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The K-nearest neighbor graph (K -NNG) is a data structure used by many machine-
learning algorithms. Naive computation of the K -NNG has quadratic time complexity,

which in many cases is not efficient enough, producing the need for fast and accurate

approximation algorithms. NN-Descent is one such algorithm that is highly efficient, but
has a major drawback in that K -NNG approximations are accurate only on data of low

intrinsic dimensionality. This paper represents an experimental analysis of this behavior,
and investigates possible solutions. Experimental results show that there is a link between
the performance of NN-Descent and the phenomenon of hubness, defined as the tendency

of intrinsically high-dimensional data to contain hubs – points with large in-degrees in the
K -NNG. First, we explain how the presence of the hubness phenomenon causes bad NN-

Descent performance. In light of that, we propose four NN-Descent variants to alleviate

the observed negative influence of hubs. By evaluating the proposed approaches on several
real and synthetic data sets, we conclude that our approaches are more accurate, but
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often at the cost of higher scan rates.

Keywords: NN-Descent; k -nearest neighbor graph; hubness.

1. Introduction

A K-nearest neighbor graph (K -NNG) is a directed graph whose vertices represent

elements upon which some distance function is defined. Vertex v is unidirectionally

connected to vertex u only if vertex u is one of the K elements that are nearest

to point v with respect to the defined distance function, in which case, vertex u

is said to be a neighbor of vertex v. K -NNGs are used in many machine-learning

and data-mining algorithms,1 including classification,2 similarity search,3 clustering

and outlier detection problems,4–6 manifold learning.7–9 They are also used in other

areas, such as robot motion planning10 and computer graphics.11 Fig. 1 shows an

example of a simple K -NNG for K = 2, whose vertices are five 2-dimensional points.

The distance function that was used for the creation of this K -NNG was Euclidean

(L2) distance. As can be seen, each point has exactly two outgoing edges (which is

determined by the K value), while the number of incoming edges varies. The figure

also depicts the neighborhood of one vertex – this vertex is colored blue, while its

neighbors are colored red.

Fig. 1. An example of K -NNG (K = 2) of 2-dimensional points with the Euclidean (L2) distance

as an underlying distance function.

Naive brute-force computation of K -NNG entails n·(n−1)
2 distance computations,

which leads to quadratic time complexity. Therefore, for large scale data sets (with

big n values) computation of K -NNG could be very inefficient. For that reason

many approximation algorithms were developed (some of them are presented in

Section 2). One such algorithm is NN-Descent, which efficiently creates K -NNG

approximations. However, the algorithm has one major drawback – it does not

produce accurate approximations when the dimensionality of a data set is large.

As a consequence, high-dimensional data sets like multimedia, medical, DNA data

sets, etc.,12 cannot make use of NN-Descent.

Although several improvements have been proposed for NN-Descent (see Sec-

tion 2), so far none of them have given an explanation for the variability of its perfor-
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mance, nor have they given a universal solution to the problem. In our earlier work13

we provided an explanation for this variation in terms of hubness, a measure of the

variation in nearest neighbor relationships.14 We also proposed two approaches that

improve the quality of NN-Descent approximations for high-dimensional data sets.

In this article we extend the previous research by adding two additional approaches

and by improving experimental analysis. The main improvement of the experiments

are in terms of data sets that we used to validate our findings – we added one ad-

ditional synthetic data set that is larger (it contains 100,000 instances) and unlike

in previous research, we now also use real data sets.

Section 2 overviews previous research in the area. Section 3 will describe the

necessary background by providing an explanation of the NN-Descent algorithm

and the phenomenon of hubness. In Section 4 we show how a minor modification of

the NN-Descent algorithm can produce estimates of hubness. Experimental results

are presented in Section 5 that demonstrate the empirical effect of hubness on NN-

Descent. Section 6 proposes methods that to some extent overcome the problems of

NN-Descent on high-dimensional data. Finally, Section 7 gives an overview of the

conclusions and results, and indicates directions for future work.

2. Related Work

Numerous methods for K -NNG construction have been developed in order to de-

crease the computational cost, but many of them introduce certain restrictions and

therefore do not apply to the general case. Chen et al.15 introduced an approximate

divide and conquer algorithm that uses Lanczos bisection16 for the divide step. The

algorithm behaves well on high-dimensional data, but is limited to Euclidean dis-

tance. Jang et al.17 developed an approximate K-nearest neighbor search method

based on the Earth Mover’s Distance (EMD) for fast multimedia retrieval. In their

method the index is built by using M-tree together with dimensionality reduction,

while the approximate EMD is used for the index retrieval. A little less restric-

tive in terms of distance function is an approach by Paredes et al.18 The paper

presents a general methodology for K -NNG construction when the distance func-

tion is a metric. For low- and medium-dimensional spaces the algorithm achieves

high speedup, while for high-dimensional ones the speedup is lower. A parallel algo-

rithm for K -NNG computation was presented by Connor et al.19 Their algorithm

is based on Morton order or Z-order of points and is most suitable for multi-core

machines. Zhang et al.20 developed an algorithm that creates K -NNG approxima-

tion for an arbitrary distance function. The main idea of the algorithm is to group

similar points by using locality sensitive hashing (LSH).21

Even though many algorithms for fast K -NNG computations were developed,

one of the famous and most efficient ones is the one introduced by Dong et al.22 The

algorithm is called NN-Descent and it efficiently produces highly accurate K -NNG

approximations independently of the underlying distance function. As reported by

the authors, empirical complexity of NN-Descent is around O(n1.14). Although the
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results produced by this algorithm are mostly excellent, there is still one major

drawback — NN-Descent often produces inaccurate results when it is used on data

of high intrinsic dimensionality.

Park et al.23 developed a modification of NN-Descent based on a greedy filter-

ing method, with which they obtained improved results for high-dimensional data

together with the cosine similarity measure. Houle et al.24 introduced NNF-Descent

(Nearest Neighbor Feature Descent), an NN-Descent-based feature sparsification

method optimized for image databases. It uses the Laplacian score in order to iden-

tify noisy values, which are then replaced with zeros. Debatty et al.25 presented a

method for constructing a K -NNG for large text data sets. This method applies

NN-Descent only to smaller buckets of data, leading to a lower execution time.

3. Background

In this section we will review the NN-descent algorithm (Section 3.1) and the hub-

ness phenomenon (Section 3.2), which, as we will demonstrate later, has a significant

impact on NN-Descent.

3.1. NN-Descent

The main purpose of the NN-Descent algorithm is to create a good approximation

of the true K -NNG, and to create it as fast as possible. The basic assumption made

by NN-Descent can be summarized as “my neighbor’s neighbor is also likely to be

my neighbor.” The algorithm starts by creating a random K -NNG, and then itera-

tively improves the neighbor lists by using the current neighborhood relationships

to suggest new neighbor candidates. During the execution of NN-Descent, for a data

point u, we will refer to the current list of its K nearest neighbors as the NN list of

u. A reverse neighbor of u is a data point which has u in its own NN list; we will

refer to the current list of reverse neighbors of u as its RNN list.

NN-Descent is organized into stages, during each of which a single improvement

iteration is applied to each of the data points. The algorithm iteration for point u

examines its NN and RNN lists to see whether any points in these lists should be

added to the NN lists of any of the others. If this is the case, the algorithm makes

the necessary changes, and increases the number of total updates. After every stage,

the algorithm tests a termination condition based on the number of updates that

were applied during the stage. If the number of updates is smaller than a supplied

threshold, the algorithm terminates; otherwise, it continues with the next stage.

An outline of NN-Descent is shown as Algorithm 1 and the list of NN-Descent

parameters is given in Table 1.

An example of NN-Descent execution is given in Table 2. In the example, NN-

Descent is ran on a small data set of five 2-dimensional points. The table contains

two columns, each representing one NN-Descent iteration. As can be seen, NN-

Descent converged after only two iterations. In the first iteration, the algorithm

starts with a random NN list and performs local joins from each point. For example,
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Algorithm 1: Outline of NN-Descent algorithm.

input : data set D, distance function dist , neighborhood size K

output: K -NNG G

1 foreach data point u ∈ D do

2 Initialize G by randomly generating a tentative K -NN list for u with an

assigned distance of +∞;
3 end

4 repeat

5 foreach data point u ∈ D do

6 Check different pairs of u’s neighbors (v, w) in u’s K -NN and R-NN

(reverse nearest neighbor) lists, and compute dist(v, w);

7 Use 〈v, dist(v, w)〉 to update w’s K -NN list, and use 〈w, dist(v, w)〉 to

update v’s K -NN list;
8 end

9 until G converges;

10 Return G.

Table 1. List of NN-Descent parameters.

Parameter Description

K K value of the resulting K -NNG approximation.
conv Convergence criterion (value between 0 and 1). Algorithm converges when

there is less than conv ·K ·N updates in the current iteration, where N is the

number of K -NNG vertices.
ρ Sampling (value between 0 and 1, not including 0). The algorithm takes ρ ·K

points from each NN and RNN lists.

point A has points B and D in its NN list, while its RNN list consists of points B and

E (because point A is in B’s and E’s NN lists). Local joins from point A are actually

pairwise comparisons of A’s direct and reverse neighbors. Since A’s neighbors are

{B, D, E} (the union of A’s NN and RNN lists), the following comparisons (local

joins) are performed: (B, D), (B, E) and (D, E). Out of all these local joins, only

(D,E) resulted with an update – point D is inserted into the NN list of point E.

After local joins from point A, local joins from other data-set points are performed,

too, which resulted with two additional updates of NN lists. At the end of the

iteration, the total number of updates was 3, which means that algorithm did not

converge, so it resumed with the next iteration. In iteration 2, some points of NN

lists are flagged with the N symbol, while the others are not. The symbol N marks

the points that are newly added to the NN lists, and therefore need to be compared

with the rest of the neighborhood. (Old points do not have to be compared with

other old points, since this was already done.) This feature is an optimization of the

NN-Descent algorithm. An example of this optimization can be seen in the local

joins from point D of iteration 2. Instead of making all pairwise comparisons, only
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the comparisons with new points are performed (in this case, only the comparisons

with point E). Finally, since iteration 2 does not lead to any NN list update, the

algorithm terminates.

Table 2. An example of NN-Descent execution on a small data set of five 2-dimensional points.
Euclidean distance was used as a distance function. In each iteration of the algorithm NN and RNN

lists are shown for all data-set points. NN lists are given as: X → Y [N ](DXY ), Z[N ](DXZ), where

X, Y and Z are data-set points, X being the point whose NN list is shown, Y and Z being the
points from X’s NN list, DXY and DXZ are distances between X and Y , and between X and Z,

respectively, while the N letter is optional and, if present, it marks a point in NN list that is newly

added. RNN lists are represented analogously, except that distance values are omitted (since they are
already given in NN lists). In addition, the table contains information about local joins. One local

join is represented as: (X,Y,DXY ) − U , where X and Y are data-set points, DXY is the distance

between these two points and U is the count of updates that were introduced by the local join (0
if there where no updates, 1 if only one of the two points changed its NN list and 2 if both points

changed their NN lists.).

Data set points

A(1,6); B(2,8); C(6,5); D(4,9); E(8,7)

Iteration 1 Iteration 2

NN lists

A→ BN (1), DN (3)

B → AN (1), DN (2)
C → DN (2), BN (4)

D → BN (2), CN (2)

E → BN (6), AN (7)
RNN lists

A→ BN , EN

B → AN , CN , DN , EN

C → DN

D → AN , BN , CN

E →
Local joins

From point A: BN , DN , EN

(B,D,2)-0; (B,E,6)-0; (D,E,4)-1
From point B: AN , CN , DN , EN

(A,C,5)-0; (A,D,3)-0; (A,E,7)-0; (C,D,2)-0;
(C,E,2)-2; (D,E,4)-0
From point C: BN , DN

(B,D,2)-0;

From point D: AN , BN , CN

(A,B,1)-0; (A,C,5)-0; (B,C,4)-0;
From point E: AN , BN

(A,B,1)-0;

NN lists

A→ B(1), D(3)

B → A(1), D(2)
C → D(2), EN (2)

D → B(2), C(2)

E → CN (2), DN (4)
RNN lists

A→ B

B → A,D
C → D,EN

D → A,B,C,EN

E → CN

Local joins
From point A: B,D

-

From point B: A,D
-
From point C: D,EN

(D,E,4)-0;
From point D: A,B,C,EN

(A,E,7)-0; (B,E,6)-0; (C,E,2)-0;

From point E: CN , DN

(C,D,2)-0;

The speed of NN-Descent is strongly influenced by the K value. As K becomes

larger, the algorithm becomes slower. To be more precise, the time complexity has

a quadratic dependence on K, since during each iteration, points appearing in NN

or RNN lists of the same point are evaluated as candidates for each others NN lists.
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As a way to reduce the number of combinations of points considered, the authors

introduced sampling.22 Sampling reduces the number of evaluations by taking a

random selection of NN and RNN lists, and then operates only on the points from

those lists. Sampling is controlled by a parameter ρ that takes a value from 0 to 1.

The algorithm takes ρ ·K points both from NN and RNN lists.

The second drawback of NN-Descent is that quality of approximation it produces

is highly influenced by the intrinsic dimensionality of the data set, in that the

quality of the approximation decreases as the intrinsic dimensionality increases.

The reason for this has not been adequately explained. Although low-dimensional

embeddings have often been used as a general method of reducing the complexity

of data indexing, no solutions have yet been proposed that allow the NN-Descent

strategy to work more effectively with high-dimensional data. In this paper we will

explain the influence of high dimensionality on NN-Descent, and will also propose

four approaches that are designed to overcome this challenge to some extent.

3.2. Hubness

Hubness is an aspect of the curse of dimensionality pertaining to nearest neigh-

bors which has come to the attention of the research community only relatively re-

cently.14 Let D ⊂ Rd be a set of data points and let the k-occurrences of point x ∈ D
be the number of times x occurs in k-nearest-neighbor lists of other points from D.

Nk(x) is then the number of k-occurrences of point x ∈ D — that is, the in-degree

of node x in the K -NNG. As the dimensionality of the data increases, the distribu-

tion of Nk(x) becomes considerably skewed. As a consequence, some data points,

which we will refer to as hubs, are included in many more k-nearest-neighbor lists

than other points.

In the remainder of the discussion we will refer to the number of k-occurrences of

point x ∈ D as its hubness value. If a data set contains many points that are hubs —

that is, if the distribution of hubness values is highly skewed — it can be said that

the hubness phenomenon is present therein. It has been shown that hubness, as a

phenomenon, appears in high-dimensional data as an inherent property of intrinsi-

cally high dimensionality, and is not an artifact of finite samples nor a peculiarity of

specific data sets.14 It was shown that hubness influences various data-mining and

machine-learning algorithms,14,26–29 often in a negative way. Practical computation

of (exact) hubness values entails the creation of the K -NNG, from which hubness

values can be easily obtained by extracting the in-degrees of nodes.

4. Hubness Estimation Using NN-Descent

Approximate hubness values for each data point could be very easily calculated

during NN-Descent, with minimal impact on algorithm performance. At the very

beginning, we initialize the hubness values of each data set point to zero. Then,

during algorithm execution, we increase the hubness value of a given point by one if
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that point is added to the NN list of some other point, and analogously, we decrease

the hubness value by one if the point is removed from some NN list.

Some of the results that we obtained after this small upgrade of NN-Descent

algorithm are illustrated in Fig. 2, which shows the correlation between estimated

and exact hubness values of data points. For the purposes of the experimentation in

this paper, we created several synthetic data sets drawn from a Gaussian distribution

with standard deviation 1 and mean (0, 0, . . . , 0). The data sets each have n = 10000

points, but differ in their dimensionality d. During the analysis we also varied the

size of the nearest neighbor lists, represented by the parameter K. We considered

the values 10, 20 and 50 for K, and the values 2, 10, 20 and 100 for parameter d. As a

distance measure we used the Euclidean distance. In Fig. 2 we show results only for

the data set of highest dimensionality (d = 100), since the hubness phenomenon is

known to strengthen as the dimensionality of the data increases. As can be seen, the

correlation between real and estimated hubness values is very high. A shortcoming

of NN-Descent is that estimated hubness values are lower than they should be for

points with low true hubness values, and greater than they should be for points

with high true hubness. The precision improves as K increases, but even for small

K values, the algorithm produces strong correlations.

(a) (b) (c)

Fig. 2. Correlation between estimated and exact hubness values of data set points. The figures
show the results for data sets with dimensionality d = 100 and the following choices of neighbor

list sizes: (a) K = 10; (b) K = 20; (c) K = 50.

5. Influence of Hubness on NN-Descent

NN-Descent is known to produce large amount of incorrect K nearest neighbors

when applied upon high-dimensional data.22 Since hubness is a phenomenon that

appears in high-dimensional data, and at the same time was shown to influence

many other data-mining algorithms, in this section we investigate whether it also

influences the performance of NN-Descent.

For a given data set point, we will define the hit count to be the number of

K-nearest neighbors produced by NN-Descent that are at the same time one of the

point’s K-nearest neighbors in the exact K -NNG. In other words, the hit count tells
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us how many correct selections NN-Descent has made for the neighborhood list of

a given data point. The first part of our analysis will be to examine the correlation

between hit count values and hubness values of data points. In order to do that, we

first calculated the exact K -NNGs, as well as hubness values for each data set point.

We then ran NN-Descent without sampling and early termination, and calculated

hit count values based on the previously calculated K -NNG and NN-Descent graph

approximation. We did this for all generated data sets.

(a) (b)

(c) (d)

Fig. 3. Hubness and hit count values of data set points. The figures show the results for neighbor
list sizes fixed at K = 10, and for the following choices of data set dimensionalities: (a) d = 2; (b)

d = 10; (c) d = 20; (d) d = 100.

Some of the results can be seen in Fig. 3. Let us now say that for the points of

fixed hubness value, hit count values are distributed between hcmin and hcmax. Re-

sults are showing us that both values are directly proportional to the hubness value,

with this behavior being much more evident in the case of the hcmin value. In the

case of hcmax, the phenomenon is less evident (Fig. 3(d)). As a consequence, points

with extremely high hubness values have hcmin ' hcmax ' K, which means that

their hit counts usually attain the greatest possible value. For the lowest hubness

values, it holds that hcmin is near zero, while the hcmax depends on K and d; how-

ever, for all tested data sets, this value is K or very nearly K. In other words, some

points with extremely low hubness values have a high hit count, and some have hit



October 3, 2019 16:56 WSPC/INSTRUCTION FILE output

10

counts that are very low, which means that the probability of error when determin-

ing the K nearest neighbors of point x is inversely proportional to the hubness of x.

The described phenomenon is more evident in data sets with lower K values and

greater dimensionality d. If K is sufficiently large, and d is sufficiently small, the

phenomenon is less evident, as the hubness values of the points are more uniform. In

these cases, NN-Descent produces a very good approximation of K -NNG. In further

research we will concentrate on settings for which the performance of NN-Descent

is poor, as we saw for the case where d = 100.

Now that the influence of hubness on NN-Descent has been established, we

examine the cause of this phenomenon. As was already described in Section 3.1, the

NN-Descent algorithm improves the K-NN graph approximation in each iteration.

If the hubness of the data set is high, then in the first few stages hubs will be placed

among the K nearest neighbors of a large number of data points. This implies that

the NN lists of a majority of points will contain hubs. Points with lower hubness

values will quickly be expelled from NN lists of other points. This expulsion of non-

hubs from NN lists implies that the neighborhoods of those points, according to the

nature of the algorithm, will not be updated as often — in order for the NN list of

a given point to be updated, that point must be present in the NN or RNN lists

of other data points. If a point is rapidly expelled from NN lists, then it will be

updated only from RNN lists of the points that are very unlikely to be their true

neighbors, since the initial approximation of the K-NN graph is essentially random.

For some points of low hubness value, this produces relatively poor results.

Another issue to consider is that some points with low hubness values may still

have high hit count values, while other low-hubness points may have very low hit

counts. In order to quantify the extent to which the variation in hit count values

depends on hubness, we calculated hit count values and their standard deviations

for each data point, over 100 runs of NN-Descent, each time generating the random

graph with a different random seed. The results are shown in Fig. 4, where the

intensity of the red color represents the mean of hit count values among different

runs — points with greater intensity have greater average hit count values. As can be

seen, points with low hubness values have hit counts with a relatively high standard

deviation, while points with high hubness values have hit count standard deviations

that tend toward zero. This implies that hit count values vary significantly across

different runs, while the only difference between runs is the initial random graph.

All of this leads us to the conclusion that the main factor that affects the hit count

of points with low hubness is the initial random K -NNG: if the point is in a high-

quality neighborhood in the initial random graph, then NN-Descent is more likely

to produce a high hit count. Otherwise, the point will be quickly expelled from NN

lists, and will stay trapped in the RNN lists of points that are not its true neighbors,

leading to a relatively low probability that the point’s NN list will be updated with

true neighbors.
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Fig. 4. Results with K = 10 and d = 100. The y-axis shows standard deviations of hit count

values for 100 runs of NN-Descent, while the x-axis shows hubness values of the corresponding
data points.

6. Proposed Methods for Improving NN-Descent on

High-Dimensional Data

In order to overcome the problem described in Section 5, we implemented four

different approaches. The first one is based on the idea that NN lists should not be

updated strictly according to the NN and RNN lists of other points. The goal is to

integrate the information about hubness values into the choice of points to compare

with the current approximation of the NN list. A high hubness value indicates that a

certain point already has a reasonably stable NN list, and vice versa — a low hubness

value suggests that the point has a greater probability of being assigned an incorrect

NN list. The second approach is based on the observation that for greater K values

the algorithm tends to be more accurate. If we run the NN-Descent algorithm with

a greater K value, and then reduce the resulting K -NNG to the K we actually need,

the precision of final graph is expected to be better. The third approach provides

an easy way to fine-tune the minimum number of comparisons for each data point.
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In that way, a larger number of comparisons could be assigned to those points that

actually need it. Finally, the fourth approach is built up on the fact that point’s

initial position in the random graph influences its hit count value. In order to place

point in the right neighborhood, we perform additional random comparisons to the

points that need it.

In Section 6.1 experimental setup will be described, Section 6.2 contains infor-

mation about the performance of the original NN-Descent algorithm, while Sections

6.3, 6.4, 6.5 and 6.6 give insights into the new approaches and their performance.

6.1. Experimental setup

In order to validate proposed approaches against the original NN-Descent algorithm,

we ran experiments on high-dimensional synthetic and real data sets. Table 3 sum-

marizes properties of all data sets that were used in the experiments.

Table 3. Data sets that are used in the experiments.

Name Type Instances Dimensionality

i10000d100 Synthetic 10000 100

i100000d100 Synthetic 100000 100
BCI5 Real 31216 96

Google-23 Real 6686 1937
ISOLET Real 7797 617

MNIST Real 70000 784

Data sets i10000d100 and i100000d100 were created for the purpose of this

research. Their instances have 100 dimensions, each being a value generated by

uniformly choosing random real number from range [−1, 1]. BCI530 is a brain-

computer interface data set of brain signal recordings taken while the subject con-

templated some action. Data set Google-2331 consists of 6686 faces extracted from

web images of 23 celebrities. For each face, 13 points of interest were detected, each

of which was represented by a 149-dimensional vector. Concatenating these 13 vec-

tors into a single descriptor yielded a 1937-dimensional data point for each face

image. ISOLET32 from the UCI repository33 is a data set of spoken letters con-

taining 26 classes of 150 instances each (3 instances are missing in the data set),

with each class referring to a letter of the alphabet. The total 617 features include

spectral coefficients, contour features and sonorant features. Finally, the MNIST34

data set has 70000 images of handwritten digits. The 784 pixel values of each image

were treated as its image features.

We used three measures to express the effectiveness of algorithms: recall, scan

rate and execution time. Recall can be expressed as the sum of all hit count values

divided by the product of data-set size and K (and, in this case, recall is actually

equivalent to precision and accuracy). Its definition is given in Equation 1, D being

a data set (set of points), hc being a function that returns the hit count value of a
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given point and n being the data set size.

recall =

∑
X∈D hc(X)

n ·K
(1)

There are n·(n−1)
2 calls of the distance function during naive K -NNG compu-

tation, while approximation algorithms tend to lower this number. The scan rate

value was introduced for comparison of approximation algorithms in terms of the

number of distance function calls. It represents the ratio between number of calls

to the distance function and n·(n−1)
2 . Scan rate is given in Equation 2, dists value

being the number of calls to the distance function, and n being data-set size.

scanrate =
dists

n·(n−1)
2

(2)

Finally, execution time represents time in seconds needed for an algorithm to

execute. All the algorithms that were ran upon a single data set were executed on

the same machine, which made it possible to compare execution times of different

algorithms.

The experiments were run on Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz

with 96GB of RAM, but only 2GB being available per core. Each experiment was

ran 5 times meaning that all presented values are the averages of 5 different runs.

6.2. NN-Descent performance

In order to be able to compare the results of the original NN-Descent with the results

of the proposed improvements, we show the performance of the original algorithm

in Table 4. Let us present a brief overview of the results generated by the original

NN-Descent algorithm.

The results of the original algorithm, as shown in Table 4, depend strongly on the

size of NN lists (K), on the size of the data set and on the intrinsic dimensionality

of the data set. Higher K values cause an increase of recall values, and scan rates

as well. Both are the consequence of the fact that higher K values mean more local

joins (by the nature of the algorithm), and if there are more local joins, the recall

is more likely to be higher and the scan rate is higher by definition.

For a larger data set (i.e. for data set with a higher number of instances), the

outcome of NN-Descent is such that both recall and scan rate values decrease.

This phenomenon can be observed in Table 4 by comparing the results of the data

sets i10000d100 and i100000d100. These two data sets have exactly the same char-

acteristics except that data set i10000d100 has 10,000 instances, while data set

i100000d100 has 100,000 instances. The explanation of this NN-Descent’s behavior

is connected with the phenomenon from the Fig. 4. As it can be seen in the figure,

the position of the point in the initial random K -NNG is very important for the
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Table 4. Recall, scan rate and execution time values for the NN-Descent algorithm with different
K values (5, 10, 20), conv = 0.01 and ρ = 1.

i10000d100 i100000d100 BCI5

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.09 0.36 0.73 0.02 0.1 0.36 0.57 0.97 0.99

Time 11.65 49.18 175.23 154.43 631.62 2730.91 61.56 116.8 359.86
Scan rate 0.03 0.13 0.48 0 0.01 0.06 0.01 0.04 0.13

Google-23 ISOLET MNIST

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.63 0.92 0.98 0.83 0.98 1 0.74 0.96 0.99
Time 26.14 54.83 147.84 13.07 33.55 104.5 276.9 458.89 1379.05

Scan rate 0.05 0.14 0.43 0.04 0.12 0.37 0.01 0.02 0.06

point’s final hit count value – if the point is in the better neighborhood in the ini-

tial graph, its hit count value is more likely to be higher. The probability that the

point is placed in the good neighborhood in the initial random K -NNG decreases as

the data set size increases. Therefore, the final recall of NN-Descent on larger data

set decreases. Scan rate value also decreases due to the fact that denominator of

the scan rate equation increases quadratically on data-set size, while the numerator

does not increase in the same manner because convergence of NN-Descent does not

have quadratic dependency on data-set size.

Finally, data set’s intrinsic dimensionality highly influences NN-Descent as was

already described in Section 5 and validated by the presented results. Synthetic data

sets (i10000d100 and i100000d100) have very high intrinsic dimensionality because

all the values are independently generated. The Table 4 shows that these data sets

have the worst recall values.

6.3. Hubness-aware variant

We now show how hubness values can be used to help guide the choice of candidate

points for inclusion in the NN list of a given data point. After implementing the

simple hubness estimator described in Section 4, up-to-date hubness estimates be-

come available at any given iteration of the algorithm execution. After each stage,

these values become more accurate; they are reasonably precise even after the very

first few stages.

Let us now describe in detail how this strategy works. In each iteration, we check

if a given point has hubs in its NN list. Let h be a threshold on the number of hub

points to be considered from the NN list of the given point. The idea is to replace

h points of high hubness value in the current NN list with h new points chosen at

random. The intuition behind this modification of NN-Descent is to diminish the

impact of hubs on the update of NN lists. By adding one random point in place of

each hub, we attempt to increase the probability of undiscovered neighbor points

to associate themselves with the given point.
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What remains to be clarified is the precise mechanism by which these h points

are determined. Rather than simply choosing the h points with highest hubness val-

ues, in order to allow for the possibility of other improvements, we let the hubness

value of a given point to determine the probability (between 0 and 1) of the point

being included among the h points to be replaced. To generate a valid probability,

we employed a linear transformation of the raw hubness values into the interval

[0, 1]. For the purpose of the transformation, we introduce values hmin and hmax

representing the maximum and minimum hubness values for which the linear trans-

formation is applied; if the hubness value is greater than hmax or smaller than hmin,

the probabilities assigned would be 1 or 0, respectively. The probability that a point

is selected for discard is shown in Equation 3, where x denotes the given data point

and hx is the current hubness value of point x.

Pr[discard(x)] =


0, if hx < hmin

1, if hx > hmax

hx−hmin

hmax−hmin
, otherwise.

(3)

Experimental results for this approach are presented in Table 5, where the algo-

rithm was executed for the choices hmin = 2K and hmax = 20K. The experiments

confirm the effectiveness of the choice of values for hmin and hmax. For data sets

with lower intrinsic dimensionality, such as MNIST, this method performs the same

as NN-Descent. On the other hand, when there are hubs in data set, this method

improves recall values. The improvements are usually followed by slightly higher

scan-rate values. For some cases, scan rate value even stays the same, while recall

increases. For example, this happened for data set i10000d100 and K = 5, where

recall increased from 0.09 to 0.15 while the scan rate did not change.

To summarize, this method achieved higher recall values than NN-descent, at a

small cost in terms of scan rate.

Table 5. Recall, scan rate and execution time values for the Hubness-aware NN-Descent variant
with different K values (5, 10, 20), conv = 0.01, ρ = 1, hmin = 2K and hmax = 10K.

i10000d100 i100000d100 BCI5
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.15 0.46 0.79 0.02 0.12 0.42 0.61 0.97 0.99

Time 28.08 79.49 209.29 344.35 1218.57 3740.08 55.08 107.21 365.8
Scan rate 0.03 0.15 0.52 0 0.02 0.07 0.01 0.04 0.13

Google-23 ISOLET MNIST

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.71 0.93 0.98 0.85 0.98 1 0.75 0.96 0.99
Time 27.97 55.27 155.9 12.6 28.93 90.16 305.85 517.22 1434.68

Scan rate 0.05 0.16 0.47 0.05 0.13 0.38 0.01 0.02 0.06
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6.4. Oversized NN list variant

The second NN-Descent variant considered involved the execution of NN-Descent

with some larger choice of neighborhood size K ′ > K, followed by a truncation of

the NN lists to the target size K. We analyzed this approach with K ′ = 20 and

sampling rate ρ = 0.05 ·K. By combining these two parameters, the upper bound

value of local joins in the Oversized NN list variant is the same as in the original NN-

Descent for ρ = 1. Namely, even though the neighborhood size is increased to 20,

the upper bound of local joins from each data set point is ρ ·K ′ = 0.05 ·K ·20 = K.

The experimental results obtained for this setting are given in Table 6, from

which we can observe a trade-off between scan rate and recall. This approach

achieves really high increases of recall values, but at an evident cost of increased

scan-rate values. However, the obtained scan rates are still much smaller than 1,

which makes this approach much faster than naive K -NNG computation.

Table 6. Recall, scan rate and execution time values for the Oversized NN list variant with
different K values (5, 10, 20), conv = 0.01, ρ = 0.05 ·K and K′ = 20.

i10000d100 i100000d100 BCI5

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.43 0.52 0.73 0.13 0.18 0.36 0.89 0.99 0.99

Time 52.01 62.44 175.24 690.67 826.91 2730.93 156.73 207.4 359.85
Scan rate 0.18 0.27 0.48 0.02 0.03 0.06 0.04 0.06 0.13

Google-23 ISOLET MNIST
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.8 0.94 0.98 0.94 0.99 1 0.91 0.98 0.99

Time 49.66 75.9 147.82 29.46 47.18 104.48 547.98 722.92 1379.05

Scan rate 0.14 0.23 0.43 0.1 0.18 0.37 0.02 0.03 0.06

The higher recall values of this method are a direct consequence of increased

neighborhood size. On the other hand, the reason for the increased scan rate is not

that straightforward. As already said, our choices of K ′ and ρ values are such that

the upper bound of local joins stays the same as in the NN-Descent algorithm. But,

even though the number of local joins is in both cases bounded by K, the actual

number of local joins in NN-Descent is smaller than in the Oversized NN list variant.

This is a consequence of sampling. Sampling implies that in a single iteration no

more than ρ ·K neighbors are used in a local join. Those neighbors are then marked

with a flag in order to avoid performing already completed local joins in future

iterations. Therefore, for ρ = 1, the upper bound of local joins is exactly K, which

means that all new neighbors are immediately participating in local joins and none

of them are left for future iterations. As the algorithm converges, the number of

new neighbors decreases, which leads to a smaller number of local joins. Contrary

to that, when the ρ value is smaller than 1, the following iterations’ local joins

contain not only newly added neighbors, but also the old neighbors which did not
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get a chance to participate in local joins in previous iterations. For that reason, the

overall number of local joins does not necessarily decrease as the algorithm starts

to converge. This leads to the higher scan rate.

Additionally, the experimental results show no difference between NN-Descent

and Oversized NN list variant for K = 20. In this case, the parameters of the

Oversized NN list variant are K ′ = 20 and ρ = 1, which implies no increase of

neighborhood and no sampling, making it equivalent to the original NN-Descent.

6.5. RW-Descent

The main aim of this NN-Descent variant is to provide an easy way to fine-tune

the number of comparisons in which a particular point will take part. In this way

one could use different balancing strategies: for example, equal number of compar-

isons could be assigned to each data set point, or antihubs could be assigned more

comparisons than other points.

The algorithm, Random Walk Descent (RW-Descent), employs a random walk

strategy for determining candidates for improvement. Like NN-Descent, RW-

Descent constructs the initial similarity graph by means of random selection. There-

after, the algorithm iterates either a predetermined number of times, or until a

convergence criterion is satisfied. In each iteration, each data point is allocated

a number of comparisons according to some weighting strategy: instead of a top-

down approach in which the pivot point determines which neighboring points will

be mutually compared, we introduce a bottom-up approach in which each point

determines the number of comparisons that it will initiate. After allocating a num-

ber of comparisons c to a given data point u, the points to be compared with are

selected as the stopping points of c short random walks that start from u. The ran-

dom walks are applied upon the current K -NNG’s underlying simple graph; that is,

each successive point in the random walk is chosen from the set of its predecessor’s

direct and reverse nearest neighbors. For the case where the random walks are all

limited to length 2, the candidate stopping points would be neighbors of u’s own

neighbors, and thus RW-Descent would perform essentially as NN-Descent. If the

termination criterion is chosen to be convergence, the parameter ρ from range [0, 1)

determines when the algorithm terminates. If in the current iteration less than ρ · c
point’s random walks resulted with an update of NN list, that means that the point

converged. When all points converge, the algorithm terminates. For a pseudocode

description of RW-Descent, see Algorithm 2.

For the purpose of evaluation, we used the simplest possible balancing approach,

in which the same number of comparisons is assigned to each data point; we will

refer to this number as c. The algorithm was run for c = 8K. The results are shown

in Table 7.

With the described approach we obtained higher recalls, again at a cost of scan-

rate increase. The advantage of RW-Descent is that the trade-off between recall and

execution time can easily be managed by adjusting the total number of comparisons



October 3, 2019 16:56 WSPC/INSTRUCTION FILE output

18

Algorithm 2: Outline of RW-Descent algorithm

input : data set D, distance function dist , neighborhood size K

output: K -NNG G

1 foreach data point u ∈ D do

2 Initialize G by randomly generating a tentative K -NN list for u with an

assigned distance of +∞;
3 end

4 repeat

5 G ′ ← Reverse(G)

6 foreach data point u ∈ D do

7 Determine the number of comparisons c to be allocated to point u;

8 for i = 1 to c do

9 w ← u;

10 for j = 1 to 2 do

11 w ← Sample(G[w] ∪G′[w], 1);

12 end

13 Use 〈v, dist(u,w)〉 to update w’s K -NN list, and use

〈w, dist(u,w)〉 to update u’s K -NN list;

14 end

15 end

16 until Termination criteria is satisfied;

17 Return G.

18 Function Reverse(G):

19 G′ = G

20 Change the direction of each edge in graph G′

21 return G′

22 Function Sample(set, count):

23 return count elements from the set

to be performed. Furthermore, RW-Descent has the potential for even better perfor-

mance through the exploration of different balancing strategies. In our evaluation,

we used the simplest possible balancing strategy, in which an equal number of com-

parisons was allocated to each of the data points. One interesting direction for future

research would be the development of more finely balanced comparison allocation

policies, in which higher numbers of comparisons would be allocated to those points

that actually need it. Besides that, RW-Descent enables improvements of NN lists

for subsets of K -NNG’s nodes. This feature of the algorithm can be useful in cases

when only a part of an already existing K -NNG changes.
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Table 7. Recall, scan rate and execution time values for RW-Descent with different K values (5, 10, 20),
conv = 0.001 and c = 8K.

i10000d100 i100000d100 BCI5
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.11 0.41 0.75 0.02 0.12 0.38 0.76 0.98 0.99

Time 36.05 102.21 294.05 2712.42 4715.23 9028.18 275.58 290.9 492.67

Scan rate 0.09 0.25 0.56 0.01 0.03 0.09 0.02 0.04 0.07

Google-23 ISOLET MNIST

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.82 0.95 0.99 0.91 0.99 1 0.81 0.97 0.99
Time 37.25 69.25 155.99 23.75 42.02 95.93 1386.41 1546.38 2098.12

Scan rate 0.1 0.17 0.32 0.07 0.12 0.21 0.01 0.02 0.03

6.6. Randomized NN-Descent variant

The Randomized NN-Descent variant takes into account the phenomenon illustrated

in Fig 4. Knowing that the position in the initial K -NNG has an important role

in the computation of the final hit count value, our idea was to give each point

additional chances to find its real neighborhood. We achieve this by conducting r

additional random comparisons after each iteration for selected data points. The

criterion for selection is defined in the following manner. At the start of the algo-

rithm, all points need random comparisons. After each iteration of the main loop,

if for some point none of the r comparisons resulted in an update of the point’s

NN list, that point is considered to already be in the correct neighborhood, and no

more random comparisons are applied to it until the end of algorithm execution.

Table 8. Recall, scan rate and execution time values for Randomized NN-Descent with different K
values (5, 10, 20), conv = 0.01, ρ = 1, and r = n/500.

i10000d100 i100000d100 BCI5

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.21 0.43 0.75 0.15 0.27 0.47 0.82 0.98 0.99

Time 23.25 55.53 183.03 2086.7 3539.59 7021.89 158.23 243.9 549.41
Scan rate 0.14 0.22 0.54 0.13 0.16 0.2 0.09 0.11 0.18

Google-23 ISOLET MNIST
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Recall 0.78 0.93 0.98 0.88 0.98 1 0.82 0.97 0.99

Time 35.82 66.18 164.55 25.63 40.45 100.98 1371.13 1603.69 2553.8
Scan rate 0.11 0.2 0.48 0.11 0.18 0.41 0.09 0.09 0.12

The results of the experiments are presented in Table 8. The r parameter in the

experiments is directly proportional to the data-set size. This is because the size

of the data set determines the easiness of finding the right neighborhood – if the
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data set is larger, the probability of finding right neighborhood decreases, thus more

random comparisons need to be performed, and vice versa. The experiments showed

that this approach also improves recall. However, just like the previous approaches,

the Randomized NN-Descent variant also introduces higher scan rates.

6.7. Discussion

The overall comparison of all methods is shown in Fig. 5. As can be seen, the

Oversized NN lists variant achieves highest recall values, which are most evident

for lower K values. At the same time this method has in most of the cases the

highest scan rate values. Nevertheless, if high recall is needed, this method should

be considered.

The power of RW-Descent lies in its flexibility. This method could be used

when only a subset of K -NNG’s nodes changes. Instead of calculating K -NNG

approximation from the scratch, RW-Descent can be used only on changed nodes.

The obtained results are likely to be accurate, since this approach behaves even

better than NN-Descent, as can be seen in Fig. 5.

The rest of the approaches achieve similar improvements over original NN-

Descent. The improvements are most evident for smaller K values, while for K = 20

NN-Descent already performs well enough.
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Fig. 5. Recall, execution time and scan rate values of the following methods: NN-Descent, Hub-
ness aware NN-Descent variant, Oversized NN lists variant, RW-Descent and Randomized NN-
Descent variant.
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7. Conclusion

Poor performance of the NN-Descent algorithm on high-dimensional data has been

observed in the past, but until now has lacked a satisfactory explanation. In this

paper, we provided an experimental analysis that reveals a connection between

performance and the well-studied hubness characteristics of data sets, in that the

original formulation of the NN-Descent algorithm does not perform well when the

data contains many hubs. In order to address this shortcoming, we introduced four

different variants of the original algorithm. Our experimental results show that the

new NN-Descent variants achieve better recall at the expense of increased scan rate.

In the future, a more detailed evaluation of the described phenomenon and

proposed methods will be conducted. Future work could target the fine tuning

of all introduced NN-Descent variants. In particular, with the oversized NN list

variant, the main research target should be the improvement of sampling strategies.

Conceivably, better performance may be achieved if the points chosen for NN list

improvement were selected according to a carefully managed non-uniform strategy.

RW-Descent might be significantly improved with a better balancing strategy that

would most probably rely on hubness estimates of data set points. One additional

research direction is theoretical analysis of RW-Descent that could potentially give

more insight into the performance characteristics of NN-Descent.
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