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Abstract

We consider unbiased Maker-Breaker games played on the edge set of the complete
graph Kn on n vertices. Quite a few such games were researched in the literature
and are known to be Maker’s win. Here we are interested in estimating the minimum
number of moves needed for Maker in order to win these games.

We prove the following results, for sufficiently large n: (1) Maker can construct a
Hamilton cycle within at most n + 2 moves. This improves the classical bound of 2n
due to Chvátal and Erdős [6] and is almost tight; (2) Maker can construct a perfect
matching (for even n) within n/2 + 1 moves, and this is tight; (3) For a fixed k ≥ 3,
Maker can construct a spanning k-connected graph within (1+o(1))kn/2 moves, and
this is obviously asymptotically tight. Several other related results are derived as
well.

1 Introduction

Let F be a hypergraph. In an unbiased Maker-Breaker game F two players, called Maker
and Breaker, take turns in selecting previously unselected vertices of F , with Maker going
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first. Each player selects one vertex per turn, until all vertices are selected. Maker wins if
he claims all the vertices of some hyperedge of F ; otherwise Breaker wins. In this paper
our attention is restricted to games which are played on the edges of the complete graph
on n vertices, that is, the vertex set of F will always be E(Kn).

For quite a few Maker-Breaker games, it is rather easy to determine the identity of the
winner. For example, it is not hard to see that Maker easily wins the connectivity game, in
which Maker’s goal is to occupy a connected and spanning subgraph. The non-planarity
game, where Maker’s goal is to create a non-planar graph is an even more convincing
example — for n ≥ 11, Maker creates a non-planar graph by the end and thus wins the
game irregardless of his strategy for the prosaic reason that every graph with more than
3n− 6 edges on n vertices is non-planar. Thus, for games of this type, a more interesting
question to ask is not who wins but rather how long does it take the winner to reach a
winning position. This is the type of question we address in this paper.

For a hypergraph F , let τ(F) denote the smallest integer t such that Maker has a strategy
to win the game on F within t moves (for the sake of completeness, we define τ(F) = ∞
if the game is a Breaker’s win). For example, it is easy to see that for the hypergraph
Tn of the connectivity game (whose hyperedges are the spanning trees of Kn), we have
τ(Tn) = n− 1. The lower bound is trivial since Maker needs to occupy the n− 1 edges of a
spanning tree. For the upper bound, any strategy of Maker that does not call for occupying
a cycle will do. Indeed, if Maker keeps maintaining a forest, then Breaker “does not have
time” to fully occupy a cut, as occupying a cut would require k(n − k) ≥ n − 1 moves of
Breaker, but by then Maker would already win by extending his forest to a spanning tree.

Several other results about fast wins in Maker-Breaker games appear in the literature. It is
known that, playing on the edges of Kn, Maker can build a q-clique in a constant (depending
on q, but not on n) number of moves, that is, τ(Kq

n) = f(q), where the hyperedges of Kq
n are

the q-cliques of Kn. The best upper bound, f(q) = O((q−3)2q−1) is due to Pekeč [12]. Beck
proved that the exponential dependency on q cannot be avoided, namely f(q) = Ω(

√
2

q
)

(see [3]). Note that Maker’s strategy for the clique game provides him with a fast win in the
non-planarity game and the non-r-colorability game as well, via building a copy of K5 and
Kr+1, respectively (for background on these games, see [10]). In [1] Beck discusses games
played on almost disjoint n-uniform hypergraphs and proves that Breaker can always avoid
losing for at least 2n−o(n) moves. Beck also notes that his result is essentially tight: playing
on the 3-chromatic almost disjoint n-uniform hypergraph constructed by Erdős and Lovász
[8] on n42n vertices, Maker wins and consequently does so in at most n42n−1 moves.

A general sufficient condition for Breaker’s win in Maker-Breaker games was proved in [2];
it is based on the “potential function” method of Erdős and Selfridge [9]. This criterion,
however, does not seem to be very useful for proving results concerning winning fast, as
it is assumed that the game is played until every element of the board is claimed by some
player. Nonetheless, using the “fake moves” trick (see [3]), it can be applied to get certain,
usually rather weak, results. In this paper, in order to obtain stronger results, we will not
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rely on this criterion, but will rather use ad-hoc methods.

1.1 Our results

In [6], Chvátal and Erdős studied the Hamilton cycle game, where Maker’s goal is to occupy
the edges of a Hamilton cycle. They proved that Maker can win the Hamilton cycle game
on Kn within 2n rounds. Here we show that, for sufficiently large n, Maker can win this
game much sooner, namely, he is able to build a Hamilton cycle within n + 2 rounds. This
bound is now only 1 away from the obvious lower bound. Indeed, in order to build a
Hamilton cycle in n moves, Maker must build a Hamilton path by his (n− 1)st move. But
then, Breaker can claim the unique edge that closes this path into a cycle. Formally, define
Hn to be the hypergraph whose hyperedges are the Hamilton cycles of Kn.

Theorem 1.1 For sufficiently large n, we have

n + 1 ≤ τ(Hn) ≤ n + 2.

The first phase of the strategy of Maker in Theorem 1.1 constitutes of building a perfect
matching fast. This result is of independent interest, so we state it separately. Let Mn

be the hypergraph whose hyperedges are the perfect matchings of Kn (or matchings that
cover every vertex but one, if n is odd). Let Dn be the hypergraph whose hyperedges are
the spanning subgraphs of Kn of positive minimum degree. We find the exact number of
moves that Maker needs in order to win the games Mn and Dn. Obviously, Maker needs
to make at least bn

2
c moves to win the Mn game, as this is the size of a minimal element

of Mn. We show that if n is odd, then he does not need more moves, whereas if n is even,
then he needs just one more move. A similar result showing the tightness of the obvious
lower bound for the minimum degree game Dn, easily follows.

Theorem 1.2

τ(Mn) =

{ bn
2
c if n is odd

n
2

+ 1 if n is even

Corollary 1.3

τ(Dn) =
⌊n

2

⌋
+ 1.

Another byproduct of the proof of Theorem 1.1, is that Maker can build a Hamilton path
in n− 1 moves, which is clearly best possible.

Theorem 1.4 For sufficiently large n, we have

τ(HPn) = n− 1,

where HPn is the hypergraph whose hyperedges are the Hamilton paths of Kn.
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Let Ck
n be the hypergraph whose hyperedges are all spanning k-vertex-connected subgraphs

of Kn. As we discussed in the introduction, Maker can build a 1-connected spanning graph
in n − 1 moves. From Theorem 1.1 it follows that Maker can build a 2-vertex-connected
spanning graph by using just 3 more moves (that is, a total of n + 2 moves).

In the following, we obtain a generalization of the latter fact for every k ≥ 3. As every
k-connected graph has minimum degree at least k, Maker needs at least kn/2 moves just
for claiming an element of Ck

n, even if Breaker does not play at all. The next theorem shows
that this trivial lower bound is asymptotically tight, that is, there is a strategy for Maker
to build a k-vertex-connected graph in kn/2 + ok(n) moves.

Theorem 1.5 For every fixed k ≥ 3 and sufficiently large n, we have

kn/2 ≤ τ(Ck
n) ≤ kn/2 + (k + 4)(

√
n + 2n2/3 log n).

An interesting and a somewhat unusual feature of our proof of Theorem 1.5 is that, similarly
to an argument of Bednarska and ÃLuczak from [4], the existence of a winning strategy for
Maker is obtained via probabilistic tools (though the strategy itself is deterministic, which
is always the case with positional games).

An easy consequence of Theorems 1.2, 1.1 and 1.5, is that for every fixed k ≥ 1, Maker can
build a graph with minimum degree at least k within (1 + o(1))kn/2 moves. This is also
clearly asymptotically optimal.

1.2 Preliminaries

For the sake of simplicity and clarity of presentation, we omit floor and ceiling signs when-
ever these are not crucial. Some of our results are asymptotic in nature and, whenever
necessary, we assume that n is sufficiently large. Throughout the paper, log stands for
the natural logarithm. Our graph-theoretic notation is standard and follows that of [7].
In particular, we use the following: for a graph G, denote its set of vertices by V (G),
and its set of edges by E(G). Moreover, let v(G) = |V (G)| and e(G) = |E(G)|. For a
graph G = (V,E) and a set A ⊆ V denote by G[A] the subgraph of G induced by A.
Let NG(A) = {u ∈ V : ∃w ∈ A, (u,w) ∈ E} be the neighborhood of A in G and let
ΓG(A) = NG(A) \A be the external-neighborhood of A in G. Sometimes, when there is no
risk of confusion, we abbreviate NG(A) to N(A) and ΓG(A) to Γ(A).

2 Fast strategies for Maker

In our definition of Maker-Breaker games, Maker starts the game. In the following, when-
ever proving a result of the form τ(F) ≤ a, we will assume that Breaker starts the game
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(thus proving a statement which is stronger than the one asserted in the corresponding
theorem).

2.1 Building a perfect matching fast

Proof of Theorem 1.2.

Assume first that n is even. Obviously Maker needs at least n/2 edges to build a perfect
matching. In fact he will need at least one more, as Breaker, seeing the first n/2− 1 moves
of Maker, can occupy the unique edge (if no such edge exists, then our claim immediately
follows) which would extend Maker’s graph into a perfect matching. Hence τ(Mn) ≥ n

2
+1.

In the following we assume that Breaker starts the game and give a strategy for Maker
to build his perfect matching in n

2
+ 1 moves. A round of the game consists of a move

by Breaker and a counter move by Maker. A vertex is considered bad, if it is isolated in
Maker’s graph but not in Breaker’s graph.

We will provide Maker with a strategy to ensure that for every 3 ≤ r ≤ n
2
, the following

three properties hold after his rth move:

(a) Maker’s edges form a forest consisting of r − 1 components: a path uvw of length
two and r − 2 paths of length one;

(b) every isolated vertex of Maker’s graph is adjacent to neither u nor w in Breaker’s
graph;

(c) there are at most two bad vertices.

First, let us see that, if these properties hold after Maker’s n
2
th move, then Maker wins the

perfect matching game on his next move. Observe that by property (a) after the n
2
th move

of Maker there is exactly one isolated vertex z in Maker’s graph, which, by property (b),
is connected to neither u nor w in Breaker’s graph. Hence, no matter which edge Breaker
claims in his (n

2
+ 1)st move, Maker will be able to respond by claiming either (u, z) or

(w, z). After that move Maker’s graph is a spanning forest consisting of a path of length
three and n

2
− 2 paths of length one; clearly such a graph contains a perfect matching.

Next, we prove that for every n ≥ 6, Maker can maintain properties (a) − (c). First, it is
easy to see that Maker can execute his first three moves such that these three properties
hold.

We will prove that on his rth move, where n
2
≥ r > 3, Maker can select two vertices that

are isolated in his graph and connect them by an edge, while ensuring that, right after
his move, properties (b) and (c) hold. Note that this strategy automatically ensures that
property (a) holds as well.
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Let Ir be the set of vertices which are isolated in Maker’s graph after the rth round.
Property (a) ensures that |Ir| = n − (2r − 1) and property (c) implies that there are at
most two vertices in Ir which are not isolated in Breaker’s graph; in particular there is at
most one edge of Breaker with both endpoints in Ir. Assume that the rth round, where
r ≤ n/2− 1, has just ended, then |Ir| ≥ 3.

In case Breaker claims an edge of the form (x, u) or (x,w) where x ∈ Ir, then Maker
responds by claiming an edge (x, y) where y ∈ Ir. Such a vertex y for which the edge
(x, y) was not previously claimed by Breaker always exists as only one of Breaker’s edges
is spanned by Ir, and there are at least three vertices in Ir. Since the vertex x will not be
bad at the end of the (r + 1)st round, the number of bad vertices does not increase and
property (c) remains valid. Property (b) will also remain valid because the only new vertex
which could dissatisfy it, x, is not isolated in Maker’s graph anymore.

If Breaker does not claim an edge of the form (x, u) or (x,w), where x ∈ Ir, then Maker
responds by claiming an edge with both endpoints in Ir such that property (c) remains
valid. This can easily be done as there are at most two edges of Breaker with both endpoints
in Ir, and |Ir| ≥ 3. Property (b) was not affected by Breaker’s move.

This concludes our description of Maker’s strategy and the proof if n is even.

If n is odd, then Maker’s strategy is essentially the same as his strategy for even n (in fact
it is a little simpler). The main difference is that property (b) is redundant, property (a)
is replaced with:

(a′) After Maker’s rth round, his graph is a matching with r edges,

and we do not need to consider separately, Maker’s first three moves. We omit the straight-
forward details. 2

Proof of Corollary 1.3. It is clear that τ(Dn) ≥ bn/2c+ 1. Furthermore, if n is even, then
by Theorem 1.2 we get τ(Dn) ≤ τ(Mn) = n/2 + 1. If n is odd, then Maker can build
a matching that covers all vertices but one in bn/2c rounds, and then claim an arbitrary
edge incident with the last remaining isolated vertex. Hence, we get τ(Dn) = bn/2c+ 1 as
claimed. 2

2.2 Building a Hamilton cycle fast

Proofs of Theorem 1.1 and Theorem 1.4.

In the proof, we use the method of Pósa rotations (see [13]). Let P0 = (v1, v2, . . . , vl) be a
path of maximum length in a graph G. If 1 ≤ i ≤ l − 2 and (vl, vi) is an edge of G then
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P ′ = (v1, v2, . . . , vi, vl, vl−1, . . . , vi+1) is also of maximum length. We can then, in general,
rotate P ′ to get more maximum length paths.

We will assume that Breaker starts the game. A round consists of a move by Breaker and
a counter move by Maker. Assume first that n is even. Maker’s strategy is divided into
three stages.

In the first stage, Maker builds a perfect matching with one additional edge, that is, he
builds a path of length 3 and (n− 4)/2 paths of length 1. From Theorem 1.2 we know that
Maker can do this in n/2 + 1 moves.

In the second stage, which lasts exactly n/2− 2 rounds, Maker connects endpoints of the
paths in his graph. In each move he connects two paths to form one longer path. Hence,
in each round he decreases the number of paths by one, and thus, by the end of the second
stage he will have a Hamilton path.

For every 0 ≤ i ≤ n/2 − 3, let B′
i be the subgraph of Breaker’s graph, induced by the

endpoints of Maker’s paths, just after the (i + 1)st move of Breaker in the second stage
(recall that Breaker starts the second stage). Let Bi be the graph obtained from B′

i by
removing all edges (x, y) such that x and y are endpoints of the same path of Maker. The
unclaimed edges (x, y) ∈ (

V (Bi)
2

)
, for which x and y are endpoints of different paths of

Maker are called available.

The first move of Maker in this stage is somewhat artificial, thinking ahead about stage
three. Let w ∈ V (B0) be a vertex of maximum degree in Breaker’s graph. On his first
move of the second stage Maker claims an arbitrary available edge incident with w. Such
an edge exists if n is large enough, since Breaker has n/2 + 2 edges, while there are n− 2
endpoints in V (B0). Note that for any two vertices z′, z′′ ∈ V (B1), the sum of the degrees
of z′ and z′′ in Breaker’s graph is at most n/3+4 (we will use this observation only in stage
three).

Maker’s goal is now the following: he will make sure that e(Bi) ≤ v(Bi) − 1 for every
1 ≤ i ≤ n/2 − 3. This easily holds for i = 1 provided n is large enough. Assume that
the statement holds for some 1 ≤ i ≤ n/2 − 4 and let us prove that Maker can claim an
available edge while ensuring that e(Bi+1) ≤ v(Bi+1)− 1.

Case 1.j. (for every 0 ≤ j ≤ 3). e(Bi) ≤ v(Bi) − 1 − j and there is an available edge
incident with at least 3 − j edges of Bi. Maker claims this edge entailing e(Bi+1) ≤
e(Bi)− (3− j) + 1 ≤ v(Bi)− 3 = v(Bi+1)− 1.

Case 2. There is a vertex v of degree at least 3 in Bi. Hence by Case 1.0 we can assume
that there is no available edge incident with v, that is, the degree of v in Bi is exactly
v(Bi)− 2 (recall that there are no edges in Bi between the endpoints of the same path of
Maker). Note that by the induction hypothesis there is at most one edge in Bi which is
not incident with v. Since i ≤ n/2− 4, v(Bi) ≥ 6, and so v has at least four neighbors in
Bi.
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Figure 1: Dashed edges are unclaimed by Breaker.

Assume first that every edge of Bi is incident with v, entailing e(Bi) = v(Bi)− 2. Among
the four neighbors of v there has to be at least one available edge. This edge is incident
with two edges of Breaker and so Case 1.1 applies.

Suppose now that there is an edge of Bi which is not incident with v. One of its endpoints
z is a neighbor of v. Hence, since v(Bi) ≥ 6, there must exist an available edge between z
and another neighbor of v; thus Case 1.0 applies.

Case 3. The maximum degree of Bi is at most 2. Hence every connected component of
Bi is either a path or a cycle. By Case 1.3 we can assume that e(Bi) > v(Bi) − 4. If
e(Bi) = v(Bi)− 3, then by Case 1.2 Maker can claim any available edge which is incident
with some edge of Breaker. If e(Bi) = v(Bi) − 2, then there is a vertex x of degree 2,
since v(Bi) ≥ 6. By Case 1.1 Maker can claim any available edge which is incident with x.
Finally, if e(Bi) = v(Bi) − 1, then again there is a vertex x of degree 2. Moreover, there
is an available edge incident with x whose other endpoint y is a non-isolated vertex in Bi

(such a non-isolated vertex exists, since v(Bi) ≥ 6 and e(Bi) = v(Bi) − 1). Maker claims
the edge (x, y) and Case 1.0 applies.

This means that after n/2 − 3 moves in the second stage Maker has successfully built
a spanning forest consisting of two paths such that Breaker’s graph Bn/2−3 on the four
endpoints of these two paths satisfies e(Bn/2−3) ≤ v(Bn/2−3) − 1. Hence, there exists at
least one available edge in Bn/2−3. Maker claims this edge, thus creating his Hamilton path.

In the third stage, Maker uses Pósa rotations to close his Hamilton path u1, u2, . . . , un to a
Hamilton cycle. Let ui, uj1 , uj2 be three vertices on this path such that i−1 > j1+1 > j2+1
and, just before Maker’s first move in this stage, none of the edges (u1, ui), (uj1 , un),
(uj2 , un), (ui+1, uj1−1), (ui−1, uj1−1), (ui+1, uj1+1), (ui+1, uj2−1), (ui−1, uj2−1), (ui+1, uj2+1)
were previously claimed by Breaker (see Figure 1). In his first move of the third stage,
Maker claims the edge (u1, ui). In his next move, Breaker cannot claim both (uj1 , un)
and (uj2 , un). Assume without loss of generality that he does not claim (uj1 , un). In his
next move Maker claims (uj1 , un), and then he claims either (ui+1, uj1−1) or (ui−1, uj1−1)
or (ui+1, uj1+1) (Breaker cannot neutralize these three simultaneous threats with only two
edges). This yields a Hamilton cycle. Note that stage three lasts exactly 3 rounds.
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It remains to prove that the three vertices ui, uj1 , uj2 with the desired properties exist. Re-
call that, by Maker’s first move in the second stage, we have degB1(u1)+degB1(un) ≤ n/3+4.
In the second and third stages Breaker adds n/2 more edges, entailing degBn/2−3

(u1) +
degBn/2−3

(un) ≤ 5n/6 + 4. Hence, for sufficiently large n, there are at least n/7 vertices
uk such that neither (u1, uk) nor (uk, un) was claimed by Breaker. Thus there are at least
n2/200 pairs of vertices ui, uj such that i − 1 > j + 1 and both (u1, ui) and (uj, un) were
not claimed by Breaker. Moreover, Breaker has only O(n) edges and every edge (up, uq) he
claims affects at most four of the pairs (ui, uj), namely (up−1, uq−1), (up−1, uq+1), (up+1, uq−1)
and (up+1, uq+1). Hence, there exist two such pairs ui, uj1 and ui, uj2 .

If n is odd, then the proof is essentially the same, with just a few small technical changes:

1. The first stage lasts bn/2c+1 rounds and, when it ends, Maker has one path of length
2 and (n− 3)/2 paths of length 1.

2. The second stage lasts exactly dn/2e − 2 rounds.

3. In B0 there are n− 1 vertices and at most bn/2c+ 2 edges.

2

2.3 Building a k-connected graph fast

Proof of Theorem 1.5. Let Kn = (V, E) where V = {1, 2, . . . , n}. Assume first that n is
even and let m = kn/2. We will present a random strategy for Maker, which enables him
to build a k-vertex-connected graph within kn/2 + (k + 4)(

√
n + 2n2/3 log n) rounds, with

positive probability. This, however, will imply the existence of a deterministic strategy for
Maker with the same outcome.

Before we start with a detailed description of Maker’s strategy, we give a short overview
of his actions. The game consists of two stages (it is possible that the second stage will
not take place). In the first stage most of Maker’s moves are used for building a graph
which is “not far” from being a random k-regular graph. The motivation for this approach
is that random k-regular graphs are known to be k-vertex-connected a.s. (for more on
random regular graphs, the reader is referred to [5], [11] and [14]). In this stage Maker also
has to watch out for Breaker’s maximum degree growing too large; he will handle this by
momentarily abandoning the creation of the pseudo-random graph in order to occupy some
edges incident with the “dangerous vertex” (that is, a vertex of high degree in Breaker’s
graph). In the second stage, Maker occupies some more edges to neutralize possible damage
to his pseudo-random graph, caused by Breaker during the first stage.

Before the beginning of the game, Maker does the following. With every 1 ≤ i ≤ n, he
associates a set Wi = {i1, i2, . . . , ik} of “copies” of i, the sets being pairwise disjoint. Maker
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then draws uniformly at random a perfect matching P of the 2m elements of W =
⋃n

i=1 Wi.
Let S = ((a1, b1), (a2, b2), . . . , (am, bm)) be an arbitrary ordering of the matched pairs. Note
that the selection of the perfect matching P , can be done equivalently by choosing the
pairs one at a time. That is, Maker repeatedly draws a pair randomly, uniformly on all
unmatched elements of W . Sometimes this point of view is more convenient for our analysis.
If ar ∈ Wi and br ∈ Wj, then we say that the pair (ar, br) corresponds to the edge (i, j).
Clearly, different pairs can correspond to the same edge, and so it is possible to get parallel
edges. Furthermore, it is possible that {ar, br} ⊆ Wi and so the pair (ar, br) corresponds to
the loop (i, i). Thus the pairing P corresponds to a k-regular multi-graph. We will discard
loops and parallel edges and thus obtain a simple graph of maximum degree at most k.

A vertex i ∈ V will be called dangerous if its degree in Breaker’s graph is at least k
√

n. As
soon as such a vertex appears, Maker “treats” it immediately (this process will be described
in the following paragraph). Throughout the game, let D denote the set of all dangerous
vertices which were already “treated”. Before the game starts we set D = ∅.
Stage 1: During this stage, if there are no dangerous vertices outside D, then Maker
claims edges of Kn according to the ordering S (note that the matching P and its ordering
S are not known to Breaker). That is, let r be the smallest positive integer such that
the pair (ar, br) was not considered by Maker before. Maker then claims the edge (i, j),
where (ar, br) = (ip, jq) for some 1 ≤ i, j ≤ n and 1 ≤ p, q ≤ k. If i = j or the edge
(i, j) was previously claimed, either by him or by Breaker, then Maker skips his turn (that
is, he claims an arbitrary edge which will not be considered in the analysis) and the pair
(ar, br) is marked a failure. As soon as some u ∈ V becomes dangerous (if there are several
dangerous vertices, then Maker picks one arbitrarily), Maker suspends the above mentioned
strategy and plays as follows. He arbitrarily picks 2k + 8 vertices w1, w2, . . . , w2k+8 6∈ D
such that the edges (u,wj) are unclaimed for every 1 ≤ j ≤ 2k + 8 and, at that point, no
wj is adjacent in Maker’s graph to any vertex in D. This is always possible since the first
stage lasts less than kn/2 moves, so there can be at most

√
n dangerous vertices. Handling

each such vertex takes k + 4 moves, so any dangerous vertex, when handled, has degree at
most k

√
n + (k + 4)

√
n in Breaker’s graph, and every vertex which is not in D has degree

at most k + 1 in Maker’s graph. During his next k + 4 moves, Maker claims some k + 4
edges from the set {(u,w1), (u,w2), . . . , (u,w2k+8)}. He then labels u treated, adds it to D
and returns to his usual strategy. The first stage ends as soon as every dangerous vertex
is treated and all but kn2/3 pairs of S are considered by Maker. The last kn2/3 pairs of S
are also considered to be failures.

Lemma 2.1 During the first stage there are at most n2/3 log n failures almost surely.

Proof of Lemma 2.1: It is well-known that for every fixed k, an n-vertex k-regular multi-
graph that corresponds to a random pairing, almost surely contains at most n2/3 loops and
parallel edges (see, e.g., [11]). Hence, it suffices to bound from above the number of failures
that correspond to edges that were previously claimed by Breaker. Throughout the first
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stage, there are at most
√

n vertices in D. Hence, after considering at most kn/2− kn2/3

pairs of S, there are at least n2/3 < 2n2/3 − √
n − (k + 4)

√
n vertices of degree strictly

smaller than k in Maker’s graph. It follows that at any point during the first stage there

are at least
(

n2/3

2

)− kn/2 edges available for Maker to continue his configuration (following
S). Since Breaker has claimed at most kn/2 edges to this point, the probability that any
specific pair (ai, bi) corresponds to an edge that was previously claimed by Breaker (here
we view S as if it was built sequentially) is at most

kn/2(
n2/3

2

)− kn/2
≤ 2k

n1/3
.

Let F be the random variable that counts the number of the first kn/2− kn2/3 pairs of S,
that correspond to edges that were previously claimed by Breaker. Then

E(F ) ≤ kn

2
· 2k

n1/3
≤ k2n2/3.

Using Markov’s inequality we obtain

Pr(F ≥ n2/3(log n− k − 1)) = o(1).

It follows that almost surely throughout Stage 1 there are at most n2/3 log n failures
(n2/3(log n− k − 1) for hitting Breaker’s edges, n2/3 for loops and parallel edges and kn2/3

for the last kn2/3 pairs of S), which proves the statement of the lemma. 2

Let G1 = (V,E) denote the graph that Maker has built in the first stage, following his
random strategy. Let X be the set of all vertices of V \D that are incident with at least
one edge, that corresponds to a failure pair, and let V = V1∪V2 be a partition of V , where
V1 = D∪X. Observe that each vertex of V2 is incident with k random edges of the random
graph defined by P . We can thus derive expansion properties of subsets of V2 from those
of the random k-regular graph. This is done in the following claim.

Claim 2.2 The following holds almost surely. There exists a constant c > 0 such that if
A ⊆ V2 and |A| < c log n, then |Γ(A)| ≥ (k − 2)|A|, and if A ⊆ V2, B ⊆ V \ A, where
c log n ≤ |A| ≤ |B| and |B| ≥ n− k − |A|, then there is an edge between a vertex of A and
a vertex of B. Moreover, if |A| = 1, then |Γ(A)| ≥ k, and if |A| = 2, then |Γ(A)| ≥ 2k− 3.

The proof of Claim 2.2 is essentially the same as the proof of Theorem 7.32 from [5]. We
omit the straightforward details.

As we already mentioned, since we are looking at a finite, perfect information game with
no chance moves, it follows that Maker has a deterministic strategy to build G1 = (D ∪
X ∪ V2, E) within kn/2 + (k + 4)

√
n moves, such that |D| ≤ √

n, |X| ≤ 2n2/3 log n, and V2

satisfies the properties described in Claim 2.2.
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Stage 2: For every u ∈ X, Maker arbitrarily picks 2k + 8 vertices wu
1 , wu

2 , . . . , wu
2k+8 ∈

V \ N(D), such that the edges (u,wu
j ) are unclaimed for every 1 ≤ j ≤ 2k + 8 and

{wu
1 , wu

2 , . . . , wu
2k+8} ∩ {wv

1 , w
v
2 , . . . , w

v
2k+8} = ∅ for every u 6= v ∈ X. This is possible as

|X| ≤ 2n2/3 log n, |D| ≤ √
n, and each vertex in X has n− o(n) unclaimed edges incident

with it, as X ∩D = ∅. Using an obvious pairing strategy, Maker claims k + 4 of the edges
(u, wu

j ) for every u ∈ X.

Let GM denote the graph built by Maker during the entire game. We claim that it is k-
vertex-connected. Assume for the sake of contradiction, that a small set separates GM , that
is, V = A ∪ S ∪ B, where 1 ≤ a = |A| ≤ |B|, |S| = s < k and there are no edges between
A and B in GM . If a ≤ 5 and x ∈ A ∩ V1, then by Maker’s strategy |(Γ(A) ∪ A) \ {x}| ≥
|Γ(x)| ≥ k+4 > |(A∪S)\{x}| which is a contradiction as (Γ(A)∪A)\{x} ⊆ (A∪S)\{x}.
On the other hand, if A∩V1 = ∅, then |Γ(A)| ≥ k by Claim 2.2 (recall that k ≥ 3). Hence,
from now on we assume that 6 ≤ a < c log n. If |A ∩ V1| ≥ a/4, then by Maker’s strategy
|N(A∩V1)| ≥ (k +4)a/4 > a+ k ≥ |A∪S| which is a contradiction as N(A∩V1) ⊆ A∪S.
Otherwise, |A ∩ V1| < a/4 and so by Claim 2.2 we have |Γ(A ∩ V2)| ≥ (k − 2)3a/4 ≥
a/4+k > |(A∩V1)∪S|, where the second inequality follows since a ≥ 6 and k ≥ 3. Again,
this is a contradiction.

If n is odd, then Maker plays as follows. He arbitrarily picks some vertex u and then plays
two disjoint games in parallel. One is on the board {(u, v) : v ∈ V \ {u}}, which is played
until he claims exactly k of its elements, and the other is on Kn[V \ {u}] ∼= Kn−1, where
Maker plays according to the above strategy. It is easy to see that the resulting graph is
k-vertex-connected (adding a vertex to a k-connected graph and then connecting it to k
arbitrary vertices of the graph produces a k-connected graph).

Finally, note that by Maker’s strategy and by Lemma 2.1, in both stages Maker plays at
most kn/2 + (k + 4)(

√
n + 2n2/3 log n) moves. 2

3 Concluding remarks and open problems

It was stated in Theorem 1.1 that n + 1 ≤ τ(Hn) ≤ n + 2 holds for sufficiently large n. It
would be interesting to decide which of the two values is the correct answer.

We know from Theorem 1.5 that Maker can win the k-vertex-connectivity game on Kn

within kn/2 + o(n) moves. We are curious whether the o(n) term can be replaced with
some function of k, if not for this game, then for the k-edge-connectivity game or the
minimum-degree-k game.
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