member of F in the
unbiased game played on the edges of random graph G(n, p), for various
target families F of winning sets. More generally, for each probability
above this threshold we study the smallest bias b such that Maker wins
the (1: b) biased game. We investigate these functions for a number of
basic games, like the connectivity game, the perfect matching game, the
clique game and the Hamiltonian cycle game.

1 Introduction

(Un)biased positional games. Let X be a finite nonempty set and F ⊆ 2X .
The pair (X,F) is a positional game on X. The game is played by two players
Maker and Breaker, where in each move Maker claims one previously unclaimed
element of X and then Breaker claims one previously unclaimed element of X.
Maker wins if he claims all the elements of some set in F , otherwise Breaker
wins. The set X will be referred to as the board, and the set F as the set of
winning sets. Whenever there is no confusion about what the board is, we may
refer to the game (X,F) as just F .

Unless otherwise stated, we assume that Maker starts the game. We note,
however, that the asymptotic statements discussed in the paper are not influ-
enced by which player makes the first move. For technical reasons we still have
to talk about games in which Breaker starts. So in order to avoid confusion,
the positional game with board X and set of winning sets F in which Breaker
makes the first move is denoted by (X̂,F).

The set of all positional games could be partitioned into two classes. The
game (X,F) is called a Maker’s win if Maker has a winning strategy, that is,
playing against an arbitrary strategy Maker can occupy a member of F . Clearly,
if (X,F) is not a Maker’s win, then Breaker is able to prevent any opponent
from occupying a winning set. Such a positional game is called a Breaker’s win.

Typical, well-studied examples of such positional games are played on the
edges of a complete graph, i.e. X = E(Kn). Maker’s goal usually is to build a
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graph theoretic structure – like a spanning tree, a perfect matching, a Hamil-
tonian cycle, or a clique of fixed size. It turns out that all these games are
won easily by Maker if n is sufficiently big, so in order to make things more
fair (if such thing exists; actually no game of perfect information is fair as
the winner—in theory—is known in the beginning of the game) one could give
Breaker extra power by allowing him to claim more than 1 edge in each move.

If X is a finite nonempty set, F ⊆ 2X and a, b are positive integers (possibly
functions of the board size), then the 4-tuple (X,F , a, b) is a biased (a: b) game.
In a biased (a: b) game, Maker claims a elements (instead of 1) and Breaker
claims b elements (instead of 1) in each move. Recall, that unless otherwise
stated Maker starts the game. The biased game in which Breaker starts is
denoted by (X̂,F , a, b). Note that a is always the bias of Maker, independently
from who is the first player to move.

For a family F the smallest integer bF is sought (and sometimes found; see
[1, 2, 3, 4, 5, 8]) for which Breaker wins the (1 : bF ) game.

In the connectivity game Maker’s goal is to build a connected spanning
subgraph; i.e. in this game the family of winning sets is the family T = Tn of all
spanning trees on n vertices. Chvátal and Erdős proved [8] that bT = Θ( n

logn).
Beck [1] established bH = Θ( n

logn), where H = Hn is the family of all
Hamiltonian cycles on n vertices.

For the family Kk = Kk,n of all k-cliques on n vertices, Bednarska and

 Luczak [4] showed that bKk
= Θ(n

2
k+1 ). More generally, they proved that in

the game in which Maker’s goal is to claim an arbitrary fixed graph G, the
threshold bias is Θ(n1/m′(G)). (Here m′(G) is the maximum of e(H)−1

v(H)−2 over all

subgraphs H of G with at least 3 vertices.)

Playing on a random board. In the present paper we introduce another
approach to even out the advantage Maker has in a (1: 1) game, by randomly
reducing the board size and keeping only those winning sets which survive this
thinning intact.

Definition 1 Let (X,F , a, b) be a biased game. Random game (Xp,Fp, a, b) is
a probability space of games where each x ∈ X is independently included in Xp

with probability p, and Fp = {W ∈ F : W ⊆ Xp}.

Apart from the trivial case ∅ ∈ F , Breaker surely wins when p = 0. On the
other hand, the unbiased version of all the graph games that we consider are
(easy) Maker’s wins, when p = 1 and the board is sufficiently large. For any
other probability p, 0 < p < 1, we cannot be sure who (Maker or Breaker) wins
the random game Fp. The best we can conclude is that Maker (or Breaker)
wins a.s. (almost surely), i.e. the probability that Maker (Breaker) wins tends
to 1 if the board size tends to infinity. (So we actually talk about an infinite
family of probability spaces of games . . . )

Let (X,F) be a particular sequence of games, where ∅ /∈ F , the board size
tends to infinity, and (X,F , 1, 1) is won by Maker provided |X| is big enough.
The first natural question to ask is: What is the threshold probability pF at
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which an almost sure Breaker’s win turns into an almost sure Maker’s win.
More precisely we would like to determine pF for which

• Pr[(Xp,Fp, 1, 1) is a Breaker’s win] → 1 for p = o(pF ), and

• Pr[(Xp,Fp, 1, 1) is a Maker’s win] → 1 for p = ω(pF ).

Such a threshold pF exists [6], since being a Maker’s win is an increasing
property.

The main goal of this paper is to establish a connection between the natural
threshold values, bF and pF , corresponding to the two different weakenings of
Maker’s power: bias and random thinning, respectively. We find that there is
an intriguing reciprocal connection between these two thresholds in a number
of well-studied games on graphs.

Recall the notations T , H, and Kk, and let us denote by M the set of all
perfect matchings on the graph Kn.

Theorem 1 For positional games, played on E(Kn), we have

(i) pT = logn
n ,

(ii) pM = logn
n ,

(iii) logn
n ≤ pH ≤ logn√

n
,

(iv) n− 2
k+1

−ε ≤ pKk
≤ n− 2

k+1 , for every integer k ≥ 4 and every constant
ε > 0.

(v) pK3 = n− 5
9 .

For the connectivity game T an even more precise statement is true. In
Corollary 20 we observe that Maker starts to win a.s. at the very moment when
the last vertex of a random graph process picks up its second incident edge.

More generally, for every p we would like to find the smallest bias bpF such
that Breaker wins the random game (Xp,Fp, 1, b

p
F ) a.s. Note that by definition

bF = b1F . Another trivial observation is that bpF = 0 provided p is less than the
threshold for the appearance of the first element of F in the random graph.

We obtain the following.

Theorem 2 There exist constants C1, C2, C3, such that

(i) bpT = Θ (pbT ) = Θ
(
p n
logn

)
, provided p ≥ C1

1
bT

,

(ii) bpM = Θ (pbM) = Θ
(
p n
logn

)
, provided p ≥ C2

1
bM

,
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(iii) Ω
(
p

√
n

logn

)
≤ bpH ≤ O

(
p n
logn

)
, provided p ≥ C3

logn√
n
,

(iv) There exists ck > 0, such that bpKk
= Θ (pbKk

) = Θ
(
pn

2
k+1

)
, provided

p = Ω
(
logck n
bKk

)
.

One can see that bpF is of order p/pF = pbF for the connectivity game and the
perfect matching game, provided p ≥ CpF for some constant C. In particular
for these games pF = Θ(1/bF ). In part (iv) of Theorem 2, generalizing the
arguments of Bednarska and  Luczak [4] we show that one can estimate bpKk

up
to a constant factor, for all probabilities down to a polylogarithmic factor away

from the critical probability 1/bKk
= n− 2

k+1 . On the other hand Theorem 1 part
(v) shows that in the case k = 3 we cannot get arbitrarily close to probability
1/bKk

, since Maker can win even for probabilities below 1/bK3 = n−1/2.
Nevertheless we think the Hamiltonian cycle game behaves “nicely”, i.e. the

same way as the connectivity game and the perfect matching game.

Conjecture 1 Let H be the set of Hamiltonian cycles in Kn. There exists a
constant C such that

bpH = Θ

(
p

n

log n

)
, provided p ≥ C logn

n .

In particular,

pH =
log n

n
.

Observe that the validity of the conjecture would mean that in a random
graph with edge probability p ≥ C logn

n Maker could build a Hamiltonian cycle.
So Pósa’s Theorem (which only proves the existence of a Hamiltonian cycle)
would be true constructively even if an adversary is playing against us.

The paper is organized as follows. In Section 2 we prove a general criterion
for Breaker’s win in a different, auxiliary random game. In Section 3, the anal-
ysis of four biased random games is presented. In particular, in Subsections 3.1,
3.2, 3.3 and 3.4 we look at the connectivity game, the Hamiltonian cycle game,
the perfect matching game and the clique game, respectively. In Section 4 we
analyze more precisely a couple of (1: 1) games – the connectivity game (Sub-
section 4.1) and the clique game (Subsection 4.2). Finally, in Section 5 we give
a collection of open questions and conjectures.

Notation. For a graph G, e(G) and v(G) denote the number of edges and
vertices (respectively) of G, δ(G) denotes the minimum degree of G, and E(G)
and V (G) denote the sets of edges and vertices (respectively). If C ⊆ V (G) and
v ∈ V (G), then NC(v) denotes the set of neighbors of v in C. The logarithm
log n in this paper is always of natural base. For functions f(n), g(n) ≥ 0, we
say that f = O(g) if there are constants C and K, such that f(n) ≤ Cg(n) for
n ≥ K; f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and f = Ω(g); f = o(g) if
f(n)/g(n) → 0 when n → ∞; f = ω(g) if g = o(f).
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2 A criterion

One of few general, but still very applicable results to decide the winner of
biased positional games is the biased version of the Erdős–Selfridge Theorem
[10, 2]. It provides a criterion for Breaker to win, applicable on any game.

Theorem 3 (Beck, [2]) If ∑
A∈F

(1 + b)−|A|/a < 1,

then Breaker has a winning strategy in the (X̂,F , a, b) game.

If Maker plays the first move then the 1 on the right hand side of the criterion
is to be replaced by the fraction 1

1+b .
We will also need the following extension.

Theorem 4 ([2, 4]) If for a positive integer c we have∑
A∈F

(1 + b)−|A|/a < c
1

1 + b
,

then Breaker has a winning strategy in the (X, {∪B∈FB : F ∈
(F
c

)
}, a, b) game.

In this section we give an adaptation of the first criterion which proves to
be very useful in dealing with positional games on a random board. We need
the following technical definition.

Definition 2 Let (X,F , a, b) be a biased game. Random game (Xp,F∩
p , a, b)

with induced set of winning sets is a probability space of games, where Xp is
defined as in Definition 1 and F∩

p = {W : ∃F ∈ F , W = F ∩Xp}.

The following statement is the randomized version of Theorem 3. It is stated
for the biased (b: 1) game in which Breaker is the first player, because this is
the version we will need in our applications.

Theorem 5 Let F be a set of winning sets on X with∑
A∈F

2−
|A|
b < 1 (1)

(i.e. the condition of the Erdős–Selfridge Theorem holds for the (X̂,F , b, 1)
game), and

lim
n→∞

min
A∈F

|A|
b

= ∞. (2)

If p and δ > 0 are chosen so that p > 4 log 2
δ2b

holds, then the game (X̂p,F∩
p , (1−

δ)pb, 1) is a Breaker’s win a.s.
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Proof. For each A ∈ F and its corresponding set A′ ∈ F∩
p we have E[|A′|] =

p|A|. If all winning sets A′ ∈ F∩
p have size at least (1 − δ)p|A|, then

∑
A′∈F∩

p

2
− |A′|

(1−δ)pb ≤
∑
A∈F

2
− (1−δ)p|A|

(1−δ)pb =
∑
A∈F

2−
|A|
b < 1.

Using the Erdős–Selfridge theorem we obtain that Breaker wins the (X̂p,F∩
p , (1−

δ)pb, 1) game, provided |A′| ≥ (1 − δ)p|A| for all A′ ∈ F∩
p .

Next we check that this condition holds almost surely. Using a Chernoff
bound, we obtain that

Pr
[
∃A ∈ F : |A′| ≤ (1 − δ)p|A|

]
≤
∑
A∈F

e−
δ2p|A|

2 .

If we denote minA∈F
|A|
b by mn, then we have∑

A∈F
e−

δ2p|A|
2 ≤

∑
A∈F

2−2
|A|
b ≤

∑
A∈F

2−mn2−
|A|
b < 2−mn → 0,

and therefore all winning sets A′ ∈ F∩
p have size at least (1 − δ)p|A| a.s.

2

3 Games

3.1 Connectivity game

The first game we study is a random version of the biased connectivity game
(E(Kn), T , 1, b) on a complete graph on n vertices Kn. Maker’s goal is to build
a spanning, connected subgraph, i.e. T is the set of all spanning trees on n
vertices.

It is obvious that pT = Ω( lognn ), since for lower probabilities the random
graph is a.s. not connected, and Breaker wins even if he does not claim any
edges.

First we generalize this for arbitrary probability p by providing Breaker with
a strategy to isolate a vertex. One of our main tools is the following winning
criterion of Chvátal and Erdős on games with disjoint winning sets.

Theorem 6 [8] In a biased (b: 1) game with k disjoint winning sets of size s
Maker wins if

s ≤ (b− 1)

k−1∑
i=1

1

i
. (3)

Corollary 7 In a biased (b: 2) game with k + 1 disjoint winning sets of size at
most s Maker wins if

s ≤
(⌊

b

2

⌋
− 1

) k−1∑
i=1

1

i
.
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Proof of Corollary. Recall that as a default Maker starts the game in the
Theorem and the Corollary as well. Now Theorem 6 obviously remains true (i.e.
Maker wins) even if Breaker starts, provided there are k + 1 disjoint winning
sets instead of k. This implies that when Breaker starts, the bias is (2b : 2),
there are k + 1 winning sets and (3) holds, then Maker still wins. Indeed, since
the winning sets are disjoint, after Breaker’s move Maker can just pretend to
play a (b : 1) game and answer with his first b moves to one of the two selections
of Breaker, and answer with his second b moves to the other move of Breaker,
both according to the (b : 1) strategy. Now the Corollary follows, since starting
instead of being second player cannot hurt Maker. 2

Theorem 8 There exists K0 > 0 so that for arbitrary p ∈ [0, 1] and b ≥
K0p

n
logn Breaker, playing the (1 : b) game on the edges of random graph G(n, p),

can achieve that Maker’s graph has an isolated vertex a.s.

Proof. Let us fix b = ⌊K0pn/ log n⌋, where K0 is a constant to be determined
later. Note that we can assume p > log n/2n, since otherwise the random graph
does have an isolated vertex a.s., thus Breaker achieves his goal without having
to play any moves.

We present a strategy for Breaker to claim all the edges incident to some
vertex of G(n, p). If successful, this strategy prevents Maker from building a
connected subgraph. Similar strategy was introduced by Chvátal and Erdős [8]
for solving the problem on the complete graph.

Let C be an arbitrary subset of the vertex set of cardinality ⌊n/ log n⌋.
Breaker will claim all the edges incident to some vertex v ∈ C (thus preventing
Maker from claiming any edge incident to v). We would like to use the game
from Corollary 7, with the winning sets being the ⌊n/ log n⌋ stars of size at most
n−1 whose center is in C. Since these stars are not necessarily disjoint, formally
we will talk about ordered pairs of vertices: the winning sets are denoted by
Wv = {(v, u) : u ∈ V }, v ∈ C. We call this game Box. To avoid confusion with
Maker and Breaker of the game from Theorem 8, the players from Corollary 7
will be called BoxMaker and BoxBreaker. Recall that in Box the bias is (b : 2).

Breaker will utilize the strategy of BoxMaker from Corollary 7 to achieve
his goal. How? He will play a game of Box in such a way that a win for
BoxMaker automatically implies a win for Breaker. When Maker selects an
edge uv, Breaker interprets it as BoxBreaker claimed the elements (u, v) and
(v, u) in Box. Whenever Breaker would like to make a move, he looks at the
current move of BoxMaker in Box, and takes those edges which correspond
to the b ordered pairs BoxMaker selected. If he is supposed to select an edge
which has already been selected by him, he selects an arbitrary unoccupied
edge. Note that the above strategy never calls for Breaker to select an edge
which has already been selected by Maker.

It is also obvious, that if BoxMaker wins Box, then Breaker occupied all
incident edges of a vertex from C.

In order to apply Corollary 7 it is enough then to show that the size d(v) of
each winning set is appropriately bounded from above, i.e. for each v ∈ C we
have d(v) ≤ K0

8 pn ≤
(⌊

b
2

⌋
− 1
)∑k−1

i=1
1
i a.s.
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Indeed, using a Chernoff bound and a large enough K0, we obtain that for
every v ∈ C

Pr

[
d(v) >

K0

8
pn

]
≤ e−

K0pn
8 ≤ n−K0

16 .

Therefore we have

Pr

[
∃v ∈ C : d(v) >

K0

8
pn

]
≤ n · n−K0

16 → 0,

provided K0 is large enough. Then Corollary 7 guarantees BoxMaker’s win,
thus Breaker’s win a.s., and the proof of Theorem 8 is complete. 2

Next we give a winning strategy for Maker in the connectivity game, thus
determining the threshold bias bpT up to a constant factor.

Obviously, Breaker wins if and only if he claims all the edges of a cut, i.e.
all the edges connecting some set of vertices with its complement. In order to
win Maker has to claim one edge in each of the cuts. This observation enables
us to formulate the connectivity game in a different way, where winning sets are
cuts and roles of players are exchanged – Breaker wants to occupy a cut and
Maker wants to prevent Breaker from doing so. To avoid confusion we refer to
the players of this “cut-game” by CutMaker and CutBreaker.

This new point of view enables us to give Maker a winning strategy using
Theorem 5, which is a criterion for CutBreaker’s win. Observe, that in this
“cut-game” CutBreaker (alias Maker) only cares about occupying the existing
edges of a cut, that’s why we are going to look at the family F∩

p instead of Fp.

Theorem 9 There exists k0 > 0, so that for p > 32 logn
n and b ≤ k0p

n
logn Maker

wins the random connectivity game (E(Kn)p, Tp, 1, b) a.s.

Proof. For b0 = log 2
2 · n

logn we are going to prove that the conditions of
Theorem 5 are satisfied if F is the set of all cuts in a complete graph with n
vertices.

On one hand, Beck [2] showed
∑n/2

k=1

(
n
k

)
2
− k(n−k)

b0 → 0, which means that
condition (1) holds in this setting.

On the other hand, for a cut A ∈ F we have |A| ≥ n − 1 which implies
condition (2). If we set δ = 1/2 we can apply Theorem 5 which gives that

(Ê(Kn)p,F∩
p ,

log 2
4 p n

logn , 1) is a CutBreaker’s win a.s. The statement of the
theorem immediately follows. 2

Theorem 8 and Theorem 9 together imply part (i) of both Theorem 1 and
2.

3.2 Hamiltonian cycle game

Here we investigate the random version of the (1: b) biased game (E(Kn),H, 1, b)
on the complete graph Kn, where H is the set of all Hamiltonian cycles. Maker’s
goal is to occupy all edges of a Hamiltonian cycle, while Breaker wants to
prevent that. Breaker can obviously win when Maker is not able to claim a
connected graph and thus from Theorem 8 we obtain the following corollary.
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Corollary 10 There exists H0 > 0 so that for every p ∈ [0, 1] and b ≥ H0p
n

logn
Breaker wins the random Hamiltonian cycle game (E(Kn)p,Hp, 1, b) a.s.

The next Theorem describes Maker’s strategy.

Theorem 11 There exists h0 > 0, so that for p > 32 log n√
n

and b ≤ h0p
√
n

logn

Maker wins the random Hamiltonian cycle game (E(Kn)p,Hp, 1, b) a.s.

Proof. Maker wins, if at the end of the game the subgraph GM (containing
the edges claimed by Maker) has connectivity κ(GM ) greater or equal than
independence number α(GM ). Indeed, from the criterion of Chvátal and Erdős
for Hamiltonicity [9], we obtain that GM then contains a Hamiltonian cycle.

We show that Maker, using only his odd moves, can ensure that the connec-
tivity of his graph at the end of the game is greater then k =

√
n/2 and, using

his even moves, can make the independence number at the end of the game
smaller then k =

√
n/2. In other words we will look at two separate games

where in each of them Maker plays one move against Breaker’s 2b moves. This
is a correct strategy, because moves of Maker made in one of these games cannot
hurt him in the other.

We first look at the odd Maker’s moves. To ensure that κ(GM ) ≥ k, Maker
has to claim one edge in every cut of a graph obtained from the initial graph by
removing some k vertices. More precisely, we are going to prove the conditions

of Theorem 5 for the biased (b′: 1) game, where b′ = log 2
2 ·

√
n

logn and

F =

{
{v1v2 : v1 ∈ V1, v2 ∈ V2} : V (Kn) = V0∪̇V1∪̇V2, |V0| = k, V1, V2 ̸= ∅

}
.

That is, Maker plays the role of “CutBreaker” by trying to break all the cuts
in F .

Since the size of each of the sets in F is at least n− k − 1 we have

lim
n→∞

min
A∈F

|A|
b′

= lim
n→∞

2 log n(n−
√
n/2 − 1)

log 2
√
n

= ∞,

and the condition (2) holds. Next, we have

∑
A∈F

2−
|A|
b′ =

n−k
2∑

i=1

(
n

i

)(
n− i

k

)
2−

i(n−i−k)

b′

<
k∑

i=1

n2k2−
n−k−1

b′ +

n−k
2∑

i=k+1

22n−
k(n−2k)

b′

< k · n−
√
n + n · n−n → 0,

which gives the condition (1). Therefore, CutBreaker (alias Maker) wins the

game (Ê(Kn)p,F∩
p ,

log 2
4 p

√
n

logn , 1) a.s., provided p ≥ 32 log n√
n

.

In the other part of the game using even moves Maker has to ensure that
α(GM ) ≤ k =

√
n/2. That is going to be true if Maker manages to claim at
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least one edge in every clique of k elements. To prove that it is possible we again

use Theorem 5 for a biased (b′: 1) game with the same value of b′ = log 2
2 ·

√
n

logn .
But now F is the family of the edgesets of all cliques of size k and Maker will
play the role of “CliqueBreaker” in this game.

We have

lim
n→∞

min
A∈F

|A|
b′

= lim
n→∞

2 log n
(√

n
2
2

)
log 2

√
n

= ∞,

and the condition (2) is satisfied. It remains to prove that the condition (1)
holds. ∑

A∈F
2−

|A|
b′ =

(
n

k

)
2−

(k2)
b′ <

(ne
k

2−
k−1
2b′
)k

< 2−
√
n → 0.

Therefore, CliqueBreaker wins the game (Ê(Kn)p,F∩
p ,

log 2
4 p

√
n

logn , 1) a.s., pro-

vided p ≥ 32 logn√
n

.

Putting the two parts of the game together we have that Maker wins

(E(Kn)p,Hp, 1,
1
16p

√
n

logn) a.s. 2

Combining the statements of Corollary 10 and Theorem 11 we obtain part
(iii) of both Theorems 1 and 2.

3.3 Perfect matching game

The upper and lower bounds obtained in the previous subsection for the thresh-
old bias of the random Hamiltonian cycle game are not tight. We firmly believe
that our strategy for Maker in that game is not optimal. The game we consider
next is simpler for Maker, and for that we are able to obtain bounds optimal
up to a constant factor.

Recall that M is the set of all perfect matchings on Kn. We will assume
that n is even. In the game (E(Kn),M, 1, b) Maker’s goal is to occupy all edges
of a perfect matching, while Breaker wants to prevent that.

The following theorem provides the winning strategy in the random perfect
matching game for Maker.

Theorem 12 There exists m0 > 0, so that for p > 64 logn
n and b ≤ m0p

n
logn

Maker wins the random perfect matching game (E(Kn)p,Mp, 1, b) a.s.

Proof. We can show that Maker can win in a slightly harder game. More
precisely, if the set of vertices of Kn is partitioned into two sets A and B of
equal size before the game starts, we are going to show that Maker can claim a
perfect matching with edges going only between A and B.

For disjoint sets X,Y ⊂ V (Kn), we define E(X,Y ) to be the set of edges
between X and Y . Let F be a family of sets of edges,

F = {E(X,Y ) : ∅ ̸= X ⊂ A, ∅ ̸= Y ⊂ B, |X| + |Y | =
n

2
+ 1}.
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Suppose that at the end of the game Maker has not claimed all edges of any
perfect matching between A and B. Hall’s necessary and sufficient condition
for existence of a perfect matching implies that there exist sets X0 ⊂ A and
Y0 ⊂ B such that |X0| > |Y0| and all edges in E(Kn)p ∩ E(X0, B \ Y0) were
claimed by Breaker.

Therefore, in order to win, Maker has to claim at least one edge in each of

the sets from F , i.e. the game (Ê(Kn)p,F∩
p , b, 1), which we call Hall, should be

a HallBreaker’s win.
To prove that HallBreaker wins we are going to use Theorem 5. We set

δ = 1/2 and b0 = log 2
4 · n

logn .
First we show that condition (1) holds. We have

n/2∑
k=1

(
n/2

k

)(
n/2

n/2 − k + 1

)
2
− k(n/2−k+1)

b0 < 2

⌊n/4⌋∑
k=1

(
n/2

k

)2

2
− k(n/2−k+1)

b0

< 2

⌊n/4⌋∑
k=1

(
e2 log(n/2)−2 logn

)k
= 2

⌊n/4⌋∑
k=1

(
1

4

)k

< 1.

Since

lim
n→∞

min
A∈F

|A|
b0

> lim
n→∞

logn = ∞,

the condition (2) is also satisfied and we can apply Theorem 5 proving that

HallBreaker wins the random game (Ê(Kn)p,F∩
p ,

log 2
8 p n

logn , 1) a.s., provided
p > 64 log n/n.

This immediately implies that Maker wins (E(Kn)p,Mp, 1, b) a.s. 2

Theorem 8 ensures a win for Breaker in the perfect matching game, if b >
K0pn/ log n. This, together with the above Theorem 12 proves part (ii) of
Theorems 1 and 2.

3.4 Clique game

Here we look at the random version of the (1: b) biased clique game (E(Kn),Kk, 1, b)
on a complete graph Kn, where Kk is the set of all cliques of constant size k.
Maker’s goal is to occupy all edges of a clique of size k while Breaker wants to
prevent that.

The deterministic clique game was extensively studied by Bednarska and
 Luczak in [4]. They proved a more general result by determining the order of
the threshold bias for the whole family of games in which Maker’s goal is to
claim an arbitrary fixed graph H. In this section, we will largely rely on the
constructions and ideas from their paper.

If {F1, . . . , Ft} is a family of k-cliques having two common vertices, and
ei ∈ E(Fi), i = 1, . . . , t are distinct edges, then we call the graph ∪t

i=1Fi a
t-2-cluster and the graph ∪t

i=1(Fi − ei) a t-fan. If furthermore the k-cliques
have three vertices in common, then a t-2-cluster is called a t-3-cluster and a

11



t-fan is called a t-flower. A t-fan or a t-2-cluster is said to be simple, if the
pairwise intersections (of any two k-cliques) have size exactly 2.

In order to prevent Maker to occupy a clique Kk, Breaker will play two
auxiliary games. In the first one he prevents Maker from occupying a 3-cluster
of constant size.

Lemma 13 There exists t = t(k), so that for ε = 1
2(k+2) , p = ω(n− 2

k+1 ) and

b > pn
2(1−ε)
k+1 Breaker wins the game (E(Kn)p, t-3-clusters, 1, b) a.s.

Proof. To apply Theorem 3, it is enough to check that there exists t such
that for the random variable

Y :=
∑

t-3-cluster C in G(n, p)

(1 + b)−e(C),

Y < 1
b+1 holds a.s.

We have

E[Y ] =
∑

t-3-cluster C in Kn

(
p

1 + b

)e(C)

.

Let b1 = b+1
p − 1. In [4], it is shown that there exists t for which

∑
t-3-cluster C in Kn

(
p

1 + b

)e(C)

≤ K0
1

b1+k0
1

,

where k0,K0 > 0 are constants depending on k. This implies E[Y ] = o
(

1
b+1

)
,

and by Markov inequality we get that Y < 1
b+1 a.s. 2

During a game, a t-fan (or t-flower) is said to be dangerous if all the t edges
missing from the cliques that make up the t-fan are present in the graph on
which the game is played, but not yet claimed by any of the players. Note
that if at any moment of the game (E(Kn)p, t-3-clusters, 1, b) Maker claimed a
dangerous (b+1)t-flower, then he could win since he could claim a t-3-cluster in
his next t moves by simply claiming missing edges, one by one. Hence, Lemma
13 implies the following.

Corollary 14 There exists t = t(k) so that for ε = 1
2(k+2) and p = ω(n− 2

k+1 ),

Breaker playing a (1: pn
2(1−ε)
k+1 ) game on edges of random graph E(Kn)p can

make sure that Maker does not claim a dangerous

(
pn

2(1−ε)
k+1 t

)
-flower at any

moment of the game.

Next we deal with the second auxiliary game of Breaker; in this game he
prevents the appearance of too many simple bε-fans.

Lemma 15 There exists C0 > 0, such that for ε1 = 1
6(k+2) , p ≥ n− 2

k+1 log1/ε1 n,

b > C0pn
2

k+1 and s = bε1 Breaker wins the game (E(Kn)p, unions of 1
2

(
b
s

)
simple s-fans, 1, b/2) a.s.

12



Proof. Let cs(n) be the number of simple s-2-clusters contained in Kn,
and let Xs be the random variable counting the number of simple s-2-clusters
contained in G(n, p). Using the first moment method we get

Pr[Xs ≥ E[Xs] log n] ≤ 1

log n
−→ 0,

and using this, a.s. we have that∑
dangerous simple
s-fan C in G(n, p)

(1 + b/2)−e(C)

≤
∑

simple s-2-cluster K
in G(n, p)

(
k

2

)s

(1 + b/2)−s((k2)−2)−1

≤
(
k

2

)s

log n · cs(n)ps((
k
2)−1)+12sk

2
b−s((k2)−2)−1

≤ logn · Cs
1

(
n

2

)( n
k−2

)s
s!

(p
b

)s((k2)−1)+1
bs

≤ n3 · Cs
1n

(k−2)s

(
1

C0n
2

k+1

)s(k+1)(k−2)/2+1
bs

s!

≤ n3 ·

 C1

C
(k2)−1

0

s(
1

C0n
2

k+1

)
bs

s!
<

1

2

(
b

s

)
1

b + 1
,

where C1 = C1(k) is a constant. The last inequality is valid since p ≥ n− 2
k+1 log1/ε1 n,

and for C0 large enough

(
C1/C

(k2)−1

0

)s

≤ n−5. This enables us to apply The-

orem 4, and the statement of the lemma is proved. 2

Now we are ready to state and prove the theorem ensuring Breaker’s win
in the clique game on the random graph. In the proof, we are going to use this
result of Bednarska and  Luczak.

Lemma 16 [4] For every 0 < ε < 1 there exists b0 so that every graph with
b > b0 vertices and at most b2−ε edges has at least 1

2

(
b

bε/3

)
independent sets of

size bε/3.

Theorem 17 There exists C0 > 0 so that for p ≥ n− 2
k+1 log6k+12 n and b ≥

C0pn
2

k+1 Breaker wins the random clique game (E(Kn)p, (Kk)p, 1, b) a.s.

Proof. Breaker will use b/2 of his moves to defend “immediate threats”, i.e.
to claim the remaining edge in all k-cliques in which Maker occupied all but one
edge. In order to be able to do this Breaker must ensure that he never has to
block more than b/2 immediate threats, that is, there is no dangerous b/2-fan.

He will use his other b/2 moves to prevent Maker from creating a dangerous
(b/2)-fan.

13



From Corollary 14 we get that Breaker can prevent Maker from claiming a

dangerous f -flower (where f = tpn
2(1−ε)
k+1 , ε = 1

2(k+2) and t is a positive constant)

using less than b/4 edges per move. On the other hand, from Lemma 15 we
have that if C0 is large enough Breaker can prevent Maker from claiming 1

2

(
b/2
s

)
simple s-fans using b/4 edges per move, where s = (b/2)ε/3.

Suppose that Maker managed to claim a dangerous (b/2)-fan. We define
an auxiliary graph G′ with the vertex set being the set of all b/2 k-cliques of
this dangerous fan, and two k-cliques being connected with an edge if they
have at least 3 vertices in common. Since there is no dangerous f -flower in
Maker’s graph, the degree of each of the vertices of the graph G′ is at most

fk and therefore e(G′) < bfk
2 ≤

(
b
2

)2−ε
. On the other hand, the number of

independent sets in G′ of size s cannot be more than 1
2

(
b/2
s

)
, since each of the

independent sets in G′ corresponds to a simple s-fan in Maker’s graph.
Since the last two facts are obviously in contradiction with Lemma 16,

Maker cannot claim a dangerous b/2-fan and the statement of the theorem is
proved. 2

To prove the theorem for Maker’s win, we need the following lemma which
is a slight modification of a result from [4]. Let G(n,M) denote the graph
obtained by choosing a graph on n vertices with M edges uniformly at random.

Lemma 18 There exists 0 < δk < 1, such that for M = 2⌊n2−2/(k+1)⌋ a.s.
each subgraph of G(n,M) with ⌊(1 − δk)M⌋ edges contains a copy of Kk.

Proof. For 0 < δk < 1, we call a subgraph F of Kn bad, if F has M edges
and it contains a subgraph F ′ with ⌊(1 − δk)M⌋ edges that does not contain a
copy of Kk. In [4], it is proved that there exist constants 0 < δk < 1 and c′1 > 0
such that the number of bad subgraphs of Kn is bounded from above by

e−c′1M/6

((n
2

)
M

)
= o(1)

((n
2

)
M

)
.

2

Using the last lemma we can prove a theorem for Maker’s win in the random
clique game.

Theorem 19 There exists c0 > 0 so that for p > 1
c0
n− 2

k+1 and b ≤ c0pn
2

k+1

Maker wins the random clique game (E(Kn)p, (Kk)p, 1, b) a.s.

Proof. We will follow the analysis of the random Maker’s strategy proposed
in [4], looking at G(n,M ′), where M ′ = p

(
n
2

)
. We will prove that the k-clique

game on G(n,M ′) is a Maker’s win a.s., which implies that the same is true on
G(n, p), as being a Maker’s win is a monotone property [7, Chapter 2].

In each of his moves Maker chooses one of the edges of G(n,M ′) that was
not previously claimed by him, uniformly at random. If the edge is free he
claims it and we call that a successful Maker’s move. If the edge was already
claimed by Breaker, then Maker skips his move (e.g. claims an arbitrary free
edge, and that edge we will not encounter for the future analysis).
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Let 0 < δk < 1 be chosen so that the conditions of Lemma 18 are satisfied.
We look at the course of game after M = 2⌊n2−2/(k+1)⌋ moves.

By choosing c0 ≤ δk/12, we have

M ≤ δk
6c0

⌊n2−2/(k+1)⌋

≤ δk
2

1

b + 1
p

(
n

2

)
.

That means that only at most δk/2 fraction of the total number of elements of
the board E(G(n,M ′)) is claimed (by both players) after move M . Therefore,
the probability that the edge randomly chosen in Maker’s mth move, m ≤ M ,
is already claimed by Breaker is bounded from above by δk/2. That means that
Maker has at least (1 − δk)M successful moves a.s.

Since in each of his moves Maker has chosen edges uniformly at random
(without repetition) from E(G(n,M ′)), the graph containing edges chosen by
Maker in his first M moves (both successful and unsuccessful) actually is a
random graph G(n,M). Applying Lemma 18, we get that the graph containing
edges claimed by Maker in his successful moves contains a clique of size k
a.s., which means that a.s. there exists a non-randomized winning strategy for
Maker. 2

Combining the statements of Theorem 17 and Theorem 19 we obtain part
(iv) of Theorem 2.

4 Unbiased games

4.1 Connectivity one-on-one

A theorem of Lehman enables us to determine the threshold probability pT
with extraordinary precision. Namely, Lehman [11] proved that the unbiased
connectivity game is won by Maker (now as a second player!) if and only if the
underlying graph contains two edge-disjoint spanning trees. The threshold for
the appearance of two edge-disjoint spanning trees was determined exactly by
Palmer and Spencer [12].

To formulate the consequence of these two results we need the concept of
graph process. Let e1, . . . em be the edges of Kn, where m =

(
n
2

)
. Choose a

permutation π ∈ Sm uniformly at random and define an increasing sequence
of subgraphs (Gi) where V (Gi) = V (Kn) and E(Gi) = {eπ(1), . . . , eπ(i)}. It is
clear that Gi is an n-vertex graph with i edges, selected uniformly at random
from all n-vertex graphs with i edges.

Given a particular graph process (Gi) and a graph property P possessed
by Kn, the hitting time τ(P) = τ(P, (Gi)) is the minimal i for which Gi has
property P.

The consequence of the theorems of Lehman, and Palmer and Spencer is
that the very moment the last vertex receives its second adjacent edge, the
unbiased connectivity game is won by Maker a.s. More precisely, the following
is true.
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Corollary 20 For the unbiased connectivity game we have that a.s.

τ(Maker wins T ) = τ(∃ two edge-disjoint spanning trees) = τ(δ(G) ≥ 2).

In particular, for edge-probability p = (log n + log log n + g(n))/n, where
g(n) tends to infinity arbitrarily slowly, Maker wins the unbiased connectivity
game a.s., while if g(n) → −∞, then Breaker wins a.s.

Remark. The assumption that Maker is the second player is just technical,
for the sake of smooth applicability of Lehman’s Theorem. If Maker is the first
player, then from the proof of Lehman’s Theorem one can infer that Maker
wins if and only if the base graph contains a spanning tree and a spanning
forest of two components, which are edge-disjoint. This property has the same
sharp threshold as the presence of two edge-disjoint spanning trees, and the
hitting time should be the same when the next to last vertex receives its second
incident edge.

4.2 k-cliques one-on-one

Let us fix k and let (F1, . . . , Fs) be a sequence of k-cliques. Then F = ∪s
i=1Fi

is called an s-bunch if V (Fi) \ (∪i−1
j=1V (Fj)) ̸= ∅ and |V (Fi)∩ (∪j<iV (Fj))| ≥ 2,

for each i = 2, . . . , s. Recall that an s-bunch in which the pairwise intersection
of any two cliques is the same two vertices, was called a simple s-2-cluster. Let
us denote the simple s-2-cluster by Cs.

For a graph G, the density of G is defined as d(G) = e(G)
v(G) , and the maximum

density of G is defined as m(G) = maxH⊆G d(H). A graph G with m(G) =
d(G) is called balanced. The maximum density of a graph G determines the
threshold probability for the appearance of G in the random graph. More
precisely, (i) if p = o(n−1/m(G)), then G(n, p) does not contain G a.s., and (ii)
if p = ω(n−1/m(G)), then G(n, p) does contain G a.s.

We need two properties of simple s-2-clusters and s-bunches.

Lemma 21 For every positive integer s, Cs is balanced and has maximum
density m(Cs) = d(Cs) = k+1

2 − k
sk−2s+2 .

Proof. It is easy to check that v(Cs) = s(k − 2) + 2, e(Cs) = s
(
k
2

)
− s + 1,

and thus d(Cs) = e(Cs)
v(Cs)

= k+1
2 − k

sk−2s+2 .

Let T be a subgraph of Cs. We want to prove d(T ) ≤ d(Cs). Since Cs is the
union of k-cliques, Cs = ∪s

i=1Fi, if we set Ei = Fi∩T we have that T = ∪s
i=1Ei,

and we can assume that each Ei is a clique of order ki ≤ k.
We can also assume that the two vertices in ∩s

i=1V (Fi) are in T , since
otherwise their inclusion would increase the density. This implies ki ≥ 2 for
i = 1, . . . , s.

Let us relabel the cliques in such a way that Ei ̸= Fi if and only if i =
1, . . . , s1. Then

e(Cs)

v(Cs)
≥ e(T )

v(T )
=

e(Cs) −
∑s1

i=1

((
k
2

)
−
(
ki
2

))
v(Cs) −

∑s1
i=1(k − ki)

,
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since
e(Cs)

v(Cs)
<

k + 1

2
≤
∑s1

i=1 (k − ki)
k+ki−1

2∑s1
i=1(k − ki)

.

The last inequality is true since the last fraction is the weighted average of the
numbers (k + ki − 1)/2, each of them being at least (k + 1)/2. 2

Lemma 22 Let s ≥ 3 be a positive integer. No s-bunch has smaller maximum
density than the simple s-2-cluster.

Proof. When k = 3, the s bunch is a union of triangles. Then any s-bunch
has the same number of vertices as the simple s-2-cluster, while the number of
edges, and thus the density is minimized for the simple s-2-cluster.

From now on let us assume that k ≥ 4. Let s ≥ 3, and let (F1, F2, . . . , Fs)
be the sequence of k-cliques of an arbitrary s-bunch Bs = ∪s

i=1Fi. For every

i ∈ {2, 3, . . . , s}, let F ′
i =

(
∪i−1
j=1Fj

)
∩ Fi. Then, we have

d(Bs) =
s
(
k
2

)
−
∑s

i=2 e(F
′
i )

sk −
∑s

i=2 v(F ′
i )

=
e(Cs) −

∑s
i=2(e(F

′
i ) − 1)

v(Cs) −
∑s

i=2(v(F ′
i ) − 2)

≥
e(Cs) −

∑s
i=2(

(v(F ′
i )

2

)
− 1)

v(Cs) −
∑s

i=2(v(F ′
i ) − 2)

≥ e(Cs)

v(Cs)
.

In the last inequality the terms with v(F ′
i ) = 2 disappear, and otherwise we

use that v(F ′
i ) ≤ k − 1 for every i, so

(v(F
′
i )

2 )−1

v(F ′
i )−2

≤ k
2 ≤ e(Cs)

v(Cs)
.

Hence, simple s-2-clusters have the smallest density among all s-bunches.
For any s-bunch Bs and the simple s-2-cluster Cs we immediately obtain

m(Bs) ≥ d(Bs) ≥ d(Cs) = m(Cs),

and the lemma is proved. 2

Remark. The previous lemma is of course true for s = 1, but not for s = 2.
As a consequence of the last two lemmas we get a strategy for Breaker in

the (1 : 1) clique game.
Let H be a graph and consider the auxiliary graph GH with vertices corre-

sponding to the k-cliques of H, two vertices being adjacent if the corresponding
cliques have at least two vertices in common. Let F1, . . . , Fs be the cliques cor-
responding to a connected component of GH . Then the graph ∪s

i=1Fi is called
an s-collection or just a collection of H. Note that the edgeset of any H is
uniquely partitioned into sets N and E(Ai), where N contains the edges which
do not participate in a k-clique, while the Ai are the collections of H.

Theorem 23 For every k ≥ 4 and ε > 0, pKk
≥ n− 2

k+1
−ε. For k = 3, we have

that pK3 ≥ n− 5
9 .
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Proof. First we give a strategy for Breaker to win Kk if the game is
played on the edgeset of a (2k − 4)-degenerate graph L. Consider the ordering
v1, . . . , vv(L) of V (L), such that |NVj (vj+1)| ≤ 2k − 4 for j = 1, . . . , v(L) − 1,
where Vj = {v1, . . . , vj}. Then Breaker’s strategy is the following: if Maker
takes an edge connecting vj+1 to Vj , then Breaker takes another one also con-
necting vj+1 to Vj . If there is no such edge available, then Breaker takes an
arbitrary edge. Suppose for a contradiction that Maker managed to occupy a k-
clique vi1 , . . . , vik against this strategy, where i1 < · · · < ik. This is impossible,
since Maker could have never claimed k − 1 of the edges vjvik , j < ik.

Let E(Kn)p = N ∪̇E(A1)∪̇ . . . ∪̇E(Ah) be the partition of the edges, such
that N contains all edges that do not participate in any k-clique, and each Ai

is a collection of k-cliques. (Corresponding to the connected components of the
auxiliary graph GG(n,p) defined on the set of k-cliques of G(n, p).)

Breaker can play the game (E(Kn)p, (Kk)p, 1, 1) by playing separately on
each of the sets E(Ai). More precisely, whenever Maker claims an edge which
is in some E(Ai), Breaker can play according to a strategy restricted just to
E(Ai). Since, crucially, the edgeset of each k-clique is completely contained in
exactly one of the E(Ai), Maker can only win the game on E(Kn)p if he wins
on one of the E(Ai).

Now we are going to show that every collection A on v(A) = v vertices
contains a ⌈ v−2

k−2⌉-bunch. We take an arbitrary k-clique F1 from A, and build a
bunch recursively as follows. If we picked k-cliques F1, . . . , Fi then we choose
Fi+1 such that |V (Fi+1) ∩ (∪i

j=1V (Fj))| ≥ 2 and V (Fi+1) \ (∪i
j=1V (Fj)) ̸= ∅.

Note that this means that ∪i+1
j=1Fj is an (i + 1)-bunch. Since the auxiliary

graph GA of the collection is connected we can keep doing this until V (A) =
∪i0
j=1V (Fj) for some i0. Knowing that v(Fi) = k for all i ≤ i0, we have i0 ≥

1 + v−k
k−2 = v−2

k−2 . So there exists an ⌈ v−2
k−2⌉-bunch which is a subgraph of A.

We first look at the case k ≥ 4. Let ε > 0 be a constant. From Lemma 21
it follows that there exists an integer v such that for s0 = ⌈ v−2

k−2⌉ we have

m(Cs0) ≥ k+1
2 − k

v >
(

2
k+1 + ε

)−1
. Then for p = O(n− 2

k+1
−ε) it follows that

there is no s0-bunch in G(n, p) a.s., since we have have that the first s0-bunch
that appears in the random graph is the one of the minimum maximum density,
which, by Lemma 22, is the simple s0-2-cluster. Note here that there is a
constant (depending on k and ε) number of nonisomorphic s0-bunches.

Since in G(n, p) there are no s0-bunches a.s., there are also no collections
on v vertices a.s.

Finally, all the collections Ai are (2k−4)-degenerate a.s., since graphs which
are not (2k−4)-degenerate have maximum density at least 2k−3

2 ≥ k+1
2 , provided

k ≥ 4. Note that we know already that a.s. all collections have order at most
v and thus there are at most a constant (depending on k and ϵ) number of
nonisomorphic non-(2k − 4)-degenerate graphs.

This proves that Breaker has a winning strategy a.s., if k ≥ 4 and p =

O(n− 2
k+1

−ε).
Next, we look at the case k = 3. As we saw, any collection of triangles on v

vertices contains a (v − 2)-bunch. Thus for p = o(n−5/9), no v-collection with
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v ≥ 15 will appear in G(n, p) a.s., since it would contain a 13-bunch, whose
maximum density is at least m(C13) = 2 − 3

15 . This observation makes the
problem finite: one has to check who wins on collections up to 14 vertices.

Suppose that Maker can win the triangle game on some collection of trian-
gles on v ≤ 14 vertices and with maximum density less then 9/5. Let A be a
minimal such collection (Maker cannot win on any proper subcollection of A).

If there was a vertex w ∈ V (A) with dA(w) ≤ 2, the minimality of A
would imply that Breaker has a winning strategy on A. Indeed, Breaker plays
according to his strategy on A − w, and as soon as Maker claims one edge
adjacent to w Breaker claims the other edge adjacent to w (if that edge exists
otherwise he does not move). This would mean that Breaker can win on A, a
contradiction. Thus, δA ≥ 3.

Let B be a (v−2)-bunch contained in A, with V (A) = V (B). Since δB = 2,
we have e(A) ̸= e(B). Then

2 − 3

v
= m(Cv−2) ≤

e(B)

v
<

e(A)

v
<

9

5
,

and

2v − 3 = e(Cv−2) ≤ e(B) < e(A) <
9v

5
.

It is easy to check that Maker cannot win the game on a graph with less then
5 vertices, thus v > 4, so e(B) = e(Cv−2) and e(A) − e(B) = 1.

Let {e} = E(A) \ E(B), and let T1, . . . , Tv−2 be the sequence of triangles
whose union is the (v − 2)-bunch B. Since e(B) = e(Cv−2), for every i =
2, . . . , v − 2 we have that Ti has a common edge with ∪i−1

j=1Tj . Then B must
have at least 2 vertices of degree 2. From δB∪{e} = δA = 3 we obtain that
B has exactly two vertices b1, b2 with dB(b1) = dB(b2) = 2, and moreover
e = {b1, b2}. Since e has to participate in at least one triangle of the collection
A, b1 and b2 have to be connected with a 2-path in B, which is possible only if
all T1, . . . , Tv−2 share a vertex. That means that A is a (v − 1)-wheel and it is
easy to see that Breaker can win the triangle game on a wheel of arbitrary size
by a simple pairing strategy.

This contradiction proves that for p = o(n−5/9), a.s. there is no triangle
collection in G(n, p) on which Maker can win, which means that Breaker a.s.
wins the game on the whole graph. 2

From Theorem 19 we get that Maker can win the game (E(Kn)p, (Kk)p, 1, 1)

for p = Θ(n− 2
k+1 ) and thus we immediately obtain pKk

= O(n− 2
k+1 ). For the

triangle game K3 a stronger upper bound can be found.

Proposition 24 The game (E(Kn)p, (K3)p, 1, 1) is a Maker’s win a.s., pro-

vided p = ω(n− 5
9 ).

Proof. It is easy to check that Maker can claim a triangle in the (1: 1) game
if the board on which the game is played is K5 minus an edge. Therefore, as
soon as the graph G(n, p) contains K5 − e a.s., the initial game can be won by
Maker a.s. 2

Theorem 19, Theorem 23 and Proposition 24 imply parts (iv) and (v) of
Theorem 1.
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5 Open questions

More sharp thresholds? We saw in the previous section that the connectivity
game has a sharp threshold, and even more. We think that both the perfect
matching game and the Hamiltonian cycle game have the same sharp threshold
logn
n , and maybe even more. . . It would be very interesting to decide whether

the following conjectures are true.

Conjecture 2

(i) τ(Maker wins M) = τ(δ(G) ≥ 2),

(ii) τ(Maker wins H) = τ(δ(G) ≥ 4).

Clique game/H-game. The exact determination of the threshold pKk
for the

k-clique game remains outstanding.

Problem 1 Decide whether pKk
= n− 2

k+1 for k ≥ 4.

The arguments of Bednarska and  Luczak [4] could be extended to full gen-
erality to positional games on random graphs along the lines of Section 3.4.
More precisely, the following is true. Let KH be the family of subgraphs of Kn,
isomorphic to H. Then for any fixed graph H there is a constant c(H), such
that

bpKH
= Θ (pbKH

) = Θ
(
pn−1/m′(H)

)
,

provided p ≥ Ω
(

logc(H) n

n1/m′(H)

)
.

Concerning the one-on-one game, it would be desirable to determine those
graphs for which an extension of the low-density Maker’s win, à la Proposi-
tion 24, exists.

Problem 2 Characterize those graphs H for which there exists a constant
ϵ(H) > 0, such that the unbiased game KH is a.s. a Maker’s win if p =
n−1/m′(H)−ϵ(H).

For such graphs the determination of the threshold pKH
is a finite problem,

in a way similar to the case H = K3.

Relationships between thresholds. It is an intriguing task to understand
under what circumstances the following is true.

Problem 3 Characterize those games (X,F) for which

pF =
1

bF
.

More generally, characterize the games for which

bpF = Θ (pbF ) ,

for every p = ω
(

1
bF

)
.
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This is not true in general as the triangle game shows. What is the reason it
is true for the connectivity game and the perfect matching game? Is it because
the appearance of these properties has a sharp threshold in G(n, p)? Or because
the winning sets are not of constant size?

Problem 4 Suppose pF = 1/bF . Is it true that for every p ≥ pF , bpF =
Θ (pbF )?

It would be very interesting to relate the thresholds bF and pF to some
thresholds of the family F in the random graph G(n, p) (or, more generally, in
the random set Xp). It seems to us that if the family Fp is quite dense and
well-distributed in X, then Maker still wins the (1: 1) game.

Problem 5 Characterize those games (X,F) for which there exists a constant
K, such that for any probability p with Pr

[
minx∈Xp |{F ∈ Fp : x ∈ F}| > K

]
−→

1, we have pF = O(p) and/or bF = Ω(1/p).
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