
NN-Descent on High-Dimensional Data
Brankica Bratić

University of Novi Sad
Faculty of Sciences
Novi Sad, Serbia

brankica.bratic@dmi.uns.ac.rs

Michael E. Houle
National Institute of Informatics

Tokyo, Japan
meh@nii.ac.jp

Vladimir Kurbalija
University of Novi Sad
Faculty of Sciences
Novi Sad, Serbia

kurba@dmi.uns.ac.rs

Vincent Oria
New Jersey Inst. of Technology
Dept. of Computer Science
Newark, New Jersey, USA
vincent.oria@njit.edu

Miloš Radovanović
University of Novi Sad
Faculty of Sciences
Novi Sad, Serbia

radacha@dmi.uns.ac.rs

ABSTRACT
K-nearest neighbor graphs (K-NNGs) are used inmany data-mining
and machine-learning algorithms. Naive construction of K-NNGs
has a complexity of O(n2), which could be a problem for large-
scale data sets. In order to achieve higher efficiency, many exact
and approximate algorithms have been developed, including the
NN-Descent algorithm of Dong, Charikar and Li. Empirical evi-
dence suggests that the practical complexity of this algorithm is
in Õ(n1.14), which is a significant improvement over brute force
construction. However, NN-Descent has a major drawback — it
produces good results only on data of low intrinsic dimensionality.
This paper presents an experimental analysis of this behavior, and
investigates possible solutions. We link the quality of performance
of NN-Descent with the phenomenon of hubness, defined as the
tendency of intrinsically high-dimensional data to contain hubs —
points with high in-degrees in the K-NNG. We propose two ap-
proaches to alleviate the observed negative influence of hubs on
NN-Descent performance.

KEYWORDS
NN-Descent, k-nearest neighbor graph, hubness
ACM Reference Format:
Brankica Bratić, Michael E. Houle, Vladimir Kurbalija, Vincent Oria, and Mi-
loš Radovanović. 2018. NN-Descent on High-Dimensional Data. In Pro-
ceedings of 8th International Conference on Web Intelligence, Mining and
Semantics (WIMS’18). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A K-nearest neighbor graph (K-NNG) is a directed graph whose
vertices represent elements upon which some distance function is
defined. Vertex v is unidirectionally connected to vertex u only if

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WIMS’18, June 2018, Novi Sad, Serbia
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

vertex u is one of the K elements that are nearest to point v with
respect to the defined distance function. K-NNGs are used in many
machine-learning and data-mining algorithms [8], including classi-
fication [7], similarity search [11], clustering and outlier detection
problems [2, 3, 12], manifold learning [1, 20, 22]. They are also used
in other areas, such as robot motion planning [5] and computer
graphics [21].

Naive brute-force computation of a K-NNG entails n · (n − 1)
distance computations, which leads to quadratic time complexity.
Numerous methods for K-NNG construction have been developed
in order to decrease the computational cost, but many of them
introduce certain restrictions and therefore do not apply to the ge-
neral case. For example, many efficient methods are developed for
Euclidean or other Lp distance metrics [4, 6], whereas others can
be applied to more general metric spaces [14]. In order to bypass
all those restrictions while still preserving efficiency, Dong, Chari-
kar and Li created the NN-Descent [10] algorithm, that efficiently
produces highly accurate K-NNG approximations independently
of the underlying distance function. As reported by the authors,
empirical complexity of NN-Descent is in Õ(n1.14). Although the
results produced by this algorithm are mostly excellent, there is
still one major drawback — NN-Descent often produces inaccurate
results when it is used on data of high intrinsic dimensionality.

Park et al. [15] developed a modification of NN-Descent based
on a greedy filtering method, with which they obtained improved
results for high-dimensional data together with the cosine simila-
rity measure. Houle et al. [13] introduced NNF-Descent (Nearest
Neighbor Feature Descent), an NN-Descent-based feature sparsifi-
cation method optimized for image databases. It uses the Laplacian
score in order to identify noisy values, which are then replaced
with zeros. Debatty et al. [9] presented a method for constructing a
K-NNG for large text data sets. This method applies NN-Descent
only to smaller buckets of data, leading to a lower execution time.

Although several improvements have been proposed for NN-
Descent, so far none of them have given an explanation for the
variability of its performance, nor have they given a universal solu-
tion to the problem. In this paper we will provide an explanation
for this variation in terms of hubness, a measure of the variation in
nearest neighbor relationships [16]. We also propose two approa-
ches that improve the quality of NN-Descent approximations for
high-dimensional datasets.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WIMS’18, June 2018, Novi Sad, Serbia B. Bratić et al.

Section 2 will describe the necessary background by providing
an overview of the NN-Descent algorithm and the phenomenon of
hubness. In Section 3 we show how a minor modification of the NN-
Descent algorithm can produce estimates of hubness. Experimental
results presented in Section 4 demonstrate the empirical effect of
hubness on NN-Descent. Section 5 proposes methods that to some
extent overcome the problems of NN-Descent on high-dimensional
data. Finally, Section 6 gives an overview of the conclusions and
results, and indicates directions for future work.

2 BACKGROUND
In this sectionwewill review the NN-descent algorithm (Section 2.1)
and the hubness phenomenon (Section 2.2), which, as we will de-
monstrate later, has a significant impact on NN-Descent.

2.1 NN-Descent
The main purpose of the NN-Descent algorithm is to create a good
approximation of the true K-NNG, and to create it as fast as possi-
ble. The basic assumption made by NN-Descent can be summarized
as “my neighbor’s neighbor is also likely to be my neighbor.” The
algorithm starts by creating a random K-NNG, and then iteratively
improves the neighbor lists by using the current neighborhood rela-
tionships to suggest new neighbor candidates. During the execution
of NN-Descent, for a data point u, we will refer to the current list
of its K nearest neighbors as the NN list of u. A reverse neighbor
of u is a data point which has u in its own NN list; we will refer to
the current list of reverse neighbors of u as its RNN list.

NN-Descent is organized into stages, during each of which a
single improvement iteration is applied to each of the data points.
The algorithm iteration for u examines its NN and RNN lists to
see whether any points in these lists should be added to the NN
lists of any of the others. If this is the case, the algorithm makes
the necessary changes, and increases the number of total updates.
After every stage has completed, the algorithm tests a termination
condition based on the number of updates that were applied du-
ring the stage. If the number of updates is smaller than a supplied
threshold, the algorithm terminates; otherwise, it continues with
the next stage. An outline of NN-Descent is shown as Algorithm 1.

The speed of NN-Descent is strongly influenced by the K value.
As K becomes larger, the algorithm becomes slower. To be more
precise, the time complexity has a quadratic dependence onK , since
during each iteration, points appearing in NN or RNN lists of the
same point are evaluated as candidates for each others NN lists. As a
way to reduce the number of combinations of points considered, the
authors introduced sampling [10]. Sampling reduces the number
of evaluations by taking a random selection of NN and RNN lists,
and then operates only on the points from those lists. Sampling
is controlled by a parameter ρ that takes a value from 0 to 1. The
algorithm takes ρ · K points from both NN and RNN lists.

The second drawback of NN-Descent is that quality of approx-
imation it produces is highly influenced by the intrinsic dimensi-
onality of the data set, in that the quality of the approximation
decreases as the intrinsic dimensionality increases. The reason for
this has not been adequately explained. Although low-dimensional
embeddings have often been used as a general method of reducing

Algorithm 1: Outline of NN-Descent algorithm.
input :dataset D, distance function dist, neighborhood size K
output :K-NNG G

1 foreach data point u ∈ D do
2 Initialize G by randomly generating a tentative K-NN list

for u with an assigned distance of +∞;
3 end
4 repeat
5 foreach data point u ∈ D do
6 Check different pairs of u’s neighbors (v,w) in u’s

K-NN and R-NN (reverse nearest neighbor) lists, and
compute dist(v,w);

7 Use ⟨v, dist(v,w)⟩ to updatew’s K-NN list, and use
⟨w, dist(v,w)⟩ to update v’s K-NN list;

8 end
9 until G converges;

10 return G.

the complexity of data indexing, no solutions have yet been propo-
sed that allow the NN-Descent strategy to work more effectively
with high-dimensional data. In this paper we will explain the influ-
ence of high dimensionality on NN-Descent, and will also propose
two approaches that are designed to overcome this challenge to
some extent.

2.2 Hubness
Hubness is an aspect of the curse of dimensionality pertaining to
nearest neighbors which has come to the attention of the research
community only relatively recently [16]. Let D ⊂ Rd be a set of
data points and let the k-occurrences of point x ∈ D be the number
of times x occurs in k-nearest-neighbor lists of other points from D.
Nk (x) is then the number of k-occurrences of point x ∈ D — that
is, the in-degree of node x in the K-NNG. As the dimensionality of
the data increases, the distribution of Nk (x) becomes considerably
skewed. As a consequence, some data points, which we will refer to
as hubs, are included in many more k-nearest-neighbor lists than
other points.

In the remainder of the discussion we will refer to the number
of k-occurrences of point x ∈ D as its hubness value. If a data set
contains many points that are hubs — that is, if the distribution of
hubness values is highly skewed — it can be said that the hubness
phenomenon is present therein. It has been shown that hubness,
as a phenomenon, appears in high-dimensional data as an inhe-
rent property of intrinsically high dimensionality, and is not an
artifact of finite samples nor a peculiarity of specific data sets [16].
It was shown that hubness influences various data-mining and
machine-learning algorithms [16–19, 23], often in a negative way.
Practical computation of (exact) hubness values entails the creation
of the K-NNG, from which hubness values can be easily obtained
by extracting the in-degrees of nodes.

NN-Descent on High-Dimensional Data WIMS’18, June 2018, Novi Sad, Serbia

3 HUBNESS ESTIMATION USING
NN-DESCENT

Approximate hubness values for each data point could be very
easily calculated during NN-Descent, with minimal impact on algo-
rithm performance. At the very beginning, we initialize the hubness
values of each data set point to zero. Then, during algorithm execu-
tion, we increase the hubness value of a given point by one if that
point is added to the NN list of some other point, and analogously,
we decrease the hubness value by one if the point is removed from
some NN list.

Some of the results that we obtained after this small upgrade of
NN-Descent algorithm are illustrated in Figure 1, which shows the
correlation between estimated and exact hubness values of data
points. For the purposes of the experimentation in this paper, we
created several synthetic data sets drawn from a Gaussian distribu-
tion with standard deviation 1 and mean (0, 0, . . . , 0). The data sets
each have n = 10000 points, but differ in their dimensionality d .
During the analysis we also varied the size of the nearest neighbor
lists, represented by the parameter K . We considered the values 10,
20 and 50 for K , and the values 2, 10, 20 and 100 for parameter d .
As a distance measure we used the Euclidean distance. In Figure 1
we show results only for the data set of highest dimensionality
(d = 100), since the hubness phenomenon is known to strengthen
as the dimensionality of the data increases. As can be seen, the
correlation between real and estimated hubness values is very high.
A shortcoming of NN-Descent is that estimated hubness values are
lower then they should be for points with low true hubness values,
and greater then they should be for points with high true hubness.
The precision improves as K increases, but even for small K values,
the algorithm produces strong correlations.

4 INFLUENCE OF HUBNESS ON NN-DESCENT
NN-Descent is known to produce large amount of incorrect K
nearest neighbors when applied upon high-dimensional data. Since
hubness is a phenomenon that appears in high-dimensional data,
and at the same time was shown to influence many other data-
mining algorithms, in this section we investigate whether it also
influences the performance of NN-Descent.

For a given data set point, we will define the hit count to be the
number of K-nearest neighbors produced by NN-Descent that are
at the same time one of the point’s K-nearest neighbors in the exact
K-NNG. In other words, the hit count tells us how many correct
selections NN-Descent has made for the neighborhood list of a
given data point. The first part of our analysis will be to examine
the correlation between hit count values and hubness values of data
points. In order to do that, we first calculated the exact K-NNGs,
as well as hubness values for each data set point. We then ran NN-
Descent without sampling and early termination, and calculated
hit count values based on the previously calculated K-NNG and
NN-Descent graph approximation. We did this for all generated
data sets.

Some of the results can be seen in Figure 2. Let us now say
that for the points of fixed hubness value, hit count values are
distributed between hcmin and hcmax. Results are showing us that
both values are directly proportional to the hubness value, with this
behavior being much more evident in the case of the hcmin value.

(a)

(b)

(c)

Figure 1: Correlation between estimated and exact hubness
values of data set points. (a)K = 10,d = 100; (b)K = 20,d = 100;
(c) K = 50,d = 100. Here, K is the size of the neighbor lists,
and d is the dimensionality of the data set.

In the case of hcmax, the phenomenon is less evident (Figure 2d).
As a consequence, points with extremely high hubness values have
hcmin ≃ hcmax ≃ K , which means that their hit counts usually
attain the greatest possible value. For the lowest hubness values, it
holds that hcmin is near zero, while the hcmax depends on K and d ;
however, for all tested data sets, this value is K or very nearly K . In
other words, some points with extremely low hubness values have
a high hit count, and some have hit counts that are very low, which

WIMS’18, June 2018, Novi Sad, Serbia B. Bratić et al.

(a) (b)

(c) (d)

Figure 2: Hubness and hit count values of data set points. (a) K = 10,d = 2; (b) K = 10,d = 10; (c) K = 10,d = 20; (d) K = 10,d = 100.
Here, K is the size of the neighbor lists, and d is the dimensionality of the data set.

means that the probability of error when determining the K nearest
neighbors of point x is inversely proportional to the hubness of x .
The described phenomenon is more evident in data sets with lower
K values and greater dimensionality d . If K is sufficiently large,
and d is sufficiently small, the phenomenon is less evident, as the
hubness values of the points are more uniform. In these cases, NN-
Descent produces a very good approximation of K-NNG. In further
research we will concentrate on settings for which the performance
of NN-Descent is poor, as we saw for the case where d = 100.

Now that the influence of hubness on NN-Descent has been esta-
blished, we examine the cause of this phenomenon. As was already
described in Section 2.1, the NN-Descent algorithm improves the
K-NN graph approximation in each iteration. If the hubness of the
data set is high, then in the first few stages hubs will be placed
among the K nearest neighbors of a large number of data points.
This implies that the NN lists of a majority of points will contain
hubs. Points with lower hubness values will quickly be expelled
from NN lists of other points. This expulsion of non-hubs from
NN lists implies that the neighborhoods of those points, according
to the nature of the algorithm, will not be updated as often — in
order for the NN list of a given point to be updated, that point

must be present in the NN or RNN lists of other data points. If
a point is rapidly expelled from NN lists, then it will be updated
only from RNN lists of the points that are very unlikely to be their
true neighbors, since the initial approximation of the K-NN graph
is essentially random. For some points of low hubness value, this
produces relatively poor results.

Another issue to consider is that some points with low hubness
values may still have high hit count values, while other low-hubness
points may have very low hit counts. In order to quantify the extent
to which the variation in hit count values depends on hubness, we
calculated hit count values and their standard deviations for each
data point, over 100 runs of NN-Descent, each time generating
the random graph with a different random seed. The results are
shown in Figure 3, where the intensity of the red color represents
the mean of hit count values among different runs — points with
greater intensity have greater average hit count values. As can
be seen, points with low hubness values have hit counts with a
relatively high standard deviation, while points with high hubness
values have hit count standard deviations that tend toward zero.
This implies that hit count values vary significantly across different
runs, while the only difference between runs is the initial random

NN-Descent on High-Dimensional Data WIMS’18, June 2018, Novi Sad, Serbia

graph. All of this leads us to the conclusion that the main factor that
affects the hit count of points with low hubness is the initial random
K-NNG: if the point is in a high-quality neighborhood in the initial
random graph, then NN-Descent is more likely to produce a high
hit count. Otherwise, the point will be quickly expelled from NN
lists, and will stay trapped in the RNN lists of points that are not
its true neighbors, leading to a relatively low probability that the
point’s NN list will be updated with true neighbors.

Figure 3: Results with K = 10 and d = 100; the y-axis shows
standard deviations of hit count values for 100 runs of NN-
Descent, while the x-axis shows hubness values of the corre-
sponding data points.

5 PROPOSED METHODS FOR IMPROVING
NN-DESCENT ON HIGH-DIMENSIONAL
DATA

In order to overcome the problem described in Section 4, we imple-
mented two different approaches. The first one is based on the idea
that NN lists should not be updated strictly according to the NN and
RNN lists of other points. The goal is to integrate the information
about hubness values into the choice of points to compare with
the current approximation of the NN list. A high hubness value
indicates that a certain point already has a reasonably stable NN
list, and vice versa — a low hubness value suggests that the point
has a greater probability of being assigned an incorrect NN list.
The second approach is based on the observation that for greater
K values the algorithm tends to be more accurate. If we run the
NN-Descent algorithm with a greater K value, and then reduce the
resulting K-NNG to the K we actually need, the precision of final
graph is expected to be better.

In order to be able to compare the results of the original NN-
Descent with the results of the proposed improvements, we show
the performance of the original algorithm in Figure 4, while the
following two subsections will present results of the two impro-
vements. Besides presenting the final results, those two subsections
also give a more detailed overview of both approaches.

(a)

(b)

(c)

Figure 4: Hubness and hit count values of data points for the
original NN-Descent algorithm. The figures show results for
data sets with the following parameters: (a) K = 10,d = 100;
(b) K = 20,d = 100; (c) K = 50,d = 100.

Before describing the new approaches, let us present a brief over-
view of the results generated by the original NN-Descent algorithm.
The measure used to express the effectiveness of NN-Descent is
recall 4. Recall can be calculated as the sum of all hit count values
divided by the product of data-set size and K (and, in this case, is
actually equivalent to precision and accuracy).

WIMS’18, June 2018, Novi Sad, Serbia B. Bratić et al.

The results of the original algorithm, as shown in Figure 4, de-
pend strongly on the size of the NN lists (K). In the case where
d = 100 and K = 10 (Figure 4a), the recall is only 0.377, whereas
for K = 20 the recall is 0.732 (Figure 4b), and for K = 50 the recall
is 0.976 (Figure 4c).

As the motivation for NN-Descent is the speed-up of the ge-
neration of K-NNGs, the speed of execution must also be taken
into account. For the case where K = 10 and K = 20, NN-Descent
computes an approximate K-NNG much faster than what would
be required to compute an exact K-NNG. However, for K = 50, the
NN-Descent algorithm required a computation time even greater
than that of exact K-NNG construction. Therefore, even though
the graph produced by K = 50 is very accurate, for the relatively
low data set size considered in our experimentation, the extremely
high execution time makes NN-Descent impractical to use for this
large choice of neighborhood size. (Note that for larger data sets
execution time could still be in favor of NN-Descent.)

5.1 Hubness-Aware Variant
We now show how hubness values can be used to help guide the
choice of candidate points for inclusion in the NN list of a given data
point. After implementing the simple hubness estimator described
in Section 3, up-to-date hubness estimates become available at any
given iteration of the algorithm execution. After each stage, these
values become more accurate; they are reasonably precise even
after the very first few stages, as a consequence of NN-Descent
itself having the same property.

Let us now describe in detail how this strategy works. In each
iteration, we check if a given point has hubs in its NN list. Let h be
a threshold on the number of hub points to be considered from the
NN list of the given point. The idea is to replace h points of high
hubness value in the current NN list with h new points chosen at
random. The intuition behind this modification of NN-Descent is
to diminish the impact of hubs on the update of NN lists. By adding
one random point in place of each hub, we attempt to increase the
probability of undiscovered neighbor points to associate themselves
with the given point.

What remains to be clarified is the precise mechanism by which
these h points are determined. Rather than simply choosing the
h points with highest hubness values, in order to allow for the
possibility of other improvements, we let the hubness value of a
given point to determine the probability (between 0 and 1) of the
point being included among the h points to be replaced. To generate
a valid probability, we employed a linear transformation of the
raw hubness values into the interval [0, 1]. For the purpose of the
transformation, we introduce values hmin and hmax representing
the maximum and minimum hubness values for which the linear
transformation is applied; if the hubness value is greater than hmax
or smaller than hmin, the probabilities assigned would be 1 or 0,
respectively. The probability that a point is selected for discard is
shown in Equation 1, where x denotes the given data point and hx
is the current hubness value of point x .

Pr[discard(x)] =

0, if hx < hmin
1, if hx > hmax
hx−hmin
hmax−hmin

, otherwise.
(1)

(a)

(b)

(c)

Figure 5: Hubness and hit count values for the hubness-
aware NN-Descent variant, as described in Section 5.1. The
figures show the results for data sets with the following pa-
rameter choices: (a) K = 10,d = 100; (b) K = 20,d = 100; (c)
K = 50,d = 100.

Experimental results for this approach are presented in Figure 5,
where the algorithm was executed for the choices hmin = 2K and
hmax = 20K . The experiments confirm the effectiveness of the
choice of values for hmin and hmax. For the case where K = 10,
we obtained a recall of 0.620, which is almost twice that of the
original recall. For K = 20 a recall of 0.849 was obtained, while for

NN-Descent on High-Dimensional Data WIMS’18, June 2018, Novi Sad, Serbia

K = 50 the recall was 0.984. In comparison with the original NN-
Descent, smaller changes in recall were observed asK increases, due
to the higher accuracy achieved for lower K values. Even though
the recall rate is significantly improved, this came at the cost of
higher execution times than the original NN-Descent. Nevertheless,
the hubness-aware approach achieves better execution times as
compared to the construction time for the exact K-NNG, except
for the case when K = 50, which proved to be the same as for
the original NN-Descent. For large K , the large computation time
required by the hubness-aware variant was likely due to an increase
in the number of iterations required to converge, due to the added
variability introduced by the substitution of hubs with other data
points.

5.2 Oversized NN List Variant
The second NN-Descent variant considered involved the execution
of NN-Descent with some larger choice of neighborhood size K ′ >
K , followed by a truncation of the NN lists to the target size K . We
analyzed this approach with several different choices of K ′:

• Running NN-Descent with K ′ = 2K ,
• Running NN-Descent with K ′ = 2K and a sampling rate of
0.5,

• Running NN-Descent with K ′ = 4K and sampling rate of
0.25.

The experimental results obtained for these three settings are
given in Table 1, from which we can observe a trade-off between
execution time and recall, in that settings that produce better recall
require more time to execute. As with the the original NN-Descent
and its hubness-aware variant, the execution time for K = 50 is
longer than the time needed for the calculation of the exact K-NNG,
which renders the algorithm impractical despite the extremely accu-
racy achieved. For K = 20 as well, the oversized NN-list variant
could not outperform brute force K-NNG construction for the lar-
gest oversized list choice K ′ = 4K , despite the use of sampling at a
rate of 0.25. All other parameter combinations considered produced
a satisfactory recall score in a reasonably short time.

Table 1: Recall values and execution times of all parameter
combinations. The data dimensionality is 100.

K = 10 K = 20 K = 50

Exact K-NNG
Recall 1 1 1
Execution time 103.4 103.4 103.6
Iterations count 13 10 5

2K , sampling = 1
Recall 0.760 0.960 0.999
Execution time 26.9 88.3 420.3
Iterations count 10 6 3

2K , sampling = 0.5
Recall 0.630 0.906 0.998
Execution time 17.6 57.5 284.9
Iterations count 15 10 5

4K , sampling = 0.25
Recall 0.859 0.985 0.999
Execution time 46.9 151.5 967.5
Iterations count 17 10 6

The best trade-off between recall and execution time is obtained
by the setting withK ′ = 2K and sampling of 0.5. Figure 6 shows the
relation between hubness values and hit count for the mentioned
setting. Even though this method produces quite satisfying results,
it has an obvious downside in its increased sensitivity (in terms of
execution time) to the chosen K value.

(a)

(b)

(c)

Figure 6: Hubness and hit count values for the oversized NN
list variant of NN-Descent described in Section 5.2. The fi-
gures show the results for data sets with the following pa-
rameter choices: (a) K = 10,d = 100; (b) K = 20,d = 100; (c)
K = 50,d = 100.

WIMS’18, June 2018, Novi Sad, Serbia B. Bratić et al.

6 CONCLUSION
Poor performance of theNN-Descent algorithm on high-dimensional
data has been observed in the past, but until now has lacked a sa-
tisfactory explanation. In this paper, we provided an experimental
analysis that reveals a connection between performance and the
well-studied hubness characteristics of data sets, in that the original
formulation of the NN-Descent algorithm does not perform well
when the data contains many hubs. In order to address this shortco-
ming, we introduced two different variants of the original algorithm.
Our experimental results show that the new NN-Descent variants
achieve better recall at the expense of an increase in execution time.

In the future, a more detailed evaluation of the described phe-
nomenon and proposed methods will be conducted. The evalua-
tion should, among other things, include an analysis on real data
sets. Future work could also target the fine tuning of both of NN-
Descent variants. In particular, the hubness-aware variant could be
re-examined with the objective of decreasing its iteration count;
with the oversized NN list variant, the main research target should
be the improvement of sampling strategies. Conceivably, better
performance may be achieved if the points chosen for NN list
improvement were selected according to a carefully-managed non-
uniform strategy.

ACKNOWLEDGMENTS
M. E. Houle gratefully acknowledges the financial support of JSPS
Kakenhi Kiban (B) Research Grants 15H02753 and 18H03296. V. Kur-
balija and M. Radovanović thank the Serbian Ministry of Education,
Science and Technological Development for support through pro-
ject no. OI174023, “Intelligent Techniques and their Integration
into Wide-Spectrum Decision Support.” V. Oria acknowledges the
financial support of NSF Research Grants DGE 1565478 and ICER
1639683.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Computation 15, 6 (2003), 1373–1396.
[2] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: Identifying density-based local outliers. In ACM Sigmod Record, Vol. 29.
ACM, 93–104.

[3] M. R. Brito, E. L. Chavez, A. J. Quiroz, and J. E. Yukich. 1997. Connectivity of the
mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics &
Probability Letters 35, 1 (1997), 33–42.

[4] Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast approximate kNN graph
construction for high dimensional data via recursive Lanczos bisection. Journal
of Machine Learning Research 10 (2009), 1989–2012.

[5] Howie M. Choset. 2005. Principles of Robot Motion: Theory, Algorithms, and
Implementation. MIT press.

[6] Michael Connor and Piyush Kumar. 2010. Fast construction of k-nearest neighbor
graphs for point clouds. IEEE Transactions on Visualization and Computer Graphics
16, 4 (2010), 599–608.

[7] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory 13, 1 (1967), 21–27.

[8] Belur V. Dasarathy. 2002. Data mining tasks and methods: Classification: Nearest-
neighbor approaches. In Handbook of Data Mining and Knowledge Discovery.
Oxford University Press, 288–298.

[9] Thibault Debatty, Pietro Michiardi, Olivier Thonnard, and Wim Mees. 2014.
Building k-nn graphs from large text data. In Proc. 2014 IEEE Int. Conf. on Big
Data. IEEE, 573–578.

[10] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. In Proc. 20th Int. Conf. on the World
Wide Web (WWW). ACM, 577–586.

[11] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast approximate nearest-neighbor search with k-nearest neighbor graph. In
Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI), Vol. 22. 1312.

[12] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. 2004. Outlier detection using
k-nearest neighbour graph. In Proc. 17th Int. Conf. on Pattern Recognition (ICPR),
Vol. 3. IEEE, 430–433.

[13] Michael E. Houle, Xiguo Ma, Vincent Oria, and Jichao Sun. 2014. Improving the
quality of K-NN graphs for image databases through vector sparsification. In
Proc. 4th ACM Int. Conf. on Multimedia Retrieval (ICMR). ACM, 89.

[14] Rodrigo Paredes, Edgar Chávez, Karina Figueroa, and Gonzalo Navarro. 2006.
Practical construction of k-nearest neighbor graphs in metric spaces. In Interna-
tional Workshop on Experimental and Efficient Algorithms. Springer, 85–97.

[15] Youngki Park, Sungchan Park, Sang-goo Lee, and Woosung Jung. 2013. Scalable
k-nearest neighbor graph construction based on greedy filtering. In Proc. 22nd
Int. Conf. on the World Wide Web (WWW). ACM, 227–228.

[16] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2010. Hubs
in space: Popular nearest neighbors in high-dimensional data. Journal of Machine
Learning Research 11 (2010), 2487–2531.

[17] Milos Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2010. On the
existence of obstinate results in vector space models. In Proc. 33rd Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval. ACM, 186–193.

[18] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2010. Time-
series classification in many intrinsic dimensions. In Proc. 2010 SIAM Int. Conf.
on Data Mining (SDM). SIAM, 677–688.

[19] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2015. Re-
verse nearest neighbors in unsupervised distance-based outlier detection. IEEE
Transactions on Knowledge and Data Engineering 27, 5 (2015), 1369–1382.

[20] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 5500 (2000), 2323–2326.

[21] Jagan Sankaranarayanan, Hanan Samet, and Amitabh Varshney. 2007. A fast
all nearest neighbor algorithm for applications involving large point-clouds.
Computers & Graphics 31, 2 (2007), 157–174.

[22] Lawrence K. Saul and Sam T. Roweis. 2003. Think globally, fit locally: Unsupervi-
sed learning of low dimensional manifolds. Journal of Machine Learning Research
4 (2003), 119–155.

[23] Nenad Tomašev, Miloš Radovanović, Dunja Mladenić, and Mirjana Ivanović. 2011.
The role of hubness in clustering high-dimensional data. In Proc. 15th Pacific-Asia
Conf. on Knowledge Discovery and Data Mining (PAKDD). Springer, 183–195.

	Abstract
	1 Introduction
	2 Background
	2.1 NN-Descent
	2.2 Hubness

	3 Hubness Estimation Using NN-Descent
	4 Influence of Hubness on NN-Descent
	5 Proposed Methods for Improving NN-Descent on High-Dimensional Data
	5.1 Hubness-Aware Variant
	5.2 Oversized NN List Variant

	6 Conclusion
	Acknowledgments
	References

