YU ISSN 0350—1302

INSTITUT MATHEMATIQUE

PUBLICATIONS

DE

L’INSTITUT MATHEMATIQUE

NOUVELLE SERIE

TOME 56 (70)

1994

BEOGRAD
1994



PUBLICATIONS DE L'INSTITUT MATHEMATIQUE
Nouvelle série, tome 56 (70), 1994, 23-33

ON THE NUMBER OF 2-FACTORS
IN RECTANGULAR LATTICE GRAPHS

Olga BodrozZa-Pantié¢ and Ratko Tosié
Commaunicated by Slobodan Simic

Abstract. Let fm(n) and hm(n) denote the number of 2-factors and the number of
connected 2-factors (Hamiltonian cycles) respectivelyina (m—1)x(n—1) gridi.e. in the labelled
graph Pr, X P,. We show that for each fixed m (m > 1) the sequences frm = (fm(2), fm(3),--.)
and hm = (hm(2), Am(3),...) satisfy difference equations (linear, homogeneous, and with con-
stant coefficients). Furthermore, a computational method is given for finding these difference
equations together with the initial terms of the sequence. The generating functions of f,, and
h.n are rational functions Fr, and H. respectively, and they are given explicitly for some
values of m.

1. Introduction. There are exactly three 2-factors (spanning 2-regular
subgraphs) of P3x Ps as shown in Fig. 1. Note that two of them are Hamiltonian
cycles (connected 2-factors).

Fig.1

The approach taken here is to fix m and then find a way to calculate the
sequences fm = (fm(2), fm(3),...) and Am = (hm(2),hm(3),...). Using the so-
called transfer matriz method [5] it will be shown that the sequences f, and h.,
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satisfly difference equations (linear, homogeneous, and with constant coeflicients)
1.e. their generating functions

Fon(z) = me (n)z" and Hp(z)= Z hm(n)z"

(we can take f,(0) = fm(1) = hm(0) = k(1) = 0) represent rational functions,
say Fm(z) = Pm(z)/Qm(z) with P, Q. relatively prime polynomials with
integer coefficients and My (z) = R (2)/Sm(z) with Ry, Sm relatively prime
polynomials with integer coefficients too and Q,,(0) = S,,(0) = 1. Algorithms are
given for calculating these polynomials and the rational functions %,, (x) are given
for m =2,...,7 and the functions H,,(x) for m =2,...,6. This makes it easy
to calculate fin(n) and hy(n) for these values of m, and a few tables are given.

Mathematical considerations

In the labelled graph P, x P, (cartesian product of two paths with m and
n vertices, respectively), there are (m — 1) x (n—1) cycles of order 4 (squares),
called windows (since they look like the windows in an m x n window frame).

With the graph P, x P, we can associate its window lattice graph Wy, n
whose vertices are the windows of P,, x P, (Fig.2), two vertices being adjacent in
Wi n iff the two windows of P, x P, which correspond to those vertices have a
common edge. We denote by w;; (i=1,...,m—1; j=1,...,n— 1) vertices of
Wm,n as shown in Fig. 2. Obviously, the window lattice graph W, , associated
with P, x P, is isomorphic to the graph P,_1 x P,_1.

o

It is easy to prove the following statement:

Pm x Py (m,n > 1) has a 2-factor (Hamiltonian cycle) iff the number of
vertices is even.

We associate with each 2-factor of P, x P, (m > 2) a binary matrix
A = [a; j](m-1)x(n—1) defining its elements in the following way (Fig.4):

1, if w; ; belongs to interiors of an odd number
dy ;= of cycles of that 2-factor;
0, otherwise.

This matrix satisfies the following necessary conditions which are easy to
verify:

o Adjacency of Column Conditions:
(V)1 <j<n-2)

(a1 = 01,541 =0 V  @m_1j=am-1,j41 =0) (1)
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(Wi)(1<i<m—2)(Vi)(1<j<n—2)

(@i, @ig1,5, Qi j4+1,Big1,j41) & (2)
{(0,0,0,0),(1,1,1,1),(1,0,0,1),(0,1,1,0)} (3)

e First and Last Column Conditions:

a;1 = am-11 =81 n-1=0m-1n-1= 1 (4)
(Vi)(1<i<m=2)
(a1 =8i+11=0 V  @in-1=08it1n-1=0) (5)
1 2 3 n—1 n
1 ® © © e © —0
w11 w12 W1,nl-1
§
2 o o & © )
w2 h wa b W2, nf-1
3 6 o & & ')
4
m-—1¢ 5 O © O
Wm-1,1| Wm-1,2 Wm41,n-1
meg O O O O

' Fig. 2 The labelled graph. P X Pn (thin lines) associated with the labelled graph
| Win,n (thick lines).

Condition (1) says that the first and the last rows do not have two adjacent
0’s; the condition (5) says the same things for columns; the condition (4) says that
the corners are 1’s; and the condition (2) says that 2 by 2 submatrices given in
Fig. 3 are forbidden.

Fig.3
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If the 2-factor is connected as well, then the window lattice graph Wmn of
this matrix satisfies the following condition too:

e Root Condition: Each connected component outside a Hamiltonian cycle has a
tree structure (we call it ezlerior tree (ET)) with one square Wi, (we call it root of
the ezlerior tree) on the edge of the rectangle but not at a corner i.e.

Ge{l,m-1} Ajg{L(r-D}V Ge{l,(n-1} Aig{L(m-D} 6

The converse is also satisfied: every binary matrix A = [aijl(m-1)x(n-1)
which satisfies adjacency of column conditions and first and last column conditions,
determines exactly one 2-factor of the graph Pm X Pn; every such matrix A which
satisfies root condition as well determines a connected 2-factor.

Using these conditions some new values of hm(n) were obtained in [3], but,
that algorithm is very slow because it generates each binary matrix which fulfills
(1)~(4) and the root condition, one by one.

Enumeration of 2-factors. Let A be an arbitrary binary matrix A =
lai jl(m-1)x(n-1) which satisfies adjacency of column conditions and first and last
column conditions We create for each number m (m > 2) a graph Gm in the
following way: the set of vertices V(Gm) consists of all possible columns in the
matrix A (note that it is not the set of all binary words in {0, 1}m~1); a line joins
a vertex v to a vertex u (u,v € V(Gp)) iff the vertex v (as a binary word)
might be previous column for the vertex u (as a binary word).

The subset of vertices which consists of all possible first (last) columns in the
matrix A is called the set of the emphasized vertices.

So, in this way, the problem of the enumeration of all 2-factors in Py % Py
is reduced to the enumeration of all walks of the length (n—2) in the graph Gm
with emphasized initial and final vertices.

Enumeration of Hamiltonian cycles.. The values of hy(n) and hs(n)
were studied in [1] and [2]. In [4] a recurrence relation is given for the sequences
he using a new characterization of the Hamiltonian cycles in Pp X P,. It enables
us to determine a special digraph D for each number m. In this way, the
enumeration of all connected 2-factors in P X P, is reduced to enumeration of
all oriented walks of the length (n—2) in the digraph Dy, with the initial and
final vertices in the special sets. In [4], the following definition was introduced:

Definition 1. Two windows w;; and wj,s which satisfy: a1 =0, ;5= 0
and I,s < k are said to be Surely In the Same Exterior Tree at the k-th level
(ie. in relation k-SISET) iff they belong to the same component in the subgraph
of Wm,n which is induced by set of all windows wp ¢ which satisfy ap =0 and
t<k.
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The relation k-SISET represents a RST-relation in the set of all windows
wix Wwhich satisfy a;xp =0 (1<i<m-— 1) for a fixed k. There are at most
[(m — 1)/2] classes of the RST-relation. (It is possible that two different classes
belong to the same ET but we can’t conclude that if we know only the first k
column of the matrix A.) Further, every class belongs to exactly one ET, so it
can be in relation k-SISET with at most one root.

Let C denote the set {2,3,...,[(m —1)/2]}. Now, for each Hamiltonian
cycle, we associate with binary matrix A = (@i jl(m=1)x(n-1) which satysfies
adjacency of column conditions, the first and last column conditions and the root
condition, the matrix B = [bi j](m-1)x(n-1), b;; € CU{0,1} in the following
way (Fig.5):

(a) bij=1 iff aj=1 (1<i<(m-1) (1<ji<(r=-1))

(b) if the window wj,; is the root ofan ET and (i=1 or i=(m—1) or
j=1) then b;; =0;

(c) if the window w;; isn’t a root of an ET but it is in relation j-SISET with
a root then b; j = 0;

(d) we associate with the remaining windows some elements of C considering the
ordinal numbers of remaining classes in the fixed j-th column. (Till now, we
associated 0’s with some classes in the fixed column ((b) and (c)). Thus, the
first of the remaining classes in the fixed column (from above) is associated
with number 2, the second one with number 3, etc.

[T 111111 1]0 1 1]o|1 1
0M100000010010
1 1 11 1]of1 11 1 1fjo}1 1
10 0o 0o 0o o 0 0]J1f[0 0 0f1]0
10]10111110|1 S T
1 1 1|o0o|1[0 000 00 0;1]0
1[oo0o o1 1111111011
1 1 1|00 00 00 0]1/0j1]0
o o]1 1 1 1 11 11 1]0}1 1
[1]o|1[0 0 0 000 00 010
1 1111111111111
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|44 &0t 278 L]0 [0 1]ofd 4
0 0]J1[2 2 2 2 2 0|12 0|12
Lol b ol 2 i 3525200 | Lol
142 2 3.3 2.2-2]1.[2 &8 of1[3
2] 3BT a1 L2l 1 4.0
1 1 11313 3 3 2 2 3 014
113 3 3|1 11111 1]o|1 1
1 1 13 3 2 2 20 0]1|0]|1[5
0 0|1 1 1141 1 1 1 1|01 1
[1]0]1[ 4 4 4 ¢4 4 3 3 4 o0 |16
T R R R !
Fig.5

We need a few additional definitions:

Definition 2. The base of the integer word dids...dp,,_1 is the binary
word didsy...dy,_1 where

i1 i =1
*7 1 0, otherwise

_ Definition 3. The base of the integer matrix [d;;] is the binary matrix
[di ;] of the same format where

J-z{L if d;=1

0, otherwise

Definition 4. A subword u of v such that all letters of u are equal b is
said to be a b-subword of v. A b-subword wu of v is a mazimal b-subword of v if
u is not a proper subword of any b-subword of w.

From the definition of the matrix B = [bi,j](m—l)x(n—-l); we can easily obtain
the following properties of that matrix:

1. The base of the matrix B i.e. matrix A = [@i,j](m-1)x(n-1) satisfies adja-
cency of column conditions ((1) and (2)) and first and last column conditions

((4) and (5)).

2. The first column is equal to its base i.e.

(Vi) 1 <i<m—1)(b;1 = ai1)

3. The last, (n — 1)-th column doesn’t contain any 0s, and if the number p of
all I’s is less than (m—1), then the word obtained from (n — 1)-th column
by removing all 1’s is the word 23...(m — p).
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4. For every k-th column (2 <k <n—1) of the matrix B it is satisfied:

(a)
(b)

()

(d)

()

()

(8)

big=aik; bdm-1k = Gm-1k-

If bk #1 2<i<m- 2) then bi-1,k € {bi'k,l} and bit1x €
{bi x,1}. (Two windows belonging to the same class must be associated
with the same number.)

If big-1=0 2L <m— 2) then b;x € {0,1}. (If the window
Wi k-1 1sin relation (k —1)-SISET with a root (i.e. bjg-1= 0) then
it is in relation k-SISET with the same root, as well; and if it is in
relation k-SISET with w; i (i.e. aix = 0) then w; must be in relation
k-SISET with the same root.)

For each number b€ C which appears in the (k— 1)-th column there
must be a window w; k-1 With bjx—1 = b and bix # 1. (There are
no ET without root.) :

For each p and [ such that p #1, 2 < p,l < m—1, where
bpk—1 = bir-1 #1 and app = ax =0 we have by = bik- (If
wp k-1 and wy -1 are in relation (k—1)-SISET and apx = a1k = 0
then the windows wpx and wir must be in relation k-SISET.)

If big1=bjr-1€C and by =bjx= b1 (i#4,,2€43 <
m—2) then there is no sequence of consecutive appearances of number
be CuU{0} (i.e. b-subword) in the k-th column which contains both
w;x and wj k. (In the opposite case, we would get a cycle in a ET.)

For every maximal 0-subword v in the k-th column, exactly one of
the following two conditions are fulfilled:

I v is adjacent to exactly one O-window from the (k— 1)-th column
or contains exactly one of the elements wi and wm-1x (Fig. 6a).

II There is exactly one sequence v = v1,v2,..-,Up (p>1) ofdifferent
maximal 0-subwords in the same column satisfying the following
condition:

for every i (1 <i < (p— 1)), there is exactly one wj; k-1
with bj,x-1 € C for which wj;x € v, and there is exactly
one Ws,,, k-1 with bs,,, k-1 € C for which ws,, x € vif1
a'nd bjl',k—l = bs,‘+1,k—1;

the p-th sequence v, is either adjacent with exactly one 0-th
window from the (k — 1)-th column or contains exactly one of
the windows wix and Wm-1k (Fig. 6b).

(h) f v and wu are two different maximal b-subwords b € C' in the

k-th column (i.e. if we can conclude by knowing the first k columns
that v and u are in the same ET), then there is exactly one sequence
v=11,v3,...,0p=u of p (p>1) different maximal b-subwords in
the k-th column which satisfies: for every i (1<i<p-— 1) there is
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exactly one wj, x—1 with bj,. k-1 € C for which wj; r € v; and there
is exactly one Ws; 4y k-1 With b, 21 € C for which Ws,p1 k € Vig1
and bj;,k—l = b3i+1,k-—1 (Fig. 7).

(i) Consider the windows with the first appearances of elements from the
set C in the k-th column from above (from wy; to Wm_1,t). Let
them be wp, &, Wp,k, ..., wp, 1 (I < [(M—=1)/2]). Then, bp, k= i+1.
(This follows from definition of matrix B) .

Conversely, it can be easily proved that every matrix B = [bi,j](m—l)x(nl—l)
with elements from the set C U {0,1} which satisfies 1-4 determines exact-
ly one Hamiltonian cycle in the graph P,, x P, i.e. the base of the matrix
B = [bi,j](m—l)x(n—l) fulfills the root condition and also the adjacency of column
conditions and the first and last column conditions.

t
0
n T Wsy, k-1 21b
g <—[0 g i _:_ v = v3
|
Ws k-1 [j 0 (
( [ ]
Wjs,k—1 IQ 0 Wi, k-1 |2 b
0 Vs b
n Wsyk—1 310 Wsy k-1 4 (b =
O ( A
Wi, k-1 Ii 0 (
0 Vg Wi, k-1 I:L b
0] Wsa, k-1 l4 (o] u=m
~[olo (
H o wens [10] o
0]
R b)

Fig. 6 : Fig.7

Now, we can create for each number m (m > 3) a digraph D,, in the
following way: the set of vertices V(D,,) consists of all possible columns in the
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matrix B (integer words did...dm—1 of the alphabet CU{0,1}); a (directed)
line joins the vertex v with the vertex u (v,u € V(Dp)) ie. v — u iff the
vertex v (as an integer word by r-_1b2k-1.. .bm—1,k-1) might be the previous
column for the vertex u (as a word by xbak .. .bm—1,¢) i.e. these words satisfy
conditions 1 and 4.

The subset of V(Dy,) which consists of all possible first columns in the
matrix B (conditions 1 and 2) will be called the set of the emphasized vertices.
The subset of V(D,,) which consists of all possible last columns in the matrix B
(conditions 1 and 3) will be called the set of the last vertices. Note that these two
subsets of V(D) have exactly one element in common (the word 11... 1). So,
in this way, our problem of enumeration of all Hamiltonian cycles in P, x P, is
reduced to enumeration of all oriented walks of the length (n —2) in the digraph
D,, with the emphasized initial vertices and the last final vertices. For every m
(m >3) we can create a digraph D, using the properties of the matrix B.

Now, we continue these considerations in order to obtain better results than
the ones in [4]. It follows from these considerations, in both cases, that there is a
one-to-one correspondence between (oriented) walks of length (n —2) which begin
at the emphasized vertices and end at the (last) emphasized vertices in (Dm) Gm.

Now we use a well-known result from graph theory. Namely, the number of
walks of lenght (n —2) from vertex i to vertex j in a directed graph with
vertex set {1,...,h} is the (i,j)-entry in Mpg, where My, = [Mijlaxn is
the incidence matrix of the (di)graph (Dm) Gpm. It is a simple consequence of
the Cayley-Hamilton Theorem that (h,,) fm satisfies a difference equation. In
fact, from the coefficients of the characteristic polynomial of Mp, we obtain the

coefficients for a difference equation satisfied by (hm) fm.

Let co,c1,...,cp denote the coefficients of the difference equation satisfied
by (Am) fm with co = 1. Thus,
! :
ZcifM(" -i)=0 (n>p).
=0

Computational results

On the base of previous considerations we wrote computer programs for compu-
tation of the incidence relations and matrices M,,, incidence matrices of the
(di)graph (Dm) Gm. Generation of the vertices (as (integer) binary words of the
lenght (m — 1) begins from emphasized vertices.

We used the symmetry of some couples of words from sets V(Gm) (V(Dm))
in order to simplify computations, by reducing incidence matrix M,, to the matrix
M,, such that the coefficients of its characteristic polynomial the coefficients of a

difference equation satisfied by fm (hm)-
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The matrix M,, is the incidence matrix of the (di)graph G (D,,)
obtained by contracting the vertices corresponding to the couples of symmetric
words or identical rows in M,,. The contraction of the vertices, for instance v
and w , is performed as follows: we reorient all lines going to v (z — v) to the
vertex w (z — w) and then remove the vertex v. We will say that it is the
contraction of the vertices v and w by removing verter v.

. . . !
The dimension of these reduced matrices M, for some values of m are

given in Tab. 1 and Tab. 2.

[ m [sla[s[6[ 7] [ = [3[4[5[6] 7]
4

[V(Gm) | 6| 15 ] 20 | 56 V(D) | [ 3[6]19]32]113
vic) ! [3][5] 9]14]31 [vo)| 214 7[157] 43
Tab. 1 Tab. 2

We used Leverrier’s method to obtain the characteristic polynomial of ]bIrln:
g(@) ==+ crzPl + cazP 24 ...+ cp_1z+Cp.
We can get the generating function U(z) /V(z) for the sequences correspond-
ing to the M,, in the following way:
V(z) = 2Pg(l/z) =1+ crz + cox? 4 -+ cpa?
U(z) = uo +ure + ugg® + -+ g1t
where
Ug = U1 = 0; up = fm_(2)
uiy2 = fm(i+2) +Z;‘=1ijm(i“j+2)’ 1<i<p-1
(In the case of connected 2-factors it is necessery to put hm insteed of fm.)

(7)

Im\n [ 2131 4] 5 ] 6 | 7] 8] 9 | 10 )
2 1 1 2 3 5 8 13 21 34
3 1 0 3 0 9 0 27 0 81
4 2|3 18 54 222 779 29563 10771 40043
5 3]0 54 0 1140 0 24360 0 521064
6 5 9 222 1140 13903 | 99051 972080 | 7826275 71053230
T 8 0 T79 0 99051 0 13049563 0 1729423756

Tab. 3 Values of fm(n), 2<m<7 , 2<n<10

[m\n [2[3] 4] 5] & 71 8 | 9 | 10 )
2 T O 1 1 1 4 1 1 .
3 1]0 2 0 4 0 8 0 16
4 1] 2 6 14 37 92 236 596 1517
5 110 14 0 154 0 1696 0 18684
6 174 37 154 1072 5320 32675 175294 1024028
7 110 92 0 5320 0 301384 0 17066492
8 T | 8 | 236 | 1696 | 32675 | 301384 4638576 | 49483138 | 681728204

Tab. 4 Values of hm(n), 2Em<8 ,2<n<10
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_2_ (1] _ .2 0]
F@)="g——  FE@) =g

P ©[2,-1,-2,1] Fo(e) = a2 [3,0,~18,0,15]
[, -2, -72,3,—1] [1,0,-24,0,57, 0, —26]

[5, —11, —84,101, 353, —256, —399, 200, 135, —45, —19,3,1]
[1, —4, —54, 67,479, —264, —1171,517, 928, —397, —217, 73, 23, —4, —1]

Fe(z) = z?

[8,0, —725,0, 20295, 0, —261639, 0, 1772203, 0, — 6715082, 0,
[1,0, —188, 0, 8462, 0, —160189, 0, 1535495, 0, —8158979, 0, 25253651, 0,
14790582, 0, —19244327, 0, 14597627, 0, —6125795, 0, 1266517, 0, —97104]
—46589758, 0, 51364132, 0, —33102019, 0, 11793011, 0, — 2068475, 0, 131784]

Fr(z) = z2

Tab. 5. The generating functions Fp,(z) = :°=0 fm(n)z™, 2<m < 7.
Polynomials co + 1@ + c27% + ... + cpx? are written as [cq,¢1,¢2, ..., Cp)
2 [1] 2 [1]
Hao(z) =2° —— Hi(z) =" ————
e e e S
1 1,0,3
LT 0 PO . RO VIR VR DO

[1,-2,-2,2,-1] [1,0,-11,0,0,0,-2]

[1,-1,3,—-24,24,--3,0,3,-15,9,4,-2,1]

H =

s(@) =2 [1, -5, —14, 63, —12, —90, 35, 66, —118, 8, 82, —42, —28, 4, —2]
Tab. 6. The generating functions H, () = :°_0 hm(n)c™, 2<m < 6.

Polynomials ¢ + ¢12 + cpz? + ...+ cpz? are written as [cg,c1,¢2,. .., Cp)
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