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Abstract. The purpose of this note is to extend previous known results about
maximal chains of copies of countable ultrahomogeneous relational structures.

In particular, we completely describe order types of maximal chains in posets

of the form P(Γ) = {A ⊆ Γ : A ∼= Γ}, where Γ is a countable ultrahomoge-
neous digraph belonging to Cherlin’s fourth class, freely generated countable

ultrahomogeneous directed graphs. Analogous characterizatons were known

for countable ultrahomogeneous posets and graphs.

1. Introduction

1.1. Background. The purpose of this paper is to extend some known results
about the classification of maximal chains in the posets of the form (P(X),⊆),
where P(X) = {A ⊆ X : A ∼= X} and X is a countable ultrahomogeneous structure.
All the notions are defined in Section 1.3, however, let us mention that we denote
the class of maximal chains in a poset P by MP . Since we only deal with suborders
of the powerset P(ω), we aways assume that the order relation is the inclusion ⊆.

Previously, there has been work on this and similar topics. Probably the first
related result is due to Kuratowski in [12] where he showed that

MP(ω) = {Init(L) : L is a countable linear order} ,

where Init(L) is the set of initial segments of the linear order L. Afterwords, Day
in [3] and Koppelberg in [8] obtained characterizations of maximal chains in more
general Boolean algebras. Recently, Kurilić initiated the investigation of orders
P(X) ⊆ P(ω) where X is a relational structure. One aspect of this was exploration
of forcing equivalence of these posets for various structures X. This line of research
was done, for example, in [20, 15, 21, 22]. The other aspect was characterization
of maximal chains in similar posets, and Kurilić gave characterizations of maximal
chains in any positive family on ω in [13] as well as the characterization of the
class MP(Q) in [14]. In a joint work with the first author, Kurilić obtained anal-
ogous characterizations for the case of countable ultrahomogeneous posets in [17]
and countable ultrahomogeneous graphs in [16]. Kurilić and the first author even
investigated antichains in these posets, this can be found in [19].

Let us define two classes of order that will be relevant in the paper. The notation
is consistent with the one in [18]. Let CR denote the class of order types of sets of
the form K \{minK} where K ⊆ R is a compact set of reals such that minK is an
accumulation point of K. Let BR be the subclass of CR for which the corresponding
compact set K is, in addition, nowhere dense.

In this paper, we deal with the case of countable ultrahomogeneous directed
graphs. We will be shortly saying digraphs instead of directed graphs. These were
completely classified in a long program by Cherlin, see [2]. For differently arranged
lists see also [23, pp. 1604] and [1, pp. 47]. We will focus on the fourth group
in Cherlin’s classification - freely generated countable ultrahomogeneous digraphs.
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Note that this is not exactly the same as those whose age has the free amalgamation
property, in a sense that is used today. However, it is very close to it. As an ilus-
tration, in this group only Age(Γn), for all n, does not have the free amalgamation
property, and for trivial reasons. According to [2, pp. 74], there are two subclasses
of the class of freely generated countable ultrahomogeneous digraphs:

• One contains, for n > 0, digraphs Γn - this is the countable ultrahomoge-
neous digraph whose age consists of all finite digraphs not embedding In+1,
the empty digraph with n+ 1 vertices.

• The other contains, for any family of finite tournaments T not containing
the one-element tournament, digraphs Γ(T ) - this is the countable ultraho-
mogeneous digraph whose age consists of all finite digraphs not embedding
any tournament from T .

The restriction on T of not containing the one-element tournament is needed
only for the existence of the required digraph to make sense. We will call such
families non-trivial. Note that infinite digraphs have been investigated in various
other contexts, for just one example one may take a look at [4]. There, certain
partition properties of infinite digraphs have been obtained, for example, for Γ(∅).

1.2. Results. For the start, note that the age of each digraph in the mentioned
two subclasses satisfies the strong amalgamation property (see Definition 1.6), so
by [18, Theorem 1] we have:

Theorem 1.1. If Γ is a freely generated countable ultrahomogeneous digraph, then

BR ⊆ MP(Γ) ⊆ CR.

Next, in Section 2 we deal with the first subclass, countable ultrahomogeneous
digraphs not embedding a particular empty digraph. Observe that for n = 1,
the digraph Γ1 is the countable ultrahomogeneous digraph universal for all finite
digraphs not embedding I2, i.e. there is an edge between every two vertices. This
means that Γ1 is exactly the random tournament T∞, so by the result of Kurilić
and Todorčević from [22, Theorem 2.3], we have

P(Γ1) ∼= P(T∞) ∼= P(GRado),

where GRado is the countable Rado graph. By [16, Theorem 1.2], this implies that
MP(Γ1) = CR. So in the mentioned section, we complete the proof of the following.

Theorem 1.2. Let n > 0. Then MP(Γn) = CR.

In Section 3, we deal with the other class, digraphs Γ(T ) for a non-trivial family
of finite tournaments. Note that whenever a non-trivial family of finite tournaments
T contains the two element tournament, then the graph Γ(T ) is the empty digraph.
Clearly, in this case P(Γ(T )) ∼= [ω]ω, so by [13, Theorem 1] we have the following.

Theorem 1.3. Let T be any non-trivial family of finite tournaments containing
the two element tournament. Then MP(Γ(T )) = BR.

To complete the picture for digraphs Γ(T ), in the last section we analyze the
remaining case, and prove the following theorem, thus completing the picture for
all countable freely generated ultrahomogeneous digraphs.

Theorem 1.4. Let T be a non-trivial family of finite tournaments. Then

MP(Γ(T )) =

{
BR, if T contains the two element tournament,
CR, otherwise.

Let us also mention that, as graphs Γn, for n > 0, have many features in common
with Kn-free graphs from the symmetric world, the proofs in Section 2 follow closely
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the proof of the main result in [16]. In Section 3, there is a technical difficulty that
since we do not know the family T in advance, we do not have a nice presentation
of the Fräıssé limit in question. So the approach taken there, although similar in
spirit, is significantly more general, and possibly can be used in many other cases.
On the other hand, in Section 2 we had to develop methods similar to the ones in
[7], in order to get a nice presentation of graphs Γn.

1.3. Preliminaries. As usual in set theory, we identify a positive integer n with
the set {0, 1, . . . , n− 1}, Q denotes the set of rational numbers, and Z is the set of
integers. For a set X and n > 0, we denote [X]n = {A ⊆ X : A is of size n}. For
a function f : X → Y and A ⊆ X, we denote f [A] = {f(x) : x ∈ A}. Formally, a
relational structure consists of a non empty set, say X, and a family of relations
on X, say {ρi : i ∈ I}. Typically, we will write (X, ρ̄) for such structure. Note that
we sometimes use just X if the family of relations is clear from the context. For a
relation ρ, its arity is denoted ar(ρ). The set {ar(ρi) : i ∈ I} is the signature of the
structure (X, ρ̄). A relational structure (Y, σ̄) is a substructure of (X, ρ̄) if Y ⊆ X,
both have the same signature, and σi = Y ar(ρi) ∩ ρi for each i ∈ I. A function
f : X → Y is an embedding between structures (X, ρ̄) and (Y, σ̄), if they both have
the same signature, and for each i ∈ I and (xj : j < ar(ρi)) ∈ Xar(ρi), we have

(xj : j < ar(ρi)) ∈ ρi ⇔ (f(xj) : j < ar(ρi)) ∈ σi.

In this paper, we will deal mostly with digraphs. By a digraph, we assume a
relational structure (D, ρ) such that:

(1) ar(ρ) = 2, i.e. ρ ⊆ D2,
(2) there are no loops in D, i.e. (∀d ∈ D) (d, d) /∈ ρ,
(3) There are no two-way edges in D, i.e. (∀d, e ∈ D) (d, e) ∈ ρ⇒ (e, d) /∈ ρ.

So, if (X, ρ) and (Y, σ) are digraphs, f is an embedding from X to Y if:

(∀a, b ∈ X) (a, b) ∈ ρ⇔ (f(a), f(b)) ∈ σ.

Similarly, a digraph (Y, σ) is a substructure of a digraph (X, ρ) if Y ⊆ X and
σ = Y 2 ∩ ρ. For a digraph (X, ρ) and Y ⊆ X, we will typically, when there is no
danger of confusion, write simply (Y, ρ) instead of (Y, Y 2 ∩ ρ) for the substructure
of (X, ρ) given by the subset Y . For a digraph (D, ρ), we say it is a tournament if
for any two different vertices a and b in D, either (a, b) or (b, a) belong to ρ.

Example 1.5. We give an example of two digraphs. The first one we will call Ω.
It has three vertices, say u, v, and w, together with one edge (u, v). Thus, formally,

Ω = ({u, v, w} , {(u, v)}).
Note that no empty digraph with more than two vertices embeds into Ω.

The other digraph will be called Λ. It also has three vertices, say again u, v, and
w. This one has exactly two edges, (u,w) and (v, w). So, formally,

Λ = ({u, v, w} , {(u,w), (v, w)}).
Note that no tournament with more than two vertices embeds into Λ.

One direction in general investigations of relational structures is through Fräıssé’s
theory. It focuses on countable ultrahomogeneous structures, although it is possible
to put it in a much more general framework, see for example [9, 10, 11]. Recall
that a relational structure (X, ρ̄) is ultrahomogeneous if any isomorphism between
finite substructures of (X, ρ̄) can be extended to an automorphism of (X, ρ̄). Note
that some authors call this notion homogeneity.

There are many examples of ultrahomogeneous structures, just to name a few:
the rational line (Q, <), the countable random graph GRado, or the countable ran-
dom tournament T∞. To get more general theory, one considers the concept of
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age. For a relational structure (X, ρ̄), its age, denoted Age(X, ρ̄), is the class of all
finite structures embeddable in (X, ρ̄). A class K of finite structures in the same
signature can have various properties, let us mention four properties relevant for
this paper:

Definition 1.6. For a class of structures in the same signature, we define:

(HP) Hereditary property : If A ∈ K and B is a substructure of A, then B is
isomorphic to some structure in K.

(JEP) Joint embedding property : If A,B are in K, then there is C ∈ K such that
both A and B are embeddable into C.

(AP) Amalgamation property : If A,B,C are in K and e : A→ B and f : A→ C
are embeddings, then there are D in K, and embeddings g : B → D and
h : C → D such that g ◦ e = h ◦ f .

(SAP) Strong amalgamation property : IfA,B,C are structures inK and e : A→ B
and f : A → C are embeddings, then there are D in K, and embeddings
g : B → D and h : C → D such that g ◦ e = h◦ f and g[B]∩h[C] = g[e[A]].

The next theorem is the key for all the further development of Fräıssé theory.

Theorem 1.7 (Fräıssé [5], see page 333 in [6]). Let K be a class of finite structures
satisfying HP, JEP, and AP. Then there is an ultrahomogeneous structure (X, ρ̄)
such that Age(X, ρ̄) = K. Moreover, every two ultrahomogeneous structures with
the same age are isomorphic.

We call the ultrahomogeneous structure from the previous theorem the Fräıssé
limit of the class K. Note that Fräıssé also developed a useful criterion to check
whether a given countable structure is ultrahomogeneous.

Theorem 1.8 (Fräıssé [5], see page 332 in [6]). A countable relational structure
(X, ρ̄) is ultrahomogeneous iff for every finite subset F ⊆ X, every embedding
f : (F, ρ̄) → (X, ρ̄) and a ∈ X \ F , there is an embedding Φ : (F ∪ {a} , ρ̄) → (X, ρ̄)
such that f ⊆ Φ.

We will take a ’generic’ approach to building ultrahomogeneous structures. This
approach had already been used in [16], for example, with the same purpose. This
means that we will partially order finite approximations to our desired ultrahomo-
geneous structure, and then a sufficiently generic filter in this poset will provide
the required relation on the rational line Q. Recall that (P,≤) is a partial order if
P is a non-empty set and ≤ is reflexive, transitive, and antisymmetric relation on
P . A set D ⊆ P is dense in P if for each q ∈ P there is some p ∈ D such that
p ≤ q. A set E ⊆ P is open in P if for each q ∈ E and each p ≤ q, we have that
p ∈ E as well. A set G ⊆ P is a filter in P if it is upward closed, meaning that for
each p ∈ G and q ≥ p we have q ∈ G, and downwards directed, meaning that for
each p, q ∈ G there is some r ∈ G such that r ≤ p and r ≤ q. In this setup, we will
only still need the following Rasiowa-Sikorski lemma.

Lemma 1.9. If P is a partial order, and C a countable family of sets dense in P ,
then there is a filter G in P such that G ∩D ̸= ∅ for each D ∈ C

The main tool used in the proofs is the following result.

Theorem 1.10 (Reformulation of Theorem 3.2 from [16]). Let (X, ρ̄) be a countable
relational structure. Suppose that there is a structure (Q, σ̄) of the same signature
as X, such that BR ⊆ MP(X) and that the following two conditions hold:

(1) (Q \ Z) ∩ (−∞, x) ⊆ A ⊆ Q ∩ (−∞, x) ⇒ (A, σ̄) ∼= X, for all x ∈ R ∪ {∞};
(2) (Q \ Z) ∩ (−∞, y] ⊆ C ⊆ Q ∩ (−∞, y] ⇒ (C, σ̄) ̸∼= X, for all y ∈ Q \ Z.

Then MP(X) = CR.
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2. Omitting the empty digraph

In this section we prove Theorem 1.2 for n ≥ 2. Note that we have already
explained the case n = 1. So fix an integer n ≥ 2 in this section. Since finite
digraphs not embedding In+1 clearly have amalgamation property, there is a Fräıssé
limit of this class, and we denote it (Γn, ρ) in this section. We take the announced
generic approach in order to construct the copy of Γn living on Q, and satisfying
the conditions of Theorem 1.10. Then, by Theorem 1.10 the required result follows.

Before we continue with the generic construction, we develop a particular char-
acterization of the graph Γn. This is very useful as it allows us to avoid more
abstract construction, as needed in Section 3.

If (D, τ) is a digraph and n ≥ 2, let Cn(D, τ) denote the set of all triples (F,K,H)
of finite subsets of D such that:

(C1) F ∩K = K ∩H = F ∩H = ∅ and
(C2) In does not embed in (H, τ).

For (F,K,H) ∈ Cn(D, τ) we define the set D
H
F,K as the set of all d ∈ D\(F ∪K∪H)

such that:

(1) (∀a ∈ F ) (d, a) ∈ τ ,
(2) (∀a ∈ K) (a, d) ∈ τ ,
(3) (∀a ∈ H) (a, d) /∈ τ ∧ (d, a) /∈ τ .

The next lemma shows why the introduced notions are useful.

Lemma 2.1. Let n ≥ 2. A countable digraph (D, τ) is isomorphic to Γn if and only
if In+1 does not embed into (D, τ) and DH

F,K ̸= ∅ for each (F,K,H) ∈ Cn(D, τ).

Proof. Note that by Theorem 1.7, it is enough to prove that Age(D, τ) = Age(Γn)
and that (D, τ) is ultrahomogeneous.

First we prove that Age(D, τ) = Age(Γn). Note that Age(D, τ) ⊆ Age(Γn)
follows from the facts that Γn embeds every finite digraph not embedding In+1 and
that In+1 does not embed into (D, τ). Now we show that Age(Γn) ⊆ Age(D). Take
any (G, ρG) ∈ Age(Γn). Then G = {a1, . . . , am}, for some m > 0. We will prove
that for k < m, if ({a1, . . . , ak} , ρG) ∈ Age(D, τ), then ({a1, . . . , ak, ak+1} , ρG) is
an element of Age(D, τ). As {a1} clearly embeds into (D, τ), this is, by induction,
enough to show that G ∈ Age(D, τ). So suppose that for some k < m, there is an
embedding f : ({a1, . . . , ak} , ρG) → (D, τ). Consider the following three sets:

F = {x ∈ {a1, . . . , ak} : (ak+1, x) ∈ ρG} ,
K = {x ∈ {a1, . . . , ak} : (x, ak+1) ∈ ρG} ,

H = {a1, . . . , ak} \ (F ∪K).

Note that {a1, . . . , ak} = F ∪ K ∪ H, and that F ∩ K = K ∩ H = F ∩ H = ∅.
Since the map f is an embedding, the sets f [F ], f [K], and f [H] form a partition
of the set f [{a1, . . . , ak}]. Since (G, ρG) ∈ Age(Γn), the digraph In+1 does not
embed into G. This means that In+1 does not embed into {a1, . . . , ak+1} as well.
Consequently, In cannot embed into H. Since f is an embedding, this means
that In does not embed into f [H]. Hence (f [F ], f [K], f [H]) ∈ Cn(D, τ). By

the assumption, there is some b ∈ D
f [H]
f [F ],f [K]. Then g : {a1, . . . , ak+1} → D,

defined by g(x) = f(x) for x ∈ {a1, . . . , ak} and g(ak+1) = b, is an embedding of
({a1, . . . , ak+1} , ρG) into (D, τ). This completes the proof that G embeds into D,
and that Age(Γn) ⊆ Age(D, τ).

Now we prove that (D, τ) is ultrahomogeneous. We use the characterization from
Theorem 1.8. So let X ⊆ D be finite, let f : (X, τ) → (D, τ) be an embedding, and
let a ∈ D \X. Consider sets: F = {x ∈ X : (a, x) ∈ τ}, K = {x ∈ X : (x, a) ∈ τ},
and H = X \ (F ∪K). Clearly X = F ∪K ∪H and F ∩K = F ∩H = K ∩H = ∅.
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Again, since f is an embedding, sets f [F ], f [K], f [H] form a partition of the set
f [X]. Observe that In does not embed into f [H]. To see this, note that if In
embeds into f [H], then In embeds into H (as f is an embedding). But then In+1

would be embeddable into H ∪ {a} ⊆ D contradicting that Age(D, τ) = Age(Γn).
Since In does not embed into f [H], we have (f [F ], f [K], f [H]) ∈ Cn(D, τ). By the

assumption of the lemma, there is some b ∈ D
f [H]
f [F ],f [K]. This exactly means that

g : X ∪ {a} → D, given by g(x) = f(x) for x ∈ X, and g(a) = b is an embedding.
Moreover, f ⊆ g, so the conclusion of Theorem 1.8 is satisfied. Hence, (D, τ) is
ultrahomogeneous. □

Now we proceed with the generic construction. Recall that we have fixed an
integer n ≥ 2 in this section. Let Pn be the set of all finite digraphs p = (Dp, σp)
such that

(R1) Dp is a finite subset of Q,
(R2) the empty digraph In+1 does not embed into p,
(R3) if a, b ∈ Q, (b, a) /∈ σp, and (b, a+ 1) /∈ σp, then a+ 1 < b,
(R4) if a, a+ 1 ∈ Dp, then (a, a+ 1) ∈ σp.

For p, q ∈ Pn, let the relation ≤ on Pn be given by

p ≤ q ⇔ Dp ⊇ Dq ∧ σp ∩D2
q = σq,

i.e. p ≤ q iff q is a substructure of p.
Clearly, (Pn,≤) is a partial order. For each a ∈ Q, consider the set

Ea = {p ∈ Pn : a ∈ Dp} .
To see that each Ea is dense open in Pn, take any q ∈ Pn. If a ∈ Dq, then q ∈ Ea,
and so there is nothing to prove. If a /∈ Dq, then

p = (Dq ∪ {a} , σq ∪ ((Dq \ {a+ 1})× {a}) ∪ ({a} × (Dq ∩ {a+ 1})))
is clearly a condition satisfying all (R1)-(R4). Also, such p satisfies both p ≤ q
and p ∈ Ea, so Ea is dense open in Pn. Note that this directly implies that the set
EF = {p ∈ Pn : F ⊆ Dp} is also dense open for any finite F ⊆ Q.

We now define another family of dense open sets in Pn. Suppose that F , K, and
H are pairwise disjoint finite subsets of Q, and that m > 0 is an integer. We define
the set EF,K,H,m as the set of all p ∈ Pn such that:

(G1) F ∪K ∪H ⊆ Dp,
(G2) if (F,K,H) ∈ Cn(p), then there is u ∈ Dp ∩ (Q \ Z) such that

(a) max(F ∪K ∪H) < u < max(F ∪K ∪H) + 1
m ,

(b) u ∈ (Dp, σp)
H
F,K .

We will prove that EF,K,H,m is dense open in Pn. Take any q ∈ Pn. If q ∈ EF,K,H,m
there is nothing to prove, so assume not. By density of the set DF∪K∪H there is
some q′ ≤ q such that F ∪K ∪H ⊆ Dq′ . If (F,K,H) /∈ Cn(q

′), then q′ ∈ EF,K,H,m
and the proof is finished. Thus, we can assume that (F,K,H) ∈ Cn(q

′). Take any
u ∈ (Q \ Z) \

⋃
a∈Dq′

{a, a− 1, a+ 1} such that

max(F ∪K ∪H) < u < max(F ∪K ∪H) +
1

m
.

This is possible as Dq′ is a finite set. Finally, define

p = {Dq′ ∪ {u} , σq′ ∪ ({u} × (Dq′ \ (K ∪H))) ∪ (K × {u})} .
It is clear that p satisfies (G1) and (G2). It is also clear that p satisfies (R1). We
still have to show that it satisfies (R2),(R3), and (R4). To see that (R2) holds in p,
note that there is an edge between u and all elements of Dp except elements from
H. Since In does not embed into H (as (F,K,H) is in Cn(q

′), and consequently in
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C(p)), it must be that In+1 does not embed into p. Hence (R2) is true in p. Next
we show (R3). Take any a, b ∈ Q, and suppose that (b, a) /∈ σp, that (b, a+1) /∈ σp,
and that b ≤ a + 1. Since q′ ∈ Pn, it must be that u = a, u = a + 1, or u = b. So
let us consider these three cases.

(1) u = a. Then u+ 1 ∈ Dq′ contradicting the choice of u.
(2) u = a+ 1. Then u− 1 ∈ Dq′ contradicting the choice of u.
(3) u = b. Then (u, a) /∈ σp and (u, a + 1) /∈ σp. Be definition of p, this

means that a+ 1 ∈ K ∪H. From the choice of u, we have then a+ 1 < u,
contradicting the assumption that u = b ≤ a+ 1.

Since all three cases are not possible, we conclude that p satisfies (R3) as well.
Finally, we prove (R4). Suppose that a, a + 1 ∈ Dp are such that (a, a + 1) /∈ σp.
As q′ satisfies (R4), it must be that u = a or u = a + 1. In either case we get
contradiction with the choice of u, simply because then either u+1 or u− 1 would
belong to Dq′ which is not possible. Hence p is a well defined condition in Pn.
Obviously, p ≤ q′ ≤ q and p ∈ EF,K,H,m, so the latter set is dense open in Pn.

Now we proceed with the generic construction. By Lemma 1.9, there is a filter
Gn in Pn intersecting every element of the following family of dense sets:{

DF : F ∈ [Q]<ω
}
∪
{
DF,K,H,m : F,K,H ∈ [Q]<ω pairwise disjoint,m > 0

}
.

This is saying that Gn is sufficiently generic. Define

σ =
⋃
p∈Gn

σp.

Now we will prove that (Q, σ) satisfies all conditions of Theorem 1.10 which will
imply that MP(Γn) = CR.

Lemma 2.2. (Q, σ) is a digraph not embedding In+1.

Proof. As σ ⊆ Q2, it is enough to prove that σ does not contain loops and that
there are no edges in both directions. To see that there are no loops in σ, suppose
that (a, a) ∈ σ for some a ∈ Q. Then there is some p ∈ Gn so that (a, a) ∈ σp, but
this is not possible as (Dp, σp) is a digraph. To see that there are no edges in both
directions, suppose that (a, b), (b, a) ∈ σ for some a, b ∈ Q. Then there is p1 ∈ Gn
such that (a, b) ∈ σp1 and there is p2 ∈ Gn such that (b, a) ∈ σp2 . Since Gn is a
filter, there is some p ∈ Gn such that p ≤ p1, p2. Then (a, b), (b, a) ∈ σp which is
again not possible since p is a digraph.

We still have to show that (Q, σ) does not embed In+1. Suppose on the contrary
that φ : In+1 → (Q, σ) is an embedding. By density of the set Eφ[In+1] and sufficient
genericity of Gn, there is some p ∈ Gn ∩ Eφ[In+1]. This means that φ[In+1] ⊆ Dp.

Since σp = σ ∩ D2
p, this means that φ is an embedding from In+1 into (Dp, σp)

which is not possible by the definition of Pn. Hence, In+1 does not embed into
(Q, σ). □

Lemma 2.3. For each x ∈ R ∪ {∞}, and each A ⊆ Q such that

(Q \ Z) ∩ (−∞, x) ⊆ A ⊆ (−∞, x),

we have (A, σ) ∼= Γn.

Proof. First fix x ∈ R∪{∞} and A ⊆ Q such that (Q\Z)∩(−∞, x) ⊆ A ⊆ (−∞, x).
To prove the statement of the lemma, by Lemma 2.1, it is enough to prove that
(A, σ) does not embed In+1 and that (A, σ)HF,K ̸= ∅ for each (F,K,H) ∈ Cn(A, σ).

By Lemma 2.2, In+1 does not embed into (A, σ). So take (F,K,H) ∈ Cn(A, σ).
Take m > 0 such that

max(F ∪K ∪H) +
1

m
< x.
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Such an m exists because F ∪K ∪H is a finite set. By density of the set EF,K,H,m
and sufficient genericity of Gn, there is some p ∈ Gn ∩ EF,K,H,m. Then we have
F ∪K ∪H ⊆ Dp. As σp is just a restriction of σ to Dp, we have (F,K,H) ∈ Cn(p).
Hence, by the definition of EF,K,H,m, there is some u ∈ Dp ∩ (Q \ Z) such that
max(F ∪K ∪H) < u < max(F ∪K ∪H) + 1

m and u ∈ (Dp, σp)
H
F,K . In particular,

this means that u ∈ A, and since σp is just a restriction of σ, that u ∈ (A, σ)HF,K as

well. Hence (A, σ)HF,K is non-empty, and (A, σ) ∼= Γn. □

Lemma 2.4. For each y ∈ Q\Z, and each C ⊆ Q such that (Q\Z)∩ (−∞, y] ⊆ C
and C ⊆ (−∞, y], we have that (C, σ) ̸∼= Γn.

Proof. Suppose that (C, σ) ∼= Γn for some y ∈ Q \ Z and some C ⊆ Q such that
(Q \ Z) ∩ (−∞, y] ⊆ C ⊆ (−∞, y]. Note that since y ∈ Q \ Z, we know that both y
and y− 1 are in Q \Z. Note also that y = max(C). By density of the set D{y,y−1}
and sufficient genericity of Gn, we know that there is some p ∈ Gn∩D{y,y−1}. Then
y, y − 1 ∈ Dp. Since Gn is a filter, and since (y − 1, y) ∈ σp by property (R4),
we know that (y − 1, y) is in σ as well. Since (C, σ) is universal for all digraphs
not embedding In+1, it contains a substructure isomorphic to Ω from Example 1.5,
i.e. we can assume that ({u, v, w} , {(u, v)}) is actually a substructure of (C, σ).
This, in particular means that (u, v) ∈ σ and there are no other edges between u,
v, and w in σ. Since we assumed that (C, σ) ∼= Γn, by Lemma 2.1, there is some

b ∈ (C, σ)
{y−1,y}
∅,∅ (note that (∅, ∅, {y − 1, y}) ∈ Cn(C, σ) as In+1 does not embed

into ({y − 1, y} , σ) for any n ≥ 2). As y = max(C), this means b < y. By density
of the set Ey−1,y,b there is some q ∈ Gn such that {y − 1, y, b} ⊆ Dq. This is not
possible as σq is a restriction of σ to Dq, and we have a situation that b < y,
(b, y − 1) /∈ σq, and (b, y) /∈ σq contradicting (R3) for q. □

Lemma 2.5. BR ⊆ MP(Q,σ).

Proof. Directly follows from Theorem 1.1, as (Q, σ) is isomorphic to Γn and the
age of the latter digraph has strong amalgamation. □

Theorem 1.2 follows by direct application of Theorem 1.10, using Lemma 2.2,
Lemma 2.3, Lemma 2.4, and Lemma 2.5 (case n = 1 is showed in Subsection 1.2).

3. Omitting tournaments

In this section we complete the proof of Theorem 1.4. So, for the remaining of
the section, fix a non-trivial family of finite tournaments T which does not contain
the two-element tournament. For clarity, let us denote by ρ the digraph relation on
Γ(T ), i.e. (Γ(T ), ρ) is the unique countable ultrahomogeneous digraph whose age
consists of all finite digraphs not embedding any tournament from T . Note that
both existence and uniqueness follow from Fräıssé’s Theorem 1.7. We will prove
that MP(Γ(T )) = CR. We do this in a series of lemmas, each of which shows that
conditions of Theorem 1.10 are satisfied. The proof is generic, in the same sense as
in Section 2. We also try to keep the same structure of the proof.

Let P be the set of all finite digraphs p = (Dp, σp) such that:

(P1) Dp is a finite subset of Q;
(P2) (Dp, σp) embeds into Γ(T );
(P3) for each a, b ∈ Q, if (a, b) ∈ σp and (a+ 1, b) ∈ σp, then a+ 1 < b;
(P4) (a, a+ 1) /∈ σp and (a+ 1, a) /∈ σp for each a ∈ Q.

We order P by the relation ≤ as follows: p ≤ q if q is a substructure of p, i.e. if
Dp ⊇ Dq and σp ∩D2

q = σp. Clearly, (P,≤) defined this way is a partial order.
Observe next, that for each finite set K ⊆ Q, the set CK = {p ∈ P : K ⊆ Dp}

is dense open in P. To see this, note that for any q ∈ P and any a ∈ Q, the
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condition q′ = (Dq ∪{a} , σq) also belongs to P. The consecutive application of this
observation then provides p ≤ q such that K ⊆ Dp.

We will need another family of dense open sets in P. For this, consider two
integers m,n > 0, a set K ∈ [Q]n, a digraph (D, ρ) of size n + 1 which is a
substructure of Γ(T ), and a 1-1 function ψ : K → D. Now, let us define Cm,n,K,D,ψ
as the set of all p ∈ P satisfying the following two conditions:

(d1) K ⊆ Dp;
(d2) if ψ : (K,σp) → (D, ρ) is an embedding, then there are u ∈ Dp ∩ (Q \ Z)

and a map η such that max(K) < u < max(K) + 1
m , that ψ ⊆ η, and that

η : (K ∪ {u} , σp) → (D, ρ) is an isomorphism.

We will now explan why each set Cm,n,K,D,ψ is dense open in P. Take any q ∈ P.
By the density of the set CK , we can extend q to some q′ such that K ⊆ Dq′ . Now,
if ψ : (K,σq′) → (D, ρ) is not an embedding, then q′ ≤ q and q′ ∈ Cm,n,K,D,ψ, so we
showed the density of the latter set. So assume that ψ : (K,σq′) → (D, ρ) is an em-
bedding. Take u ∈

(
(Q \ Z) ∩ (max(K),max(K) + 1

m )
)
\
⋃
y∈Dq′

{y − 1, y, y + 1}.
This is possible as intervals in Q \Z are infinite and Dq′ is a finite set. Now define
a map η and a digraph relation σ′ on K ∪ {u} so that σq′ ∩K2 ⊆ σ′, that ψ ⊆ η,
and that η : (K ∪ {u} , σ′) → (D, ρ) is an isomorphism. This is possible as ψ is
an embedding from (K,σq′) into (D, ρ) and D has exactly one element more than
K. Now we are in the situation that K is the intersection of domains of digraphs
(Dq′ , σq′) and (K∪{u} , σ′), and that σq′ and σ

′ coincide onK. We define a digraph
p = (Dp, σp) so that Dp = Dq′ ∪ {u} and σp = σq′ ∪ σ′. We will now prove that
p ∈ P. Condition (P1) is clearly satisfied, as well as (P2) - note however, that for
(P2) we use the fact that no tournament from T embeds neither into (K ∪{u} , σ′)
nor into (Dq′ , σq′) and there are no other edges in σp. Next, we prove (P3). So
take any a, b ∈ Q and suppose on the contrary, that both (a, b) and (a+1, b) are in
σp, and that b ≤ a+ 1. Since q′ satisfies (P3), it must be that u is equal to either
a, a+ 1, or b. So we consider all three cases.

(1) u = a. Then u+ 1 = a+ 1 ∈ Dq′ , contradicting the choice of u.
(2) u = a+ 1. Then u− 1 = a ∈ Dq′ , again contradicting the choice of u.
(3) u = b. Then (a, u) ∈ σp and (a + 1, u) ∈ σp. Since there are no edges

between u and elements of Dq′ \ (K ∪ {u}), this means that a, a+ 1 ∈ K.
But then, b ≤ a+ 1 ≤ max(K) contradicting the choice of u.

Since all three cases are impossible, we conclude that p satisfies (P3). We still
have to show that p satisfies (P4). So suppose that for some a ∈ Q, we have
(a, a + 1) ∈ σp. Again, since q′ satisfies (P4), it must be that u = a or u = a + 1.
If u = a, then u+ 1 = a+ 1 ∈ Dq′ contradicting the choice of u. In the same way,
it can be seen that u ̸= a + 1, as well. Hence, p satisfies (P4). Since obviously
p ≤ q′ ≤ q and p ∈ Cm,n,K,D,ψ, we conclude that Cm,n,K,D,ψ is dense open in P.

Since the intersection of finitely many dense open sets is dense open, and there
are only finitely many 1-1 functions from K into D, for two fixed finite sets K and
D, the following set is also dense open (form,n > 0, K ∈ [Q]n, andD ∈ [Γ(T )]n+1):

Cm,n,K,D is the set of all p ∈ P such that for all ψ : K
1-1−−→ D, if ψ is an embedding,

then there are u and η satisfying (d1) and (d2).
Consider now the family

{CK : K ⊆ Q finite} ∪
{
Cm,n,K,D : m,n > 0,K ∈ [Q]n, D ∈ [Γ(T )]n+1

}
.

This is a countable family of dense sets in P, so by Lemma 1.9, we know that there
is a filter G in P intersecting each member of this family. We call this property
sufficient genericity of G. Define

σ =
⋃
p∈G σp.
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Clearly, σ ⊆ Q2, so the relational structure (Q, σ) is in the same signature as
(Γ(T ), ρ). We proceed to prove that it satisfies all the conditions of Theorem 1.10.

Lemma 3.1. (Q, σ) is a digraph not embedding any element from T .

Proof. As σ ⊆ Q2, it is enough to prove that σ does not contain loops and that
there are no edges in both directions. To see that there are no loops in σ, suppose
that (a, a) ∈ σ for some a ∈ Q. Then there is some p ∈ G so that (a, a) ∈ σp, but
this is not possible as (Dp, σp) is a digraph. To see that there are no edges in both
directions, suppose that (a, b), (b, a) ∈ σ for some a, b ∈ Q. Then there is p1 ∈ G
such that (a, b) ∈ σp1 and there is p2 ∈ G such that (b, a) ∈ σp2 . Since G is a filter,
there is some p ∈ G such that p ≤ p1, p2. Then (a, b), (b, a) ∈ σp which is again not
possible since p is a digraph.

We still have to show that (Q, σ) does not embed any element from T . Suppose
that (T, ρ′) ∈ T is such that there is an embedding φ : (T, ρ′) → (Q, σ). By density
of the set Cφ[T ], there is some p ∈ G such that φ[T ] ⊆ Dp. Since σp = σ ∩D2

p, this
means that φ is an embedding from (T, ρ′) into (Dp, σp) which is not possible by
the definition of P. Hence, no element from T embeds into (Q, σ). □

Lemma 3.2. For x ∈ R ∪ {∞}, and A ⊆ Q such that (Q \ Z) ∩ (−∞, x) ⊆ A and
A ⊆ (−∞, x), we have (A, σ) ∼= Γ(T ).

Proof. Fix x ∈ R∪{∞} and A ⊆ Q such that (Q\Z)∩(−∞, x) ⊆ A ⊆ (−∞, x). To
show that (A, σ) ∼= Γ(T ), by Theorem 1.7, it is enough to prove that (A, σ) is count-
able, ultrahomogeneous, and embeds all digraphs not embedding any tournament
from T . Clearly, A is a countable set.

First, we show that (A, σ) embeds all finite digraphs not embedding any element
from T . So let (D, ρ′) be any finite digraph not embedding any element from T .
Let D = {d1, . . . , dm}. By induction on k < m, we prove that if ({d1, . . . , dk} , ρ′)
embeds into (A, σ), then ({d1, . . . , dk, dk+1} , ρ′) also embeds into (A, σ). Since
({d1} , ρ′) clearly embeds into (A, σ), this will complete this part of the proof. So
suppose that k < m and that φ : ({d1, . . . , dk} , ρ′) → (A, σ) is an embedding.
To simplify notation, we can assume that D ⊆ Γ(T ) and that ρ′ = ρ ∩ D2.
Denote E = {d1, . . . , dk+1} and G = {d1, . . . , dk}. Let m > 0 be such that
(max(φ[G]),max(φ[G]) + 1

m ) ⊆ (−∞, x). Let ψ : (φ[G], σ) → (E, ρ) be defined
by ψ(a) = b iff φ(b) = a. Since φ is an isomorphism between (G, ρ) and (φ[G], σ),
ψ is an embedding. By density of the set Cm,k,φ[G],E and sufficient genericity of G,
there is p ∈ G ∩ Cm,k,φ[G],E . This means that:

(1) φ[G] ⊆ Dp,
(2) since ψ is an embedding, there is u ∈ Dp ∩ (Q \ Z) and a map η such that

(a) max(φ[G]) < u < max(φ[G]) + 1
m ,

(b) η : (φ[G] ∪ {u} , σp) → (E, ρ) is an isomorphism and ψ ⊆ η.

Since p ∈ G, in particular σp ⊆ σ, this means that η−1 is an embedding of (E, ρ′)
into (A, σ) (note that φ[G]∪ {u} ⊆ A as (Q \Z)∩ (−∞, x) ⊆ A). Hence, the proof
of induction is complete, which in turn finishes the proof of universality of (A, σ).

Now we prove that (A, σ) is ultrahomogeneous. We use the characterization of
ultrahomogeneity given in Theorem 1.8. So let F ⊆ A be a finite substructure, let
f be an embedding from (F, σ) into (A, σ), and take any a ∈ A \ F . Consider the
digraph (F ∪ {a} , σ). This is a finite digraph not embedding any element from T
(by Lemma 3.1), thus it embeds into Γ(T ) by the result of the previous paragraph.
Let ψ : F ∪ {a} → Γ(T ) be this embedding. Since A ⊆ (−∞, x) and F is a finite
set, there is some m > 0 such that (max(F ),max(F ) + 1

m ) ⊆ (−∞, x). Denote
the cardinality of F by n. By density of the set Cm,n,f [F ],ψ[F∪{a}] and sufficient
genericity of G, there is p ∈ G ∩ Cm,n,F,ψ[F∪{a}]. This means that:
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(1) F ⊆ Dp,
(2) since ψ ◦ f−1 : (f [F ], σ) → (ψ[F ∪ {a}], ρ) is an embedding, there is an

element u ∈ Dp ∩ (Q \ Z) and a map η such that
(a) max(F ) < u < max(F ) + 1

m , in particular u ∈ A,
(b) η : (f [F ] ∪ {u} , σp) → (ψ[F ∪ {u}], ρ) is an isomorphism such that

ψ ◦ f−1 ⊆ η.

Since p ∈ G, we can assume that all conditions above hold for σ. So, finally, define
Φ = η−1 ◦ ψ : (F ∪ {a} , σ) → (f [F ] ∪ {u} , σ). Since η is an isomorphism and ψ is
an embedding, Φ is also an embedding. Note that since u ∈ A, the image of Φ is a
subset of A, as required. To see that f ⊆ Φ, take some v ∈ F . Then

Φ(v) = η−1(ψ(v)) = (ψ ◦ f−1)−1(ψ(v)) = f(ψ−1(ψ(v))) = f(v).

Hence, f ⊆ Φ, and this completes the proof of ultrahomogeneity of (A, σ) using
Theorem 1.8. □

Lemma 3.3. For each y ∈ Q \Z, and C ⊆ Q such that (Q \Z)∩ (−∞, y] ⊆ C and
C ⊆ (−∞, y], we have that (C, σ) ̸∼= Γ(T ).

Proof. Suppose that for y ∈ Q \ Z and C ⊆ Q such that (Q \ Z) ∩ (−∞, y] ⊆ C
and C ⊆ (−∞, y], we have (C, σ) ∼= Γ(T ). Note that since y ∈ Q \ Z, we know
that both y and y − 1 are in Q \ Z. Note also that y = max(C). By density
of the set D{y,y−1} we know that there is some p ∈ G such that y, y − 1 ∈ Dp.
Since G is a filter, and by property (P4) both (y − 1, y) /∈ σp and (y, y − 1) /∈ σp
hold, we know that (y, y − 1) and (y − 1, y) are not in σ as well. Since (C, σ)
embeds all digraphs not embedding any element of T , it contains a substructure
isomorphic to Λ - take a look at Example 1.5. Let us assume that Λ is actually
a substructure of (C, σ) and that Λ = ({u, v, w} , {(u,w), (v, w)}), i.e. (u,w) ∈ σ
and (v, w) ∈ σ and there are no other edges between u, v, and w in σ. Consider
now two digraphs Σ1 = ({u, v} , ∅) and Σ2 = ({y − 1, y} , ∅). These are clearly
isomorphic substructures of (C, σ), for example φ : {u, v} → {y − 1, y} given by
φ(u) = y and φ(v) = y is one isomorphism. As (C, σ) is ultrahomogeneous there
is an automorphism Φ : (C, σ) → (C, σ) such that φ ⊆ Φ. Consider Φ(w). As Φ
is an isomorphism, it must be that (Φ(u),Φ(w)) ∈ σ and (Φ(v),Φ(w)) ∈ σ. This
exactly means that (y − 1,Φ(w)) ∈ σ and (y,Φ(w)) ∈ σ. By density of the sets
C{y−1,y,Φ(w)} there is some q ∈ G such that y − 1, y,Φ(w) ∈ Dq. Since q satisfies
condition (P3), it means that y < Φ(w). But this is in contradiction with the fact
that Φ is an automorphism of C and that y = max(C). □

Lemma 3.4. BR ⊆ MP(Q,σ).

Proof. Directly follows from Theorem 1.1, as (Q, σ) is isomorphic to Γ(T ) and the
age of the latter digraph has strong amalgamation property. □

Theorem 1.4 now follows directly by considering Theorem 1.3 and by application
of Theorem 1.10, using Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4.
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