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Abstract Machine learning and data mining approaches are being success-
fully applied to different fields of life sciences for the past 20 years. Medicine
is one of the most suitable application domains for these techniques since they
help model diagnostic information based on causal and/or statistical data and
therefore reveal hidden dependencies between symptoms and illnesses. In this
paper we give a detailed overview of the recent machine learning research and
its applications for predicting cognitive diseases, especially the Alzheimer’s
disease, mild cognitive impairment and the Parkinson’s disease. We survey
different state-of-the-art methodological approaches, data sources and public
data, and provide their comparative analysis. We conclude by identifying the
open problems within the field that include an early detection of the cognitive
diseases and inclusion of machine learning tools into diagnostic practice and
therapy planning.
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1 Introduction

A wide range of different artificial intelligence techniques have been shown
to be promising in helping medical experts with understanding causes and
risks of illnesses, providing appropriate diagnoses and courses of therapy for
validating their suggestions and decisions. Data commonly produced during
medical practice falls into the category of complex, i.e., big data. Prominent
examples of such big data vary from multimedia objects (images, sound, etc.),
temporal data, time-series (i.e., sequences of data points measured at succes-
sive times) towards semi-structured and unstructured text documents [76].
Due to their usefulness, complex data are prevalent in many contemporary
medical systems. For a wide range of serious diseases it is necessary to obtain
numerous kinds of tests that have a purpose to examine different aspects of pa-
tients’ health. Those tests usually provide very complex and interrelated data.
Human cognition and behavior disorders are among diseases which influence
older adults, causing many serious neurological diseases (brain ischemia, brain
haemorrhagia, brain tumors, neurodegenerative disorders, demyelination dis-
orders, dementia). Different kinds of human cognition and behavior disorders
represent a whole spectrum of conditions resulting in a deteriorated mentality.
For example, dementia is an acquired loss of intellectual functions, associated
with personality disturbances that interfere with the patient’s professional
and social relations. Dementias represent a whole spectrum of different con-
ditions resulting in deteriorated mentality, among which the most common
is Alzheimer’s disease. There are numerous studies on cognition disorders,
dealing with the risk factors for its development [43], causes [69], diagnostic
procedures relying on data from different kind of questionnaires [22,68] or
magenetic resonance imaging (MRI) scans [11,47,15,57], predictors [46], etc.

Although there exist numerous techniques for analysis of complex big data,
they have been seldom rigorously tested and put into practical use within a
centralized medical repository. Developing a decision support system for that
task would bring together, under a single roof, numerous artificial intelligence
and machine learning techniques.

In this paper we provide an overview of machine learning development in
the field of cognitive diseases. Numerous papers that we collected and analyzed
cover a wide range of algorithms and techniques of machine learning applied
on data collected from patients that suffer from various kind of cognitive dis-
eases - Alzheimer’s disease (AD), mild cognitive impairment (MCI), vascular
dementia, Parkinson’s disease (PD), etc.

The paper is organized as follows. Section 2 gives an overview of develop-
ment and use of machine learning techniques in the field of cognitive diseases
presenting current state-of-the-art and applications of different contemporary
machine learning techniques. Datasets that are mostly used in relevant works
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are presented in Section 3. Section 4 summarizes open problems in the field
and Section 5 summarizes some conclusions.

2 Machine learning techniques in cognitive diseases

Machine learning grew up from the idea of making machines (i.e. computers)
learn from a wide range of complex, unstructured and semi-structured data.
The field started to flourish in the nineties and has proven to be very useful tool
for solving many real-life problems in different domains and good replacement
of the traditional statistical methods.

Medicine is an example field that gained a lot from machine learning. Ex-
amination of cognitive diseases was relatively early encouraged by machine
learning algorithms. First papers started with a really basic task: binary and
ternary classification of patients. The essential task of binary classification
was to determine if the patient is demented or not. Ternary classifications
were more difficult - their task was to determine if the patient is healthy,
cognitively impaired or demented. The mentioned two types of classifications
are still useful for making automated diagnosis, which helps doctors optimize
their work. Namely, professional staff needs to devote a fair amount of time
to score different types of questionnaires in order to determine dementia diag-
noses. Besides the fact that those scoring tasks are time consuming, scores are
also not ideally objective and consistent. It is clear that proper classification
algorithms would be beneficial.

In this section we provide an overview of different machine learning ap-
proaches that were developed in the field of cognitive diseases, disorders and
impairment. The section is divided into 8 subsections. We first present research
based on questionnaires data, followed by research based on Magnetic Reso-
nance Imaging data and on other less conventional data sources for the field
of cognitive diseases. We proceed by surveying research papers that are trying
to fuse different datasets in order to achieve higher classification accuracy, and
provide comparative analyses of classification algorithms and unconventional
machine learning tasks. Finally, we provide a tabular summary of all methods
and data that were used in the presented papers.

2.1 Classification tasks on questionnaire-based data

When machine learning algorithms began to be applied in the field of cognitive
diseases, the first choice of the available learning data were questionnaires. The
most used questionnaire types were: the six-item Blessed Orientation, Mem-
ory and Concentration test (BOMC [29]), Functional Activities Questionnaire
(FAQ [59]), Dementia Rating Scale (DRS [44]) and Mini-Mental Status Exam
(MMSE [30]). A choice of classification algorithms depended on authors, but
still, a very frequent choice were rule-based classifiers (e.g. C4.5 [63]), Naive
Bayes (NB) [25] and IB1 [6] (a local nearest-neighbor classifier).
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Several papers that applied machine learning techniques within the field
of cognitive diseases stems from the research team of University of California,
Irvine [22,68-70]. They used data provided by UC Irvine Alzheimer’s Disease
Research Center (ADRC). The experiments on these data showed that the
common classifiers (C4.5, C4.5 Rules, Naive Bayes, IB1 and PL) can obtain
reasonably good results in the aforementioned classification tasks. As reported
in [22], authors achieved accuracy above 80% for every classifier they used,
which is interpreted as a valuable result. Although the overall accuracy is high,
there was still one major problem — the accuracy for the class that represents
cognitively impaired patients (i.e., the sensitivity) was around 60% [68], which
means that cognitively impaired patients were not discriminative enough from
normal controls (NC). This also means that the symptoms of patients with
cognitive diseases were not frequent enough in the examined questionnaires,
which caused the machine learning algorithms to perform poorly in classifica-
tion of these patients.

Interesting part of mentioned papers was experimentation with the decision
rules that were obtained from decision trees. Rule based classifiers are partic-
ularly interesting in medical classification tasks. By analyzing generated rules,
one can obtain information about which features are important and what are
the features’ marginal values. Professional staff can afterwards evaluate and
confirm these findings in practice.

As an example, Figure 1 shows a set of rules obtained by Shankle et al.
in [69]. After obtaining the rules, the authors and the the neurologists jointly
corrected them in order to eliminate the so-called “nonsense rules”. As a result
they obtained a higher classification accuracy. The authors used datasets from
the following tests: FAQ [59], MMSEPLUS [29] and Ishihara Color Plates [41].
With the FAQ test data they obtained the accuracy of 88% for C4.5, and 85%
for C4.5 rules; with the MMSEPLUS dataset they achieved 79% for C4.5, and
77% for C4.5 rules; and for the Ishihara Color Plates 66% for C4.5, and 63%
for C4.5 rules.

Rule 1: age > 56 and job > 2 =— class impaired

Rule 2: money >0 and forget >0 = class impaired

Rule 3: gender =0 and age > 56 and forget >0 —> class impaired
Rule 4: age > 56 and age <64 and forget >0 = class impaired
Rule 5: age > 73 and forget >0 = class impaired

Rule 6: forget <0 = class normal

Rule 7: Default = class impaired

Fig. 1: A C4.5 rule set taken from [69]. In order to classify a new instance, the given rules
were applied in the presented order until reaching the rule that is satisfied. For example, a
patient with data [age=60, job=1, money=0, forget=1, gender=1] would be classified with
the rules as follows. The rule 1 would not be satisfied since the job is not grater than 2. The
rule 2 would also not be satisfied since money is not greater than 0. The rule 3 would not
be satisfied since the gender is not equal to 0. The rule 4 would finally be satisfied since all
conditions are met. Therefore, the class of a given example would be impaired.
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Tierney et al. [73] researched the possibility of using a battery of neuropsy-
chological tests for predicting onset of AD. They analysed AD and NC group
differences on test results with ANCOVA and discovered that both MMSE and
DRS scores were significantly different. Prediction power of test scores was
additionally examined with logistic regression. First all features were used to
calculate intercorrelation matrix. Those with a high correlation were removed
to reduce multicollinearity. Remaining features were used for prediction. The
accuracy of this model was 89%.

Finally, Table 1 summarizes approaches that are presented in this section,
giving their short overviews, class values and classification accuracies.

Authors Method Classes Accuracy
Predicting AD using neuropsycholog- NC
Tierney et al. [73] ical test results and logistic regres- AD 89%

sion.

Detecting very early stages of demen- normal

Shankle et al. [69] tia from normal aging with machine impaired 88%
learning methods. p
. . . healthy
. Applying machine learning to an > 80%
Datta et al. [22] Alzheimer’s database. dcrlll/[ccrjl{ccd (60% for MCI)

Table 1: An overview of classification methods and accuracies that were obtained from
questionnaire data.

2.2 Classification tasks on medical imaging data

After the initial exploration of machine learning algorithms in different areas
and domains, medical imaging started to be the main source of data. This
includes magnetic resonance imaging (MRI) scans and positron emission to-
mography (PET) scans. In the following section we present a few papers in
which MRI or PET scans were used as the main data source.

The idea of using the MRI or PET scans was to extract features from the
images and then run classifiers in order to detect unhealthy subjects. To reduce
the feature count, features were usually grouped and averaged in accordance to
regions of interest (ROI), which present certain portions of images that are rel-
evant for a given medical task. As an example of the described approach, Burge
et al. [11] extracted causal relationships from the functional magnetic reso-
nance imaging (fMRI) data by using the Dynamic Bayesian Network (DBN)
[56]. DBN is a Bayesian Network that is extended with the concept of time —
at any point in time T, the value of a network’s variable can be calculated.
Based on extracted causal relationships, the authors built neural-anatomical
networks that classified patients into healthy or demented. Classification ac-
curacy of this approach was around 73%.

Li et al. [47] built a framework for group analysis of fMRI data using
Dynamic Bayesian Networks. The authors noticed that there were certain
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downsides when using plain Dynamic Bayesian Network on the whole group
data, so they decided to build a DBN for each subject separately.

Challis et al. [13] compared performance of Bayesian Gaussian process
logistic regression models using linear and non-linear covariance functions with
Support Vector Machine model. The input data was fMRI as well. Built models
were comparable and achieved accuracy around 80% for prediction of MCI vs.
NC.

Patil et al. [57] used Artificial Neural Networks (ANN) upon Open Access
Series of Imaging Studies (OASIS) database [4]. That database includes in-
dividuals with early-stage Alzheimer’s disease, each individual having 3 or 4
MRI scans. The authors achieved overall accuracy that is above 95%, which
is not surprising since they applied only binary classification.

Convolutional neural networks provide another way for classifying MRI
scans. Meszlényi et al. [51] introduced a convolutional neural network architec-
ture for functional connectome classification called connectome-convolutional
neural network (CCNN). They used their model for MCI classification of fMRI
scans and managed to outperform SVM, LASSO, simple neural network, and
deep neural network. The highest obtained classification accuracy of CCNN
was reported to be 71.9%.

Payan et al. [58] also used 3D-CNN for AD prediction using MRI data.
The authors initially used a sparse autoencoder to learn filters for convolution
operations, and integrated the learned filters into the first layer of a convo-
lutional neural network. They managed to reach following accuracies: 95.39%
for AD vs. NC classification, 86.84% for AD vs. MCI classification and 92.11%
for NC vs. MCI classification.

Moradi et al. [53] proposed an approach to categorize subjects into three
classes: subjects with Alzheimer’s disease, subjects with mild cognitive im-
pairment (MCI) and cognitively normal subjects. First, the authors selected
features from a larger pool of MRI scan features by using sparse logistic regres-
sion. After that, they built hierarchical classification framework that consists
of multiple binary classifiers. They used Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database [2] to train classifiers, and for testing purposes they
used data provided by [3]. Classification accuracy of this setup was around
77%.

Diffusion Tensor Imaging (DTI) [42] is a MRI-based neuroimaging tech-
nique that is used for characterizing the microstructural organization of tissue
in vivo. It is shown that measures of structural disconnection captured by DTI
are a promising marker of AD [65]. Authors of [26] applied machine learning
techniques upon the DTI dataset that contains images of 137 AD patients
and 143 healthy controls, all of which were captured with nine different MRI
scanners. Authors applied binary classification by using Support Vector Ma-
chine (SVM) and Naive Bayes (NB) classifiers. Results of these experiments
suggest that SVM is more suitable for this purpose by achieving accuracy of
83%, while the NB achieved significantly lower accuracy of 75%.

Chu et al. [17] explored 4 different feature selection methods for retrieval
of informative voxels from raw MRI. They compared preselected brain atlas
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based ROI selection, t-test filtering, t-test filtering in ROI and recursive feature
elimination. Selected features were fed into SVM for classification of AD vs. NC
and MCI vs. NC. Using feature selection methods based on ROI produced
significantly better classification accuracies than no feature selection in both
classification tasks. The accuracies were 85% and 67% respectively.

Szenkovits et al. [72] presented a new feature selection method called Mini-
malist Genetic Algorithm (mGA), that is developed specifically for fMRI data.
The method is used as a technique for improving fMRI scans classification ac-
curacy. The authors evaluated the algorithm on a MCI binary classification
task, and managed to outperform LASSO feature selection method with ac-
curacy of 62.7%.

Liu et al. [48] suggested using ensemble technique using Sparse representation-
based classifier (SRC) as a weak classifier on subsamples of patches from raw
MRI. SRC constructs a dictionary using all training data across all classes and
seeks for the sparse representation of a test sample in it in prediction step. SRC
codes the test sample for each possible class as a sparse linear combination of
all training samples belonging to that class by L1-norm minimization. Mini-
mum reconstruction error over all classifiers is then used for predicting class.
Classification accuracy of the proposed method was 90.8% and 87.85% when
classifying AD vs. NC and MCI vs. NC respectively. Additional analysis of
weak classifiers with the highest accuracies showed that patches used for their
training came from brain regions often associated with AD (hippocampus,
parahippocampal gyrus, entorhinal cortex and amygdala).

Authors of [37] proposed the use of Linear Programming Boosting for pre-
dicting AD using MRI. A combination of L1 sparsity and spatial constraints
for voxels led to increase of classification accuracy. Additional analysis of vox-
els selected during training phase revealed that they were mostly concentrated
in hippocampus and parahippocampal gyrus which have been previously as-
sociated with AD. Some samples had more than 65% of voxels incorrectly
classified, which suggests that the samples were not categorized correctly by
experts in the first place.

Lopez et al. [50] proposed a method for selecting principal components
for subspace representation calculated with Principal Component Analysis
(PCA). Fisher score was used to determine best components instead of per-
centage of total variance contained in principal components. Projected features
were then fed into ANN and SVM. Using PET data the accuracies of this ap-
proach were 91% and 90% for each method respectively.

Kippenhan et al. [45] split PET voxels into 67 brain regions and extracted
metabolism activity features. These features were used to compare predic-
tive power of Linear Discriminant Analysis (LDA) and ANN. ANN performed
better than LDA. Its performance was comparable to performance of an inde-
pendent expert who classified samples based on examining only PET images.

Cho et al. [16] used LDA as well. However their input data was PCA re-

duced cortical thickness data extracted from MRI. This approach had accuracy
of 87% for AD vs. NC classification.
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Use of longitudinal data can provide valuable information on how the dis-
ease is progressing. Gray et al. [36] showed that using data extracted from
baseline and 12-month follow-up MRI. They extracted average voxel intensi-
ties for 83 brain regions for each image and used them to train the SVM. The
classification accuracies of 2 clinically relevant groups AD vs. NC and MCI
vs. NC were 88% and 81% respectively. Both were significantly better than
the accuracies of predictions using only baseline data.

Huang et al. [39] experimented with longitudinal MRI data as well. Instead
of building a single classifier with an optimal subset of features they proposed
a hierarchical classification method that builds multiple multilevel classifiers
that are able to address the issues of high feature dimensionality and incorpo-
rate spatial information. Their model consisted of 3 levels. The first layer was
built on raw MRI voxel intensities and its output was fed into the second layer
of classifiers. Each second-level classifier used a patch of predictions from the
previous layer. The final layer used all outputs to build the last classifier. The
proposed method outperformed base classifier with accuracy of 79%.

Gomar et al. [34] and Ewers et al. [28] investigated the ability of biomarkers
and cognitive markers to predict a change from MCI to AD. Gomar et al. [34]
used ANOVA followed by t-tests to determine which features were significant
among the two groups. The output was then used to train Logistic regression
model. Its accuracy was 72%. Ewers et al. [28] first established input features
for the best Logistic regression model for discrimination between AD and NC.
They tested different models for single and combined modalities. The best
model was then used for predicting the conversion from MCI to AD. Using Cox
regression they modeled time to conversion and determined its best predictors.
Among others entorhinal cortex and hippocampus proved to have huge impact.

To conclude this section, we provide Table 2 that summarizes the most
relevant approaches based on MRI scans, along with their classification accu-
racies.

2.3 Classification tasks on other data

Researches also used other data sources that might contain valuable infor-
mation for distinguishing between different disease diagnoses. These comprise
blood sample data and Electroencephalography (EEG) signals.

Doecke et al. [24] used blood protein levels measured in plasma. They per-
formed a rigorous feature selection on 180 input protein features. The proce-
dure used 2 independent data sets and four different feature selection methods
per each set. The features that were most commonly selected by the methods
of each set and were common between sets were used for classification pur-
poses with NB, Random Forest (RF) and SVM. Most selected features were
identified as commonly associated with AD. Carcinoembryonic antigen stood
out since it was never associated with AD before.

Ray et al. [64] examined 120 proteins using Significance Analysis of Mi-
croarrays (SAM). SAM is a statistical method for determining whether changes
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Authors Method Classes Accuracy
. Artificial Neural Networks were used healthy
Patil et al. [57] for classification. demented > 95%
NC 95% (AD vs. NC)
Sparse autoencoders and 3D-CNN
Payan et al. [58] were used for classification. MCI 87% (AD vs. MCI)
AD 92% (MCI vs. NC)
An ensemble based method using NC .
Liu et al. [48] Sparse representation-based classifier MCI 89';)‘7% ((‘1\?81\;55 I\IN((J;?)
as base classifier. AD ° :
PCA transformed features were feed NC
Lopez et al. [50] into Neural network and SVM. AD 90%
L . NC
Longitudinal data was used in com- 88% (AD vs. NC)
Gray et al. [36] bination with SVM. 1\1{%1 81% (MCI vs. NC)
PCA transformed data was feed into NC
Cho et al. [16] LDA for classification. AD 87%
Logistic Regression was used for pre- NC
Ewers et al. [28] dicting disease while Cox Regression MCI 86% (AD vs. NC)
w h was used to model time to conversion AD 62% (MCI vs. AD)
from MCI to AD.
Four different feature selection meth- NC
Chu et al. [17] ods were compared using SVM for MCI 6875;{6 ((QCDI\;SS NNCC))
classification. AD ° :
SVM and NB were applied upon the healthy 83% (SVM)
Dyrba et al. [26] DTI dataset. demented 75% (NB)
. Bayesian Gaussian process logistic NC
Challis et al. [13] regression was used for classification. MCI 80%
Custom multilayer classifier that was NC
Huang et al. [39] able to incorporate spatial informa- AD 79%
tion of raw MRI voxels.
Features were selected by using
sparse logistic regression. After that,
Moradi et al. [53] instances were classified with hierar- h(la\jlé}lly %
oradi et at. chical classification framework that . °
. . . Alzheimer
was consisted of multiple binary clas-
sifiers.
Causal relationships were extracted
by using DBN. Based on those re- healthy
Burge et al. [11] lationships, neural-anatomical net- demented 73%
works were used for classification.
Convolutional neural network for NC
Meszlényi et al. [51] functional connectome classification MCI 2%
was used to classify fMRI scans.
ANOVA and t-tests were used to
select significant features that were MCI o
Gomar et al. [34] later used to build Logistic Regres- AD 72%
sion model.
Features are selected with new mGA NC
Szenkovits et al. [72] | method and 1-NN classifier is used MCI 63%

for its evaluation.

Table 2: An overview of classification methods and accuracies that were obtained from

MRI data.

in proteins are statistically significant. It carries out a variant of t-test for each



10 Brankica Brati¢ et al.

protein to measure its relationship to the response variable. They identified 18
proteins that were significantly different between AD and NC. Their biologi-
cal analysis showed that they belong to two independent regulatory networks
connecting them. The pathways that connect the proteins define their inter-
dependence. Any dysfunction of such pathway prevents normal generation of
proteins and can indicate early onset of a disease like AD.

Llano et al. [49] compared performance of multiple methods for feature se-
lection and classification tasks. They analysed prediction power of proteins for
classification of AD vs. NC using ANCOVA and t-tests. The significant pre-
dictors were additionally subjected to one of the feature selection algorithms:
RF, Partial Least Squares, Bagging and Simulated Annealing. The optimal
subset was then used for building classification model using one of the clas-
sification algorithms: Diagonal LDA, RF, SVM, ANN, Partial Least Squares,
Bagging and KNN. The best classification performance was achieved for all
optimal subsets using the RF model.

EEG signals have been, however, used more rarely. Informativeness in their
raw form is questionable due to a high amount of noise, and sometimes infor-
mation is also lost due to a compression process [10]. Authors of [61] measured
EEG signals on 19 different positions of the skull and transformed them into
frequency domain using the Fourier transform. Each of the 19 transformed
signals was divided into 5 frequency sections and average frequencies were
calculated. Additional non-linear features were constructed by estimating cor-
relation using Takens-Ellner method. All features were joined and used as
an input for Discriminant Analysis, ANN and ANN. Best performance was
achieved using ANN with AD vs. NC classification accuracy reaching 92%.
Additional analysis of frequency sections showed that brain activity signifi-
cantly dropped for subjects with AD.

2.4 Classification using data fusion

Integration of multi source data calls for a more complex algorithm to extract
the available information. Data fusion methods that solve these problems can
be divided into three main groups — early, intermediate and late integration
methods — depending on the point where the fusion takes place within the
supervised learning framework. Early integration transforms all data sources
into one table that can be treated as single data set. Intermediate integration
relies on algorithms that can take the data sources and fuse them on the level
of a predictive model. In late integration a predictive model is constructed for
each of the data sources. Final prediction is determined by joining predictions
of all models by model weighting.

Zhang et al. [80] fused MRI, PET and CSF biomarkers using methods of
early and intermediate data integration. They proposed a method for multi-
modal multi-task learning that could perform regression and classification at
the same time. The core of the method comprised a SVM with kernel that
integrates multimodal data. Early integration was done with simple data con-
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catenation that produced one table. The table was then fed into the SVM.
Both methods were used for classification of AD vs. NC and MCI vs. NC and
achieved better results than simple concatenation.

R. Gray et al. [35] used intermediate integration for fusing MRI, PET, CSF
and gene data. They built the RF model for each modality. The models were
used to calculate similarities between samples. This produced similarity matrix
for each of the modalities that were linearly combined to assemble manifold
representation. The result was used to build final RF model for predicting
disease diagnosis. The proposed method was significantly better than models
using only one of the modalities.

Suk et al. [71] fused MRI and PET data with the use of Deep Boltzmann
Machine (DBM), which is an extension of an ANN called Restricted Boltzmann
Machine. A DBM is constructed by stacking multiple RBMs in a hierarchical
manner. Their proposed method selected significant voxel patches from the
images and fed them into the DBM. The DBM extracted relevant features
from each modality and fused them on its lowest level. The output was then
used in a hierarchical framework proposed by Liu et al. [19] with a SVM as a
weak classifier. Data fusion improved classification accuracy of framework for
both classification tasks AD vs. NC and MCI vs. NC, which reached 95% and
85%, respectively. Another valuable contribution was confirmation of brain
regions commonly associated with AD.

Authors of [60] used late data integration method to fuse information of
multiple EEG channels. Their proposed method uses ensemble for each modal-
ity. Final decision is based on adjusted weighted majority voting. The predic-
tion accuracy of fused channels using the proposed method was 79%. It was
significantly higher than both, the accuracy of single channel predictions and
the accuracy of channel data concatenated in one table.

2.5 Comparative analyses of classification algorithms

To explore how different statistical and machine-learning algorithms contribute
to early diagnosis of dementia, researchers conducted comparative analyses.
In this section we present papers that made comparisons between different
classification algorithms.

Chen et al. [15] made an experiment with seven different supervised learn-
ing approaches: naive Bayes, Bayesian-network classifier with inverse tree struc-
ture, decision tree, support vector machine, multiple-layer perceptron, discrim-
inant analysis and logistic regression. These experiments were carried out on
structural MRI scans features of patients with very mild dementia and patients
serving as healthy controls. Features were extracted using image processing
tools that provided insight into regional brain volumes, regional gray-matter
volumes, etc. Final results of different approaches turned out to depend on
selected feature sets, but the overall impression was that they were not signif-
icantly different from each other. The most notable result, however, was the
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accuracy of over 85%. That once again proved that dementia can be detected
in the early phase.

Williams et al. [75] wanted to improve accuracy of classification of mild
cognitive impairment and dementia. In order to do that, they experimented
with: naive Bayes, C4.5 decision tree, back-propagation neural network and
support vector machine classifiers. On top of that they used a wrapper feature
selection technique and proved that proper selection of features can improve
classification accuracy on the studied problem. Data that was used here was
collected across two studies [67,66]. Their experiments showed that the naive
Bayes classifier reached the highest accuracy, while the support vector ma-
chine classifier reached the lowest accuracy. The best obtained accuracies in
this paper were slightly above 80%. The problem of low accuracies for mild
cognitive impairment class remained unresolved.

Even though many Alzheimer’s disease classification approaches were ap-
plied and examined in many different papers, those approaches could not be
easily mutually compared due to variety of datasets. In order to conduct reli-
able comparison of different approaches, Cuingnet et al. [21] applied different
classification experiments on a single dataset from the ADNI database. They
tested three basic feature extraction approaches: voxel-based, vertex-based and
ROI-based. Voxel-based approach implies that the features are defined at the
level of the MRI voxel. Features of each voxel represent the probability of dif-
ferent tissue classes (grey matter, white matter and cerebrospinal fluid). In the
second category, i.e. vertex-based approach, features are defined at the vertex-
level on the cortical surface [23,62]. Finally, ROI-based approaches capture
features of different regions of interest, and they are limited only to hippocam-
pus [20,19,18,33]. Besides different feature extraction techniques, authors also
analyzed different classification tasks. They analyzed three binary classifica-
tion tasks: control subjects (CN) vs. patients with AD, CN vs. mild cognitive
disease (MCI) patients who had converted to AD within 18 months (MCI con-
verters - MClc), and MCIc vs. MCI patients who had not converted to AD
within 18 months (MCI non-converters - MClInc). Results of those experiments
showed that the highest recall values (in range 59% - 82%) were obtained for
classification task CN vs. AD, while the lowest recall values were obtained for
classification task MClInc vs. MClc (in range 0% - 70%). Additional thing to
note is that CN vs. AD, and CN vs. MClc classifiers perform better if the fea-
tures are extracted with voxel-based approaches, while the MCInc vs. MClc
classifier performs better with ROI-based feature extraction approaches.

2.6 Unconventional classification approaches

As it can be seen in the previous sections, many authors devoted their research
to exploration of different classification settings upon similar data, in order to
achieve the same task — detection of subjects with cognitive diseases. Now we
would like to introduce a few papers that are at some extent different.
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The Clock Drawing Test (CDT [5]) is used in order to detect cognitive
dysfunctions. During the test, subjects are required to draw the numbers on
a clock face and set the hands to a time given by the medical examiner.
Bennasar et al. [9] performed an interesting research in which they automated
analysis of clock drawings in order to differentiate subjects between three
levels of dementia: normal, mild cognitive impairment and moderate/severe
dementia. The research was based on 604 clock drawings provided by the
Memory Clinic at the Llandough Hospital in Cardiff, UK. Authors extracted
47 visual features from these drawings and used them to train and test a
classifier. Feature set was comprised of the majority of the features employed
in the most common CDT scoring systems, as well as new geometrical features
that were based on additional data analysis. For classification, the authors
used a cascade classifier that is actually a concatenation of multiple classifiers.
Three binary classifiers that were combined within cascade classifier were:
Classifier 1 that discriminates drawings into normal+ and abnormal cases,
Classifier 2 that takes abnormal cases from Classifier 1 and differentiates the
MCIT diagnosis from severe and moderate dementia, and Classifier 3 that takes
normal+ cases from Classifier 1 and decides if the case is normal or functional
(without dementia, but with depression and anxiety). For each of these three
classifiers the authors examined different classification algorithms (k-nearest
neighbors, least squares Support Vector Machine and Random Forest) and
presented comparative results. Finally, in this research the highest accuracy
that was achieved for ternary classification was around 78%, while for the
single-stage classification accuracy was around 71%.

Another interesting approach was presented by Gerrard et al. [32] who used
textual speech transcripts in order to detect subjects with semantic dementia.
Samples of connected speech are elicited by showing the picnic picture to the
subject, together with instruction: “Have a look at the picture, tell me what
you see, and try to talk in sentences.” Dataset had 32 semantic dementia
patients and 10 healthy controls. In this research the authors used naive Bayes
Gaussian and naive Bayes multinomial classifiers. They represented speech
transcripts as a bag-of-words and extracted most relevant features according
to the information gain. Binary classification obtained by this setting achieved
accuracy of above 90%.

Buza et al. [12] also based their research on patients’ speech capabilities in
order to estimate the severity of Parkinson’s disease. The most commonly used
scale for Parkinson’s disease severity is the Unified Parkinson’s Disease Rating
Scale (UPDRS). The authors’ main aim was to estimate UPDRS score of
Parkinson’s disease patients by using biomedical voice recordings. Evaluation
was performed by measuring performance of 6 different neural networks using
the mean absolute error (MAE) and root-mean-square error (RMSE). Final
results suggested that hubness-aware artificial neural network systematically
improves UPDRS estimation accuracy.

In some cases, areas and domains collected data contain a lot of missing
values. They often have a high influence on classification accuracy. Zaffalon et
al. [79] propose a way to deal with incomplete data by proposing the Naive
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Credal Classifier [77,78] which generalizes the discrete Naive Bayes classifier.
Naive Credal Classifier takes into account imprecision that could be a conse-
quence of a too small sample size, missing data, etc. In case of uncertainty,
this classifier assigns multiple classes to a given instance. In such a way it
overcomes problems that arise due to existence of incomplete data. The au-
thors tested their idea on data obtained from the Cognitive Drug Research
computerized assessment system. Data of this system were not collected with
the specific purpose of analysis, so they have a significant amount of missing
values. Binary classification experiments (healthy vs. demented) showed that
this classifier achieves accuracy of 94.77% on the subset of instances where it
predicted a single class (this subset consists of 90.3% of all instances), while
the Naive Bayes classifier achieves accuracy of 92.41% on the entire test set
and accuracy of 70.37% on the subset of instances for which the Naive Credal
classifier predicted multiple different classes.

Galili et al. [31] chose a completely unconventional approach to classifica-
tion of subjects to disease categories. The main principle behind their idea was
the distrust in the original disease diagnosis. Using the clinical measurements
and the originally assigned disease diagnosis they grouped examples into 10
categories by performing the k-means clustering. Afterward, they assigned a
new classification label to examples and built a classification tree using the
CART algorithm.

2.7 Prediction and early detection of cognitive diseases

One of the most valuable and hard tasks is to detect a cognitive disease even
before symptoms arise. At the moment when symptoms start to manifest,
patient can already suffer from serious and incurable brain damage. To predict
dementia, Klein et al. [46] experimented with a very specific database of MRI
brain scans of 29 subjects. These subjects were asymptomatic at the time of
scanning, but were diagnosed as having dementia within 0.7 to 5 years after
the scan. Besides these 29 subjects, the database also contained 29 healthy
controls. A kNN classifier was ran upon this data, achieving classification
accuracy of 81%. This is a very promising result, since it confirms a possibility
of a very early detection of dementia.

Besides focusing on supervised learning with classification, there are also
other machine learning approaches that helped obtain important information
about cognitive diseases. For example, Joshi et al. [43] determined the ma-
jor risk factors for development of the Alzheimer’s disease, vascular dementia
and Parkinson’s disease. The authors used the chi-square attribute evaluation
scheme with ranker search method [14,40], along with four other attribute
evaluation schemes. The obtained rankings of the attributes are given in Ta-
ble 3. The results showed that genes, diabetes, age, smoking and stroke, seem
to be the most influential attributes for this problem.
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Chi-Square GainRatio InfoGain ReliefF %}:éleriltetrlcal
(Weights) (Weights) (Weights) (Weights) (Weights)
Diabetes
1 Genes (0.85) (0.91) Genes (15.79) Genes (12.08) Genes (6.85)
Smoking Diabetes Diabetes
2 (0.74) Genes (0.89) Age (14.85) (10.67) (6.64)
Diabetes
3 Age (0.72) Stroke (0.88) (10.85) Stroke (10.68) Stroke (6.62)
Diabetes Smoking Smoking
4 (0.71) Age (0.72) Stroke (10.66) (8.96) (6.02)
Smoking Smoking
5 Stroke (0.68) (0.71) (9.01) Age (6.82) Age (6.00)
6 Family_Hist Family_Hist Family_Hist Family_Hist Family_Hist
(0.63) (0.63) (7.65) (5.63) (5.59)
7 Alcohol (0.48) Alcohol (0.51) Alcohol (5.49) Alcohol (4.89) Alcohol (5.29)
Hist_heart Hypertension Hypertension Hypertension
8 LDL (0.32) _Disease (0.31) | (4.06) (4.12) (4.08)
9 Hypertension Hypertension Hist_heart Hist_heart Hist_heart
(0.12) (0.22) _Disease (1.09) | _Disease (2.09) | _Disease (2.85)
10 | Hist-heart LDL (0.18) LDL (1.01) LDL (1.16) LDL (1.85)
_Disease (0.09) : ’ ’ ’
11| BMI (0.06) BMI (0.06) BMI (0.09) BMI (0.06) BMI (0.11)

Table 3: Results of various attribute evaluation methods on the major risk factors for
Alzheimer’s disease, vascular dementia and Parkinson’s disease. [43]

Miller et al. [52] used the OASIS dataset to train and test Support Vec-
tor Machine classifier which had a task of classifying very mild to moderate
dementia. They obtained the accuracy of 85%.

Hosseini-Asl et al. [38] used a deep 3D convolutional neural network (3D-
CNN) that is built upon a 3D convolutional autoencoder, with the final goal
of predicting the Alzheimer’s disease (AD). Interesting part of their research
is fine-tuning of fully connected upper neural network layers for each task-
specific AD classification. They ran experiments upon the ADNI dataset and
achieved accuracy of 77% for ternary classification.

Zhang et al. [81] used MRI scans based on eigenbrain in order not only to
detect patients with the Alzheimer’s disease, but also to detect brain regions
that are related to AD. They detected 30 brain regions that are related to the
disease: Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus,
Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral
Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle
Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracen-
tral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate,
Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal
Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal
Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus. In this research the
authors used the Support Vector Machine classifier on the OASIS database.
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Patients with the Parkinson’s disease have a high risk for developing the
dementia. Morales et al. [54] dedicated their research to detecting dementia
particularly in patients with the Parkinson’s disease. They used Bayesian net-
work classifiers in order to classify subjects into one of the next three classes:
PDCI (cognitively intact patients with Parkinson’s disease), PDMCI (Parkin-
son’s disease patients with mild cognitive impairment) and PDD (Parkinson’s
disease patients with dementia). Dataset consists of MRI scans of 45 sub-
jects (16 PDCI, 15 PDMCI and 14 PDD). The highest obtained accuracy for
the mentioned ternary classification was 70%. Besides that, the authors noted
that the most relevant variables related to dementia in PD were cerebral white
matter and volumes of the lateral ventricles and hippocampi.

2.8 Summary of approaches and data sources
Fig. 2 contains average classification accuracies calculated on results of all

presented papers. The figure confirms that MCI classification task is the most
challenging of all.

100
90
80

70
60 -
50
40
30 4
20
10 -
0 -

NC-MCI NC-AD MCI-AD NC-MCI-D NC-MCI-AD

Fig. 2: Average classification accuracies of different classification tasks calculated on results
of all presented papers.

Table 4 summarizes all methods and data sources used in the papers from
previous subsections. Table rows correspond to methods and the columns cor-
respond to data sources. Table cells contain references to papers that use
corresponding method and data source. Enumeration of methods is explained
in table caption.
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Table 4: Overview of all data sources and methods that were used in the presented papers.
The methods are represented by numbers 1, 2, ..., 50, as follows: 1 — kNN; 2 — NB; 3 —
SVM; 4 — C4.5; 5 — RF; 6 — Decision tree; 7 — Bagging; 8 — NCC; 9 — LPBoost; 10 —
Cascade classification; 11 — Low density separation; 12 — Deep Boltzmann Machine; 13
— RPSE_SRC; 14 — Logistic regression; 15 — Cox regression; 16 — BF tree; 17 — FOCL;
18 — CART; 19 — ANOVA; 20 - ANCOVA; 21 - MANOVA; 22 — NN; 23 — MLP; 24 —
BNC; 25 — BNCIT; 26 — CNN; 27 — DBN; 28 — GNBN; 29 — K-means clustering; 30 —
Filter feature selection; 31 — Wrapper feature selection; 32 — Custom feature selection; 33
— Intercorrelation matrix; 34 — ROI filtering; 35 — Partial least squares; 36 — Simulated
annealing; 37 — Principal component analysis; 38 — Discriminant analysis; 39 — Multi-task
feature selection; 40 — Lasso feature selection; 41 — Recursive feature elimination; 42 —
T-test; 43 — Chi-squared test; 44 — SAM; 45 — PAM; 46 — Multidimensional scaling; 47 —
Decision table; 48 — 3D convolutional autoencoder; 49 — Eigenbrains; 50 — Data fusion.

3 Frequently used datasets

A lot of experiments that are mentioned and used in the analyzed papers
are based on private and unpublished datasets collected by authors of those
papers which however are not publicly available. Nevertheless, some datasets
have been made publicly available for the scientific community. This section
gives a brief overview of such public datasets that are frequently used for
the purpose of applying different machine learning algorithms in a domain of
cognitive diseases.

A well-known repository is UCI ADRC, which provides three different
datasets: minimum dataset (MDS) [8], uniform dataset (UDS) [55,7,74], and
neuropathology dataset (NP) [8]. All these datasets contain basic patient in-
formation as well as scores of different tests. MDS contains 250 instances and
67 features, UDS contains 460 instances and 725 attributes, and NP contains
520 instances and 85 attributes.
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There are also OASIS datasets [4] from the Washington University Alzheimer’s
Disease Research Center, dr. Randy Buckner at the Howard Hughes Medical
Institute (HHMI) at the Harvard University, the Neuroinformatics Research
Group (NRG) at the Washington University School of Medicine, and the
Biomedical Informatics Research Network (BIRN). These datasets are freely
available to the scientific community, and they consist of MRI brain scans and
the scores from different tests and questionnaires.

Alzheimers Disease Neuroimaging Initiative (ADNI) [2] also provides datasets
that are relevant to cognitive diseases studies. It was launched in 2003 by the
National Institute on Aging (NTA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
some private pharmaceutical companies and some non-profit organizations, as
a 60 million US dollars, 5-year public-private partnership. Their goal was to
test whether MRI data, PET data, biological markers, and clinical and neu-
ropsychological assessments can be combined to measure the progression of
MCTI and early AD. It also contains various kind of patients’ data, such as
clinical data, genetics data, MRI image data, etc.

AddNeuroMed [1] study began as a public-private partnership for biomarker
discovery in Alzheimer’s Disease. Data for this longitudinal study was collected
from around the Europe during the period from 2006 to 2008. Participating
institutions came from Italy, Finland, Greece, United Kingdom, Poland and
France. The study enrolled a total of 781 subjects, however not all with com-
plete data at each assessment. Datasets contain cognitive assessments, clinical
data, MRI, genetic data and blood biomarkers.

The Australian Imaging, Biomarker and Lifestyle (AIBL) [27] flagship
study of aging is a study to improve understanding of development of Alzheimer’s
Disease. Its focus lies in early diagnosis, identification of factors that may pre-
dict onset of AD which includes biomarkers, cognitive characteristics, health
and lifestyle factors and possible prevention mechanisms. Their datasets in-
clude cognitive assessments, clinical data, blood and CSF biomarkers, lifestyle
data, MRI and PET scans.

Datasets from all these sources either already contain various features or
they can be extracted using tools such as Freesurfer, Mindboogle, etc. Clin-
ical datasets contain personal information about each patient. This usually
includes demographic data (sex, age, years of education, etc.), family history
(diseases in family, data about relatives, etc.), sensory and motory tests, and
cognitive assessments. Usually several tests are performed to obtain the most
accurate possible disease diagnosis. The most common tests are Mini Mental
State exam (MMSE), Neuropsychiatric Inventory (NPI), Sensory and Motory
Impairment test, Clinical Dementia Rating (CDR), Cambridge Mental Disor-
ders of the Elderly Examination (Camdex), Health related quality of life test
(DEMQOL), etc. Some of these tests, especially those related to the quality
of life, are taken by both caretaker and caregiver.

Blood and cerebrospinal fluid biomarkers datasets contain quantity mea-
surements of proteins in respective fluid. The most commonly measured pro-
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tein levels are tau and amyloid beta since their abnormal accumulation in
brains is the reason for atrophy of the brain.

Neuroimaging datasets usually contain raw brain scans. There are three
different feature extraction approaches that are commonly used. The first one
is voxel-based and uses voxel intensities as immediate features. The second
is vertex-based and produces cortical thickness, sulcal depth, or cortical sur-
face area, cortical surface curvature and convexity as features. The last one
takes well-known brain regions of interest and calculates features for larger
formations of voxels like volumes and thicknesses.

4 Open challenges in the field

The today’s biggest, yet unresolved challenge is that the classification of cog-
nitively impaired patients and patients with mild dementia is still not reliable
enough. Different authors tried to cope with this problem, but none of them
achieved strong breakthroughs. The past research does, however, reveal that
data obtained from the MRI scans is more suitable for this problem than data
obtained from questionnaires, as they seem to be better predictors for the
early detection of cognitive diseases.

The improvement in the field would be to introduce machine learning sys-
tems into everyday medical practice and with significant number of patients
health records for a large number of patients. Many papers reported signifi-
cant results, but, as far as we know, none of them reported outcome of a real
system that actually helps clinical staff in their everyday practice and decision
support.

The majority of researches are dedicated to diagnosing diseases, which is
undoubtedly a very important task. Nevertheless, a revolutionary opportunity
to use machine learning system as a treatment planning assistant tool still
remains fully unexplored. This topic is also an open problem that should be
explored more deeply in the future.

5 Conclusion

Cognitive diseases are affecting large number of people. Given that they are
incurable, it is of a high importance to detect them in their early stage. Much
effort has been devoted to improving diagnostics of cognitive diseases, and ma-
chine learning techniques provide one way of dealing with this problem. In this
paper we have presented various machine learning techniques and approaches
that deal with the problem of improving classification accuracy of patients
with cognitive diseases, which has been a goal for the past 20 years.

We have shown that promising results can be achieved on various kind of
input data. Machine learning community has mostly experimented with ques-
tionnaire data and with MRI data. The goal of those papers was not only
to improve classification accuracy, but also to point out some interesting and
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useful facts about underlying processes (e.g. to determine the best classifica-
tion algorithm, to detect relevant and irrelevant features, etc.). Besides these
conventional kind of data, many experiments were conducted upon datasets
that are not primarily used together with cognitive diseases, such as blood
sample data and EEG signals. Results have shown that even such data can
contain valuable information for predicting cognitive diseases.

Data fusion became a useful technique for knowledge acquisition in cases
when two or more related datasets are available. We presented research papers
that used data fusion of datasets, which successfully led to an increase of the
classification accuracy. Many research papers are also devoted to comparative
analyses of different machine learning algorithms upon cognitive diseases data.
Besides comparing the machine learning approaches we also presented the most
commonly used datasets.

Even though a lot of valuable results in this field have already been ob-
tained, there is still a room for improvements. Classification of patients with
mild dementia is still not reliable. In addition to that, as far as we know,
none of the papers reported usage and outcomes of a machine learning expert
systems in the everyday practice.

We hope that this overview paper can be a valuable starting point for
many researchers who would either like to start or continue with a further
exploration of this field. Besides that, numerous methods that are presented
in this paper, can be inspiration for some new, unexplored ideas that would
improve quality of automated diagnostics, prediction, and treatment planning
for cognitive diseases.
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