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Abstract
Given a set of n red and n blue points in the plane, we are interested in matching red points with
blue points by straight line segments so that the segments do not cross. Bottleneck matching
is such a matching that minimizes the length of the longest segment. We develop tools which
enable us to solve the problem of finding bottleneck matchings of points in convex position in
O(n2) time. We use the same approach to design an O(n)-time algorithm for the case where all
points lie on a circle. Previously best known results were O(n3) for points in convex position,
and O(n logn) for points on a circle.

1 Introduction

Let R and B be sets of n red and n blue points in the plane, respectively, with P = R ∪B.
Let M be a perfect matching between points from R and B, using n straight line segments
to match the points, that is, each point is an endpoint of exactly one line segment, and each
line segment has one red and one blue endpoint. We forbid line segments to cross. The
length of a longest line segment in M is called the value of M . Our goal is to find a matching
under given constraints with the minimum value. Any such matching is called a bottleneck
matching of P .

1.1 Related work
Monochromatic case The monochromatic variant of the problem is the case when points
are not assigned colors, and any two points are allowed to be matched. The problem of
computing bottleneck monochromatic non-crossing matching of a point set is shown to be
NP-complete by Abu-Affash, Carmi, Katz and Trablesi in [2]. They also proved that it does
not allow a PTAS, gave a 2

√
10 factor approximation algorithm, and showed that the case

where all points are in convex position can be solved exactly in O(n3) time. We improved
this result in [6] by constructing O(n2)-time algorithm. In [1], Abu-Affash, Biniaz, Carmi,
Maheshwari and Smid presented an algorithm for computing a bottleneck monochromatic
non-crossing matching of size at least n/5 in O(n log2 n) time. They extended the same
approach to provide an O(n logn)-time approximation algorithm which computes a plane
matching of size at least 2n/5 whose edges have length at most

√
2 +
√

3 times the length of
the longest edge in a non-crossing bottleneck matching.

Bichromatic case The problem of finding a bottleneck bichromatic non-crossing matching
(BBNCM) was proved to be NP-complete by Carlson, Armbruster, Bellam and Saladi in [4].
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But for the version where crossings are allowed, Efrat, Itai and Katz showed in [5] that a
bottleneck matching between two point sets can be found in O(n3/2 logn) time.

Biniaz, Maheshwari and Smid in [3] studied special cases of BBNCMs. They showed that
the case where all points are in convex position can be solved in O(n3) time, utilizing an
algorithm similar to the one for monochromatic case presented in [2]. They also considered
the case where the points of one color lie on a line and all points of the other color are on
the same side of that line, providing an O(n4) algorithm to solve it. The same results for
these special cases are independently obtained in [4]. In [3], an even more restricted problem
is studied, a case where all points lie on a circle, for which an O(n logn)-time algorithm is
provided.

1.2 Our results
Here, we develop tools which enable us to solve the problem of finding a BBNCM of points
in convex position in O(n2) time. Also, using the same toolset we design an optimal O(n)
algorithm for the case when the points lie on a circle.

Some important structural properties of BBNCMs of points in convex position that we
aim to exploit are captured well by the concept of (what we refer to as) orbit. Informally
speaking, orbits form a partition of the point set that turns out to have the following property
– two differently colored points can be connected by a segment in some non-crossing matching
if and only if they belong to to the same orbit.

As it turns out, there is a number of additional properties of orbits that we can put to
good use, and once we combine them with ideas used to efficiently solve the monochromatic
case in [6], we are able to get a considerable improvement of the algorithm running time,
both in the convex case and in the case where all points lie on a circle.

For detailed exposition of our results and all the proofs, please refer to [7].

2 Orbits

In what follows we consider the case where all points of P are in convex position, i.e. they
are the vertices of a convex polygon. Here we only deal with matchings without crossings, so
from now on, the word matching is used to refer only to pairings that are crossing-free.

Let us label the points v0, v1, . . . , v2n−1 in positive (counterclockwise) direction. To
simplify the notation, we will often use only the indices when referring to the vertices.
We write {i, . . . , j} to represent the sequence i, i+ 1, i+ 2, . . . , j − 1, j. All operations are
calculated modulo 2n; note that i is not necessarily less than j, and that {i, . . . , j} is not
the same as {j, . . . , i}.

We say that (i, j) is a feasible pair if there exists a matching containing (i, j). It can
be shown that every set of n blue and n red points in a convex position can be perfectly
matched, implying that a pair (i, j) is feasible iff i and j are of different colors and each of
{i+ 1, . . . , j − 1} and {j + 1, . . . , i− 1} contains the same number of red and blue points.

Let o(i) be the first point j starting from i in positive direction such that (i, j) is feasible.
The function o has an inverse, denoted by o−1, and it is easy to see that o−1(j) is the first
point i starting from j in the negative (clockwise) direction such that (i, j) is feasible. We
define o0(i) := i.

I Definition 2.1. An orbit of i, denoted by O(i), is defined by O(i) := {ok(i) : k ∈ Z},
see Figure 1. By O(P ) we denote the set of all orbits of a convex point set P , that is
O(P ) := {O(i) : i ∈ P}.
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Figure 1 Orbits.

It can be seen that each point belongs to exactly one orbit. Any two neighboring points
on an orbit have different colors, so each orbit has an equal number of red and blue points.

Next, we state a number of properties that can be shown to hold for orbits.

I Property 2.2. Points i and j of different colors form a feasible pair iff O(i) = O(j).

If i and j are neighboring vertices of a convex polygon defined by the points of an orbit
such that i precedes j in the positive direction, then j = o(i). Informally, by repeatedly
applying function o we visit all points of an orbit in a single turn around the polygon.

All feasible point pairs can be split into the two categories depending on their mutual
position in their orbit. Pairs consisting of two neighboring vertices of the orbit are called
edges, and all other pairs are called diagonals. More precisely, for j ∈ O(i), (i, j) is an edge if
and only if i = o(j) or j = o(i), otherwise, it is a diagonal.

I Lemma 2.3. Orbits can be computed in O(n) time.

We say that an edge (i, o(i)) is a red-blue edge if i ∈ R, and blue-red edge if i ∈ B.
We consider edges directed from i to o(i), so points right of an edge (i, o(i)) are points
{i, . . . , o(i)} \ {i, o(i)}.

I Property 2.4 (Orbit synchronicity). Let A,B ∈ O(P ). There are no points of B on the
right side of red-blue edges of A if and only if there are no points of A on the right of blue-red
edges of B.

I Definition 2.5. Let A,B ∈ O(P ). We say that A ≤ B iff there are no points of B right of
red-blue edges of A and no points of A right of blue-red edges of B

It can be proven that the relation ≤ on orbits is transitive, which together with orbit
synchronicity gives us the following important property of orbits.

I Property 2.6. The relation ≤ on O(P ) is a total order.

2.1 Orbit graph
The orbit graph for P is a directed acyclic graph in which each vertex corresponds to an
orbit in O(P ), and there is a directed edge from A to B iff A ≤ B and orbits A and B are
different and intersect each other (meaning that there is a line segment between a pair in A
and a line segment between a pair in B so that those line segments intersect).

I Property 2.7. Each weakly connected component of the orbit graph has a Hamiltonian
path.

These Hamiltonian paths are possible to calculate without constructing the full orbit
graph first, as the following lemma states.

I Lemma 2.8. All Hamiltonion paths of connected components of the orbit graph can be
computed in O(n) total time.
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3 Finding bottleneck matchings

3.1 Cascades
Now, what remains is to utilize the theory that we developed for orbits and the orbit graph,
combining it with some parts of the approaches used in [6] to tackle the monochromatic case.

Let us consider the division of the polygon defined by points in P into regions obtained by
cutting it with diagonals (but not edges) of the given matching M . Each region is bounded
by some diagonals of M and by the polygon’s boundary. We call a region k-bounded if
there are exactly k diagonals bounding it. Any maximal sequence of diagonals connected by
2-bounded regions is called a cascade, see Figure 2. We can prove the following lemma.

Figure 2 Matching consisting of edges (dashed lines) and diagonals (solid lines). There are three
cascades in this example: one consist of the three diagonals in the left part, one consist of the two
diagonals in the lower right, and one consist of the single diagonal in the upper right.

I Lemma 3.1. There is a bottleneck matching having at most three cascades.

It is not possible for a matching to have exactly two cascades, so we know that there is a
bottleneck matching either with at most one cascade, or with exactly three cascades. We
define a set of subproblems that is used to find an optimal solution in both of these cases.

3.2 Subproblems
When talking about matchings with minimal value under certain constraints, we will refer to
these matchings as optimal.

Let (i, j) be such that {i, . . . , j} contains the same number of red and blue points. We
define Matching(i, j) to be the problem of finding an optimal matching Mi,j of points
{i, . . . , j}, so that Mi,j has at most one cascade, and pair (i, j) belongs to a region bounded
by at most one diagonal from Mi,j different from (i, j).

All these subproblems can be solved in O(n2) total time using dynamic programming.
Beside the value Si,j of matchingMi,j , we determine if pair (i, j) is necessary for constructing
Mi,j , i.e. do all solutions to Matching(i, j) contain (i, j). If that is true then such a pair is
called necessary. This can be easily calculated together with the solution to subproblems.

An optimal matching of the whole set P having at most one cascade can be found in
linear time from calculated solutions to subproblems. We run through all subproblems of the
form Matching[i+ 1, i] for all feasible pairs (i, i+ 1), and take the minimum.

Next, we focus on finding an optimal matching among all matchings with exactly three
cascades (3-cascade matchings). Any three distinct points i, j and k, where (i, j), (j + 1, k)
and (k + 1, i− 1) are feasible pairs, can be used to construct a 3-cascade matching by taking
a union of Mi,j , Mj+1,k and Mk+1,i−1. We can run through all possible triplets (i, j, k) and
see which one minimizes max{S[i, j], S[j+ 1, k], S[k+ 1, i−1]}. However, that requires O(n3)
time, and thus is not suitable, since our goal is to design a faster algorithm. Our approach is
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to show that instead of looking at all (i, j) pairs, it is enough to select (i, j) from a set of
linear size, which would reduce the search space to quadratic number of possibilities.

3.3 Candidate pairs and polarity
In 3-cascade matching, we call the three diagonals at the inner ends of the three cascades
the inner diagonals. We take the largest region by area, such that it is bounded, but not
crossed by matched pairs, and such that each two of the three cascades are separated by
that region. We call this region the inner region. Matched pairs defining the boundary of
the inner region are called the inner pairs.

I Lemma 3.2. If there is no bottleneck matching with at most one cascade, then there is a
bottleneck 3-cascade matching whose every inner pair is necessary.

The turning angle of {i, . . . , j}, denoted by τ(i, j), is the angle by which the vector −−−→vivi+1
should be rotated in positive direction to align with vector −−−−→vj−1vj , see Figure 3.

Figure 3 Turning angle. Figure 4 {i + 1, . . . , j − 1} ∩O(i) all
lie inside either Π− or Π+.

We say that (i, j) is a candidate pair, if it is a necessary pair and τ(i, j) ≤ 2π/3.

I Lemma 3.3. If there is no bottleneck matching with at most one cascade, then there is a
3-cascade bottleneck matching M , such that at least one inner pair of M is a candidate pair.

Let us now look at a candidate pair (i, j), and examine the position of points {i+1, . . . , j−
1} ∩ O(i). We construct the circular arc h on the right side of the directed line vivj , from
which the line segment vivj subtends an angle of π/3, see Figure 4. Let A be the midpoint of
h. Points vi, A and vj form an equilateral triangle, so we can construct the arc a− between
A and vi with the center in vj , and the arc a+ between A and vj with the center in vi. These
arcs define three areas: Π−, bounded by h and a−, Π+, bounded by h and a+, and Π0,
bounded by a−, a+ and the line segment vivj . With Π−(i, j) and Π+(i, j) we respectively
denote areas Π− and Π+ corresponding to the candidate pair (i, j).

I Lemma 3.4. If (i, j) is a candidate pair, then points {vi+1, . . . , vj−1} ∩ O(i) either all
belong to Π− or all belong to Π+.

Two possibilities for a candidate pair (i, j) provided by Lemma 3.4 bring forth a concept
of polarity. If points {i+ 1, . . . , j − 1} ∩ O(i) lie in Π−(i, j) we say that candidate pair (i, j)
has negative polarity and has i as its pole. Otherwise, if these points lie in Π+(i, j), we
say that (i, j) has positive polarity and pole in j. The following lemma gives us the crucial
observation about polarity, which enables us to limit the search space of the algorithm.

I Lemma 3.5. No two candidate pairs of the same polarity have the same point as a pole.
Hence, there are O(n) candidate pairs.
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Finally, we use our findings from Lemma 3.3 and Lemma 3.5, to construct an algorithm
which finds a BBNCM in O(n2) time. We first solve all subproblems and find candidate pairs.
Then, we minimize max{S[i, j], S[j + 1, k], S[k + 1, i− 1]} by running through all candidate
pairs (i, j) and for each such pair through all k ∈ {j + 1, . . . , i− 1}.

4 Points on a circle

Now, let us consider the special case where all points lie on a circle. The geometry of a
circle provides us with the following lemma (also stated in [3]), which together with orbit
properties enables us to construct an O(n) time algorithm for this problem.

I Lemma 4.1. There is a bottleneck matching in which each point i is connected either to
o(i) or o−1(i).

This means there is a bottleneck matching ME which can be constructed by taking
alternating edges from each orbit, that is from each orbit we take either all red-blue or
all blue-red edges. To find a bottleneck matching we want to search through only such
matchings, and to reduce the number of possibilities, we use the properties of the orbit graph.

Consider the Hamiltonian path L1,L2, . . . ,Lm for some connected component of the orbit
graph, as provided by Property 2.7. Since there is a directed edge from Lk to Lk+1, those
two orbits intersect each other, and by Property 2.4 we know that only edges from Lk that
intersect Lk+1 are blue-red edges, and only edges from Lk+1 that intersect Lk are red-blue
edges. Hence, ME cannot have blue-red edges from Lk and red-blue edges from Lk+1. This
further implies that there is l ∈ 0, 1, . . . ,m such that L1, . . . ,Ll all contribute to ME with
red-blue edges and Ll+1, . . . ,Lm all contribute to ME with blue-red edges.

For each l, we can compute the longest red-blue edge in L1, . . . ,Ll and the longest
blue-red edge in Ll+1, . . . ,Lm, and computing all of this can be done in O(n) total time.
After we obtain these values, we can quickly get the value of a matching for each possible l,
and take the one with the minimum value.

By Lemmas 2.3 and 2.8, each step in this process has time complexity not greater than
O(n), so we get an algorithm for points on a circle which runs in linear time.
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