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Abstract—The dimensionality of time series data is usually very
large, so it must often be reduced before applying certain data
mining tasks upon it. Dimensionality reduction is achieved by cre-
ating appropriate time series representation that is actually new
time series of lower dimensionality obtained from the original
one by preserving only the important features. I addition to that,
the reconstruction of original time series from its representation
is inevitable task in many practical applications. The main
objective of this paper is the comparison of different time series
representations in the term of their reconstruction accuracies
on a number of freely available data sets. Reconstructed time
series are compared with the original ones, using several state-
of-the-art similarity measures, in order to measure the quantity
of information loss. Additionally, we measured the correlations
between several data set properties and their reconstruction
errors, which will give a deeper insight in the problem of choosing
of appropriate representation technique for a particular data set.
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I. INTRODUCTION

Main data mining algorithms such as classification, cluster-
ing and indexing, often become useless when applied upon
large datasets with high dimensional data. This issue applies
particularly to probably most interesting task in time-series
mining: forecasting [1], [2], [3], [4], [5]. The first problem
is execution time. Many algorithms process data by putting
it in main memory. If dataset does not fit main memory,
swapping is the only option. As a consequence most of the
execution time is spent by moving data from disk into a
main memory. Second problem with high dimensional data
is well known curse of dimensionality [6], [7], [8]. Various
data mining algorithms showed poor results while operating
upon high dimensional data. The problem arises because data
in high dimensional spaces is very sparse. This sparsity is the
consequence of the fact that as data dimensionality increases,
volume of the space also rapidly increases.

Described problems in the domain of time series mining
are usually solved with time series representations [9], [10],
[11], [12], [13], [14]. Main purpose of time series represen-
tations is to decrease data dimensionality while keeping the
important characteristics of the original time series. If Q is
time series of dimensionality n, and Q′ is its representation
of dimensionality k, than k must be much lower than n
(k � n). This process, of course, includes some information
loss, so the main objective is to keep crucial information.
By keeping important information, representation preserves

time series features, behaving just like original time series
in data mining algorithms. As a consequence of reduced
dimensionality many real-world forecasting problems produce
more efficient solutions [15], [16], and in some cases more
accurate results [17].

If the original data is dismissed after creation of suitable
representation, than there might be a need to reconstruct orig-
inal data from time series representation. There are numerous
reasons to do that, for example: if there is an interest in certain
value(s) recorded at certain point(s) in time; if there is a need
for visual presentation of certain time series; if there is a need
for comparison of two time series that are both compressed
with different representations; if there exists a need for a
time series in original space which is particularly important
in similarity based time series forecasting [18]; etc. Since
reconstructions of original data are sometimes inevitable, it
would be helpful to know which representation behaves the
best when it comes to that. That is actually the main intention
of this paper. We want to examine to what degree are different
representations suitable for data reconstruction.

In section II we will give overview of the similarity mea-
sures and time series representations. Section III describes
experimental settings that we relied on during this analysis.
Section IV analyzes results of experiments that examined
reconstruction accuracy of time series representation. Section
V includes analysis of similarity measures that are applied
on reconstructions from various time series representations.
Section VI concludes the analysis and gives directions for
future research.

II. BACKGROUND AND RELATED WORK

Comparisons between different types of time series rep-
resentations are presented both in introductory papers [9],
[10], [11], [12], [13], [14] and in a few review papers
[19]. However, those papers present pairwise comparisons
between very limited number of time series representations,
omitting global picture. On the other hand, authors of paper
[20] made comprehensive comparisons of many time series
representations showing that all representations are similar
in terms of tightness of lower bound. But, as far as we
know, analysis of time series representations in terms of
information loss during the reconstruction process is never
fully conducted. So, we wanted to expand former analysis
by applying several state-of-the-art similarity measures upon
reconstructed data, and also to give overview of correlations



between data set properties and results of mentioned analysis
of different representations. So the goal is not just to evaluate
suitability of certain representations in terms of information
loss during reconstruction process, but is also to explore in
what conditions certain representation gives good results. We
also wanted to detect similarity measures that adapt well on
reconstructed data. Similarity measure adapts well if time
series’ that it declared similar in original data set, stay similar
in reconstructed dataset also.

In further text we will give brief overview of all similarity
measures and representations that will be examined in this
paper.

A. Similarity Measures

Lp-norms is one of the most popular classes of similarity
measures that are used in data mining algorithms. Its definition
is given in formula (1) where T and S are time series of length
N , ti is the value of T at time point i, and si is value of S
at time point i. Variable p denotes the norm that is used. For
example, p = 1 corresponds to the Manhattan distance, p = 2
is Euclidean distance, and p =∞ is Chebyshev distance.

Lp(T, S) =
( N∑

i

|ti − si|p
) 1

p

(1)

One of the main disadvantages of Lp norms is sensitivity
to scaling and shifting along the time axis. If two time series
are very similar, except that one is shifted along time axis,
then Lp norms will not detect the similarity between these
two time series. That is why elastic distance measures are
introduced. All measures that are presented in further text are
elastic distance measures.

Dynamic Time Warping (DTW) [21], [22] is similarity
measure that allows non-linear alignment of two time series.
That means that DTW introduces comparisons between points
that are not identically positioned on time axis. Lets denote
two time series with symbols T and S, and suppose that length
of time series T is N , while the length of S is M . DTW
algorithm starts with creation of N×M matrix, whose element
on position (i, j) corresponds to the d(ti, sj), where d is some
distance measure, ti is ith point of T , and sj is jth point of S.
The idea is to find a path through that matrix with minimal
sum of the contained elements. That path is called warping
path, and the sum of the elements that this path contains is
actually DTW value.

Another elastic similarity measure is Longest Common
Subsequence (LCS) [23]. This similarity measure is one
of the edit distances. The similarity of two time series is
presented as the length of their longest common subsequence.

Edit Distance on Real Sequence (EDR) [24] is another edit
distance that found its application in time series data mining.
EDR value is actually minimal number of edit operations
(insertions, substitutions and deletions) that need to be applied
upon one time series in order to transform it to another time
series. This similarity measure proved to be very robust to
noise.

Main problem with all mentioned elastic measures is that
they do not satisfy the triangle inequality, so they cannot
be used in indexing algorithms. In order to overcome this
problem, Edit distance with Real Penalty (ERP) [25] was
introduced. This similarity measure combines L1-norm with
DTW and EDR, dismissing segments of those measures that
are causing them not to satisfy triangle inequality.

B. Time Series Representations

One of the most important time series representations is
Discrete Fourier Transform (DFT). DFT is actually used
in many fields (such as digital signal processing, image
processing, solving of partial differential equations, etc.), and
has also found its application in time series data mining. Basic
idea of DFT is that any signal can be represented by the super
position of finite number of sine/cosine waves. Each such wave
is called Fourier coefficient, and is presented as a complex
number. After applying DFT, dimensionality of time series
stays unchanged, so to reduce data dimensionality, we need to
dismiss some Fourier coefficients. It is observed that only the
first few coefficients appear to be dominant and therefore the
rest can be omitted without great information loss [9]. In that
way data series dimensionality can be efficiently decreased.

Discrete Wavelet Transform (DWT) [10] is very similar
to DFT. Wavelets are functions that represent time series in
terms of the sum and difference of prototype function, called
mother wavelet. Unlike DFT, in which case each coefficient
carries out only global information, DWT coefficients hold
local information. To be more precise, each wavelet holds
information of some time series segment. First coefficients
are more global, while the each next group of coefficients
refines global picture by adding more information to certain
segments of time series. That is why they are very suitable
for decreasing time series dimensionality. By taking first
few DWT coefficients, we are actually taking global time
series characteristics, and that is exactly what time series
representation should hold.

Completely different dimensionality reduction method is
Piecewise Aggregate Approximation (PAA) [11]. Underly-
ing idea is very simple. Original time series is divided in N
equal segments. For each segment mean value is calculated
and stored. In that way dimensionality of original time series
is decreased to N . Although very simple, this method proved
to be reasonably good when used in data mining algorithms.

Similar to PAA is Piecewise Linear Approximation (PLA)
[12]. Just like in PAA, time series is divided in N segments
(not necessarily of equal size). Each segment is then presented
by a line. There are two ways of defining that line: it
can be linear interpolation between start and end point of
corresponding segment, or it can be linear regression that takes
into account all points that are contained in the segment. Each
segment is then presented by two numbers (a and b coefficients
of line equation y = ax + b), so if dimensionality of final
representation needs to be N , time series is divided into N/2
segments. As noted at the beginning, time series segments by
definition do not have to be of equal size. Segments lengths



are determined by different kind of algorithms whose main
aim is to create representation of minimal reconstruction error.
The problem with that approach is that distance measure upon
this kind of representation does not support lower bounding,
which is necessary in order to use representation in indexing
algorithms. That is why Indexable Piecewise Linear Approx-
imation (IPLA) was introduced [13]. IPLA modifies PLA
in two aspects. According to first modification, IPLA does
not allow segments of different lengths. Second modification
introduces reset of x (time) component of each time series
segment.

Symbolic Aggregate Approximation (SAX) [14] is repre-
sentation that is built upon PAA. Idea of SAX is to convert data
into a discrete format which is based on predefined alphabet.
Before discretization, time series is transformed via PAA
algorithm. In order to convert PAA coefficients to alphabet
symbols, we must first define breakpoints that divide the
distribution space into S equiprobable regions, where S is
the size of alphabet. Each defined region is mapped into one
alphabet symbol. Transformation of PAA representation is now
trivial each coefficient is mapped and transformed into one
alphabet symbol.

III. ANALYSIS SETTING

This analysis was conducted upon 85 data sets from [26].
That collection contains data sets of various structures. Data
sets sizes vary from 40 to 16637, while the time series’
dimensionalities are between 24 and 2709. Diversity between
data sets is very important in this kind of analysis, since
behavior of data mining algorithms is very influenced by
structure of the data. So, in order to get global picture, analysis
must be conducted on various data set types.

Framework upon which we built this research was FAP
[27]. FAP contains implementations of all mentioned similarity
measures [28], [29] and time series representations. As such,
it was suitable choice for this analysis.

First step of this analysis was to create time series repre-
sentations. For each time series of each data set, we created
its DFT, DWT, PAA, IPLA and SAX representations. Each of
these representations was created in four different dimensions:
4, 6, 8 and 10. Additionally, in creation of DWT representation
we used Haar function as a mother wavelet, and for SAX we
used alphabet of 256 symbols. Next step was to create time
series reconstructions upon all created representations, which
is inverse process from the previous one. Dimensionality of
reconstructed time series must be the same as it was before
creation of corresponding representation. After this step we
got reconstructed data sets for each representation type and
for each representation length. These reconstructed data sets
present the basis of further analysis.

IV. RECONSTRUCTION ACCURACY

One of the goals of this analysis is to calculate the
amount of information loss that appeared as a consequence
of dimensionality reduction and time series reconstruction
processes. We want to see how much reconstructed time series’

are different from original ones. In order to determine that,
we calculated reconstruction accuracy as a root-mean-square-
deviation (RMSD). If T is original time series, and T ′ is
it’s reconstruction, than RMSD value is calculated by using
equation 2. As it can be seen, it is actually Euclidean distance
divided by the square root of time series dimensionality.
Besides that, we also applied other famous similarity measures
upon each time series and its reconstruction, which gave us
additional information about similarity between the two.

RMSD(T, T ′) =

√∑N
i=1(t

′
i − ti)2

N
(2)

Averaged RMSD values can be seen in Figure 1. Results
showed that all representations have quite similar RMSD
values. Talking about representation dimensionality, it can be
seen that increase of dimensionality implies better RMSD
values. However, there is one exception to that in DFT
representation in which dimensionality 4 gives better results
than dimensionality 6. Although RMSD values are in general
very similar to each other, there is still one thing to note. With
lower representation dimensionalities, DFT produced better
results, while the other representations overperforms DFT with
greater dimensionalities.

As it is mentioned, beside overviewing RMSD values,
we also calculated average distances between original time
series’ and their reconstructions by using famous similarity
measures. Results are shown in Figure 2, and also in Table
I. The most evident conclusion from these results is that
DFT representation produces reconstructions that are far from
their original time series’ according to all similarity measures.
All the other representations are very similar to each other.
Interesting fact is also that LCS and EDR similarity measures
don’t give extremely high distance values for DFT, as the other
similarity measures does.

Fig. 1: Averaged root-mean-square-deviation of each time
series and its reconstruction. Results are calculated for each
data set, and averaged afterwards.



Fig. 2: Averaged distances from each time series to its reconstruction. Results are calculated for each data set, and averaged
afterwards.

Fig. 3: Figure of averaged SMRE values.

L0.5 L1 L2 L∞ DTW LCS EDR ERP

DFT

4 2021037.33 1817.46 77.43 7.32 15690.94 0.83 393.74 1675.87
6 1608721.02 1577.61 70.54 7.29 12651.04 0.80 388.97 1434.95
8 1284678.76 1359.90 63.30 6.93 8769.07 0.77 385.83 1214.06
10 1236883.27 1257.20 58.52 6.73 7065.21 0.75 383.05 1109.87

DWT

4 180200.93 267.43 16.37 3.08 280.48 0.67 294.34 242.98
6 154848.16 229.74 14.41 2.92 219.58 0.57 261.74 205.46
8 143954.05 212.44 13.51 2.85 194.20 0.53 245.82 187.93
10 124395.98 192.42 12.58 2.76 172.56 0.48 225.37 171.10

PAA

4 169196.53 250.71 15.56 3.06 253.85 0.60 275.79 225.25
6 146646.66 215.70 13.69 2.85 196.98 0.52 246.31 189.96
8 123190.80 188.24 12.24 2.68 164.76 0.46 224.55 167.87
10 109266.65 169.51 11.29 2.57 145.79 0.42 202.90 151.07

IPLA

4 166580.95 251.05 15.36 2.94 231.81 0.56 276.37 216.87
6 137188.55 208.71 13.19 2.76 168.19 0.45 236.44 178.02
8 120124.42 178.89 11.42 2.56 140.19 0.36 201.25 153.79
10 99341.55 159.50 10.56 2.45 122.71 0.33 176.53 137.98

SAX

4 169465.58 250.76 15.56 3.06 253.85 0.60 275.78 225.30
6 146957.59 215.76 13.69 2.85 196.98 0.52 246.30 190.02
8 123528.24 188.31 12.24 2.68 164.76 0.46 224.59 167.95
10 109601.47 169.59 11.29 2.57 145.79 0.42 202.91 151.15

TABLE I: Averaged distances between original and recon-
structed time series’

V. SIMILARITY MEASURES ON RECONSTRUCTED TIME
SERIES’

Besides calculating reconstruction accuracy, we also wanted
to see how does information loss affect effectiveness of famous
similarity measures, or in the other words, we wanted to see
how similarity measures adapt on time series reconstructions.

Measurement of this includes selection of 1000 random time
series pairs from each data set, which we will denote as
(T1, S1), ..., (Tn, Sn), where n = 1000 corresponds to random
sample size. For each pair (Ti, Si) there is one corresponding
pair (TR,i, SR,i) per each reconstructed data set R (there is
one reconstructed data set for each analysis setting). TR,i is
point from data set R that originates from time series Ti,
while the SR,i originates from Si. For all similarity measures
we firstly calculated distances between Ti and Si, and then
also between (TR,i, SR,i) pairs for i ∈ [1, 1000], and for all
reconstructed data sets. Those distance values are normalized,
so that we can compare results of different distance measures.
Lets now denote distance between time series’ of pair (Ti, Si)
with di, and distance between its corresponding pair from re-
constructed data set with dR,i. We are calculating effectiveness
of similarity measure by using root-mean-square-deviation
formula. Equation 3 shows how this formula is adapted for
described purpose. We will call that value SMRE which stands
for Similarity Measure Reconstruction Error.

SMRE(R) =

√∑n
i=1(di − dR,i)2

n
(3)



First part of this analysis is to give global overview of
the results. For that purpose we averaged SMRE values of
each separate data set, and the final values for each input
parameter are given in Table II and shown in Figure 3. First
thing to note is that PAA and SAX representations give almost
identical results. Reason for that is that reconstructions from
those two representations are almost identical, so it seams that
SAX alphabet was large enough not to include information
loss during the PAA values discretization step. Next interesting
phenomenon is that except for the DFT, L∞ adapts quite badly.
Its SMRE values are very large comparing to other similarity
measures, and that can be seen on Figure 4.

L0.5 L1 L2 L∞ DTW LCS EDR ERP

DFT

4 1.46 1.44 1.41 1.38 1.54 1.60 1.48 1.51
6 1.44 1.44 1.42 1.34 1.57 1.59 1.48 1.53
8 1.40 1.40 1.38 1.35 1.58 1.57 1.46 1.51

10 1.36 1.35 1.34 1.28 1.56 1.52 1.41 1.47

DWT

4 1.43 1.51 1.63 1.79 1.35 1.34 1.33 1.42
6 1.26 1.33 1.45 1.69 1.21 1.24 1.18 1.23
8 1.12 1.20 1.35 1.65 1.15 1.20 1.13 1.12

10 1.02 1.09 1.21 1.53 1.07 1.14 1.05 1.02

PAA

4 1.26 1.35 1.49 1.74 1.20 1.26 1.22 1.27
6 1.08 1.16 1.33 1.65 1.11 1.20 1.12 1.10
8 0.93 1.01 1.17 1.55 1.01 1.10 1.01 0.96

10 0.83 0.90 1.06 1.46 1.00 1.06 0.96 0.89

IPLA

4 1.33 1.39 1.51 1.65 1.27 1.27 1.24 1.27
6 1.12 1.17 1.30 1.48 1.14 1.14 1.08 1.08
8 0.99 1.04 1.18 1.38 1.06 1.07 1.00 0.97

10 0.89 0.92 1.05 1.26 1.00 0.99 0.92 0.88

SAX

4 1.27 1.35 1.49 1.74 1.21 1.26 1.22 1.27
6 1.09 1.17 1.33 1.65 1.10 1.19 1.12 1.10
8 0.95 1.01 1.17 1.55 1.01 1.10 1.01 0.96

10 0.85 0.90 1.06 1.46 1.01 1.06 0.97 0.89

TABLE II: Averaged SMRE values

From the general point of view, representations on which
similarity measures adapt the best are PAA, IPLA and SAX,
while the DWT and especially DFT gives the worst results,
which all can be seen on Figure 4. Talking about similarity
measures, interesting fact is that in most cases Lp-norms give
better results for smaller value of p. Elastic similarity measures
give very similar results between each other. Slightly better
then the others is EDR, and slightly worse then the others is
LCS. But, since difference in results is not evident enough, we
cannot reliably compare elastic measures between each other.
What we can say is that in general they give better results than
Lp-norms for p > 1.

What is true for averaged results, doesn’t seem to be valid
for each separate representation. It is said that Lp-norms give
worse results for larger p value. That statement is valid for
all representations except for DFT (see Figure 5a). In case
of DFT the opposite is true - Lp-norms with larger p adapt
better. DFT produces different results for elastic measures, too.
Elastic measures do not adapt well on reconstructions from
DFT representation. So, in case of DFT reconstructions, L∞
preserves its original behavior the most.

In comparison of results of different representation di-
mensionalities we got expected results (see Figure 5b). As
representation dimensionality increases, results get better since
more information about original time series’ is preserved. Still,
there is one more thing to note. DFT representation does

Fig. 4: Averaged SMRE values per representation (top) and
per similarity measure (bottom).

not have significant fall of SMRE value as dimensionality
increases. Because of that, it might be a waste of resources to
increase representation dimensionality in case of DFT, since
results in that case would be just slightly better.

All of the mentioned results are giving us global picture,
which is not necessary valid for certain instance of data. So
the next part of the analysis has the purpose to tell us what
type of data sets are more suitable to what representations and
similarity measures. In order to test that, we recorded a few
properties that describe each data set, and than we calculated
correlation between each such property and each SMRE value
among all data sets. The properties that we examined are:
number of classes that characterize data set instances, size
of data set, dimensionality of time series, average standard
deviation of time series’ that data set is contained of and
average distance between randomly sampled data set points.
As we expected, correlations between SMRE and number of
classes, as well as between SMRE and data set size, are
minimal and not significant. Slight increase of correlation is
manifested in DFT representation, but it is still bellow 0.2. One
more interesting thing about that is that correlations are mostly
positive - negative values are real rareness. That implies that
there actually exists small tendency in results getting worse
as the number of classes or data set size increase. But still,
correlation coefficient is small enough that we cannot rely on
such conclusion.

Unlike for number of classes and data set size, correlation
values are in some cases significantly high for remaining
data set properties (Figure 6). We will start from property



(a)

(b)

Fig. 5: Averaged SMRE values for each similarity measure
inside each representation (figure a) and for each time series
dimensionality setting inside each representation (figure b).

that corresponds to data set dimensionality (Figure 6a). In
this case, the only significant correlations exist for DFT
representation, excluding DFT in combination with L∞-Norm.
Those correlation values are not very large, they are about
0.25, but they still indicate that DFT representation doesn’t
react well when dimensionality of data set is higher. We
will now analyze correlations between SMRE and average
standard deviation of time series’ (Figure 6b). DFT has very
high correlation values, and the correlation values of the other
representations are also not negligible. In case of DFT, we
have very certain information about very high influence of
time series’ standard deviation on similarity measure effec-
tiveness upon reconstructed data. As standard deviation gets
larger, similarity measures upon DFT reconstructions will
deviate more from their original behavior. Very similar thing
is detected for property that tells about average distance of
randomly sampled data set points. This property determines
if data set contains points that are distanced from each other,
or it contains points that are all very similar. High correlation
in case of DFT representation indicates that DFT gives worse
results as distances between data set points increase.

VI. CONCLUSION AND FUTURE WORK

During this research we paired reconstructions of different
time series representations with different similarity measures,
and we concluded what does and what does not fit together.

(a)

(b)

(c)

Fig. 6: (a) Correlation values between SMRE and data set
dimensionality. (b) Correlation values between SMRE and
averaged time series’ standard deviation. (c) Correlation values
between SMRE and averaged distances of randomly sampled
data set points.

First thing to note is that most unstable time series repre-
sentation is DFT. Its behavior varies a lot, and is affected by
different kind of parameters. It can produce results that are sig-
nificantly better from the results of the other representations,
but it can also produce results that are much worse. So one
has to be careful when choosing DFT as target representation.

Next thing to note is that elastic similarity measures are less
adaptive to DFT reconstructions than Lp-Norms are. For all
the other representations the opposite is true - elastic measures
adapts better.



DFT representation is also affected by data set dimen-
sionality, average standard deviation of time series, and by
pairwise time series’ distances. As those values increase, DFT
representation gives worse results. The other representations
are also affected by these data set properties, but much less.

Future work could be directed to discovering how exactly
and why those phenomenons happen. Also, one direction
of future research could be examining how reconstructed
data sets, together with different similarity measures, affect
classification and other data mining algorithms.
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