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ABSTRACT
Improvement of prediction accuracy and early detection of the Alzheimer’s disease
is becoming increasingly important for managing its impact on lives of affected pa-
tients. Many machine learning approaches have been applied to support the diagnosis
and prediction of this illness. In this paper we propose an approach for improving the
Alzheimer’s disease classification accuracy by using data fusion of several indepen-
dent clinical datasets. Data fusion was performed twofold: 1) by enriching attributes
of the base dataset with the attributes of the secondary dataset and 2) by enriching
the examples set of the base dataset with the examples of the secondary dataset.
In both cases the missing values (for newly added attributes and/or examples) were
predicted by using linear regression for numeric and naive Bayes classifier for nomi-
nal attributes. We experimented on three data sources: on a dataset of Alzheimer’s
disease impaired patients, on a dataset of patients with vascular dementia, and on a
dataset of patients who have been affected by a stroke. We fused these datasets with
different data fusion approaches and analysed the improvement in classification ac-
curacy as well as the quality of the fused attributes. The experiments indicated that
we obtained an increase of classification accuracy on the fused dataset compared
with the accuracy obtained from individual dataset.
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1. Introduction

Machine learning is nowadays used in many medical fields (Benzebouchi, Azizi, Ashour,
Dey, & Sherratt, 2019; Saâdaoui et al., 2015). However, medical data is usually hard
to collect and it can take years to reach their sufficient amount to perform experi-
ments, analyses and research (this usually does not hold for the imaging data (Qin,
Chen, Zhang, & Chai, 2018) and for the cases when specialised systems for data col-
lection are implemented (Dai, Fu, Dai, & Lu, 2017)). The problem of collecting data
is additionally aggravated by privacy polices, which limit data collection, sharing and
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distribution. Medical datasets are most commonly collected for investigating a single
medical phenomenon (e.g., an illness), making them rarely available to researchers
from other research fields. The broader availability of data could increase data us-
ability and re-usability, since the same patients analyses are performed for different
medical studies. Data for a single patient can be enriched in two distinctive ways: ei-
ther by supplementing the patient’s attributes with additional attributes for the same
patient from the second medical database, or by inducing the new missing attributes
for the single patient based on properties of the most similar other patients from the
second database – a process called data fusion.

Alzheimer’s disease is a type of dementia that usually affects elderly people. Due
to the fact that we are currently living in the era of population ageing, public health
impact of this disease is rather high. In 2015, more than 15 million family members
of Alzheimer’s disease patients’ provided an estimated $221 billion for caregiving, and
the number is increasing (Alzheimer’s Association, 2016). A cure for the Alzheimer’s
disease does not exist, but effective interventions in early phase of the illness may
significantly slow its progression, improving patient’s life and lowering the caregiving
costs (Roberson & Mucke, 2006). As a consequence, a lot of effort has been put into
increasing the rate of early detections of the illness. One direction of achieving this goal
relies on advanced methods in the field of artificial intelligence and machine learning.

In this work we aim to improve the Alzheimer’s disease classification accuracy by
applying data fusion of a base Alzheimer’s disease dataset with two other datasets:
a dataset of patients that suffer from vascular dementia, and a dataset of patients
who had a stroke. Although all the three datasets contain data for completely dif-
ferent patients, they share a distinct number of common attributes, which we used
for performing data fusion. Data fusion was performed in two different ways: 1) by
enriching attributes of the base dataset with the attributes of the secondary dataset,
and 2) by enriching examples of the base dataset with the examples of the secondary
dataset. Addition of new attributes and/or examples implies a lot of missing values.
The missing values are then predicted with the models that are built upon tempo-
rary datasets made particularly for this purpose. Finally, we use linear regression for
predicting numeric, and naive Bayes for predicting nominal, missing values.

The paper is organised as follows. Section 2 overviews the state of the art for
Alzheimer’s disease prediction and data fusion. In Section 3 we give detailed insights
into datasets and methodology we used. Section 4 presents results of all experiments.
Conclusions and directions of further research are given in Section 5.

2. Related work

In this section we present relevant related research in the fields of the Alzheimer’s
disease prediction with machine learning and data fusion.

2.1. Alzheimer’s disease prediction

Prediction and early detection of Alzheimer’s disease are important goals in medicine.
One way of reaching them is to develop highly accurate machine learning predictive
models that can learn from various kinds of collected data. Bratić, Kurbalija, Ivanović,
Oder, and Bosnić (2018) made an overview of such methodologies and some of them
are described in the following.
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Tierney et al. (1996) used a battery of neuropsychological tests for predicting on-
set of Alzheimer’s disease. After selecting most relevant attributes, they obtained a
model with accuracy of 89%. Magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) data are also suitable for Alzheimer’s disease prediction. Liu,
Zhang, Shen, and Alzheimer’s Disease Neuroimaging Initiative (2012) suggested using
the ensembles with sparse representation-based classifier (SRC) as a weak classifier
on subsamples of patches from the raw MRI. Classification accuracy of their method
reached up to 90.8%. Dyrba et al. (2013) achieved accuracy of 83% by using Support
Vector Machine (SVM) and the Diffusion Tensor Imaging (DTI) dataset. Kippenhan,
Barker, Pascal, Nagel, and Duara (1992) split PET voxels into 67 brain regions, and
extracted metabolism activity features. By using neural networks on their dataset they
obtained a performance comparable to that of an independent expert who classified
samples based on examining only PET images.

Longitudinal MRI data is interesting to analyse as well, since it can provide valuable
information on how the disease progresses. Huang, Yang, Feng, Chen, and Alzheimer’s
Disease Neuroimaging Initiative (2017) proposed a hierarchical classification method
that builds multiple multilevel classifiers upon longitudinal MRI data. Their method
outperformed a base classifier by having an accuracy of 79%. Gray et al. (2012) showed
that using data extracted from baseline and 12-month follow-up MRI could increase
classification accuracy. Their model achieved the accuracy of 88%. Jiji (2018) per-
formed a volumetric analysis of anatomical components of brain with multiclass par-
ticle swam optimisation technique (MPSO) in order to detect the stage of Alzheimer’s
disease.

Many researchers used protein data in order to predict or detect the Alzheimer’s
disease. Ray et al. (2007) examined 120 proteins using significance analysis of microar-
rays (SAM), and they managed to identify 18 proteins that were significantly different
between patients with Alzheimer’s disease and healthy controls. This could indicate an
early onset of the Alzheimer’s disease. Llano, Devanarayan, Simon, and Alzheimer’s
Disease Neuroimaging Initiative (2013) analysed prediction power of proteins for classi-
fication of Alzheimer’s disease using the analysis of covariance (ANCOVA) and t-test.
Doecke et al. (2012) used blood protein levels measured in plasma as an input to
feature selection algorithms. Most of the frequently selected features were the ones
that are related to the Alzheimer’s disease; however, carcinoembryonic antigen feature
stood out since it has never been associated with the Alzheimer’s disease before.

Electroencephalography (EEG) signals have also been used in detection and predic-
tion of the Alzheimer’s disease, although more rarely. Pritchard et al. (1994) extracted
features from EEG signals measured on 19 different positions of the skull, and achieved
accuracy of 92% by using neural networks. By additional analysis of frequency sec-
tions they showed that brain activity significantly drops for subjects with Alzheimer’s
disease.

Besides aiming to increase the classification accuracy, Y. Zhang et al. (2015) also
managed to detect 30 brain regions that are related to the disease. Hinrichs et al. (2009)
proposed the use of the Linear Programming Boosting for predicting Alzheimer’s dis-
ease by using MRI. Additional analysis of voxels selected during training phase revealed
that they were mostly concentrated in hippocampus and parahippocampal gyrus which
have been previously associated with Alzheimer’s disease.

In order to increase general predictability of the Alzheimer’s disease, it is important
to deepen domain knowledge about the illness. Machine learning can help by proving
some already known facts, or can even help obtaining the new knowledge.
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2.2. Data fusion

Data for a certain machine learning problem can be represented in different modali-
ties and can come from different sources. To integrate their information into a joint
representation and facilitate successful learning, data fusion methods are required.
Such sources usually do not contain an explicit primary key that would facilitate easy
merging of data, but require advanced data fusion methods.

Past research has tackled data fusion with three different strategies: by applying
early, intermediate and late fusion. The early data fusion is the most simple process
that exploits the availability of a common primary key that enables us to merge records
of two independent datasets. The intermediate fusion inputs data of different modal-
ities into a machine learning algorithm, which extracts relevant data characteristics
(attributes) and uses them for learning (D. Zhang et al., 2011). Finally, within the
late data fusion, the final outputs (predictions) of machine learning algorithms, that
have been separately applied to each of the modalities, are combined into the final
prediction (Gray et al., 2013).

An example of applying early and intermediate data fusion was done by D. Zhang
et al. (2011), who used three different data modalities: region volumes in MRI im-
ages, average regional voxel intensities from PET scans, and biomarkers from cere-
brospinal fluid. They applied different SVM kernels to each modality and combined
their weighted average into the final SVM. They compared the obtained results with
performance of SVM models on each separate modality and on models that perform
early data fusion (merging of data). The results showed that the first approach (multi-
kernel SVM) generated significantly better results than the other two approaches.
Several different studies also applied SVM and other kernel based techniques for the
fusion of multiple modalities (Hinrichs, Singh, Xu, & Johnson, 2011; Kohannim et al.,
2010; Sun, Qiao, Lelieveldt, & Staring, 2018; Ye et al., 2008).

Gray et al. (2013) also implemented the intermediate data fusion for data of differ-
ent modalities (MRI data, PET data, cerebrospinal fluid measurements and genetic
data). For each modality they learned a separate random forest model and linearly
combined their predictions into a manifold representation. Their results showed that
the model that learns from the combined data achieves higher performance than mod-
els for individual modalities. Bi, Cai, Wang, and Liu (2019) proposed a multimodal
random forest (MRF) method to distinguish AD from healthy individuals based on
neuroimaging and genetic data. The proposed approach tries to construct optimal
fusion features, which are then used for the selection of abnormal brain regions and
genes. Furthermore, the authors presented a novel machine learning framework of data
fusion, classification, feature selection, and disease-causing factor extraction.

As expected, many other machine learning/classification/diagnosis techniques were
used for AD diagnosis on fused data. Ortiz, Fajardo, Gorriz, Ramı́rez, and Mart́ınez-
Murcia (2014) performed a fusion of multimodal image (MRI and PET) data by com-
bining Sparse Representation Classifiers. They report accuracies of up to 95% which
clearly outperform the classification accuracy obtained using single-modality images.
Walhovd et al. (2010) applied multi-method stepwise logistic regression analysis to
integrate multiple modalities (MRI, PET, CSF). Again data fusion approach yielded
better results than single-data approach, although it is concluded that MRI and PET
were more predictive than CSF. Westman, Muehlboeck, and Simmons (2012) used 60
variables from MRI, PET and CSF data for orthogonal projections to latent structures
(OPSL) multivariate analysis. Their combined model accomplished 91.8% accuracy
compared to 81.6% for CSF measures and 87.0% for MRI measures alone.
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Suk, Lee, Shen, and Alzheimer’s Disease Neuroimaging Initiative (2014) used MRI
and PET images to extract groups of voxels that are relevant for predicting the
Alzheimer’s disease. They applied the multimodal Deep Boltzmann Machine to ex-
tract the attributes from the input data and feed them into the neural network. The
features were then fed into the ensemble with SVM as a weak classifier (Liu et al.,
2012). Again, models built on multimodal data outperformed the models built on only
one modality. As expected, most of the recent research mainly focus on novel and
advanced technologies like deep learning (Kim & Lee, 2018; Ning et al., 2018; Suk &
Shen, 2013) where neuroimaging data is fused with other types of data.

An example of late integration was applied by Polikar et al. (2008) to fuse data
collected with multiple EEG electrodes. They proposed an algorithm that used an
ensemble of classifiers for each of the modalities, and joined their predictions using
weighted majority voting. The models that utilised data fusion outperformed models
built on a single modality. A similar approach was applied by Parikh et al. (2005).
The authors applied data fusion of data recorded from the Pz and Cz electrodes of the
EEG, since they believed that these electrodes contained complimentary information,
for early diagnosis of Alzheimer’s disease. The EEG data was further analysed using
multi-resolution wavelet analysis which generated multiple classifiers. These classifiers
were then combined through a weighted majority voting.

Since the neuroimaging techniques (like MRI and PET) have proved to be a powerful
support in AD diagnosis (Teipel et al., 2015) a great majority of papers combined
these techniques with some other data sources to perform a more accurate diagnosis.
Additionally, a few researches combined several different EEG datasets for successful
diagnosis. On the other hand, our research tries to exploit data from several unrelated
sources and sub-domains (AD, vascular dementia and stroke) to improve the accuracy
of AD diagnosis, while not relying overwhelmingly on neuroimaging data. To the best
of our knowledge there is no existing research which fuses data from different neurology
subfields for the purpose of AD diagnosis.

3. Methods

In this section we present datasets that were used in the paper and provide a descrip-
tion of the data fusion approach.

3.1. Datasets

In this paper we used three different medical datasets. The datasets contain medical
information gathered from three PhD theses conducted at the Medical Faculty of the
University of Novi Sad. Research studies were carried out at the Neurology Clinic
of the Clinical Centre of Vojvodina and Vojvodina Institute of Oncology, Center for
Diagnostic Imaging. Each dataset describes a different medical domain, as follows:

• Dataset of patients impaired with Alzheimer’s disease (in the following
denoted with A). This dataset was used as a base dataset, which is enriched with
data fusion techniques by using the other two datasets. The dataset contains data
about 85 patients, of which 29 are healthy controls, 27 are patients with amnestic
mild cognitive impairment, and 29 are patients with Alzheimer’s disease due to
NINCDS-ADRDA criteria (McKhann et al., 1984). Demographic criteria for the
study were people aged 60 to 85, with minimum 12 years of formal education.
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ACE III – Addenbrooke cognitive examination III MMSE – Mini mental status examination
BDAE – Boston diagnostic aphasia examination MTA – Mediotemporal atrophy score

BDI – Beck depression inventory NRS – Neurobehavioural rating scale
BNT – Boston naming test PA – Parietal atrophy
ESS – European stroke scale PSMS – Physical self-maintenance scale

EXIT25 – The executive interview test-25 QoL – Quality of life
FAB – Frontal assessment battery RAVLT – Rey auditory verbal learning test
FBI – Frontal behavioural inventory ROCF – Rey-Osterrieth complex figure

GCA – Global cortical atrophy score TMT – Trail making test
GDS – Geriatric depression scale WAIS – Wechsler adult intelligence scale

HAMD – Hamilton depression rating scale WCST – Wisconsin card sorting test
HIS – Hachinski ischaemic stroke scale WMH – White matter hyperintensities

HVO – Hooper visual organisation WMS – Wechsler memory scale
IADL – Instrumental activities of daily living

Table 1.: The list of acronyms that are used in the tables 2, 3, 4, 5, 6 and 7.

1. Gender 10. WCST – Correct re-
sponse

19. RAVLT – A7 28. Category fluency score

2. Age 11. WCST – Failure to
maintain set

20. RAVLT – Recognition A 29. MMSE – Total

3. Years of education 12. WCST – Conceptual
level responses

21. RAVLT – Recognition B 30. Verbal forward digit
span

4. Arterial hypertension 13. WCST – Perseverative
response

22. RAVLT – A6-A5 31. Verbal backward digit
span

5. Diabetes 14. WCST – Perseverative
errors

23. TMT – A 32. Visual forward digit
span

6. Obesity 15. WCST – Nonpersevera-
tive errors

24. TMT – B 33. Visual backward digit
span

7. Smoking 16. WCST – Total errors 25. Verbal fluency S 34. ROCF Copy
8. Alcohol 17. RAVLT – Total A1-A5 26. Verbal fluency K 35. ROCF immediate recall
9. WCST – Number of cat-
egories

18. RAVLT – A6 27. Verbal fluency L 36. ROCF 45 minutes recall

Table 2.: The list of attributes that exist in all the three datasets (A, D and S).

1. Cardiovascular diseases 5. WCST – Total reponses 9. RAVLT – A3 12. RAVLT – B1
2. Heredity 6. SSS – Total 10. RAVLT – A4 13. HAMD – Total score
3. WAIS- Digit symbol cod-
ing

7. RAVLT– A1 11. RAVLT – A5 14. IADL – Total

4. WCST – Trials to com-
plete first category

8. RAVLT – A2

Table 3.: The list of attributes that exist only in datasets A and D.

1. Marital status 3. WCST – Errors 4. BDI – Total 5. WMS – Mental control –
attention/concentration in-
dex

2. BNT – Total

Table 4.: The list of attributes that exist only in datasets A and S.

This research was conducted at the Neurology Clinic of the Clinical Centre of
Vojvodina in Novi Sad, Serbia and Institute of Oncology in Sremska Kamenica
in the period from January 2016 to December 2017. The type of the patient
is given in a target class variable. There is a total of 142 attributes (including
class), which represent patients’ demographics, diagnostic data and scores of
various psychological tests.
• Dataset of patients with vascular dementia (denoted with D). This dataset

includes data about 90 people aged 50 to 80, divided into two groups. The first
group, consisted of 50 people, are patients diagnosed with probable vascular de-
mentia based upon NINDS-AIREN (Román et al., 1993) and SCADDTC (Chui
et al., 1992) criteria. Second group is a control group consisted of 30 people
with the mini-mental state exam (MMSE) score between 28 and 30 who had no
cognitive decline. Research was carried out at the Neurology Clinic of the Clin-
ical Centre of Vojvodina in Novi Sad, Serbia, from January 2004 until Novem-
ber 2007. The dataset has 115 attributes containing patients’ demographics and
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1. Memory impairment 23. Ischaemic heart disease 45. QoL – Caregiver 67. ACE III – Attention
2. Main symptoms 24. Coronary artery disease 46. NPI – Total 68. ACE III – Memory
3. Time orientation impair-
ment

25. Heart rhythm disorders 47. NPI – Delusions 69. ACE III – Fluency

4. Praxia 26. Hypothyroidism 48. NPI – Hallucinations 70. ACE III – Language
5. Gnosia 27. Prior depression 49. NPI – Dysphoria 71. ACE III – Visuospatial
6. Visuospatial impairment 28. Head injury 50. NPI – Anxiety 72. MMSE – Orientation to

time
7. Calculation 29. Physical inactivity 51. NPI – Agita-

tion/aggression
73. MMSE – Orientation to
place

8. Attention 30. No Focal neurological
impairment

52. NPI – Euphoria 74. MMSE – Registration

9. Decision making 31. Focal neurological im-
pairment – pyramidal signs

53. NPI – Disinhibition 75. MMSE – Attention and
Calculation

10. Functionality 32. Focal neurological im-
pairment – sensibility

54. NPI – Irritabil-
ity/lability

76. MMSE – Recall

11. Behavioural and psy-
chological symptoms

33. Focal neurological im-
pairment – cerebelar symp-
toms

55. NPI – Apathy 77. MMSE – Naming

12. Depression 34. Focal neurological im-
pairment – extrapyramidal
signs - tremor

56. NPI – Aberrant Motor
behaviour

78. MMSE – Repetition

13. Hallucinations 35. Focal neurological im-
pairment – extrapyramidal
signs – rigor

57. HVO – Total 79. MMSE – Complex com-
mand

14. Delusions 36. Focal neurological im-
pairment – extrapyramidal
signs – bradykinesia

58. BNT – Phonemic cues 80. MMSE – Comprehen-
sion

15. Agitation 37. Focal neurological im-
pairment – extrapyramidal
signs – postural instability

59. BNT – Semantic cues 81. MMSE – Sentence

16. Emotional lability 38. Focal neurological im-
pairment – extrapyramidal
signs – involuntary move-
ments

60. EXIT25 – Total 82. MMSE – Copying

17. Behavioural disinhibi-
tion

39. Focal neurological im-
pairment – extrapyramidal
signs – chorea

61. FAB – Total 83. GCA score

18. Socially unacceptable
behaviour

40. Focal neurological im-
pairment – extrapyramidal
signs – athetosis

62. WAIS – Similarities 84. PA Score

19. Frequent falls 41. Focal neurological
impairment-extrapyramidal
signs – gait disturbances

63. WAIS – Block design
test

85. MTA score

20. Losses of consciousness 42. Focal neurological im-
pairment – extrapyramidal
signs – disinhibition signs

64. TMT – A errors 86. WHM score

21. Fluctuation of cognition 43. Focal neurological
impairment-Incontinence

65. TMT – B errors 87. Alzheimer’s disease

22. Evidence of stroke 44. QoL – Patient 66. ACE III – Total

Table 5.: The list of attributes that exist only in dataset A.

scores of psychological tests.
• Dataset of patients who had a stroke (denoted with S). This dataset contains

70 examples, including 40 acute ischaemic stroke patients, aged 45-78, and 30
healthy controls. The acute ischaemic stroke diagnosis was established based on
clinical symptoms and neuroradiological correlates obtained with brain comput-
erised tomography (CT). The study was conducted at the Neurology Clinic of
the Clinical Centre of Vojvodina in Novi Sad, Serbia, in the period from May
2007 to September 2008. The dataset contains 72 attributes which represent pa-
tients’ demographics and scores of psychological and stroke related tests. Value
of the target class variable determines whether a patient had a stroke.

All the above datasets share a number of attributes that could be used as a basis
for data fusion, as follows:

• A and D share 50 attributes, which makes 35% of all attributes in A,
• A and S share 41 attributes, which makes 28% of attributes in A.

Lists of common and dataset-specific attributes are shown in Tables 2, 3, 4, 5, 6 and
7. The acronyms used in the tables are presented in Table 1.

Note that although the datasets share a subset of common attributes, they contain
data for different patients. Furthermore, the patients are not denoted with unique IDs
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1. WCST – % Perseverative
errors

18. HAMD – Weight loss 34. NRS – Total score 50. NRS – Suspiciousness

2. RAVLT – Recognition 19. HAMD – Insight 35. NRS – Inatten-
tion/reduced alertness

51. NRS – Fatigability

3. HAMD – Depressed
mood

20. HAMD – Diurnal varia-
tion I

36. NRS – Somatic concern 52. NRS – Hallucinations

4. HAMD – Feelings of guilt 21. HAMD – Diurnal vaia-
tion II

37. NRS – Disorientation 53. NRS – Motor retarda-
tion

5. HAMD – Suicide 22. HAMD – Depersonal-
ization, derealization

38. NRS – Anxiety 54. NRS – Unusual thought
content

6. HAMD – Insomnia: Early
in the night

23. HAMD – Paranoid
symptoms

39. NRS – Expressive
deficit

55. NRS – Blunted affect

7. HAMD – Insomnia: Mid-
dle of the night

24. HAMD – Obsessive and
compulsive symptoms

40. NRS – Emotional with-
drawal

56. NRS – Excitement

8. HAMD – Insomnia: Early
hours of the morning

25. IADL – Ability to use
telephone

41. NRS – Conceptual dis-
organisation

57. NRS – Poor planning

9. HAMD – Work and ac-
tivities

26. IADL – Shopping 42. NRS – Disinhibition 58. NRS – Mood lability

10. HAMD – Retardation 27. IADL – Food prepara-
tion

43. NRS – Guilt feelings 59. NRS – Tension

11. HAMD – Agitation 28. IADL – Housekeeping 44. NRS – Memory deficit 60. NRS – Comprehension
deficit

12. HAMD – Psychic anxi-
ety

29. IADL – Laundry 45. NRS – Agitation 61. NRS – Speech articula-
tion defect

13. HAMD – Somatic anxi-
ety

30. IADL – Mode of trans-
portation

46. NRS – Inaccurate in-
sight

62. NRS – Fluent aphasia

14. HAMD – Somatic symp-
toms gastrointestinal

31. IADL – Responsibility
for own medications

47. NRS – Depressed mood 63. PSMS

15. HAMD – Somatic symp-
toms general

32. IADL – Ability to han-
dle finances

48. NRS – Hostil-
ity/uncooperativeness

64. ESS

16. HAMD – Central symp-
toms

33. FBI 49. NRS – Decreased initia-
tive/motivation

65. HIS

17. HAMD – Hypochondri-
asis

Table 6.: The list of attributes that exist only in dataset D.

1. National Institute Stroke
Scale

9. Ischaemic lesions in grey
matter on MR scan

17. Small-vessel stroke 25. Graphesthesia

2. Modified Rankin Scale 10. Ischaemic lesions in
white matter on MR scan

18. Large arteries stroke 26. Limb praxia of left arm

3. Solitary ischaemic lesions
on MR scan

11. Cortico-subcortical is-
chaemic lesions on MR scan

19. Ischaemic encephalopa-
thy

27. Limb praxia of right
arm

4. Multiple ischaemic le-
sions on MR scan

12. Acute stroke 20. BDAE 0-repetition 28. Ideational praxia

5. Unilateral ischaemic le-
sions on MR scan

13. Chronic ischaemic le-
sions on MR scan

21. BDAE – Complex
ideational material

29. Dyspraxia

6. Bilateral ischaemic le-
sions on MR scan

14. Ischaemic lesions in
cerebrum on MR scan

22. BDAE – Comprehen-
sion

30. GDS

7. Ischaemic lesions in left
cerebral hemisphere on MR
scan

15. Ischaemic lesions in
cerebellum on MR scan

23. Finger gnosia 31. Stroke

8. Ischaemic lesions in right
cerebral hemisphere on MR
scan

16. Brain atrophy 24. Stereognosia

Table 7.: The list of attributes that exist only in dataset S.
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that could enable merging of different datasets even if they contained the data about
the same patients.

The goal of this paper is to overcome these obstacles and enrich (fuse) the base
dataset A with additional attributes from datasets D and S by utilising machine learn-
ing. We hope that additional attributes would improve predictive performance, which
we evaluate with our experiments.

3.2. Data fusion

Data fusion is a technique of merging data from multiple datasets into a single dataset.
In this paper we propose two approaches to this task: approach for enriching at-
tributes of the base dataset and approach for enriching the examples set of the
base dataset. Both approaches can also be combined together, yielding a dataset with
enriched attributes and examples. We proceed by describing both approaches in the
following.

Algorithm 1: Outline of the enriching attributes data fusion approach.

input : dataset X and dataset Y
output: dataset XY

1 XY = copy of X; // initialization of the resulting dataset

/* each iteration of the loop enriches XY with one new attribute from Y */

2 foreach att ∈ attributes(Y) \ attributes(X) do
/* filter(D,A) returns a dataset D having only attributes A */

3 Z = filter(Y, att ∪ (attributes(X) ∩ attributes(Y)));
4 train a predictive model C on Z, where target is the attribute att ;
5 add att to XY; // adds new attributes, values still missing

/* fill values of att for each instance in XY */

6 foreach instance ∈ XY do
7 instance[att] = predict(C, instance);
8 end

9 end
10 Return XY .

Enriching attributes. The outline of this data fusion approach is given in Algo-
rithm 1. It uses dataset X as the base dataset and dataset Y as a dataset that we
would like to fuse with dataset X. The final result of the algorithm is the dataset XY
that contains the same examples as X and additional attributes that are specific only
to Y. Values of new attributes in X are calculated in the following manner. For each
attribute that is specific only for Y (denoted with att in the algorithm), a temporary
dataset Z is created. Attributes of Z consist of all common attributes of X and Y and
the single additional attribute att. Then, a predictive model is trained on the dataset
Z, having att as a target attribute (if att is discrete, a classifier is used; if it is contin-
uous, a regression model is used). By computing predictions for instances in XY with
the trained predictive model, the procedure yields values of attribute att for instances
of X.

Enriching number of examples. The second approach is presented in Algorithm
2. The algorithm starts by concatenating all examples from datasets X and Y into
the newly created dataset XY that has the same attribute set as X. This means that
instances from dataset Y will have empty values for the attributes that exist in X
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and do not exist in Y. These missing values are afterwards predicted analogously as
within the previous approach, as follows. For each attribute att that exists in X and
does not exist in Y, a new dataset Z is created. Attribute set of Z consists of all
attributes common to X and Y plus the additional attribute att. The examples of Z
are imported from dataset X. Then, a predictive model is trained on the dataset Z,
having att as a target attribute. Finally, predictions are calculated for all examples
in XY that originate from Y and the obtained predictions are stored as the values of
missing attributes for those examples.

Algorithm 2: Outline of the enriching number of examples data fusion ap-
proach.

input : dataset X and dataset Y
output: dataset XY
/* filter(D,A) returns a dataset D having only attributes A */

1 XY = filter(X ∪ Y, attributes(X));
/* update values of XY’s instances from Y, which have missing values for X’s attributes

*/

2 foreach att ∈ attributes(X) \ attributes(Y) do
3 Z = filter(X, att ∪ (attributes(X) ∩ attributes(Y)));
4 train classifier C on Z, where target class is att ;

/* fill values of att for each instance in XY */

5 foreach XY’s instance that originates from Y do
6 instance[att] = predict(C, instance);
7 end

8 end
9 Return XY .

The two data fusion approaches can also be combined, enriching the dataset with
new attributes as well as adding new examples. Predictive models that are used to
predict missing attribute values can be arbitrarily chosen, considering the type of the
target variable.

4. Experiments and results

4.1. Experiments outline

By using three datasets (see Subsect. 3.1) and with the goal to improve the predictive
accuracy on Alzheimer’s disease dataset (base dataset A), we can perform data fusion
either by fusing:

• the base dataset A with the vascular dementia dataset D into A + D,
• the base dataset A with the stroke dataset S into A + S, or
• the base dataset A with both datasets D and S into A+D+S, by first creating
A + D and then fusing S into it 1.

The datasets can be fused in three ways: by enriching the set of attributes, by en-
riching the number of examples, or both. Within our experiments we performed all

1The experiments revealed that the different order of fusing, i.e. into A+S+D, produces negligible difference

in results.
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possible data fusions (3 fused datasets × 3 fusion approaches), which resulted in 9
fused datasets.

Since fusing several datasets and supplementing them with a large number of ad-
ditional attributes can be a complex task in terms of computational complexity, we
decided to use simple supervised learning models in this research. As suggested by
related work (Gray et al., 2013) and several survey works that describe machine learn-
ing applications in medicine (Erickson, Korfiatis, Akkus, & Kline, 2017; Kononenko,
2001; Yoo, Ramirez, & Liuzzi, 2014), we applied linear regression as a predictive model
for numerical attributes and Naive Bayes as predictive model for nominal attributes.
In addition to alleviating computational complexity, both models also allow inter-
pretation of predicted feature values, should it be required to better understand the
dependencies within the domain.

With our experiments we tested if the fused datasets improve classification per-
formance compared to the performance obtained only on the base dataset A. The
classification accuracy was obtained by performing 10-fold cross-validation in 10 runs.
For datasets obtained by applying the enrichment of the number of examples, cross-
validation test data always consisted only of examples that originate from the base
dataset A (otherwise, the remaining examples in the test set would contain the class
attribute that was predicted using the data fusion approach instead of their true class).
The folds within the cross-validation process were formed to be the same for all test-
ing datasets, enabling us to further investigate the statistical significance of the results
using the paired Wilcoxon signed-rank test.

Prior to computing classification accuracies, we also applied different attribute se-
lection methods to: (1) improve classification performance and (2) to determine how
the fused attributes rank compared with the original attributes from the base dataset
A (this was also possible when applying the attribute enrichment fusion approach).

4.2. Evaluation of fused attributes

We started by applying three attribute selection methods on fused datasets to deter-
mine how well the fused attributes rank compared to the base attributes. We used two
filter, and one wrapper approach: information gain (denoted with IG), ReliefF (RE)
(Robnik-Šikonja & Kononenko, 2003; Slavkov, Karcheska, Kocev, & Dzeroski, 2018),
and wrapper subset with naive Bayes classifier (NB). We used filter selection methods
to select 2, 4, 8, 16, 32, 64 and 128 best attributes; and the wrapper methods with
the following search algorithms: best first (BF), genetic search (Gen), greedy stepwise
(GS) and rank search (RS).

The results of the fused attribute evaluation for different fused datasets and fusion
approaches are shown in Table 8. The table contains percentages of fused attributes
that were selected among the best selected attributes using each attribute selection
method and its parameter. The results show that the fused attributes rather frequently
appear amongst the best selected attributes and that their relative frequencies reach
up to 50%. We can also observe that the fused attributes of dataset A+S seem to be
ranked worse than attributes of the other fused datasets.

4.3. Predictive performance evaluation

We applied the following well-known classification algorithms, and evaluated their
classification accuracy on the original and the fused dataset: random forest (RF),
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Information Gain

dataset fusion 2 4 8 16 32 64 128

A+D+S att 50% 25% 13% 25% 34% 44% 35%
A+D att 50% 25% 13% 25% 31% 36% 25%

A+S att 50% 25% 13% 6% 13% 16% 16%

A+D+S comb 0% 0% 25% 19% 19% 33% 45%
A+D comb 50% 50% 38% 44% 38% 36% 30%

A+S comb 0% 0% 13% 13% 16% 14% 14%

Relief

dataset fusion 2 4 8 16 32 64 128

A+D+S att 0% 0% 13% 13% 22% 34% 48%

A+D att 0% 0% 13% 6% 19% 31% 44%
A+S att 0% 0% 13% 6% 9% 14% 15%

A+D+S comb 0% 0% 13% 13% 34% 36% 46%

A+D comb 0% 25% 13% 19% 34% 33% 41%
A+S comb 0% 0% 13% 13% 19% 14% 14%

Wrapper Subset (Naive Bayes)

dataset fusion BestFirst GeneticSearch GreedyStepwise RankSearch

A+D+S att 20% (5) 45% (96) 20% (5) 0% (5)

A+D att 17% (6) 31% (96) 17% (6) 0% (4)

A+S att 17% (6) 25% (77) 17% (6) 7% (14)
A+D+S comb 50% (8) 37% (123) 50% (8) 25% (52)

A+D comb 50% (4) 28% (100) 50% (4) 40% (35)
A+S comb 0% (8) 15% (79) 0% (6) 14% (37)

Table 8.: Percentage of the fused attributes among the best selected attributes for different
fused datasets and fusion approaches (att – attribute enrichment, comb – combination of both
approaches). For the wrapper method, the total number of selected attributes is given in the
parentheses.

dataset fusion attributes examples RF R NB kNN

base dataset - 142 85 0.87 0.9 0.89 0.51

A+D+S att 239 85 0.83 0.89 0.9 0.64

A+D att 208 85 0.86 0.87 0.9 0.59

A+S att 173 85 0.87 0.88 0.9 0.56

A+D+S exa 142 245 0.86 0.79 0.66 0.51

A+D exa 142 175 0.86 0.88 0.74 0.54

A+S exa 142 155 0.88 0.79 0.75 0.39

A+D+S comb 239 245 0.8 0.74 0.75 0.59

A+D comb 208 175 0.85 0.84 0.75 0.56

A+S comb 173 155 0.85 0.81 0.75 0.48

Table 9.: Classification accuracies obtained on the base Alzheimer dataset (in the first row)
and on different fused datasets (att – attribute enrichment, exa – example enrichment, comb
– combination of both approaches). The shades of green colour indicate the increase in clas-
sification accuracy compared with the base data set, and the red shades indicate the decrease.
Darker shades of both colours indicate statistically significant results.
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RIPPER (R), naive Bayes (NB), and k-nearest neighbours (kNN) for k = 1.

4.3.1. Results on all original and fused attributes

The initial results obtained without attribute selection, are shown in Table 9. We can
see that we managed to obtain a minimal improvement in classification accuracy in
at least one fused dataset using all classifiers except RIPPER, and achieved the best
overall accuracy using the naive Bayes classifier on the first data fusion approach.
Nevertheless, low classification accuracy is somewhat expected, given that the data
fusion notably increased the dimensionality of the problem space by adding additional
attributes and/or introduced new examples. The level of noise that was introduced
into the fused dataset also depends on the quality of the data fusion approach itself.

dataset fusion attr. sel. RF R NB kNN

A+D+S att

IG 0/14 14/0 29/29 14/43

RE 0/14 14/0 43/0 14/14

NB 50/25 0/0 50/0 75/0

A+D att

IG 0/14 14/14 29/29 29/43

RE 0/57 14/14 29/14 14/29

NB 50/50 0/25 75/25 25/75

A+S att

IG 43/0 14/14 0/57 29/29

RE 0/14 0/57 14/14 29/29

NB 75/0 0/0 50/0 25/0

A+D+S exa

IG 0/86 0/86 0/100 14/86

RE 0/71 0/100 14/71 14/86

NB 0/100 0/100 0/100 0/75

A+D exa

IG 0/57 29/43 0/100 14/86

RE 14/57 29/57 29/71 14/71

NB 50/25 75/0 0/100 0/100

A+S exa

IG 0/57 14/29 0/100 0/71

RE 0/86 0/57 0/100 0/86

NB 0/25 0/25 0/100 0/100

A+D+S comb

IG 0/100 0/100 0/100 14/71

RE 29/71 29/71 29/71 29/57

NB 0/100 0/100 0/100 0/75

A+D comb

IG 0/43 43/29 0/100 14/71

RE 14/71 29/71 29/71 29/57

NB 50/50 0/25 0/100 25/75

A+S comb

IG 0/100 0/57 0/100 0/57

RE 0/100 0/86 0/71 0/100

NB 0/50 0/0 0/100 0/100

Table 10.: Percentages of statistically significant increases/decreases of classification accuracy
for different fused datasets, fusion approaches and attribute selection methods (IG - information
gain, RE - Relief, NB - naive Bayes). The green colour indicates the prevailing increase of
classification accuracy compared with the base data set, and the red indicates the prevailing
decrease.

4.3.2. Results with attribute selection

To improve the predictive performance, we applied attribute selection to the fused
datasets. Table 10 presents an overall comparison of all applied attribute selection
methods by displaying percentages of experiments in which the classification accuracy
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has significantly increased/decreased. The total number of experiments for each cell
(combination of dataset, fusion approach, attribute selection method, and a classifier)
equals to a number of different parameter’s values (parameter is number of desired
target attributes for filter methods or type of the search algorithm for wrapper meth-
ods), each used for a separate run of the attribute selection method (as explained in
Subsection. 4.2). The results indicate that the best data fusion approach seems to be
attribute enrichment, which gave the best results on the fully fused dataset A+D+S
when combined with naive Bayes classifier. The other data fusion approaches did not
produce satisfiable results, i.e. adding new examples decreased the classification accu-
racy.

dataset fusion attributes examples RF R NB kNN

base dataset - 142 85 0.96 0.9 0.94 0.9

A+D+S att 239 85 0.96 0.9 0.98 0.91

A+D att 208 85 0.94 0.9 0.97 0.9

A+S att 173 85 0.96 0.92 0.97 0.9

A+D+S exa 142 245 0.9 0.83 0.77 0.66

A+D exa 142 175 0.92 0.92 0.83 0.76

A+S exa 142 155 0.92 0.9 0.9 0.83

A+D+S comb 239 245 0.85 0.8 0.83 0.79

A+D comb 208 175 0.93 0.88 0.9 0.82

A+S comb 173 155 0.9 0.88 0.84 0.79

(a)

dataset fusion attributes examples RF R NB kNN

base dataset - 142 85 0.91 0.84 0.88 0.81

A+D+S att 239 85 0.91 0.86 0.92 0.81

A+D att 208 85 0.91 0.87 0.9 0.81

A+S att 173 85 0.92 0.87 0.9 0.89

A+D+S exa 142 245 0.83 0.74 0.78 0.69

A+D exa 142 175 0.83 0.84 0.75 0.68

A+S exa 142 155 0.84 0.75 0.77 0.71

A+D+S comb 239 245 0.8 0.7 0.81 0.73

A+D comb 208 175 0.85 0.8 0.78 0.69

A+S comb 173 155 0.79 0.74 0.76 0.71

(b)

Table 11.: The best classification accuracies obtained by applying attribute selection on the
base Alzheimer’s dataset and on different fused datasets. Table (a) shows theoretically best
accuracies, while the Table (b) shows accuracies obtained by applying the best attribute selection
methods that were chosen on independent datasets. The shades of green colour indicate the
improvement of classification accuracy compared with the base data set (in the first row), and
the red shades indicate the deterioration. Additionally, darker shades of red and green indicate
statistically significant results.

Further, Table 11 displays classification accuracies obtained by applying different
attribute selection approaches. The first subtable (Table 11a) displays the accuracies
that can be obtained by applying the attribute selection method that yields the best
results and can therefore be regarded as maximum achievable accuracies, i.e. theo-
retically best accuracies. Namely, these accuracies might not be relevant for practical
usage of the proposed models, since the attribute selection method was not chosen
on independent data. For that reason we introduced the second subtable (Table 11b)
which displays the accuracies obtained by applying automatic selection of the attribute
selection method. The methods were selected by performing the nested inner 10-by-
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10-fold cross-validation (the inner loops were used to select the best attribute selection
methods and the outer loops to evaluate the classification performance using it). We
can notice the correlation between the results in the both subtables, the second table
expectedly displaying slightly lower accuracies. Both tables again indicate that the
prevailing significant increases of classification accuracy occurred with the attribute
enrichment fusion approach and especially with the naive Bayes classifier. This com-
bination of approach and classifier yielded the highest overall classification accuracy
of 98 % in Table 11a and 92 % in Table 11b.

The results do not allow us to draw any consistent conclusions about the choice of
the fused datasets as the best results differ from one fusion approach to the other. For
the att approach the best average results were obtained with datasets A+D+S and
A+S and the worst with A+D; for the exa approach the best results were obtained
with A+S and the worst with A+D+S; and for the comb approach the best results
were obtained with A+D and the worst with A+D+S.
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Figure 1.: Average (light blue) and the highest (dark blue) classification accuracies on fused
datasets (blue), compared with the accuracy on the base Alzheimer’s dataset (green).

Figure 1 displays the average and maximum performance of different data fusion
methods/classifiers to enable easier comparison. We can see that the att approach
performs better on the average with all classifiers except with RF. Note that although
the exa and comb approaches decreased the classification accuracy on the average, the
exa approach achieved a good performance when used with the RIPPER classifier.

The heterogeneous results seem promising and motivating for further research on
how to select the best performing classifier for a given fused dataset and fusion ap-
proach.
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5. Conclusion

In the paper we proposed three different data fusion approaches, and applied them to
a problem of Alzheimer’s disease prediction. We operated on three different datasets:
dataset of patients impaired with Alzheimer’s disease (A), dataset of patients with
vascular dementia (D), and dataset of patients who had a stroke (S). By performing
attribute enrichment (att), example enrichment (exa) and the combination of both
(comb) we expected to achieve an increase in classification accuracy compared to the
accuracy on the base dataset.

Since attribute enrichment increases the dimensionality of the problem space, we
tackled this problem by applying various attribute selection methods. In our exper-
iments we obtained the best results by applying attribute enrichment data fusion
method, especially with the naive Bayes. In this case, the classification accuracy sig-
nificantly increased to 98 % compared to the base classifier that achieved the 94 %
accuracy.

A very diverse range of obtained classification accuracies for different data fusion
approaches, fused datasets and classifiers motivates several ideas for our further work,
as follows. First, we shall apply the most promising approach identified in this paper
on a greater set of problem domains to verify if the conclusions from this paper can be
generalised. Secondly, since all of our data fusion approaches assume that the datasets
share a sufficient number of attributes, we shall perform further evaluations of the
proposed approaches’ sensitivity with respect to the number of shared attributes.
Further, we shall investigate performance of more complex (non-linear) supervised
learning algorithms, including deep neural networks, within the proposed data fusion
process. Finally, we shall further investigate how to select the best performing classifier
for a given combination of data fusion approach, dataset and classifier.
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