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Abstract

Nearest neighbor graphs are modeling proximity relationships between objects.
They are widely used in many areas, primarily in machine learning, but also in
information retrieval, biology, computer graphics, geographic information systems,
etc. The focus of this thesis are k-nearest neighbor graphs (k-NNG), a special class
of nearest neighbor graphs. Each node of k-NNG is connected with directed edges
to its k nearest neighbors.

A brute-force method for constructing A-NNG entails O(n?) distance calcula-
tions. This thesis addresses the problem of more efficient &-NNG construction,
achieved by approximation algorithms. The main challenge of an approximation
algorithm for £-NNG construction is to decrease the number of distance calcula-
tions, while maximizing the approximation’s accuracy.

NN-Descent is one such approximation algorithm for A-NNG construction,
which reports excellent results in many cases. However, it does not perform well
on high-dimensional data. The first part of this thesis summarizes the problem,
and gives explanations for such a behavior.

The second part introduces five new NN-Descent variants that aim to improve
NN-Descent on high-dimensional data. The performance of the proposed algo-
rithms is evaluated with an experimental analysis.

Finally, the third part of this thesis is dedicated to k-NNG update algorithms.
Namely, in real world scenarios data often change over time. If data change after
k-NNG construction, the graph needs to be updated accordingly. Therefore, in this
part of the thesis, two approximation algorithms for £-NNG updates are proposed.

They are validated with extensive experiments on time series data.
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Izvod

Graf najblizih suseda modeluje veze izmedu objekata koji su medusobno bliski.
Ovi grafovi se koriste u mnogim disciplinama, pre svega u masinskom ucenju,
a potom i u pretrazivanju informacija, biologiji, racunarskoj grafici, geografskim
informacionim sistemima, itd. Fokus ove teze je graf k najblizih suseda (k-NN
graf), koji predstavlja posebnu klasu grafova najblizih suseda. Svaki ¢vor k-NN
grafa je povezan usmerenim granama sa njegovih £ najblizih suseda.

Metod grube sile za generisanje k-NN grafova podrazumeva O(n?) racunanja
razdaljina izmedu dve tacke. Ova teza se bavi problemom efikasnijeg generisanja
k-NN grafova, koriS¢enjem aproksimativnih algoritama. Glavni cilj aprokisma-
tivnih algoritama za generisanje k-NN grafova jeste smanjivanje ukupnog broja
rac¢unanja razdaljina izmedu dve tacke, uz odrzavanje visoke tac¢nosti krajnje ap-
roksimacije.

NN-Descent je jedan takav aproksimativni algoritam za generisanje k-NN
grafova. Iako se pokazao kao veoma dobar u veéini sluc¢ajeva, ovaj algoritam ne
daje dobre rezultate nad visokodimenzionalnim podacima. Unutar prvog dela teze,
detaljno je opisana suStina problema i objasnjeni su razlozi za njegovo nastajanje.

U drugom delu predstavljeno je pet razli¢itih modifikacija NN-Descent algo-
ritma, koje za cilj imaju njegovo poboljSavanje pri radu nad visokodimenzionalnim
podacima. Evaluacija ovih algoritama je data kroz eksperimentalnu analizu.

Treé¢i deo teze se bavi algoritmima za azuriranje k-NN grafova. Naime, po-
daci se vrlo ¢esto menjaju vremenom. Ukoliko se izmene podaci nad kojima je
prethodno generisan k-NN graf, potrebno je graf azurirati u skladu sa izmenama.
U okviru ovog dela teze predlozena su dva aproksimativna algoritma za azuriranje
k-NN grafova. Ovi algoritmi su evaluirani opSirnim eksperimentima nad vremen-

skim serijama.

ix
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Preface

There are many problems which rely on proximity relationships between objects.
Many such problems use k-nearest neighbor graph (k-NNG) as an underlying data
structure [2, 3, 5, 10, 14, 24, 25, 32, 35, 44, 45, 60]. One defines k-NNG as a
directed graph whose vertices are objects themselves. Each vertex is connected
to its k nearest neighbors, with respect to a predefined distance function. The
simplest way to construct £-NNG is to calculate all objects’ pairwise distances,
and then to choose k nearest neighbors for each object. This approach entails (72‘)
distance calculations, leading to a quadratic time complexity.

Numerous algorithms for k-NNG construction have been developed in order
to decrease the time complexity of the presented brute-force approach. There are
three main classes of such algorithms. The first class represents algorithms that
introduce certain restrictions with convenient properties, which then allow further
optimizations [1, 2, 19, 39, 41, 50, 54, 55|. The second way to optimize k-NNG
construction is to parallelize it. Hence, the second class refers to the parallelized
algorithms for k-NNG construction [11, 12, 15, 34, 45|. Finally, the third class
represents approximation algorithms, which should minimize the computational
cost, while maximizing k-NNG approximation correctness [13, 20, 30, 42, 43, 51,
57, 59].

Approximation algorithms for £-NNG construction are the focus of this the-
sis. NN-Descent is one such algorithm that is highly efficient [20]. It is based
on the assumption that “a point’s neighbor’s neighbor is also likely to be the
point’s neighbor”. The algorithm starts with creation of a random k£-NNG, which
is then iteratively improved. In each iteration, the algorithm calculates distances
between points that share a neighbor, and uses these distances to update the
k-NNG approximation. However, NN-Descent has a major drawback that k-NNG
approximations are accurate only on data of low intrinsic dimensionality.

One research direction of this thesis was to investigate why NN-Descent per-
forms poorly on high-dimensional data. We showed that the reason for that be-

havior is related to a phenomenon called hubness [8, 9, 48]. Hubness is an aspect
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Preface

of the “curse of dimensionality”, which implies existence of k-NNG nodes that have
very high in-degrees. High in-degree nodes decrease the probability that two points
sharing a neighbor are as well neighbors. Given that exactly this probability is the
essential part of NN-Descent’s assumption, it is evident that hubness negatively
influences NN-Descent. We additionally conducted an experimental analysis that

confirms such relation between hubness and NN-Descent performance.

In order to mitigate the problem, we proposed five different modifications of
NN-Descent |8, 9]. The first modification is based on the observation that high
in-degree nodes have well approximated neighbors, while low in-degree nodes are
ones that need more attention. Therefore, the algorithm allocates more resources
for approximating low in-degree nodes’ neighbors. The second modification makes
use of the fact that NN-Descent’s accuracy increases with k. The idea is then to
construct k-NNG for a larger k, and reduce it to the wanted k afterwards. The
third and fourth modifications provide an easy way to fine-tune the number of
comparisons for each data point, which could be used to assign more comparisons
to the points that need it. Finally, the fifth approach is based on the fact that
the position of a node in the initial random graph influences correctness of its ap-
proximated neighbors. For that reason, this approach conducts additional random
comparisons for the points that are in wrong initial neighborhoods. All the five
proposed modifications of NN-Descent are validated on two synthetic and four real

high-dimensional datasets.

The second research direction is related to the problem of k-NNG updates.
Namely, data very often have a tendency to change over time. Consequently,
there is a need for an algorithm that would efficiently update k-NNG after its
underlying data change. The simplest way to update k-NNG is to construct a
new one from scratch, by using any algorithm for £-NNG construction. However,
this approach does not make use of the previous k-NNG—data often change only
partially, so the graph could be updated partially as well. One way to perform a
partial update of k-NNG is to apply the naive brute-force approach that calculates
only necessary distances, updating only the changed part of the graph. However,
the naive approach might not be fast enough, especially when many nodes have

changed.

In this thesis we propose two NN-Descent-based approximation algorithms for
k-NNG updates. Both algorithms are performing short walks starting from the
nodes affected by the data change. The starting and the ending node of each walk
are compared, and the graph is updated accordingly. The proposed algorithms

were validated by extensive experiments on time series data. In the experiments,

xii
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we simulated a real world scenario, where time series are getting new values over
time.

The thesis is organized as follows. In Chapter 1 the introduction to the prob-
lem is given. Chapter 2 introduces the basic definitions and concepts that are used
in the thesis. In Chapter 3 an overview of the existing algorithms for £-NNG con-
struction is given. The reasons for NN-Descent’s misbehavior on high-dimensional
data are elaborated in Chapter 4. In Chapter 5 we introduce the five NN-Descent
modifications that improve the algorithm on high-dimensional data. Chapter 6
is dedicated to the k-NNG update algorithms—in it we introduce the two new
approximation algorithms for k-NNG updates. Finally, the conclusions and future

research directions are discussed in Chapter 7.
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Chapter 1

Introduction

Fast construction of k-NNGs has been a challenge for decades. The motivation
for developing these algorithms lies in numerous applications of k-NNGs. In Sec-
tion 1.1 we will present some of the k-NNG’s applications, providing an insight
into the importance of k-NNGs.

Even though many solutions exist for the problem of £-NNG construction,
some challenges that arose during the recent years are still unsolved. Namely,
the scale of the data has significantly increased—dimensionality of datasets, as
well as the number of instances, are nowadays drastically larger. Moreover, data
is very often dynamic, having a tendency to change over time. Therefore, the
existing algorithms must be adapted in order to meet the current needs. In this
thesis we considered the problem of fast, approximate k-NNG construction on
high-dimensional data and the problem of fast, approximate k-NNG update. In

Section 1.2 we give an overview of the thesis’ contributions.

1.1 Problems and applications

As already noted, k-NNGs have a wide variety of applications. In this section we
will present some of them, providing a motivation for the work on k-NNGs.

A problem called nearest neighbors (NN) search [33] is one of the most direct
applications of k-NNG. Given a value k, an arbitrary set X upon which a distance
function dist is defined, a set S C X and a query object ¢ € X \ S, the goal of NN
search problem is to find a set S” C S such that |S’| = kand s € S\S'As' € §' =
dist(s’, q) < dist(s, q), that is, among all the objects in S, the set S’ contains k of
them that are nearest to ¢. Many algorithms for this problem were proposed, and
some of them are taking the advantage of k-NNG. For example, Hajebi et al. [24]
proposed an approximate algorithm called Graph Nearest Neighbor Search (GNNS)
for k = 1. Their algorithm builds £-NNG on set S in the offline phase, and then,

1



1.1. PROBLEMS AND APPLICATIONS

for a query object ¢, it performs hill-climbing starting from a randomly chosen
node of the prebuilt graph and ending in the node that is highly probable to be
q’s nearest neighbor.

Given a set of object labels (categories), classification is a machine learning
problem of assigning the suitable label to a query object [58]|. The label assignment
is performed according to the knowledge inferred from the already labeled objects.
A simple, yet effective, classification algorithm called k-NN classifier is built on
top of arbitrary NN search algorithm. Let S’ be a set of labeled objects returned
by an NN search algorithm for a query object q. Object ¢ is then labeled with the
predominant label in S’. If the NN search algorithm uses k&-NNG, k-NN classifier
is indirectly using it as well.

Label propagation [56, 61] is another class of machine learning algorithms in
which £-NNGs can be applied. The goal of such algorithms is to assign labels to
previously unlabeled objects—a label propagation algorithm starts with a small
set of objects that have labels, and then it propagates them to the unlabeled ob-
jects. Unlike classification algorithms which assign a label to a single object, label
propagation operates on a batch of objects. One simple iterative label propagation
algorithm briefly presented in [5] uses k-NNG in the following manner. Under the
assumption that there are exactly two labels, the algorithm first transforms the
labels into the numbers —1 and 1 (if there are more than two labels, one-hot en-
coding technique is employed instead), and then initializes the unlabeled objects
with label 0. Afterwards, the algorithm iteratively propagates labels, until the
convergence criteria is met. In a single iteration, the algorithm propagates labels
to all the nodes by calculating weighted average of its neighboring nodes’ labels.

An outlier is an object that differs too much from other objects. Hawkins

defined [26] an outlier as follows:

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different

mechanism.”

In some cases, outliers are considered as noise objects that erroneously end up
in the data, and should therefore be removed in order to boost performance of a
machine learning algorithm. In other cases, outliers represent valid but anomalous
data, which might be even more interesting than the regular data (for example,
network attacks produce anomalous behavior that should be detected). Some
algorithms for outlier detection use k-NNG. Hautamaki et al. [25] introduced two

algorithms for outlier detection, both of them using k-NNG. In the first algorithm

2



CHAPTER 1. INTRODUCTION

a k-NNG’s node is declared as an outlier if the size of its R-NN list is at most T,
that is, if its in-degree is at most T'. In the second algorithm, the graph’s nodes
are sorted by the average distances in their NN lists. The nodes with large average
distances are declared as outliers.

Clustering [58| is the problem of making a partition of an input set S, each
set of the partition being called a cluster, such that pairwise distances of objects
belonging to the same cluster are minimized, while distances of objects belonging
to different clusters are maximized. In some clustering algorithms k-NNG is used.
Brito et al. [10] made one such algorithm, where they use the notion of mutual
k-NNG. Mutual £-NNG is an undirected graph where an edge exists between two
nodes if they both belong to each other’s NN lists. Each connected component of
this graph is then considered a cluster either if it contains more than one node, or
if it contains an outlier. Note that, although this might look like a graph clustering
problem, it is actually a regular object clustering problem that only uses k-NNG
to achieve its goal.

All the aforementioned applications of k-NNG are related to machine learning.
However, k-NNG is used in other disciplines as well. In Internet applications
it is often important for nodes to find other nodes that are close to them with
respect to a distance based on latency or bandwidth [32]. In information retrieval
problems k-NNG is often used as a building block [2, 60]. In sampling-based robot
motion planning algorithms, k-NNG can be used to capture the connectivity of
the solution space and also to find paths that allow robots to move from one
point in the environment to another while satisfying certain constraints (such as
avoiding collision with obstacles) [45]. Moreover, k-NNG is used in biology, for
example in the study of protein folding [3|. In point-based graphics, k-NNG forms
a basic building block in solving many important problems [14, 44]. Geographic
information systems use k-NNG very often, usually for finding the set of nearest

geographic objects to some query object [35].

1.2 Contributions

The main focus of this thesis are approximation algorithms for k~-NNG construc-
tion. Most of these algorithms are based either 1) on divide-and-conquer tech-
nique [13, 30, 57, 59|, or 2) on the assumption that two points that share a
neighbor are also likely to be neighbors [20, 51]. Algorithms that are based on
divide-and-conquer technique, create small, not necessarily disjoint, subsets, so

that similar points are grouped in same subsets. After that, k-NNGs are built on

3



1.2. CONTRIBUTIONS

small subsets, and then merged into the resulting graph. On the other side, al-
gorithms that are based on the mentioned assumption usually iteratively improve
k-NNG by comparing points that share a neighbor.

In this thesis we are particularly interested in the algorithm called
NN-Descent |20]. NN-Descent belongs to the second aforementioned class of ap-
proximation algorithms. It is very fast and accurate in most of the cases, how-
ever, it produces highly inaccurate approximations on high-dimensional data. We
showed that the main cause for the bad performance of this algorithm is the hub-
ness phenomenon. Hubs, which are points that appear in neighborhoods of many
other points, are being compared much more with other points, while anti-hubs,
which are points that do not appear in many neighborhoods, do not get enough
comparisons. As a result, hubs end up with correct neighborhoods, while the anti-
hubs end up with incorrect neighborhoods. In this thesis, we propose five variants
of NN-Descent, whose aim is to alleviate the negative influence of hubness.

Many algorithms deal with £&-NNG construction, but there are very few algo-
rithms that are designed for updates of an existing k-NNG after its underlying
data has changed. In the second part of the thesis, we introduce two approxima-
tion algorithms for k-NNG update. Both algorithms are inspired by NN-Descent.
Performance of the new algorithms is analyzed by extensive experiments on time
series data. More precisely, these experiments simulate real world scenarios in
which time series are periodically getting new values. Each time some of time
series’ change, the k-NNG must be updated. The k-NNG updates in these sim-
ulations are performed using the two newly proposed algorithms, but also using
brute force approach and NN-Descent, and it turned out that the new approaches

outperformed the rest.



Chapter 2
Background

In this chapter we introduce our notation, basic concepts and definitions related
to this thesis.

2.1 Preliminaries

This section covers some general, well-known concepts that we use throughout the
thesis.

Graphs are mathematical structures used to model pairwise relations between
objects. A graph G is an ordered pair (V, E), where V is a set of vertices (nodes)
and F C {{z,y}|z,y € V}is aset of edges. Graphs can be represented graphically
by indicating each vertex by a point, and each edge by a line joining the points
that correspond to the vertices defining the edge. The notion of graph can be
further extended to directed graph. A directed graph is as well an ordered pair
(V, E), but with the distinction that the set of edges E is now a set of ordered
pairs. More precisely, the edge set in a directed graph is defined as follows: F C
{(z,y)|z,y € V}. Directed graphs are graphically represented in the same manner
as undirected graphs, the only difference being that the edges are now represented
with arrows starting from the first vertex of the edge, and ending in the second
one.

A time series is a series of values linked to a certain moment in time. In
general, a time series T is represented as a list of ordered pairs (x;,t;), where z;
corresponds to a value linked to a time ;. The values of a time series are usually
measurements of some phenomenon taken in different moments in time. Very
often, the values t; — t;_; are the same for any two successive elements in the time
series. In that case, the time component can be omitted, meaning that the time
series can simply be represented as a list of values given in the chronological order.

In this thesis we will use only the representation with omitted time component.



2.1. PRELIMINARIES

Given a set X, a distance function or a metric is a function dist : X xX — R

which satisfies following conditions for any z,y, z € X:

1. non-negativity: dist(z,y) > 0,

2. identity: dist(z,y) =0 <= z =y,

3. symmetry: dist(x,y) = dist(y, x),

4. triangle inequality: dist(z,y) < dist(zx, 2) + dist(z, y).

A metric space is a set together with a metric on that set. One well known
class of distance functions are Minkowski distances. A Minkowski distance of
order p, denoted by L,,, between points A = (ay, as, ..., aq) and B = (b1, bs, ..., bs) €

R? is defined by dist(4, B) = (Zle la; — bi|p)p. The mostly used Minkowski
distances are L, distance, also known as Manhattan distance, and L, distance,

also known as Euclidean distance.

In Chapter 3 we also mention cosine distance, which is complement of cosine
similarity. The cosine similarity for two non-zero vectors is defined as the cosine
of the angle between them. The cosine distance is then obtained by subtracting
the cosine similarity from the value 1. It is important to note that cosine distance
is not a metric as it does not satisfy two necessary conditions: the symmetry

condition and the triangle inequality condition.

In Chapter 6 dynamic time warping (DTW) is used as a distance measure
for time series. DTW is a dissimilarity measure that allows non-linear alignment
of two time series. That means that DTW introduces comparisons between time
series’ points that are not identically positioned on the time axis. Let us denote
two time series by A = (ay,as,...,aq,) € R and B = (by, by, ..., bg,) € RIB.
DTW calculation starts by creation of a d4 x dp matrix D, whose element D; ;
is equal to dist(a;, b;), where dist is an arbitrary distance function (usually the
Euclidean distance). In the next step, a warping path through the matrix D is
found. The warping path is simply a list that contains elements of D, which
additionally must satisfy the following conditions: 1) its first element is D,
2) its last element is Dy, 4., 3) if D;; and Dy are elements that are adjacent in

the warping path, D; ; appearing first, then
O<d—i<HOANOLj—j<D)A=(i=iNj=])

must hold, 4) it minimizes the sum of its elements. The warping path is usually
calculated by using dynamic programming, which leads to the time complexity of

O(dy4 - dg). Once the warping path is calculated, the final DTW value is easily

6



CHAPTER 2. BACKGROUND

obtained by summing the values of the elements from the warping path. Like the
cosine distance, DTW is also not a metric because it does not satisfy the triangle
inequality condition.

The curse of dimensionality is a term introduced by Bellman [4] that refers
to a phenomenon arising in high-dimensional data. This phenomenon is causing
bad performance of many algorithms. The problem usually arises as a consequence
of the following—when the dimensionality increases, the volume of the space even
more rapidly increases, making the data in it extremely sparse. One way to deal
with the curse of dimensionality is to create a simpler representation of data, i.e.,
to reduce data dimensionality. For that purpose many dimensionality reduction
techniques were introduced.

Additionally, dimensionality reduction is also used to remove unnecessary data,
the goal being to lower data dimensionality d to some d’ < d with minimal infor-
mation loss. One of the challenges here is to determine the optimal value of d'.
The optimality of the value d’ can be defined in different ways, one of which is the
following: d' is optimal if it is minimal value such that no information is lost after
dimensionality reduction. In that case, d’ is called the intrinsic dimensionality
(ID) of the data. In machine learning the intrinsic dimensionality for a dataset

can be seen as the minimal number of attributes needed to represent the data.

2.2 k-NN graph

A k-nearest neighbor graph (k-NNG) G is a directed graph whose vertices repre-
sent objects from an input set S upon which some distance function is defined.
Throughout this thesis, we will assume that all pairwise distances within the input
set S are unique. A vertex s € S is unidirectionally connected to a vertex s’ € S
only if the vertex s’ is one of the k vertices that are nearest to s with respect to
the distance function. In that case, vertex s is said to be a neighbor of vertex s,
while vertex s is said to be a reverse neighbor of vertex s’. The list of all neighbors
of some vertex s is also called the nearest neighbor (NN) list, and we will denote it
by NN¢(s); the list of all reverse neighbors of vertex s is called the reverse nearest
neighbor (R-NN) list, and we will denote it by RNNg(s). The elements of NN list
of a point s will be represented as ordered pairs (s, d), where s’ is a neighbor of
s, and d = dist(s, ¢') is the distance between s and '.

Figure 2.1 shows an example of a simple k-NNG for £ = 2, whose vertices are
five 2-dimensional points in the Euclidean plane. As can be seen, each point has

exactly two outgoing edges (which is determined by the value k), while the number
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of incoming edges varies. The figure also depicts the direct and reverse neighbor-
hoods of one vertex—this vertex is colored blue, while its nearest neighbors (2.1a)

and reverse neighbors (2.1b) are colored red.

(a) NN list (red) of a node (blue).  (b) R-NN list (red) of a node (blue).

Figure 2.1: An example of k-NNG (k = 2) on a set of 2-dimensional points in
Euclidean plane.

As already said, a k-NNG is defined by an input set S and a distance func-
tion defined on S. However, it is also possible to construct a k-NNG with a
distance measure that is not a proper distance function. For example, two such
distance measures, cosine distance and DTW, were presented in Section 2.1, and
will be later used for k-NNG construction in Chapter 3 and Chapter 6. Generally
speaking, even though some distance measures do not satisfy some of the metric
conditions, they are still often used in similar contexts as proper distance functions.

In order to reduce the computational cost of k.-NNG construction, many ap-
proximation algorithms were developed (see Section 3.1). We will finalize this
section with an overview of the measures that we will use to assess the quality of
a k-NNG approximation. Let G be an approximation of k-NNG G, both G and
G being defined on the same node set S of n elements, and let s, s’ € S. We will
refer to a node s’ € NN (s) as a true neighbor of s if and only if s € NNq(s),
that is, if and only if s is in s’s NN list in both G and G. We will denote the
number of s’s true neighbors in G by tng . The recall of a node s in G, denoted
by recall , is defined by (2.1). The recall of a k-NNG approzimation G, denoted
by recalls, is defined by (2.2).

tng

—o (2.1)

recallas =

ZSES recallé,s

recall s = (2.2)

There are in total

"'(7;71) distance computations during the naive k-NNG con-

struction. A k-NNG approximation algorithm should decrease this number. The
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larger decrease of the number of distance computations, the better is the approx-
imation algorithm. Therefore, we introduce the scanrates measure which assesses
an algorithm in terms of the number of distance computations. This measure is
given in (2.3), where distss is the number of distance computations employed dur-
ing the construction of the k~-NNG approximation G. Small scanrates values are
better.

scanrateg = ——3= (2.3)

For comparing two approximation algorithms by taking into account both
recallz and scanratez at the same time, we use harmonic mean, which is suit-
able for averaging ratios. However, before calculating harmonic mean, we first
have to synchronize the two values. One problem is the range—recall is a value
in the range [0, 1], while scanrates is a value in the range [0, 00). Scan rate that
is higher than 1 indicates that the algorithm recalculates distances that it has
already calculated. Even though this is not optimal, it could happen in certain
cases. Therefore, when calculating the harmonic mean, we limit scanrates to be
at most 1, meaning that each scan rate higher than 1 will be considered as the
scan rate of exactly 1. Second, recalls values are better as they increase, while
for the scan rate opposite holds—scanrates values are better as they decrease. In
order to synchronize the two measures, we introduce scan gain, scangaing, that is
given by (2.4). Finally, the harmonic mean, harmonicg, is calculated based on the

recall and the scan gain, as given by (2.5).

scangaing = 1 — min{1, scanrates } (2.4)
0, if recallz = 0 or scangaing = 0;
h icq = 2 . 2.5
armonice - —, otherwise. (25)
recall 5 + scangain g
G G

2.3 Hubness

Hubness is an aspect of the curse of dimensionality pertaining to nearest neighbors,

which has come to the attention of the machine learning research community only
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relatively recently [48]. In this section we will define the hubness phenomenon and
point out the issues related to it.

Let us define the function hg(s) = |RNN(s)|, where s is a node in a k-NN
graph G. We will refer to hg(s) as thehubness value of the node s, which in other
words is the size of s’s R-NN list. Additionally, we define the normalized hubness
value as ﬁg(s) = hGT(S) Let now S; C R? be a set of n random points and let Gy
be a k-NNG constructed on Sy for some fixed k. As the dimensionality d increases,
the distribution of the valus of hg, becomes considerably skewed. Consequently,
some nodes, which we will refer to as hubs, are included in many more NN lists
than other points. More formally, a hub is a node s in the k-NN graph G for which
ha(s) > k. If a dataset contains hubs, that is, if the distribution of hubness values
is highly skewed, it can be said that the hubness phenomenon is present therein.

In Figure 2.2 we show the aforementioned dependence of hubness values on data
dimensionality. For this purpose, four synthetic datasets Sy of dimensionalities
d € {10,20,50,100} were created. All datasets were drawn from the uniform
distribution with standard deviation 1 and mean (0,0, ...,0), and all of them have
100, 000 instances. The hubness values presented in the figure are extracted from
k-NNGs, with £ = 5 and L, distance, that are constructed on the four datasets.
The figure contains four histograms of normalized hubness values, one for each
dataset. The hubness values are shown on the x axis (note that the x axis is
logarithmic), while the percentages of points that have corresponding hubness

values are shown on the y axis.

d=10 d=20
20
(0]
(@)}
S
& 10 /\
e
(0]
o
0
d=50 d =100
20
(0]
(@)}
ks
& 10 \
o
(0]
o
0
10° 10" 10° 10"
hG(S) hG(s)

Figure 2.2: Dependence of hubness values (extracted from k-NNGs with & = 5
and Lo distance) on data dimensionality (d).
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It has been shown that hubness, as a phenomenon, appears in intrinsically
high-dimensional machine learning data as an inherent property of high intrinsic
dimensionality itself, and is not an artifact of finite samples nor a peculiarity of
specific datasets [48]. However, one should have in mind that high dimensionality
of a dataset does not necessarily imply high intrinsic dimensionality, and therefore
does not necessarily imply the presence of hubness phenomenon—only datasets
with high intrinsic dimensionality are affected by this phenomenon. It was shown
that hubness influences various data-mining and machine-learning algorithms [46-

49, 52|, often in a negative way.
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Chapter 3

Existing algorithms for £-NN graph

construction

This chapter gives an overview of the existing algorithms for k~-NNG construction.
In Subsection 3.1 we will present different classes of such algorithms, while Sub-
section 3.2 will be dedicated to a single k-NNG approximation algorithm, called
NN-Descent, which is the most relevant for this thesis. Finally, in Subsection 3.3
we will present the analyses and algorithms regarding k-NNGs that change over

time.

3.1 Optimization of k-NN graph construction

The naive brute-force computation of k-NNG entails (72") distance computations,
which leads to quadratic time complexity. Numerous methods for £-NNG con-
struction have been developed in order to decrease the computational cost. An
optimization of k-NNG construction can be performed in different ways. The first
way would be to introduce certain restrictions to the problem (for example to fix
the distance function that will be used for k-NNG construction, to define properties
of underlying objects upon which the graph is built, etc.) that would then allow
further optimizations. In the following text we will call this class of algorithms
specialized algorithms, and they will be presented in Subsection 3.1.1.

The second way to optimize k-NNG construction is to parallelize it. The par-
allelization can take place on a single machine, by using multiple cores of a single
processor, or it can make use of larger clusters that contain multiple machines.
We will refer to this class of algorithms as parallelized algorithms. Parallelized
algorithms will be presented in Subsection 3.1.2.

Finally, the third way to optimize the problem is to build k-NNG approximation
instead of building the exact k-NNG. Approximation algorithms are generally used

13
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when speed is more important than accuracy. An approximation algorithm should
minimize the computational cost, while maximizing the approximation correctness.
We will refer to this class of algorithms as approximation algorithms. This class
of algorithms is most relevant to this thesis, and Subsection 3.1.3 will give an

overview of the existing approximation algorithms for £&-NNG construction.

3.1.1 Specialized algorithms

Specialized algorithms for k&-NNG construction are the ones that introduce certain
restrictions and therefore do not apply to the general case. This subsection gives
an overview of the existing algorithms from this class.

Vaidya [54] proposed an O(nlogn) algorithm for 1-NNG construction for a
set S of n points in a d-dimensional space and an L,-metric. The algorithm can
easily be modified to support the more general k-NNG construction problem, and
in this case the complexity is O(knlogn). The outline of the 1-NNG construction
algorithm is as follows. The algorithm maintains a collection B of disjoint closed
cubes which contain all the n points. At the beginning B contains a single box
which is the smallest cube containing all the points in S, and at the end, every
box in B is degenerate, consisting of a single point in S. For each box in B, the
information about its neighboring boxes is kept. For each point p in a box, every
nearest neighbor is located in the box itself or in some of the box’s neighboring
boxes. In each step, the algorithm splits a box of the greatest volume into 2¢
smaller boxes. The split is defined by d mutually orthogonal hyperplanes passing
through the center of the box, each being parallel to one axis. After the split,
the boxes that do not contain points from S are discarded. Each preserved box
is shrunk to the minimal box that contains all points from S that are inside it.
These boxes are then put in the collection B, and their neighboring boxes are
updated accordingly. At the end of the algorithm, when each box contains only
one point from S, the corresponding neighboring boxes contain the points’ nearest
neighbors.

One famous class of algorithms for k-NNG construction uses the Voronoi dia-
gram to build k-NNG. Given a metric space X and a finite, nonempty set S of
n points in the space X, the Voronoi region associated with s € S, denoted by
V(s), is the set of all points in X whose distance to s is not greater than their
distance to all s’ € S, s’ # s. Therefore the Voronoi diagram partitions the space
into Voronoi regions defined by all s € S. We would like to point out that building

Voronoi diagram in spaces of dimensions higher than 2 is impractical, hence the
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algorithms that use Voronoi diagram for £-NNG construction can be used only in

two dimensional spaces.

Shamos et al. [50] used the Voronoi diagram to solve the 1-NNG construction
problem in the Euclidean plane. After building the Voronoi diagram in O(nlogn)
(which is asymptotically optimal), the nearest neighbor of each point s € S is
found by simply examining all s’ € S for which V(s) and V(s') share an edge.
The point s’ that is closest to s is then s’s nearest neighbor. The complexity of
finding the nearest neighbor for each point upon a Voronoi diagram is O(n), which
together with the algorithm for building the Voronoi diagram leads to the overall
complexity of O(nlogn).

The Voronoi diagram can be further generalized. Instead of associating a
Voronoi region with a single point s € S, it can be associated with a set of
points S’ C S, in which case a Voronoi region V(S") contains all the points in X
whose |S’| nearest points from S are exactly the points in S’. The Voronoi dia-
gram of o-order is then the Voronoi diagram whose Voronoi regions are defined by
sets of cardinality o. The problem of £-NNG construction can then be solved by
constructing the (k + 1)-order Voronoi diagram. Each point’s k& nearest neighbors
are then easily determined by taking the points lying in the same Voronoi region.
Lee [39] introduced an algorithm for the construction of the (k + 1)-order Voronoi
diagram of n points in the Euclidean plane in O(k*nlogn), and Aggarwal et al. [1]
later improved it to O(k*n + nlogn).

Similar work has been done by Dickerson et al. [19]. The authors used the
Delaunay triangulation as a tool for k-NNG construction. The Delaunay trian-
gulation for a set S in a d-dimensional metric space X, denoted by DT(S), is
the triangulation such that no point in S is inside the circum-hypersphere of any
d-simplex in DT(S) (it can be proved that, modulo some mild assumptions about
the set .S, such a triangulation always exists and it is unique; in particular, it can
be thought of as the dual graph of the Voronoi diagram created on the same set .S).
In their algorithm, Dickerson et al. are constructing £-NNG on the set of points S
by building the Delaunay triangulation in the preprocessing phase, and then using
it to construct the final ~-NNG. The Delaunay triangulation is built by using the
algorithm introduced by Bern et al. [6] In this algorithm a new “nicer” set of points
S" D 5,15 = O(]S]) is defined, and then the Delaunay triangulation is built on it
in O(nlogn). After the preprocessing phase, for each point s € S a breadth-first
search is performed on the built Delaunay triangulation to find k nearest neighbors

of s in S. The overall time complexity of this algorithm is O(knlogn).
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Virmajoki et al. [55] developed a divide-and-conquer algorithm for k-NNG con-
struction in a d-dimensional metric space. In the “divide” step the set of points S
is split into two approximately equal sized subsets S; and S, by using the principal
component analysis (PCA). Namely, the principal axis of the points in S is calcu-
lated, and a (d — 1)-dimensional hyperplane that is perpendicular to the principal
axis is selected in such a way that approximately half of the points belong to one
side of the space, and the rest to the other side. The problem is then solved recur-
sively for S; and S,. The recursion stops when a set smaller than ¢, is reached, and
then a brute-force k-NNG construction is performed instead. After the solutions
for S; and Sy are obtained, a third subset Ss3 is created. This subset contains all
the points that are closer to the dividing hyperplane than to their nearest neighbor
in the corresponding subset (S; or Sy). The algorithm is then recursively applied
to the S3, too. Finally, the results of all the three subproblems are merged into

the resulting k-NNG. The time complexity of this approach is O(d?n'®logn).

Paredes et al. [41] proposed two variants of an algorithm for A-NNG construc-
tion in general metric spaces. Both variants have a similar outline. An index
data structure for fast nearest neighbors queries is created. During the creation
of the index, each calculated distance is simultaneously used to update another
data structure that stores current best nearest neighbors for each point. After
the index is created, the current best neighbors lists have to be updated so that
they correspond to the exact neighborhoods. In order to achieve that, the index
data structure is used to obtain a list of potential neighbors for each point. Each
such list is guaranteed to contain the point’s real neighbors, but can contain non-
neighboring points as well. In order to avoid unnecessary distance computations,
these lists are additionally pruned by applying various implications of the triangle
inequality property of the distance function. Finally the distances between a query
point and all the points from the pruned list are computed, and the neighbors set of
the query point is updated accordingly. The authors reported empirical complex-

1.10) 1.96)

ities ranged from O(n for 4-dimensional space to O(n for 24-dimensional

space.

Anastasiu et al. [2| proposed an algorithm called L2Knng for k-NNG construc-
tion with cosine distance. The basic assumption of the algorithm is that the set S
contains sparse high-dimensional vectors. The algorithm operates in two stages. In
the first stage an approximation of k-NNG is efficiently built relying on two ideas:
1) high-weight features count heavily toward the (dis)similarity of two vectors [43],
2) a vector’s neighbor’s neighbor is also likely to be the vector’s neighbor [20]. In

the second stage, the algorithm iterates through all the vectors from S, one by
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one, in each step updating the current vector’s NN list considering only the vec-
tors that were already processed, and vice versa—the already processed vectors’
NN lists are updated with the current vector. During this stage, various pruning
techniques are used to reduce the number of distance computations. The authors
verified their solution by conducting experiments on real-world datasets. They
compared the results of their approach with the results of a few approximation
algorithms and a few exact algorithms, and thereby they concluded that for the

chosen datasets L2Knng outperforms other algorithms.

3.1.2 Parallelized algorithms

A standard tool for optimizing an algorithm in terms of execution time is paral-
lelization. This section gives an overview of parallel algorithms for £-NNG con-
struction.

Callahan et al. [11, 12] proposed a parallel algorithm for k-NNG construction
that works in O(logn) time when run on O(n) processors for a constant k. The
algorithm is based on so called well-separated pair decomposition which is a struc-
ture consisting of a binary tree and a well-separated realization (which is also a
concept introduced by the authors). The intuition behind well-separated pair de-
composition is to make geometrically separated "clusters" of points, and to do that
for different granularity levels in terms of clusters size. The authors introduced
an algorithm that builds well-separated pair decomposition in O(logn) time with
O(n) processors on a CREW PRAM. Upon a well-separated pair decomposition,
by using its various geometric properties, for each point s, a set of O(1) candi-
dates that may have s in their k nearest neighbors is computed in O(logn) time
with O(n/logn) processors. After this step, k nearest neighbors for each point are
computed in O(logn) time with O(n) processors.

Plaku et al. [45] developed a distributed algorithm for k-NNG construction.
The algorithm works under the assumption that p available processors do not share
memory. The initial set of points S is partitioned into p subsets S, Ss, ..., Sp, each
being assigned to a different processor. Each processor p; then computes an index
structure for NN queries for S; (the index structure algorithm can be arbitrarily
chosen). After this step, each processor queries its index structure to obtain NN
lists of points from its set, and to obtain NN lists of points from all the other
processors as well. The first task does not require any communication between
the processors, but the second one does—a processor has to get the points whose

NN lists it should compute, and afterwards the computed NN lists have to be sent
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back to the corresponding processors. In order to decrease communication, authors
suggested a pruning technique. Namely, each processor clusterizes its points set.
The information about the clusters’ bounds are sent to other processors. Before
asking a processor p; for a point’s NN list, a processor p; should check whether the
point can find its neighbors within p;’s points by looking at p;’s clusters’ bounds.
Finally, after a point’s NN lists are obtained from all the processors, they are
merged into the resulting NN list. By the experimental analysis authors reported

a speedup that is nearly linear in the number of processors.

A parallel algorithm, most suitable for multi-core machines, for k~-NNG con-
struction upon points in d-dimensional space for d < 3, was presented by Con-
nor et al. [15]. The algorithm is based on Z-order (Morton-order) which is a
space-filling curve that preserves locality. The Z-value of a point is calculated by
interleaving the binary representations of its coordinates’ values. The algorithm
starts by sorting the points from S by their Z-value. Then the initial k-NNG ap-
proximation is created by comparing each point with a certain amount of points
that surround it in the sorted array (sliding window method). Finally, by using
quad tree, each point’s neighborhood is refined in an efficient way. The quad tree
can be induced from the sorted array by defining each tree’s node with a range of
points in the array, which is possible due to geometric properties of Z-order. Each
point then recursively goes from the root of the tree to its child nodes, stopping
when reaching a node that contains small amount of points, in which case the
querying point is compared to all of them, improving its NN list. There are also
other early termination criteria defined by geometric properties of the tree. Par-
allelization is then implemented as follows. A parallel distribution sort is used for
the sorting phase. The sorted array is then split into p chunks, p being the num-
ber of available processors, with each processor computing the initial approximate
NN lists for one chunk. The k-NNG approximation is refined to exact k-NNG by
letting each processor perform the recursive step of the algorithm for the points in
their chunks.

Komarov et al. [34] parallelized the brute-force k-NNG construction on graphic
processing unit (GPU). As a first step, the algorithm efficiently calculates all pair-
wise distances. The problem of calculating the distances is formulated as a matrix
multiplication problem. The authors supported Euclidian, cosine and Pearson
distance functions. After that, k nearest neighbors of each point are selected by

conducting a GPU-based multi-select algorithm based on quicksort.
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3.1.3 Approximation algorithms

Many k-NNG approximation algorithms are based either on divide-and-conquer
technique, or on the idea of the famous algorithm NN-Descent, which will later be
introduced. Examples of both types of k-NNG approximation algorithms will be

presented in this section.

Chen et al. [13] introduced an approximation divide-and-conquer algorithm
that uses Lanczos spectral bisection |7, 31, 36, 53] for the divide step. Let S =
(31, ..., 8,] € R¥"™ be a data matrix, where each column §; represents a centered
data point s; € S. Lanczos spectral bisection first computes of the largest singular
triplet (o, u,v) of S by using Lanczos algorithm [36]. Then, the input set S is
split into two sets Sy = {s; | v; > 0} and S_ = {s; | v; < 0}, where v; is
the i*" entry of the right singular vector v. The algorithm by Chen et al. is
designed for d-dimensional Euclidean space, and has time complexity of O(dn?),
where ¢ € (1,2) depends on the algorithm’s parameter . The termination criteria
for division step is defined in terms of a set size—when a set is small enough it is
not being further divided. When such a small set is reached, brute-force k-NNG
construction is performed upon it. The conquer step then trivially merges all
these small k-NNGs, making a final k-NNG approximation. In order to achieve
high k-NNG approximation’s accuracy, some points should be present in multiple
small termination sets. For this purpose, the authors proposed two variants of the
divide step. In the first variant, called overlap method, a set is divided into two
overlapping subsets. In the second variant, called glue method, a set is divided
into two disjoint subsets, but then another subset, called gluing subset, is created.
The gluing subset contains the points that originate from both disjoint subsets.
The authors introduced a parameter « that determines the subsets intersection
size for the overlap method and the gluing subset size for the gluing method.
The parameter « is expressed as a portion of the size of a set that is divided.
Experiments show that for a highly accurate approximation, a small value of « is

usually sufficient, which leads to a small exponent in the time complexity.

One of the famous and most efficient approximation algorithms is the one
introduced by Dong et al. [20]. The algorithm is called NN-Descent and it ef-
ficiently produces highly accurate k-NNG approximations independently of the
underlying distance function. As reported by the authors, the empirical complex-
ity of NN-Descent for datasets of relatively low intrinsic dimensionality is around

O(n'11). The basic assumption of the algorithm is that two points that share a
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neighbor are also likely to be neighbors. Since NN-Descent is highly relevant for
this thesis, it is thoroughly explained in Section 3.2.

Jones et al. [30] proposed an iterative randomized approximation algorithm
for k-NNG construction (RANN) on a set S of points in d-dimensional Euclidean
space. Each iteration of the algorithm independently generates its own approxi-
mate k-NNG. The k-NNGs of individual iterations are merged into the resulting
k-NNG approximation. Each iteration consists of two main steps. In the first
step, a random space rotation is applied, meaning that all data points are rotated
in the same manner. The second step utilizes divide-and-conquer technique—in
the divide phase the input set S is split into the smaller subsets, while in the
conquer phase k-NNGs are calculated on those subsets and then merged into a
single k-NNG. The divide phase is recursive—the current set is being divided as
long as its cardinality is greater than k. In the recursion depth ¢ of the divide
phase, the current set C' is split into similarly sized sets Cy = {c|c € CAc > m}
and C_ = {c | ¢ € C Ac < m}, where m is the median of points’ values on
dimension ¢ mod d. The number of the algorithm’s iterations is user-defined. At
the end of the algorithm, after all the iterations are completed, a technique called
supercharging is applied. Supercharging is essentially based on the same idea as in
NN-Descent. Namely, in order to improve neighborhoods, each point is compared
with all its O(k?) neighbors’ neighbors. The overall execution time of the algo-
rithm is proportional to Tn(dlogd + k(d + log k) logn) + nk*(d + log k), T being
the number of iterations. The accuracy of the resulting k-NNG approximation
depends mostly on d and T (higher d values have negative, while higher T" values

have positive influence on k-NNG approximation accuracy).

Wang et al. [57] presented another divide-and-conquer algorithm that is actu-
ally a mixture of all the three above presented algorithms. Namely, like in [13],
Lanczos spectral bisection is used for divide step. Similarly to [30], divide-and-
conquer algorithm is run multiple times in order to achieve higher approximation
accuracy. The difference between multiple runs lies in the way sets are split in
divide steps. Namely, Lanczos algorithm is not fed with the whole set, but with a
randomly chosen set’s sample. The results from different runs are merged in the
same manner as in the algorithm by Jones et al. [30]. Finally, NN-Descent’s idea
is used at the end, for the neighborhood propagation. In the neighborhood prop-
agation phase points are compared with neighbors’ neighbors, but unlike in [30],
the process is recursively continued for the neighbors that are newly added during

the propagation. Under the assumption that the number of different runs and the
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number of visited neighbors during the propagation phase are small, the authors

reported time complexity of O(dnlogn).

Another similar divide-and-conquer algorithm was presented by Zhang et al. [59].
Their algorithm is based on locality sensitive hashing (LSH) [23], and therefore can
be applied with any distance function for which a locality sensitive hash function is
designed. The overall time complexity of the algorithm is O(I(d + logn)n), where
[ is usually a small number. The outline of the algorithm is the same as for the
above algorithms: divide-and-conquer phase is run multiple times, exact k-NNGs
are constructed on small sets of points and then merged, the neighborhood propa-
gation is performed as the final step of the algorithm. The main difference between
this and above presented algorithms lies in the divide step. In this algorithm, the
current set is divided into multiple subsets—two points are placed in the same
subset if their hash value is the same. Since the hash function is designed to pre-
serve locality, similar points are likely to be placed in the same subset. However,
the hash function might not distribute the points uniformly over the subsets. In
order to solve this problem, authors project points’ hash codes onto a random
direction w € R™, where m is the number of distinct hash values. The points are
then sorted by their projection values, and the equal-sized ranges from this sorted

order are assigned to each subset.

Park et al. [42, 43] introduced an algorithm called greedy filtering which con-
structs approximate k-NNG by using cosine distance on a set S of d-dimensional
vectors. The vectors in S are normalized by Ls-norm such that each vector’s sum
of its squared values is equal to 1. The authors represented each vector by a list
of pairs (d;,r;), where d; is dimension and r; is vector’s value for that dimension.
The list is decreasingly sorted by values (i.e., r components). Relying on the fact
that higher values contribute more for cosine distance, the authors introduced the
notion called vector prefix. A prefix of length m is a new vector that contains the
first m elements of the original vector. The algorithm starts by creating a list L|[d;]
for each dimension d;. L[d;] contains the vectors which have d; in their prefixes.
Vectors’ prefixes are determined in the following way. Let p be a vector’s prefix,
and D, a set of all dimensions that appear in p. The vector’s prefix p is such that
its length is minimal and 3, ., |L[di][ > p, for some predefined value . When
Lld;] is filled for all dimensions d;, pairwise distances are calculated between vec-
tors from each dimension’s list, which results with a k&-NNG approximation. The
authors pointed out a problem with this approach, which occurs when some of the
dimensions’ lists are very large, in which case the algorithm slows down. In order

to alleviate the problem, the authors introduced fast greedy filtering in which the
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distances are calculated between prefixes, not between the whole vectors. Besides
that, in fast greedy filtering not all the pairwise distances from dimensions’ lists
are calculated. Instead, authors used a technique based on so called inverted index.

Sieranoja et al. [51] combined the algorithm developed by Connor et al. [15]
with NN-Descent 20|, creating a new algorithm that constructs k-NNG approx-
imation for Minkowski distance functions. The initial £-NNG approximation is
created in a similar manner as in the algorithm by Connor et al. [15] (see Subsec-
tion 3.1.2). However, instead of applying the process only once, it is repeated mul-
tiple times for different Z-order projections. Besides that, the authors pointed out
one potential problem with this approach—time and space complexity of Z-values
calculations are linearly dependent on d, which is a problem for high d values.
In order to solve this problem, authors introduced dimensionality reduction step
which is performed before calculating Z-values. After each Z-order projection, the
current k-NNG approximation is updated with sliding window method, which is
then followed by one NN-Descent iteration. In order to reduce complexity, not
all the neighbors are used for local joins in NN-Descent, but instead only ki, ges
of them. The authors validated their method with various experiments, which

showed that the method performs well even on high-dimensional data.

3.2 NN-Descent

NN-Descent 20] is a fast approximation algorithm for ~-NNG construction. The
basic assumption made by NN-Descent can be summarized as “a point’s neigh-
bor’s neighbor is also likely to be the point’s neighbor”. The algorithm can be
used with any distance function. Moreover, the algorithm can even be used with
functions that do not satisfy some of the metric conditions, but in that case the
accuracy of the algorithm depends on the extent to which the function aligns with
the aforementioned assumption. In the following text a detailed overview of the
algorithm will be given, after which, in Subsection 3.2.1, we will review a literature
on NN-Descent’s modifications.

The algorithm starts with creation of a random k-NNG G, which is then iter-
atively improved. Inside a single improvement iteration, for each point s € S its
NN and R-NN lists are examined to determine whether any points in these lists
should be added to NN lists of any of the others. More precisely, distance between
each two v,w € NNga(s) U RNN4(s) is calculated. According to the calculated
distance, v’s NN list is updated with the point w if needed, and vice versa, w’s

NN list is updated with v if needed, which is a process called local join. After
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each iteration, another one is triggered only if a termination condition is not met.
The authors defined two variants of termination condition. One way is to sim-
ply terminate after a fixed number of iterations (in further text fized iterations).
Another way is to terminate when the algorithm converges (in further text con-
vergence). The convergence of the algorithm is defined in terms of number of NN
lists updates that occurred in the last executed iteration. Namely, if the number
of NN lists updates is below a predefined threshold, the algorithm terminates, i.e.,
the termination condition is in that case met.

In order to avoid unnecessary comparisons, a boolean flag called new is stored
for each point’s neighbor. In the initial random graph the flag has value true for
all the neighbors in k-NNG. Afterwards, in the i*" iteration the flag has value true
only if the neighbor is added in the corresponding NN list during the (i — 1)
iteration. Local join between two points is then performed only if at least one of
them has value true for the flag new. Namely, if for the both points holds that
new = false, that means that neither point is added in the NN list in the previous

iteration, implying that the distance between them has already been calculated.

Algorithm 1: Function that returns » random elements from a set X.

function Sample (X, r)
| return r uniformly random elements from X.

end

Algorithm 2: Function that returns a random k-NN graph.
function RandKNNG (5, k, dist)

// Note: Function Sample is defined in Algorithms 1.

G« empty graph;
foreach data point s € S do
R < Sample(S \ {s}, k);
foreach data point v € R do
d « dist(s, v);
Use (v, d) to update NN (s), and use (s, d) to update NN 5(v);
end

end

© 0w N O ok~ W N

return é .
end

The speed of NN-Descent is strongly influenced by the k value. As k becomes

larger, the algorithm becomes slower. More precisely, the time complexity has a
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quadratic dependence on k, since during each iteration, points appearing in NN or
R-NN lists of the same point are evaluated as candidates for each other’s NN lists.
As a way to reduce the number of combinations of points considered, the authors
introduced sampling. Sampling reduces the number of evaluations by taking a
random selection of points from NN and R-NN lists, and then operating only on
these points. Sampling is controlled by a parameter p that takes a value from 0 to
1. The algorithm takes p - k points both from NN and R-NN lists.

Algorithm 3: Outline of NN-Descent algorithm.
input : set of points S, distance function dist, neighborhood size k,
sampling p
output: k&-NNG approximation G

// Note: Functions Sample and RandKNNG are defined in Algorithms 1 and 2,

respectively.
1 G < RandKNNG(S, k, dist);

2 repeat

3 foreach data point s € S do

4 R < Sample(NN &(s), p - k) U Sample(RNN &(s), p - k);

5 foreach two points v,w € R do

6 d + dist(v, w);

7 Use (v, d) to update NN 5(w), and use (w,d) to update NN z(v);
8 end

9 end

10 until Termination condition is met

11 return G.

Table 3.1: List of parameters of NN-Descent.

Parameter Description

k  Neighborhood size (size of NN lists).
dist  Distance function.

it Number of iterations. Note: present only for fized iterations termi-

nation condition.
conv  Convergence criterion (value between 0 and 1). Algorithm con-

verges when there is less than conv - k-n updates in the most recent
iteration, where n is the number of £-NNG vertices. Note: present
only for convergence termination condition.

p Sampling (value between 0 and 1, not including 0). Only p-k points
from NN and R-NN lists are considered for local joins.
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An outline of NN-Descent is shown as Algorithm 3' and the list of NN-Descent
parameters is given in Table 3.1.

The main drawback of NN-Descent is that the quality of approximation it
produces is highly influenced by the intrinsic dimensionality of the input set, in
that the quality of the approximation decreases as the intrinsic dimensionality
increases. In Chapter 4 the influence of high dimensionality on NN-Descent will
be further explained. Later, in Chapter 5, we will propose new approaches that
are designed to overcome this challenge to some extent.

The second drawback of the algorithm is that the speedup over the brute-force
k-NNG construction and accuracy are highly influenced by the cardinality of in-
put set (n) and k value. Namely, as n increases, speedup increases and accuracy
decreases; as k increases, speedup decreases and accuracy increases. As a conclu-
sion, NN-Descent is not suitable for small n values or large k values—if input set
is sufficiently small or k value is sufficiently large, brute-force algorithm becomes
faster than NN-Descent. Similarly, NN-Descent is not suitable for very large n
and small £ values, because in that case accuracy of the algorithm can drop to the

point where it becomes unusable.

3.2.1 NN-Descent as an inspiration for other algorithms

As a part of their algorithm for exact k-NNG construction with cosine distance,
Anastasiu et al. [2] are building a k-NNG approximation which then they improve
to the exact k-NNG (see Subsection 3.1.1). The approximation is built on two
ideas, one of which is based on NN-Descent. Just like in NN-Descent, the approx-
imation is iteratively improved by conducting comparisons of points that share
a neighbor. However, in this algorithm not all the points that share a neighbor
are mutually compared. In each iteration, each point traverses its neighborhood
in increasing order of distances and the neighborhood of each visited neighbor is
again traversed in the same manner. The neighbors’ neighbors are then picked
greedily until the predefined number of them is reached. These picked points are
then used for comparisons. The algorithm also introduces certain corner cases for
which a neighbors’ neighbor must not be picked. This modification of NN-Descent
is compared with the original algorithm and the experiments showed an increase

of recall and execution time.

! Algorithm 3 does not contain aforementioned optimization which implies avoiding unneces-
sary comparisons by using the new flag. The optimization is omitted from the algorithm with a
goal of preserving the algorithm’s readability.

25



3.2. NN-DESCENT

Houle et al. [28] introduced NNF-Descent (Nearest Neighbor Feature Descent),
an NN-Descent-based feature sparsification method optimized for image databases.
The goal of this algorithm is to improve semantic quality of the resulting k-NNG.
Semantic quality of a graph is high if the neighboring points are semantically
similar. The authors introduced Local Laplacian Score (LLS) that is based on
the Laplacian Score (LS). Both LS and LLS are measures of features qualities,
difference being that LS is a global measure calculated upon all points, while
LLS is a local measure calculated upon a single point. NNF-Descent identifies
noisy features’ values by using LLS, and then replaces them with zeros, under
the assumption that the dataset points are normalized before the execution of the
algorithm. The first step of the algorithm is creation of a k-NNG approximation
by using NN-Descent. After that, the algorithm iteratively improves semantic
quality of the graph. In each iteration LLS values for all the point’s features
are computed. The values of a point’s top z ranked features are replaced with
0. After that, the distances to this point are recalculated, and the neighborhood
propagation is performed in order to update k-NNG. The algorithm is verified with
respect to the accuracy of k-NNG and to the image labeling task. The experiments

showed that NNF-Descent outperforms its competitors in most cases.

Debatty et al. [18] presented a method for constructing k-NNG approximation
for large text datasets. This method applies NN-Descent only to smaller buckets
of data, leading to a lower execution time. The buckets are created with respect to
a custom Context Triggered Piecewise Hashing (CTPH), which assigns the same
hash to similar strings. The strings with the same hash are then placed in the
same bucket. This approach has one major drawback—if one string is put into
only one bucket, each bucket will correspond to a disconnected component in the
final k.-NNG approximation. In order to solve this problem, the authors introduced
stages. Instead of creating hashes of the length that is aligned with the number of
desired buckets, longer hashes are created. These longer hashes are then split into
parts of appropriate lengths, each part being mapped to a single bucket. In that
way, a single string is being assigned to multiple buckets. The experiments showed

that this approach speeds up NN-Descent preserving the reasonable accuracy.

Sieranoja et al. [51] also used ideas of NN-Descent in their algorithm. Since
their algorithm was already explained in Subsection 3.1.3, here we will only point
out how it differs from the basic NN-Descent. Unlike NN-Descent, this algorithm
works only with Minkowski distances. Additionally, this algorithm does not start
with a random graph, but instead with a more accurate k-NNG approximation

that is created by making use of Z-order. Finally, in order to reduce complexity,
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the algorithm does not use whole neighborhoods for local joins, but instead only
a portion of it, which is similar to the sampling technique.

Some approximation algorithms use a concept called neighborhood propaga-
tion (see Subsection 3.1.3), which is based on NN-Descent’s idea. Neighborhood
propagation is usually used as an algorithm’s final step, the purpose of which is to

make the final approximation more accurate.

3.3 Temporal k nearest neighbor graphs

In various real world problems data change over time. Consequently, a k-NNG
built on such temporal data must be updated as data change. In this section we
present analyses and algorithms that are related to temporal k-NNGs. In Chap-
ter 6 we further analyse these graphs, and propose two approximation algorithms
for k-NNG update after a subset of its nodes has changed.

In their research, Lathia et al. [37] analyzed how k-NNG changes as the un-
derlying data change. For this purpose, authors used MovieLens datasets® that
contain users’ movie ratings. The nodes of k-NNGs were users, while the dis-
tances among them were calculated in four different ways, obtaining four different
k-NNGs. What changed over time were the users’ ratings—during the time users
rated movies, therefore the number of ratings per user monotonically increases over
time. In the analysis, one interesting phenomenon emerged. Unexpectedly, users’
neighbors did not converge during the time. The reason why it was unexpected is
that the distance function is computed on more information as ratings are added,
and hence should be more refined. However, some of the distance functions did
not show this behavior. Another interesting phenomenon was pointed out in this
analysis—the average number of unique neighbors per node in the whole time span
was nearly 2k.

Debatty et al. [17] proposed an online approximation algorithm for k-NNG con-
struction. The algorithm inserts the points one by one into a k&-NNG. Insertion of
a point s is performed by an iterative approach. Each iteration starts by choosing
a random point p that is already in the k-NNG. Let d,;, be the minimum distance
between s and a point from its current NN list. If distance between s and p is
greater than a threshold that is linearly dependent on d,,;,, the current iteration
terminates, and the algorithm proceeds with the next iteration. Otherwise, dis-
tances between s and p’s neighbors are calculated one by one, until a calculated

distance implies an update of s’s NN list or until all p’s neighbors are examined.

http:/ /www.grouplens.org/taxonomy /term /14
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In the first case, p’s neighbor that was inserted into s’s NN list, takes a role of the
point p, and the whole process is repeated. In the second case, when none of the
p’s neighbors caused an update of s’s NN list, the iteration terminates, and the
algorithm proceeds with the next iteration. The algorithm stops iterating when
a predefined number of distance calculations is reached. When s has found its
neighborhood, other points should consider s for their own NN lists, as well. This
is performed by comparing the point with its extended neighborhood.

Zhao [60] also presented an online approximation algorithm for A-NNG con-
struction. The algorithm supports additions and deletions of k-NNG’s nodes,
which is exactly the reason why it can be declared as an online algorithm. A
E-NNG is built increasingly—at the beginning, A-NNG is empty (i.e., without
nodes), and then nodes are added in the graph one by one. An addition of a node
s is performed by first calculating the distance between s and a certain number of
randomly chosen nodes that are already in k-NNG. The nearest £ among them
are stored in a list L. After this step, NN-Descent’s idea is performed—neighbors
of each node that is newly added to L are recursively used for further s’s NN list
improvements. The algorithm stops when no new nodes are added in L. Besides
this basic approach, the author introduced two additional improvements. The first
improvement aims to decrease the number of distance calculations by making use
of a phenomenon called occlusion. Let a and b be points from NN list of s. Point
b is occluded by point a if b’s distance to s is larger than a’s distance to s, and b is
nearer to a than it is to s. The neighbors of the occluded point are not considered
for further improvements of s’s NN list in NN-Descent phase of the algorithm, due
to an assumption that it would lead to the same local region as the point by which
it is occluded. The second improvement introduces neighborhood propagation as

a final step of the algorithm.
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Chapter 4
NN-Descent on high dimensional data

NN-Descent is known to produce many incorrect nearest neighbors when applied
on high-dimensional data [20]. Experimental verification of this NN-Descent’s
behavior is shown in Figure 4.1. For each dataset S; introduced in Section 2.3,
a k-NNG G with k = 5 and L, distance, and its NN-Descent approximation G
were constructed. The recall values for each of these approximations are presented
in Figure 4.1. As can be seen, NN-Descent’s accuracy drastically drops as the
dataset dimensionality increases. In Section 4.1 we will explain the reasons for
such a behavior. Additionally, in Section 4.2, we will explain how NN-Descent’s

initial random graph influences points’ recalls.
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Figure 4.1: Recall values of NN-Descent k-NNG approximations (k = 5) created
on datasets of dimensionalities 10,20, 50 and 100.

4.1 Influence of hubness on NN-Descent

Since hubness is a phenomenon that appears in high-dimensional data, and at the
same time was shown to influence many other machine learning algorithms, in this
section we investigate whether it also influences the performance of NN-Descent.

Let us start by comparing Figures 2.2 and 4.1, which were created on the same
datasets. The figures clearly show that an increase of hubness values’ skewness

is aligned with a decrease of NN-Descent’s recall. This high-level alignment is
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the first indicator that hubness might be the main cause of NN-Descent’s bad
performance on high-dimensional data.
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Figure 4.2: Distributions of points’ hubness values for different recall values.

The box plots on the left-hand side of each subfigure show the distributions of
normalized hubness values for different recall values, while the histograms on the
right-hand side of each subfigure show the distribution of dataset points over different
recall values.

To go further with the analysis, we investigated the correlation between re-
call and hubness values of individual dataset points. For this purpose we again
used k-NNGs with £ = 5 and L, distance, and their NN-Descent approximations,
constructed on datasets introduced in Section 2.3. The choice of k is motivated
by the fact that NN-Descent produces more accurate approximations for larger
k values, so our aim was to choose k for which NN-Descent produces inaccurate
approximations. The reason why the approximations produced by NN-Descent
are more accurate for larger k is that the dataset points get compared with larger

amount of other points since NN-Descent performs all pairwise comparisons within
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individual neighborhoods of size k. Let us denote k-NNG of a dataset S; by Gy,
and its NN-Descent approximation by G4. For each point s in the dataset Sy we
extracted its hubness value from G, and its recall from Gy. The distributions of
these hubness values for each recall value are presented with the enhanced box
plot [27] in Figure 4.2, while the average recall values for different hubness values

are shown in Figure 4.3.

We will first explain Figure 4.2. Before further analysis, let us point out that
the recall values on the subfigures’ y axes are all the possible recall values for
k = 5. In this figure, a bad performance of NN-Descent came again into focus
in the histograms positioned on the right-hand side of each subfigure. Even for
d = 10 (Subfigure 4.2a) NN-Descent is not performing well (which can also be
verified in Figure 4.1), since there is non-negligible number of points with small
recall values. For larger values of d the problem gets even worse, having that for
d = 20 (Subfigure 4.2b) majority of the points have recalls that are less or equal to
0.4, while for the cases of d = 50 and d = 100 (Subfigures 4.2c and 4.2d) majority
of points have recalls less than or equal to 0.2.

The distributions of normalized hubness values for different recall values are
shown on the left-hand side of each subfigure. An evident phenomenon appeared
in these distributions: as the recall values increase, hubness values increase as well.
This phenomenon is only slightly visible for d = 10, but it becomes more evident
for larger values of d. A very important conclusion can be inferred from this
phenomenon: in high-dimensional datasets high-recall points are very probable to
be hubs, i.e., the probability of error when determining the k nearest neighbors of

a point s is inversely proportional to the hubness of s.

Figure 4.3 shows the mean (the solid lines) and the standard deviation (the
transparent shades around the lines) of the recall values from the points sharing
the same hubness value. The hubness values used in the figure are rounded to the
nearest tenth and then normalized. The results for each dataset S; are presented
by a single line. The aforementioned phenomenon can be seen in this figure from a
slightly different perspective. The average recall for a given hubness value is high if
the hubness value is high itself. The standard deviations are mostly consistent and
not very high. Exceptionally, for normalized hubness value of ~30 the standard
deviation is considerably higher. A deeper insight into the underlying results
showed that only two points had normalized hubness of ~30, therefore, this high
standard deviation does not depict results of large number of points, meaning that
it is not statistically relevant. As a conclusion, once again it can be seen that high

recall values are usually achieved by the points with high hubness values.
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Figure 4.3: Average recall values for different hubness values.

The solid lines represent the mean of the recall values, while the transparent shades
around the lines represent the standard deviation.

Now that the influence of hubness on NN-Descent has been established, we
examine the cause of this phenomenon. As was already described in Section 3.2,
NN-Descent algorithm improves the k-NN graph approximation in each iteration.
If the hubness of the dataset is high, then in the first few iterations hubs will be
placed among the k nearest neighbors of a large number of data points'. This
implies that the NN lists of a majority of points will contain hubs. Points with
lower hubness values will quickly be removed from NN lists of other points. This
removal of non-hubs from NN lists implies that the neighborhoods of those points,
according to the nature of the algorithm, will not be updated as often—in order
for the NN list of a given point to be updated, that point must be present in the
NN or R-NN lists of other data points. If a point is removed from NN lists early,
then it will be updated only from R-NN lists of the points that are very unlikely
to be its true neighbors, since the initial approximation of the k-NNG graph is
essentially random. For a majority of points of low hubness value, this produces
poor results.

Additionally, the hubness phenomenon refutes the basic NN-Descent’s assump-
tion that two points sharing a neighbor are also likely to be neighbors. The reason
for this is that the hubness phenomenon implies a significant increase of the hubs’
reverse neighborhood size. Therefore, two points that are randomly chosen from
such large neighborhood are not very likely to be neighbors. On the other side,
the hubness phenomenon decreases reverse neighborhoods of other points that are

not hubs. However, two points that are randomly chosen from such neighborhood

!Experimental verification of this claim can be found in Section 5.1, Figure 5.2. It can be
seen there that the hubness phenomenon in k-NNG approximation arose in the second iteration.
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are also not very likely to be neighbors regardless of the small neighborhood size.
The reason is that low-hubness points do not have accurate NN lists, as already
explained, so the shared neighbor of the two chosen points is very unlikely to be

their real neighbor.

4.2 Influence of initial random graph

As pointed out in the previous section, points with low recalls are the points
with low hubness values. However, there are also certain amount of low-hubness
points for which NN-Descent produces better approximations, especially for larger
k values. In this section we will investigate if the low-hubness points with high
recalls have some convenient properties, or they have high recalls out of pure
randomness.

Let us first introduce the notion of a “good” initial neighborhood, which is a
point’s neighborhood in the initial random graph that leads to the point’s high
recall value in the final k-NNG approximation. It trivially holds that each point has
at least one “good” initial neighborhood—it is the initial neighborhood consisted
of the point’s true neighbors. However, the purpose of NN-Descent is to direct a
point from incorrect neighborhood to the correct one, so it is expected that for a
given point more than one “good” initial neighborhood exist. As number of “good”
initial neighborhoods is higher, NN-Descent is more probable to be more accurate.
Therefore, a point with a high number of “good” initial neighborhoods relies less
on “luck”, having that its recall is in that case less dependent on the initial random
graph.

In order to quantify the extent to which the points’ recall values depend on their
position in initial random graph, we calculated recall values and their standard
deviations for each data point over 100 runs of NN-Descent, each time generating
an initial random graph with a different random seed. NN-Descent’s parameters
were set in the following way: S, dataset was used (see Section 2.3), for k we
used values 5,10 and 20, the distance was Ly, conv = 0.01 and p = 1. The
results are shown in Figure 4.4, where the intensity of the color represents the
mean of the recall values among different runs—points with greater intensity have
greater average recall values. Let us point out that Figure 4.4, among other things,
demonstrates NN-Descent’s dependence on k (see Section 3.2)—as k gets higher,
the points’ recall values get higher, too.

What can also be seen in Figure 4.4 is that for £ = 10 and k£ = 20 points with

low hubness values have a relatively high standard deviation of recall values, while

33



4.2. INFLUENCE OF INITIAL RANDOM GRAPH

points with high hubness values have standard deviations that tend toward zero.
Having that recall values of low-hubness points vary significantly across different
runs, while the only difference between the runs is the initial random graph, the
following conclusion can be drawn: these points have sufficiently small number of
“good” initial neighborhoods and are therefore more affected by the initial random
graph. On the other side, points with the high hubness values have extremely high
number of “good” initial neighborhoods—as explained in Section 4.1, wherever they
are in the initial random graph, they find their way to their real neighborhoods.
Because of that, the standard deviation for hubs is small, since they are constantly

having high recall values.
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Figure 4.4: Dependence between points’ hubness values and standard deviations
of their recall values over 100 runs of NN-Descent.

However, for k = 5, the aforementioned phenomenon cannot be seen—in this
case some low-hubness points do not have high standard deviation, meaning that
they do not depend much on the initial random graph. As already said, for lower
k values NN-Descent produces lower recalls. Precisely, for k = 5 none of the
low-hubness points reached recall higher than 0.6, while only a small amount of
them reached recall higher than 0 (see Figure 4.2¢). Consequently, for these points
the number of “good” neighborhoods is low, so, by the laws of probability, even
more NN-Descent’s runs are needed to reach the moment when a point is well
positioned in the initial random graph. Thereby, low-hubness points with low
standard deviations for £k = 5 in Figure 4.4, are the ones that did not manage to

be placed in the “good” neighborhoods over all 100 runs.
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The reason behind the low recall value of a point that does not have a “good”
initial neighborhood is the following: such point gets quickly removed from NN
lists of other points, and stays confined in the R-NN lists of points that are not its
true neighbors. Not being present in other points’ NN lists, the point participates
in a very few local joins, and on top of that, since R-NN list is inadequate with
high probability, these local joins are not improving the point’s NN list. In order
to preserve the opportunity to find its nearest neighbors, a point must stay in
other points’ NN lists. It is well-known that as a point’s distance to the dataset’s
centroid decreases, the average distance from that point to the other dataset points
decreases as well [48]. With decreased distances to other dataset points, the prob-
ability that a point stays in other points’ NN lists increases. Thereby, low-hubness
points that have lower distance to the dataset mean are ones that have a slightly
higher number of “good” initial neighborhoods, and hence a slightly higher stan-
dard deviation of recalls obtained from multiple NN-Descent’s runs.

Figure 4.5 supports the previous statement. In the figure we present the dis-
tribution of standard deviations over the points’ distances to the dataset mean.
Points presented in the figure are only the ones with hg(s) < k. A high color
intensity represents a high points density. The settings we used here are exactly
the same as the settings we used in Figure 4.4. Finally, it can be seen in the figure

that points with lower distances tend to achieve higher standard deviation values.
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Figure 4.5: Dependence between points’ distance to dataset mean and standard
deviations of their recall values over 100 runs of NN-Descent.

The color intensity of the hexagons represents points density—low intensity represents
low points density, while high intensity represents high density.
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Chapter 5

Proposed methods for improving
INN-Descent

As explained in Chapter 4, NN-Descent is highly influenced by the hubness phe-
nomenon. In order to mitigate the problem, we implemented and verified five
different modifications of NN-Descent [8, 9]. The first one is based on the idea
that NN lists should not be updated strictly according to NN and R-NN lists of
other points. The goal is to integrate the information about hubness values into
the choice of points that participate in local joins. A high hubness value indicates
that a certain point already has a reasonably stable NN list, and vice versa—a low
hubness value suggests that the point has a greater probability of being assigned
an incorrect NN list. The second approach is based on the observation that for
greater k values the algorithm tends to be more accurate. If we run NN-Descent
algorithm with a greater k value, and then reduce the resulting .-NNG to the £ we
actually need, the precision of the final graph is expected to be better. The third
and the fourth approaches provide an easy way to fine-tune the minimum number
of comparisons for each data point. In that way, a larger number of comparisons
could be assigned to those points that actually need it. Finally, the fifth approach
is built up on the fact that a point’s position in the initial random graph influences
its recall value. In order to place the point in the right neighborhood, we perform

additional random comparisons to the points that need it.

In Section 5.1 we introduce a notion of hubness approximation that is later
used by some of the aforementioned algorithms. In sections 5.2, 5.3, 5.4, 5.5 and
5.6 we introduce all NN-Descent’s modifications. Finally, Section 5.7 evaluates all

the modifications, comparing them with the original NN-Descent.
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5.1 Hubness approximation using INN-Descent

Let us say that the approzimate hubness value of a point s is hg(s), where G is
an arbitrary k-NNG approximation, that is, the approximate hubness of a point
is its hubness value in some k-NNG approximation. Approximate hubness val-
ues for each data point could be very easily maintained during an execution of
NN-Descent, with minimal impact on the algorithm performance. At the very
beginning, we initialize the hubness value of each dataset point to zero. Then,
during the algorithm execution, we increase the hubness value of a given point by
one if that point is added to the NN list of some other point, and analogously,
we decrease the hubness value by one if the point is removed from some NN list.
In this way, approximate hubness values for all points are available in a constant
time during the algorithm execution.

Figure 5.1 shows the correlation between real hubness values and approximate
hubness values extracted from an NN-Descent approximation. In the figure we
show results for S5q dataset (see Section 2.3)—the hubness phenomenon is present
in the chosen dataset. The rest of the settings were as following: distance was
Ly, conv = 0.01 and p = 1. As can be seen, the correlation between real and
approximate hubness values is very high. A shortcoming of NN-Descent is that
approximate hubness values are lower than they should be for points with low real
hubness values, and greater than they should be for points with high real hubness.
The precision improves as k increases, but even for small k values, the algorithm
produces strong correlations. These strong correlations are very useful, since they

tend to preserve hubness-defined ordering of the points.
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()] ()
200 — @
&
150 40 &
i
&
100 2 &
50 &
®
0 0 @
0 20 40 0 20 40 0 20 40
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Figure 5.1: Correlation between approximate and real hubness values of dataset
points, for different k values.

Each dot in the scatter plot represents a single data point.
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Figure 5.2: Correlation between approximate and real hubness values of dataset
points, recorded after each iteration of NN-Descent algorithm.

Each dot in the scatter plot represents a single data point.

After the aforementioned small upgrade of NN-Descent algorithm, approxi-
mate hubness values are available during the whole algorithm execution. Fig-
ure 5.1 shows that the approximate hubness values extracted from an NN-Descent
approximation are very correlated to the real hubness values. However, we are
more interested in knowing if the approximate hubness values are having the same
property during the algorithm execution (not after the algorithm has terminated).
Therefore, correlations of approximate hubness values and real hubness values after
each iteration of NN-Descent are presented in Figure 5.2. In the figure we pre-

sented the results for dataset Sso and neighborhood size £ = 10, and we used the
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same NN-Descent’s parameters as in Figure 5.1. As can be seen, high correlation
appeared after very few NN-Descent’s iterations. As the algorithm progressed, it
started to overestimate hubness values of hubs. Nevertheless, the correlation is
very high during the whole execution of NN-Descent.

There is one additional conclusion that can be inferred from the presented
results. Since hubs have overestimated hubness values, it means that they are
placed in more neighborhoods than needed. Consequently, hubs are actually “tak-

ing” other points’ reverse neighbors.

5.2 Hubness-aware variant

In this section, we will present an NN-Descent modification that uses hubness
values to guide the choice of candidate points for inclusion in the NN list of a
given data point. In further text we will refer to this NN-Descent modification
as hubness-aware NN-Descent variant (HA-NN-Descent). After implementing the
simple algorithm for approximate hubness values described in Section 5.1, up-
to-date hubness approximations become available at any given iteration of the
algorithm execution. After each iteration, these values become more accurate;
they are reasonably precise even after very first few iterations (see Figure 5.2).

Let us now describe in detail how this strategy works. In each iteration, we
check whether a given point has hubs in its NN and R-NN lists. Let NNj; and
RNNj; be lists used for local joins from a given point, initialized with elements
from the point’s NN and R-NN lists, respectively, and let h; be a threshold on
the number of hub points to be considered from NNj; and RNNy; lists. The idea
is to replace h; points of high hubness value in NNj; and RNNy; lists with i, new
points chosen at random. The intuition behind this modification of NN-Descent
is to diminish the impact of hubs on updates of NN lists. By adding one random
point in place of each hub, we attempt to increase the probability of undiscovered
neighbor points to associate themselves with the given point.

What remains to be clarified is the precise mechanism by which these h; points
are chosen. One way would be to fix hy to some value and then to choose hy
points with the highest hubness values from each point’s NNj; and RNNy lists.
However, this approach is not flexible with regards to variability of neighborhood
structures. Namely, it can happen that certain NN and R-NN lists (and hence NNj;
and RNNj; lists initialized with them) do not have hubs at all, and therefore none of
their points should be chosen by the process, while other NN and R-NN lists might
have hubs that should be replaced. In order to alleviate this problem, for each point
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Table 5.1: List of parameters of hubness aware variant.

Parameter Description

k  Neighborhood size (size of NN lists).
dist  Distance function.
it Number of iterations. Note: present only for fized iterations termi-
nation condition.
conv  Convergence criterion (value between 0 and 1). Algorithm con-
verges when there is less than conv -k -n updates in the most recent
iteration, where n is the number of k&-NNG vertices. Note: present
only for convergence termination condition.
p Sampling (value between 0 and 1, not including 0). Only p-k points
from NN and R-NN lists are considered for local joins.
Pin ~ Minimum hubness value for replacement probability (see (5.1)).
hmax  Maximum hubness value for replacement probability (see (5.1)).

in NN and R-NN lists we introduce a probability of choosing it for replacement,
and we let its hubness value to determine that probability. To come up with a
valid probability, we employed a transformation of raw hubness values into the
interval [0, 1]. For the purpose of the transformation, we introduce values Ay
and hp.x. Hubness values within the range [Amin, fmax] are linearly transformed to
the probability range [0, 1], while the values less than hy,;, and values greater than
hmax, are transformed to the probabilities 0 and 1, respectively. The complete
equation of the probability for a point to be selected for replacement is shown
in (5.1). In the equation, s denotes a data point and hg(s) is its approximate
hubness value in the current k&-NNG approximation G. Finally, as can be seen, by
introducing the probabilities on the point level, we managed to achieve adaptation
to all neighborhood structures. Therefore, in this approach h; is not fixed, but
instead is determined by the number of chosen neighboring points (choice being

led by points’ probabilities).

0, if ha(s) < Pumins
Pr[replace,] = < 1, if hea(s) > Pmax, (5.1)
h@(s)—hmin

, otherwise.

hmaxfhmin
The outline of hubness aware NN-Descent variant is presented in Algorithm 4,
while the list of its parameters is given in Table 5.1. The first four parameters are

the same as in NN-Descent, while the last two parameters configure minimum and

maximum hubness values that are used for the replacement probability given in
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Algorithm 4: Outline of hubness aware variant.

input : set of points S, distance function dist, neighborhood size k,
sampling p .
output: k-NNG approximation G

// Note: Functions Sample and RandKNNG are defined in Algorithms 1 and 2,

respectively.
1 G« RandKNNG(S, k, dist);
2 repeat
3 foreach data point s € S do
4 NNj; <= NN4(s); RNNyj; <= RNN 4(s);
5 NNjubs < all points from NNj; which are chosen according to their
replacement probability (see (5.1));
6 RNNpybs <= all points from RNNy; which are chosen according to
their replacement probability (see (5.1));
7 NN]j — (NNU \NNhubs) U Sample(S \ NN]j, |NNhubs|);
RNN]j <— (1:{1\11\11J \ RNNhubs) U Sample(S \ RNNlj, ‘RNNhubsD;
R + Sample(NNy;, p - k) U Sample(RNNy;, p - k);
10 foreach two points v,w € R do
11 d + dist(v, w);
12 Use (v,d) to update w’s NN list in G, and use (w, d) to update
v’s NN list in G;
13 end
14 end

15 until Termination condition is met
16 return G.

(5.1). These two parameters are advised to be configured with respect to k value,

since hubness values are directly influenced by k.

A single point s can appear in multiple NN and in exactly k& R-NN lists of a
graph G. For a point with the replacement probability different from 0 and 1, it
can happen that it gets replaced within one list, but within the other it does not.
The expected number of a point’s replacements is given in (5.2). As a consequence
of the replacement probability (see (5.1)), the higher hubness value, the higher is

the expected number of replacements, which is exactly what we wanted to achieve.

Elreplacements,] = k- |RNN &(s)| - Pr]replace ] (5.2)
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5.3 Oversized NN list variant

As already explained in Section 3.2, accuracy of NN-Descent increases with k.
In Figure 5.3 we demonstrate this NN-Descent’s behavior by running the algo-
rithm for different £ values. The datasets we used for this demonstration were
S10, S20, S50 and Stgp (see Section 2.3), distance was Lo, while NN-Descent param-
eters were conv = 0.01 and p = 1. The figure clearly shows that the algorithm’s

accuracy increases as k increases.
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Figure 5.3: Recall values of NN-Descent k-NNG approximations for different &
values.

Therefore, in order to achieve higher accuracy, NN-Descent could be run with
some larger choice of neighborhood size k' > k, followed by a truncation of the NN
lists to the target size k. During the truncation, only the k nearest points would
be preserved. We will refer to the process of NN list truncation within a graph
as graph reduction. However, there are two potential issues with the described
approach. In further text we will present both of them.

The first issue is that with an increase of k value, besides the accuracy, ex-
ecution time increases as well (see Section 3.2). This issue, as the authors of
NN-Descent suggested, can be addressed with the sampling technique. If we ex-
pand the neighborhood from k to &/, for k' > k, the most convenient way to set the
sampling is to use p = % In that way, larger neighborhoods are preserved during
the algorithm execution (due to enlarged k value), while the number of local joins
per iteration stays the same. It might seem that this configuration does not slow
down NN-Descent at all, but that is not always the case. Namely, for the fixed iter-
ations termination condition, the algorithm indeed does not slow down, however,
for the convergence termination condition, this setting, due to enlarged neighbor-
hoods, introduces slower NN-Descent’s convergence, and hence higher scan rate
values. Nevertheless, this setting is, regardless of slower convergence, still faster

than the one without sampling.
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The second potential issue is that even though a graph built for the neighbor-
hood size k', for k' > k, has better recall than a graph built for neighborhood size
k, it does not mean that a graph that is reduced from the one built for &’ preserves
the high recall. Differently said, the recall of the reduced graph might not be as
high as the recall it had before the reduction; moreover it could be so much lower,
that it does not beat the results of the original NN-Descent. In order to prove that
this issue can appear, we will first give an insight into some relations between a
reduced graph and the graph it was reduced from. Let G, and Gy be real k-NNGs
for neighborhood sizes k and k', respectively, both of them created on the same
dataset; G and Gy their arbitrary approximations; and let é,f be a graph reduced
from Gy to the neighborhood size k. Let us also assume that all NN lists within
the graphs are sorted by ascending order of distances. If, for some point s, the i*®
element of NN, (s) is at 5 position in NN G (s), then j <. This trivially holds
since there are i — 1 points closer to s than its i real neighbor—therefore, in s’s
approximate NN list of any size, there can be at most ¢ — 1 points in front of s’s
i*" real neighbor. This leads us to a conclusion that s’s i real neighbor, for any
i € [1, k], is in NNgr(s) if and only if it is in NN¢, (s).

As the previous conclusion implies, if s’s i real neighbor for i € [1,k] is in
NN, (s), it is in NNéﬁ(s), too. Therefore, in order for the recall of the reduced
graph G to be at least as high as the recall of Gy, it is necessary that the total
number of points from NN, (s) that are also in NN ¢ ,(s) (where s runs through
all the data points) is equal to or greater than recallék, - k - n. Since this does
not necessarily hold, we proved that recallékg is not guaranteed to be as high as
recallék/. Moreover, whether recallékR will be higher or lower than recallék/ depends
on the structure of NN lists in Gj,—if they contain more i*" real neighbors for i < k,

the recall of the reduced graph will be higher, and vice versa.

Figure 5.4 visualizes how recallékR and recallék, can relate differently. The
example is based on a graph reduction from & = 10 to k = 4. Neighborhoods are
visualized with arrays of squares, each square representing a single neighbor. It is
assumed that neighbors are given in the increasing order of distances. Additionally,
the thick vertical lines separate the target neighborhoods (of size k = 4) from the
rest of the extended neighborhoods (of size k' = 10). First 4 nearest neighbors are
presented with light green color, the next 6 with dark green color, while the misses
in the approximated NN lists are presented with red color. The value recallékR
is then determined by the number of light green squares placed on the left of
the thick vertical lines. Similarly, the value recallék, is determined by the total

number of green squares (regardless of the color shade). The value recallék, is the
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same in all the subfigures, amounting to 0.5. Contrary to that, the value recallékR
varies among the different subfigures, demonstrating how the two values can relate
differently.

real NN-list real NN-list real NN-list

approximated NN-list approximated NN-list approximated NN-list
(a) recall 5 Gr = recall~k (b) recallGR > recall 5 G, (c recallGR < recall~1c
(recalleR =0.5) (recalleR =1) (recalleR =0)

Figure 5.4: Different relations between recallég and recallék/ for k =4, k' = 10
and recallék, =0.5.

Now that we showed that the issue holds for a general case, we will conduct
experiments in order to determine if the same holds for NN-Descent. Figure 5.5
presents recalls of graph reductions to all £ < &/, &’ being the neighborhood size
of a k-NNG approximation created by NN-Descent algorithm. In the experiments
we used Syo dataset (see Section 2.3), Ly distance, and NN-Descent parameters
conv = 0.01 and p = 1. Finally, let us point out that the case when k = k' means
that the graph was not reduced.
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Figure 5.5: Recall values of graphs reduced from NN-Descent approximations Gy
to neighborhood sizes k € [1, k']

The figure clearly shows that the recalls of the reduced graphs are not lower
than the recalls of the graphs they were reduced from. Moreover, the recalls of the
reduced graphs are even higher—as k decreases, the recall value increases. These
empirical findings suggest that NN-Descent variant presented in this section can

definitely increase accuracy of NN-Descent.
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In further text we will refer to this NN-Descent variant, which might as well be
considered as a special way of choosing NN-Descent’s parameters, as oversized NN
list variant (O-NN-Descent). The list of parameters for oversized NN list variant

is presented in Table 5.2, while the algorithm itself is presented in Algorithm 5.

Table 5.2: List of parameters of oversized NN list variant.

Parameter Description

k  Neighborhood size of the final k-NNG approximation, i.e., neigh-
borhood size to which NN-Descent approximation will be reduced.
k' Neighborhood size for which NN-Descent will be run.
dist  Distance function.
it Number of iterations. Note: present only for fized iterations termi-
nation condition.
conv  Convergence criterion (value between 0 and 1). Algorithm con-
verges when there is less than conv - k-n updates in the most recent
iteration, where n is the number of k-NNG vertices. Note: present
only for convergence termination condition.
p Sampling (value between 0 and 1, not including 0). Only p - &/
points from NN and R-NN lists are considered for local joins.

Algorithm 5: Outline of oversized NN list variant.
input : set of points S, distance function dist, neighborhood sizes k and £/,
sampling p
output: k&-NNG approximation G
1 G+ NN-Descent(S, dist, k', p);
2 foreach data point s € S do
3 Update NN 4(s) by preserving k points that are nearest to s and
discarding the rest;
4 end

5 return G.

5.4 Random walk descent variant

The main aim of this NN-Descent variant is to provide an easy way to fine-tune
the number of local joins in which a particular point will take part. In this way one
could use different balancing strategies: for example, equal number of local joins
could be assigned to each dataset point, or low-hubness points could be assigned

with more local joins than other points.
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Table 5.3: List of parameters of RW-Descent.

Parameter Description

k  Neighborhood size (size of NN lists).
dist  Distance function.
it Number of iterations. Note: present only for fized iterations termi-
nation condition.
conv  Convergence criterion (a value from range (0,1]). A point con-
verges when there is in average less than conv - b(s) updates in
the hd most recent iterations. The algorithm converges when all
points converge. Note: present only for convergence termination
condition.
hd History depth (a value from range [0, 00))—see parameter conv for
more information. Note: present only for convergence termination
condition.
b(s) Balancing function that returns the number of local joins for a point
s.

The algorithm, random walk descent (RW-Descent), employs a random walk
strategy for determining candidates for improvement. Like NN-Descent,
RW-Descent constructs an initial k-NN graph by means of random selection.
Thereafter, the algorithm iterates either a predetermined number of times (i.e.,
fized iterations termination condition), or until a convergence criterion is satisfied
(i.e., convergence termination condition). In each iteration, each data point is
allocated a number of local joins according to some weighting strategy: instead
of a top-down approach in which the pivot point determines which neighboring
points will be mutually compared, we introduce a bottom-up approach in which
each point determines the number of local joins that it will initiate. The weight-
ing strategy is then incorporated in the balancing function b(s) : S — Nt which
returns the number of local joins for a data point s. After allocating a number of
local joins ¢ = b(s) to a given data point s, the points to be compared with are
the stopping points of ¢ short random walks that start from s. The main objective
while designing a balancing function, is to find a way to determine which points
have incorrect neighborhoods; these points should be assigned with larger number
of random walks. The random walks are applied on the current £-NNG’s under-
lying simple graph; that is, each successive point in a random walk is chosen from
the set of its predecessor’s direct and reverse nearest neighbors. For the case where
the random walks are all limited to length 2, the candidate stopping points would

be neighbors of s’s neighbors, and thus RW-Descent would perform essentially as
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Algorithm 6: Outline of RW-Descent algorithm
input : set of points S, distance function dist, neighborhood size k,
balancing function b(s)
output: k-NNG approximation G

// Note: Functions Sample and RandKNNG are defined in Algorithms 1 and 2,

respectively.
1 G+ RandKNNG(S, k, dist);
2 repeat
3 foreach data point s € S do
4 ¢« b(s);
5 for i =1 tocdo
6 w4 S;
7 for j =1 to2do
8 | w < Sample(NN g(w) U RNN g(w) \ {s},1);
9 end
10 Use (s, dist(s,w)) to update w’s NN list, and use (w, dist(s, w))
to update s’s NN list;
11 end
12 end

13 until Termination condition is met
14 return G.

NN-Descent. In this thesis we will use only random walks of length 2, the reason
being locality preservation—in the walks of length 2 the middle node is a shared
neighbor of the starting and ending node.

If the termination condition is chosen to be convergence, the parameters conv
from range [0, 1) and hd (history depth) from range [0, o), determine when the al-
gorithm terminates. Let us denote by updates,(s) the number of random walks that
resulted with an update of point s’s NN list in the iteration 7. A point converges
in the iteration i, if the average of updates,(s) values for i € [max(0,i. — hd),i.|
is less than conv - b(s). When all the points converge, the algorithm terminates.
For a pseudocode description of RW-Descent, see Algorithm 6, while the list of

the algorithm’s parameters is given in Table 5.3.

5.5 Nearest walk descent variant

The idea of this NN-Descent variant, that we will call nearest walk descent
(NW-Descent), is to improve previously introduced RW-Descent in such a way

that the walks are not performed completely at random, but they are influenced

48



CHAPTER 5. PROPOSED METHODS FOR IMPROVING
NN-DESCENT

by certain observations that we will introduce in this section. The observations
hold only for Euclidean (L5) distance, meaning that this method might not produce

good results for other metrics.

This method has exactly the same basis as RW-Descent, the only difference
being the way walks are performed. In RW-Descent, b(s) random walks are used
for local joins in which a point s participates. However, NW-Descent does not
use random walks for that purpose, but it uses “best” walks instead. Namely, all
possible walks of length 2 from a point s that do not end in s itself or in one of s’s
neighboring points, are assigned with a weight. After that, b(s) walks with highest
weights are used for local joins in the same manner as in RW-Descent. The weight
of a walk is actually the probability that the walk’s ending point gets inserted in
s’s NN list.

Under the assumption that the distance function used for £-NNG construction
is Lo distance and that the dataset points are drawn from the uniform distribution,
we will define how the mentioned probability is calculated. Let us say that (s, s, s”)
is a walk that starts in s, passes through s’s neighbor s, and ends in s’s neighbor
s". Let x = dist(s,s'), y = dist(s’,s”), and r = dist(s, sp) where s, is s’s kB
nearest neighbor in the current A-NNG approximation (i.e. s’s furthest neighbor).
Moreover, we will define two hyperspheres H, and H,. The center of hypersphere
H, is s, while its radius is r, meaning that all the points from s’s current NN list are
inside H,. The center of hypersphere Hy is s', while its radius is y, meaning that
the point s” lies somewhere on the hypersphere H,. The two hyperspheres can be
positioned (relatively to each other) in four different ways: 1) Hy is contained in
the interior of Hy; 2) H, is contained in the interior of Hy; 3) Hy and Hy have
disjoint interiors; 4) Hy and Hy have a nonempty intersection. More formally, the
first case is defined by the inequality x + y < r, the second case by = +r < y, the
third case by y+r < z, and, finally, if none of the inequalities hold, the fourth case
is assumed. These cases are illustrated in the two-dimensional space in Figure 5.6.
In the further text we will define how the probability is calculated for each of these
four cases.

In the first case (Figure 5.6a), the probability of inserting s” in s’s NN list is 1.
Having that the point s” lies on Hy, and that the whole H, is in H,’s interior,
s" is in H,’s interior as well. This implies that s” is nearer to s than s’s furthest
neighbor is, which means that s” will certainly be inserted in s’s NN list. Hence,
the probability is 1, as already said.

For the second and the third case (Figures 5.6b and 5.6¢), the probability is 0,

because H, is disjoint from H,’s interior, and therefore s”, lying on H,, can not
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Figure 5.6: Possible relative positions of the points that participate in a walk. The
relative position determines the probability that the walk leads to an update of its
starting point’s NN list.

be in H,’s interior as well. This means that s” is further from s than s’s furthest

neighbor is. Hence, the considered probability is 0.

Finally, the probability in the fourth case (Figure 5.6d) is not as trivial as
in the previous cases. The point s” will be inserted in s’s NN list only if it lies
on the part of Hy that is in Hy's interior (this part is marked with light blue in
Figure 5.6d). The probability is therefore equal to the ratio between the size of
the mentioned Hy’s portion and the size of the whole Hy. Let P be any plane

that contains both s and s’, and let p; and p, be the points of intersection of P,
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H, and Hy (in a degenerate case, p; and ps may coincide). The mentioned ratio
is then equal to 3=, where a = Zp;s'py. Additionally, o can be trivially calculated

from the triangle Ass’p;, whose all sides are known (see (5.3)). We conclude that

Q

the probability in this case is -.

22 +y? — 2

2 (5.3)

o = 2 arccos

Finally, (5.4) summarizes calculation of probability that s” gets inserted in s’s
NN list.

1, fz4+y<mr
0, ifz+r<uy;
Pr(dist(s, ") < 7] = Y (5.4)
0, ify+r<ua;
| 5, otherwise.

Now that the probabilities are known, for each point s, in each iteration, the
algorithm simply chooses b(s) walks whose ending points have the highest prob-
abilities of being inserted in s’s NN list. However, this approach has a major
problem of repeated distance calculations for certain pairs of points. The problem
occurs when the ending point of a walk starting from a point s has high proba-
bility, but turns out not to trigger an update of s’s NN list. In that case, due to
its high probability, this point will get chosen for a local join over and over again
throughout different iterations, causing unnecessary distance calculations. Trivial
solution to this problem would be simply to cache results of all distance calcula-
tions, but that would significantly increase the space complexity of the algorithm.
Therefore, we introduce different solution to this problem, which preserves linear

space complexity.

For each point s we store minimum of probabilities of all the b(s) neighbors’
neighbors that were chosen for local joins in the most recent iteration. We will
denote it by pr,. Moreover, for each point s we memorize all the points that, in
the most recent iteration, got inserted in s’s NN or R-NN lists. We will refer to
such points as new neighbors. Let (s, s, s”) be a walk that starts from s, and let us
assume that s’ is not s’s new neighbor, and s” is not s’’s new neighbor. Now, if s’s
probability is greater than pr,, that means that this walk has already been chosen
before, and therefore should be immediately discarded. However, if either s’ is a
new neighbor of s, or s” is a new neighbor of s, the walk might not have been

chosen before, regardless of its probability, and therefore, should not be discarded.
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This approach significantly reduces the number of repeated distance calculations

without increasing asymptotic space complexity.

Algorithm 7: Outline of NW-Descent algorithm
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input : set of points S, distance function dist, neighborhood size k,
balancing function b(s)
output: k-NNG approximation GG

// Note: Function RandKNNG is defined in Algorithm 2.
G « RandKNNG(S, k, dist);
repeat
foreach data point s € S do
candidates <— empty map;
r < distance from s to s’s furthest neighbor;
foreach data point s' € NN s(s) U RNN 4(s) do
x <+ dist(s, s');
foreach data point s" € NN(s') U RNN 4(s") do
y < dist(s', s");
if Pr{dist(s,s”) <r] > 0 then
if ' or s are new neighbors, or Pr{dist(s,s”) < r] < pr,
then
candidates[s"] =
maz (candidates[s"], Pr]dist(s, s”) < r]);

end
end

end
end
Reduce map candidates to contain at most b(s) map entries with the
highest map values;
for data point w € keys of map candidates do
Use (s, dist(s,w)) to update w’s NN list, and use (w, dist(s, w))
to update s’s NN list;
end

end
until Termination condition is met
return G.

The overview of the complete NW-Descent is given in Algorithm 7, while its

list of parameters is the same as in RW-Descent (see Table 5.3).
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5.6 Randomized NN-Descent variant

The randomized NN-Descent variant' (R-NN-Descent) takes into account the phe-
nomenon explained in Section 4.2 and illustrated in Figure 4.4. Knowing that the
position in the initial random graph has an important role in construction of
NN-Descent approximation, our idea was to give each point additional chances to

find its “good” initial neighborhood.

Table 5.4: List of parameters of randomized NN-Descent variant.

Parameter Description

k  Neighborhood size (size of NN lists).
dist  Distance function.
it Number of iterations. Note: present only for fized iterations termi-
nation condition.
conv  Convergence criterion (value between 0 and 1). Algorithm con-
verges when there is less than conv - k-n updates in the most recent
iteration, where n is the number of k&-NNG vertices. Note: present
only for convergence termination condition.
p Sampling (value between 0 and 1, not including 0). Only p-k points
from NN and R-NN lists are considered for local joins.
r Number of random comparisons of a single point in a randomization
phase.

In this NN-Descent variant, we introduce a randomization phase, which is per-
formed before each NN-Descent’s iteration. At the beginning of the algorithm,
before the first randomization phase, a new list of data points S’ is created and
initialized with all the points from the input set S. In a randomization phase
itself, each point s from S’ participates in r comparisons with r points that are
randomly chosen from S, updating coresponding NN lists accordingly. By perform-
ing random comparisons we aim to position points in their “good” neighborhoods.
However, some points might not get their NN lists updated by the random compar-
isons, in which case we assume that the neighborhoods of such points are with high
probability already “good”. Namely, the points with “good” neighborhoods have
lower chance of their neighborhoods to be updated by the random comparisons,

and vice versa, the points that are not in “good” neighborhoods have higher chance

!Original NN-Descent is already a randomized algorithm, hence the name of this variant
might be misleading. However, while the original NN-Descent employs randomization only in
the creation of the initial random graph (randomization takes place also in the sampling, but
sampling is not a part of the original algorithm), this variant employs randomization during the
core iterative part of the algorithm, as well.
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Algorithm 8: Outline of randomized NN-Descent variant.
input : set of points S, distance function dist, neighborhood size k,
sampling p, random comparisons count r
output: k-NNG approximation G

// Note: Functions Sample and RandKNNG are defined in Algorithms 1 and 2,

respectively.

1 G < RandKNNG(S, k, dist);

2 8"« S;

3 repeat

4 foreach data point s € S’ do

5 R < Sample(S \ {s},r);

6 foreach data point u € R do

7 d + dist(s, u);

8 Use (s, d) to update u’s NN list in G, and use (u, d) to update s’s
NN list in G;

9 end

10 if s’s NN list was not updated with any point from R then

11 | S S\ {s}

12 end

13 end

14 foreach data point s € S do

15 R < Sample(NN &(s), p - k) U Sample(RNN &(s), p - k);

16 foreach two points v,w € R do

17 d + dist(v, w);

18 Use (v,d) to update w’s NN list in G, and use (w, d) to update
v’s NN list in G;

19 end

20 end

21 until Termination condition is met
22 return G.

that their neighborhoods get improved by random comparisons. For that reason,
after a randomization phase, we remove from S’ all the points that did not benefit
from the random comparisons. Consequently, in all the following randomization
phases, S’ will consist of only points that have high probability of being in wrong
neighborhood. Eventually, the list S" will get empty, after which the algorithm
comes down to the original NN-Descent.

The outline of randomized NN-Descent variant is presented in Algorithm 8§,
while the list of its parameters is shown in Table 5.4. It is advised to configure the
parameter r with respect to dataset size. Larger datasets increase the search space,

so, by the laws of probability, more random comparisons should be performed in
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order to discover points’ “good” neighborhoods. Therefore, in such cases r value
should be higher.

5.7 Methods evaluation

In order to validate the proposed approaches against the original NN-Descent algo-
rithm, we ran experiments on high-dimensional synthetic and real datasets. In this
section we will give an overview of the conducted experiments—in Subsection 5.7.1
we will introduce the setup of the experiments, while in the Subsection 5.7.2 we

will give an overview of the experimental results.

5.7.1 Experimental setup

The experiments were run on real and synthetic datasets presented in Table 5.5.
The table contains information about datasets name, type (whether the dataset
is synthetic or real), number of instances, dimensionality, and the highest hub-
ness values in dataset’s k-NNGs Gy, k € {5,10,20}. Datasets i10000d100 and
i100000d100 were created for the purpose of this research. Their instances have
100 dimensions, each being a value generated by uniformly choosing random real
number from range [—1,1]. The two synthetic datasets are very representative:
high dimensionality, together with independently generated features, implies exis-
tence of hubness phenomenon, which is needed for the experiments, while the two
different dataset sizes are introduced to support analysis of dataset size influence
on algorithms’ performance. BCI5 [40] is a brain-computer interface dataset of
brain signal recordings taken while the subject contemplated some action. Dataset
Google-23 [29] consists of 6686 faces extracted from web images of 23 celebrities.
For each face, 13 points of interest were detected, each of which was represented by
a 149-dimensional vector. Concatenating these 13 vectors into a single descriptor
yielded a 1937-dimensional data point for each face image. ISOLET [22] from
the UCI repository [21] is a dataset of spoken letters containing 26 classes of 150
instances each (3 instances are missing in the dataset), with each class referring to
a letter of the alphabet. The total 617 features include spectral coefficients, con-
tour features and sonorant features. Finally, the MINIST [38| dataset has 70000
images of handwritten digits. The 784 pixel values of each image were treated as
its image features.

We used three measures to express effectiveness of the algorithms: recall value

recalls (see (2.2)), scan rate value scanrates (see (2.3)) and harmonic mean
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Table 5.5: Datasets that were used for the experimental validation of the five
NN-Descent variants.

Name Type Inst.  Dim. Max hg, Max hg,, Max hgy,
i10000d100  Synthetic 10,000 100 160 274 438
i100000d100  Synthetic 100,000 100 263 508 912
BCI5 Real 31,216 96 24 65 225
Google-23 Real 6,686 1,937 60 118 258
ISOLET Real 7,797 617 36 69 121
MNIST Real 70,000 784 32 o4 102

harmonicg (see (2.5)), which were already introduced in Section 2.2. The ex-
periments were run on Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz with
96GB of RAM, 2GB of which being available per core. Each experiment was ran
5 times, meaning that all the presented values are the averages of 5 different runs.

All the algorithms were verified for neighborhood sizes k € {5, 10,20}. Distance
function that was used was Euclidean (Ls) distance. NN-Descent was ran for
parameters conv = 0.01 and p = 1. The chosen value of conv parameter achieves
the best tradeoff between recall and scan rate. Hubness aware NN-Descent variant
was ran for the same conv and p values, and additionally for h,;, = 2 -k and
hmax = 20 - k. Oversized NN list variant was ran for the same conv value as the
previous two algorithms, together with parameters &/ = 20 and p = 0.05 - k. As
explained in Section 5.3, this combination of &’ and p parameters is such that the
upper bound value of the number of local joins in the oversized NN list variant is
the same as it is in the original NN-Descent for neighborhood size k and p = 1.
Namely, even though the neighborhood size is increased to 20, the upper bound of
local joins for each dataset point, inside a single iteration, is p-k’ = 0.05-k-20 = k.
RW-Descent and NW-Descent were run for conv = 0.001, and for the simplest
possible balancing function. This function returns the same value ¢ = 8 - k for all
data points. Finally, for the randomized NN-Descent we used exactly the same

parameters as in NN-Descent, with the addition of parameter r which was set to

_n_
500"

5.7.2 Results and discussion

The results of the original NN-Descent algorithm are presented in Table 5.6.
All we discussed in the previous chapters was validated by these experiments:

NN-Descent depends strongly on the neighborhood size (k), on the size of the
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dataset and on the intrinsic dimensionality of the dataset. Higher k values cause
an increase of recall values, and scan rates as well. Both are the consequence of the
fact that higher k values imply more local joins (by the nature of the algorithm),
and if there are more local joins, the recall is more likely to be higher, while the

scan rate is higher by the definition.

Table 5.6: Performance of NN-Descent algorithm expressed with recall and scan
rate.

The results were generated with Lo distance, conv = 0.01 and p = 1.

1100004100 11000004100
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.09 0.36 0.73 0.02 0.1 0.36
scan rate 0.03 0.13 0.48 0 0.01 0.06

BCI5 Google-23
k=5 k=10 k=20 k=b k=10 k=20

recall 0.57 0.97 0.99 0.63 0.92 0.98
scan rate 0.01 0.04 0.13 0.05 0.14 0.43

ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.83 0.98 1 0.74 0.96 0.99

scan rate 0.04 0.12 0.37 0.01 0.02 0.06

For a larger dataset (i.e., for a dataset with a higher number of instances), the
outcome of NN-Descent is such that both recall and scan rate values decrease.
This phenomenon can be observed in Table 5.6 by comparing the results of the
datasets 110000d100 and i100000d100. These two datasets have exactly the same
characteristics except that the dataset i10000d100 has 10,000 instances, while the
dataset 1100000d100 has 100,000 instances. The explanation of this NN-Descent’s
behavior is connected with the phenomenon described in Section 4.2 and shown
in Figure 4.4. Namely, the position of the point in the initial random k-NNG is
very important for the point’s final recall value—if the point is in a “good” initial
neighborhood, its recall value is more likely to be higher. However, the probability
that a point is placed in a “good” initial neighborhood decreases as the dataset size
increases. Therefore, the recalls of NN-Descent’s approximations decrease with the

increase of the dataset size. The scan rate values also decrease due to the fact that
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the denominator of the scan rate equation depends quadratically on the dataset
size.

Finally, our claim that the hubness highly influences NN-Descent was also val-
idated by the presented results. Synthetic datasets (i10000d100 and i100000d100)
have the highest intrinsic dimensionality among all the presented datasets, since
all their values are independently generated. Therefore they also have the highest
maximum hubness value. It can be seen in Table 5.6 that these datasets have also

the worst recall values, which is aligned with our statements.

Table 5.7: Performance of hubness-aware NN-Descent variant expressed with recall
and scan rate.

The results were generated with Lo distance, conv = 0.01, p =1,
Amin = 2 - k and hpax = 20 - k.

1100004100 11000004100
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.15 0.46 0.79 0.02 0.12 0.42
scan rate 0.03 0.15 0.52 0 0.02 0.07

BCIb5 Google-23
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.61 0.97 0.99 0.71 0.93 0.98
scan rate 0.01 0.04 0.13 0.05 0.16 0.47

ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.85 0.98 1 0.75 0.96 0.99

scan rate 0.0 0.13 0.38 0.01 0.02 0.06

The experimental results of hubness-aware ININ-Descent variant are pre-
sented in Table 5.7. For datasets with lower maximum hubness, such as BCI5,
ISOLET and MNIST, this method performs the same as NN-Descent. Contrary
to that, when the hubness phenomenon is more evident in the dataset, this method
improves recall values. The improvements are usually followed by slightly higher
scan rate values. For some cases, scan rate values even stay the same, while only
recall values increase. For example, this happened for the dataset i10000d100 and
k = 5, where the recall increased from 0.09 to 0.15 while the scan rate did not
change. As a conclusion, for high dimensional datasets, this method achieved

higher recall values than NN-Descent, at a small cost in terms of higher scan rate.
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The experimental results obtained for oversized NN list variant are given
in Table 5.8, from which we can observe a trade-off between scan rate and recall.
This approach achieves really high increase of recall values, but at an evident
cost in terms of increased scan rate values. However, the obtained scan rates are
still much smaller than 1, which makes this approach much faster than the naive
k-NNG construction.

Table 5.8: Performance of oversized NN list variant expressed with recall and scan
rate.

The results were generated with Ly distance, conv = 0.01, p = 0.05 - k and k" = 20.

1100004100 11000004100
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.43 0.52 0.73 0.13 0.18 0.36
scan rate 0.18 0.27 0.48 0.02 0.03 0.06
BCI5 Google-23
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.89 0.99 0.99 0.8 0.94 0.98
scan rate 0.04 0.06 0.13 0.14 0.23 0.43
ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.94 0.99 1 0.91 0.98 0.99
scan rate 0.1 0.18 0.37 0.02 0.03 0.06

The higher recall values of this method are a direct consequence of increased
neighborhood size. Contrary to that, the reason for the increased scan rate is not
that straightforward. As already said, our choices of &’ and p values are such that
the upper bound of local joins per iteration stays the same as in NN-Descent algo-
rithm. But, even though the upper bound of local joins per iteration is the same
in the both cases, the total number of local joins in NN-Descent is smaller than
it is in the oversized NN list variant, because, as already explained in Section 5.3,
the oversized NN list variant converges slower, that is, it has more iterations. This
is a consequence of the sampling. The sampling implies that in a single iteration
no more than p - k neighbors are taken from a point’s NN or R-NN list, and used
in local joins. The neighbors that do get chosen are marked with a flag in order
to avoid performing already completed local joins in future iterations. Therefore,

for p = 1, the upper bound of local joins from point’s NN list is exactly k&, which
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means that all new neighbors are immediately participating in local joins and none
of them are left for future iterations. As the algorithm converges, the number of
new neighbors decreases, which leads to a smaller number of local joins. Contrary
to that, when the p value is smaller than 1, the following iterations’ local joins
contain not only newly added neighbors, but also the old neighbors which did not
get a chance to participate in local joins in the previous iterations. For that reason,
the overall number of local joins per iteration decreases at a slower rate, making
the algorithm convergence slower, too. Consequently iterations count increases,
leading to a higher scan rate.

Additionally, the experimental results show no difference between NN-Descent
and oversized NN list variant for £ = 20. In this case, the parameters of oversized
NN list variant are &' = 20 and p = 1, which implies no increase of neighborhood

and no sampling, making it equivalent to the original NN-Descent.

Table 5.9: Performance of RW-Descent expressed with recall and scan rate.

The results were generated with Lo distance, conv = 0.001 and balancing function that
returns 8 - k for all data points.

1100004100 11000004100
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.1 0.38 0.73 0.01 0.1 0.35
scan rate 0.08 0.23 0.53 0.01 0.03 0.08

BCIb5 Google-23
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.76 0.98 0.99 0.81 0.95 0.98
scan rate 0.03 0.04 0.08 0.11 0.19 0.35

ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.9 0.98 1 0.8 0.97 0.99

scan rate 0.09 0.14 0.25 0.01 0.02 0.04

The results of RW-Descent are presented in Table 5.9. With this approach
we also obtained higher recalls, except for dataset i100000d100 combined with
k values 5 and 20, where this approach has slightly lower recall values than the
original NN-Descent. Again, the increase of recall values is followed by a small
increase of scan rates values. The advantage of RW-Descent is that the trade-off

between recall and scan rates can easily be managed by adjusting the total number
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Table 5.10: Performance of NW-Descent expressed with recall and scan rate.

The results were generated with Lo distance, conv = 0.001 and balancing function that
returns 8 - k for all data points.

1100004100 1100000d100
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.11 0.41 0.74 0.02 0.12 0.33
scan rate 0.06 0.2 0.51 0.01 0.03 0.07

BCI5 Google-23
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.65 0.95 0.99 0.75 0.93 0.98
scan rate 0.01 0.03 0.06 0.06 0.13 0.3

ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.87 0.98 1 0.76 0.96 0.99

scan rate 0.04 0.09 0.18 0.01 0.02 0.04

of comparisons to be performed. Furthermore, RW-Descent has a potential for
even better performance through the exploration of different balancing strategies.
In our evaluation, we used the simplest possible balancing strategy, in which an
equal number of comparisons was allocated to all the data points. One interesting
direction for future research would be the development of more finely balanced
comparison allocation policies, in which higher numbers of comparisons would
be allocated to those points that actually need it. Besides that, RW-Descent
enables improvements of NN lists for subsets of k-NNG’s nodes. This feature
of the algorithm can be useful in cases when only a part of an already existing
k-NNG changes—instead of calculating k--NNG approximation from the beginning,
RW-Descent can be used only on changed nodes.

Table 5.10 summarizes the results of NW-Descent. The results show that
NW-Descent’s more focused walks lead to scan rate values that are smaller than
the ones produced by RW-Descent, while preserving approximately the same recall
values in most cases. The recall values significantly dropped only for £ = 5 in
the datasets BCI5 and Google-23. In the synthetic datasets, NW-Descent even
increases recall values, while decreasing scan rate. Generally speaking, it can be
said that this approach outperforms RW-Descent, however, its major drawback is

its limitation to Lo distance.
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The results of the experiments for randomized NN-Descent variant are
presented in Table 5.11. As suggested in Section 5.6, the parameter 7 is in the
experiments directly proportional to the dataset size. This is because the size
of the dataset determines the easiness of finding a “good” initial neighborhood—
if the dataset is larger, the probability of finding a “good” initial neighborhood
decreases, thus more random comparisons need to be performed, and vice versa.
The experiments showed that this approach also improves recall. However, just
like the previous approaches, the randomized NN-Descent variant also introduces
higher scan rates, especially for the larger datasets, having that the parameter r

is directly proportional to the dataset size.

The overall comparison of all the five approaches is shown in Figure 5.7. As
can be seen, the O-NN-Descent usually achieves highest recalls, which are most
evident for lower k£ values. At the same time this approach has in most of the cases
high scan rate values, as well. Nevertheless, these scan rates are much lower than 1,
which makes this approach a legitimate approximation algorithm—if the scan rate
values were 1 or greater, the naive brute-force k-NNG construction would be a bet-
ter choice. As a conclusion, when accuracy matters more than time, this approach
should be considered. Additionally, O-NN-Descent might be the only reasonable

Table 5.11: Performance of randomized NN-Descent variant expressed with recall
and scan rate.

The results were generated with Lo distance, conv = 0.01, p =1 and r = ;.

1100004100 11000004100
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.21 0.43 0.75 0.15 0.27 0.47
scan rate (.14 0.22 0.54 0.13 0.16 0.2

BCI5 Google-23
k=5 k=10 k=20 k=5 k=10 k=20

recall 0.82 0.98 0.99 0.78 0.93 0.98
scan rate 0.09 0.11 0.18 0.11 0.2 0.48

ISOLET MNIST
k=5 k=10 k=20 k=5 k=10 k=20
recall 0.88 0.98 1 0.82 0.97 0.99

scan rate 0.11 0.18 0.41 0.09 0.09 0.12

62



CHAPTER 5. PROPOSED METHODS FOR IMPROVING
NN-DESCENT

mm NN-Descent HA-NN-Descent O-NN-Descent mmm RW-Descent mmm NW-Descent M R-NN-Descent
recall scan rate recall scan rate
0.8 0.6 0.6 0.2
) ||I| “‘ ) | “‘ ) ‘ ‘ll ) | | |
O||||I O.|.|I|“ O__|||I| o |||||
5 10 20 5 10 20 5 10 20 5 10 20
k k k k
(a) 1100004100 (b) 11000004100
recall scan rate recall scan rate
1.0 0.2 1.0 0.6
5 10 20 5 10 20 5 10 20 5 10 20
k k k k
(c) BCI5 (d) Google-23
recall scan rate recall scan rate
1.0 0.6 1.0 0.2
0 0 = il III |I 0 0 = ..I [ ||II |
5 10 20 5 10 20 5 10 20 5 10 20
k k k k
(e) ISOLET (f) MNIST

Figure 5.7: Performance of NN-Descent and all its variants, expressed with recall
and scan rate.

option in time-sensitive applications as well, which happens when no other ap-
proach produces an approximation that is usable. Namely, as shown in Figure 5.7,
for some datasets, the other approaches produce highly inaccurate approximations.
For example, for dataset i10000d100 and k& = 5 (see Subfigure 5.7a), the recalls
of other approaches are 0.21 and lower, while the recall of O-NN-Descent is 0.43.
Therefore, even though the other algorithms are faster, they might be unusable

since their approximations are highly inaccurate.

On the other side, when time is more important than accuracy, HA-NN-Descent
and NW-Descent are the best choices. HA-NN-Descent increases recall values for
the high dimensional datasets, while preserving scan rate values the same or almost
the same. Compared to the other approaches, HA-NN-Descent does not improve

recall value as much, but since it almost comes without any cost, it is certainly
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worth considering. NW-Descent comes with a slightly higher scan rates and usually
with higher recall values, as well. These two approaches behave similarly in most
cases, however, there are certain situations when one outperforms the other. For
example, in 110000d100 HA-NN-Descent is better than NW-Descent, while in BCI5
the opposite holds. Additionally, while HA-NN-Descent is designed only for high
dimensional datasets (otherwise it comes down to NN-Descent), NW-Descent has

a potential to improve NN-Descent in low dimensional datasets, too.

As previously discussed, RW-Descent produces similar recall values as
NW-Descent, but with a slightly higher scan rate values. However, for specific
datasets, this approach outperformed all the others. This is the case for dataset
Google-23, in which RW-Descent outperformed even O-NN-Descent, having higher

recall, but at the same time lower scan rate.

Finally, R-NN-Descent is most of the times the second best with respect to
recall values (the first one is, as already said, O-NN-Descent), but increase in scan
rate values is usually very high. For example, in the case of datasets i100000d100
and MNIST, which are the largest datasets, R-NN-Descent increased scan rate
values drastically, while achieving recall values that are similar to the ones achieved

by O-NN-Descent. As a conclusion, this approach is rarely the best choice.

Additionally, we calculated harmonic means of recall and scan gain values (see
(2.5)) and presented them in Figure 5.8. As we discussed, O-NN-Descent improves
recall values with the cost in terms of increased scan rate values. However, accord-
ing to the harmonic means presented in Figure 5.8, this trade-off is cost-effective.
This especially holds for smaller k£ values, where harmonic mean of this approach
is usually the best among harmonic means of all the other approaches. More-
over, O-NN-Descent reported outstandingly higher harmonic means the synthetic
datasets (110000d100 and 1100000d100), which differ from other datasets by having

very high intrinsic dimensionalities.

In the dataset i100000d100, which is a large dataset of high intrinsic dimen-
sionality, the best approach with respect to harmonic mean was R-NN-Descent.
Despite the fact that the relative differences between R-NN-Descent’s scan rate
values and scan rate values of other approaches are considerably high, the absolute
differences are usually not much higher than 0.1. Having that the harmonic mean
is dominated by the minimum of its arguments, recall value dominates scan gain
value in the harmonic mean only if the recall is lower than scan gain. Aforemen-
tioned R-NN-Descent’s absolute increase of scan rate is not high enough in the
dataset i100000d100 to make scan gain lower than recall, meaning that, in this

case, recall value dominates scan gain. Since the recall value of this approach
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Figure 5.8: Performance of NN-Descent and all its variants, expressed with har-
monic mean of recall and scan gain.

is in this case the highest among recalls of all the other approaches, the har-
monic mean ended up being the highest as well. Therefore, from this perspective,
R-NN-Descent indeed outperformed other approaches in a large high dimensional

dataset.

For larger k values harmonic means of RW-Descent and NW-Descent tend to
be the best. Moreover, harmonic means of these approaches are quite good for
lower k values as well. For example, in the datasets Google-23 and ISOLET they

are the best performing approaches for all k values.

Finally, as expected, with respect to the harmonic mean, HA-NN-Descent be-
haves better in the datasets with higher presence of hubness phenomenon, which
are 1100004100, 1100000d100 and Google-23. In the other datasets, HA-NN-Descent

reports similar harmonic means as NN-Descent.

As a conclusion, all the presented NN-Descent variants introduce certain ad-
vancements over NN-Descent on high dimensional datasets. Moreover, there is no
ultimately the best variant—the experiments demonstrated that each of them has
its plus and minus sides, making a variant suitable only under certain assumptions.
However, even though none of the variants gives an ultimate solution, all of them
together provide a powerful tool for variety of possible problem setups. It is also

important to point out that, generally speaking, the improvements over original
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NN-Descent are most evident for smaller k values, while for k = 20 NN-Descent

already performed well enough.

66



Chapter 6

NN-Descent-based approximation

algorithms for k-NN graph updates

In real world scenarios, datasets often change over time: new instances are being
added and existing instances are being changed or removed. If a .-NNG had been
built on a dataset that changed afterwards, the graph must be updated accordingly,
because changes in the data result in new nodes and edges appearing, old nodes
and edges disappearing, and information associated with nodes and edges being
updated. The simplest way to update the graph is to construct a new k-NNG on
the updated dataset from scratch, which could be done by using any algorithm
for k-NNG construction. However, this approach is slow and does not make use
of the information that was integrated in the previous k-NNG. Therefore, instead
of completely discarding the previous k-NNG, one could use it as a starting point
for a construction of a new k-NNG.

In this chapter we propose two NN-Descent-based approximation algorithms
for k-NNG updates. The proposed algorithms update the existing k-NNG after a
subset of its nodes has changed. Even though this algorithms do not support node
additions nor deletions, they could be trivially adapted in order to support these
operations as well.

Section 6.1 gives an overview of the naive, brute-force, k-NNG update algo-
rithm. In Section 6.2 we will introduce our NN-Descent-based approximation
algorithms for k-NNG updates. Finally, in Section 6.3 we will evaluate the perfor-

mance of all algorithms by conducting an experimental analysis.

6.1 Naive k-NN graph update algorithm

When a dataset changes, the k-NNG built on it should be updated accordingly.
As already said, the updates of the k-NNG should be performed in an incremental
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manner, rather than constructing the graph from scratch. The reason behind this
lies in the fact that datasets usually do not change completely, but only partially.
Hence, the graph should also be updated partially.

Algorithm 9: Function that returns a set of points whose NN lists should
be updated.

// Function takes a k-NN graph (G) together with a list of its changed nodes

(changed_nodes) , and returns a set of all the points that are affected by the

changed nodes, i.e., the set of points whose NN lists should be updated.
function GetAffectedNodes (G, changed nodes)

[y

2 affected < changed nodes;

3 foreach data point s € changed nodes do
4 ‘ affected <= RNNg(s);

5 end

6 return affected.

7 end

Algorithm 10: Outline of the naive k-NNG update algorithm.
input : data set S, distance function dist, neighborhood size k, k-NNG G,
list of G’s changed nodes changed nodes
output: updated k-NNG G

// Note: Function GetAffectedNodes is defined in Algorithm 9.

1 for _update < GetAffectedNodes(G, changed nodes);

2 foreach data point s € for update do

3 foreach data point v € S do

4 Use (v, dist(s,v)) to update s’s NN list in G, and use (s, dist(s,v)) to
update v’s NN list in G}

5 end

6 end

7 return G.

Naive brute-force k-NNG construction algorithm can easily be adapted to sup-
port partial k-NNG updates. Let us say that node s of k-NNG G has changed. In
that case, distances between s and all the other points must be calculated again,
and s’s NN list, together with NN lists of all the other dataset points, must be
updated accordingly. There are two possible changes of k-NNG which could be a
result of this procedure: 1) s’s NN list might be different than before, 2) s might
end up in other points’ NN lists in which it had not been before. The very same
procedure must be applied for all the points from RNN(s) as well—distances

from these points to all the other points must be calculated, and their NN lists
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must be updated accordingly. Namely, by performing this procedure, each point
from RNNg(s) determines if s should be removed from its NN list. No other
distances should be calculated during the algorithm.

For datasets without hubness phenomenon, in which sizes of R-NN lists are
approximately k, the described incremental update of a k-NNG would result with
worst case complexity of O(pnk), p being the number of updated dataset points, n
being the size of the dataset, and k£ being the neighborhood size. In the following
text we will refer to this algorithm as naive k-NNG update. An outline of the
approach is given in Algorithm 10.

6.2 Online variants of random walk descent and

nearest walk descent

The algorithm presented in the previous section, performs a partial update of an
exact k-NNG which results with a new, updated exact k&-NNG. If this is still not
fast enough, an approximation algorithm for k~-NNG updates could be an option.
In this case the result of an update would not be the exact k-NNG, but a k-NNG
approximation. In this section we will propose two such algorithms that perform
incremental updates of k-NNG, resulting with a k~-NNG approximation.

The two algorithms are based on RW-Descent and NW-Descent, which are
presented in Sections 5.4 and 5.5, respectively. The idea behind this algorithms is
rather simple. In the same manner as in the naive k-NNG update algorithm, we
pre-compute the set of the points whose NN lists should be updated: that set con-
tains the changed points themselves and the points that have at least one changed
point in their NN lists (these points are actually reverse neighbors of the changed
points). Unlike in the naive k-NNG update algorithm, in these algorithms the
points from the pre-computed set are not being compared against all the dataset
points. Instead, the graph walk approaches from RW-Descent and NW-Descent
are applied. The algorithms iteratively apply a certain number of short walks
that start from each point of the pre-computed set. The starting and the ending
point of each walk participate in a local join. The algorithms iterate until the
termination condition is met (see Section 5.4).

The only difference between the two algorithms is the way they determine
which walks to perform. In the first algorithm, that we will call online random
walk descent (online RW-Descent), the walks are performed completely at random.

In the second algorithm, that we will call online nearest walk descent (online
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NW-Descent), all possible 2-length walks from a given point are evaluated, and
the “best” ones are chosen. online RW-Descent and online NW-Descent perform
walks in completely analogous way as RW-Descent and NW-Descent, respectively.

The outline of the two algorithms is presented in Algorithm 11.

Algorithm 11: Outline of online RW-Descent and online NW-Descent algo-
rithms.
input : data set S, distance function dist, neighborhood size k, balancing
function b(s), previous k-NNG G, list of G’s changed nodes
changed nodes
output: k-NNG approximation G

// Note: Function GetAffectedNodes is defined in Algorithm 9.

1 G « copy of G;

2 for update < GetAffectedNodes(G, changed nodes);

3 repeat

4 foreach data point s € for _wupdate that did not converge do

5 walks < choose b(s) walks in G that start in s;

6 foreach walk € walks do

7 w <+ ending point of walk;

8 Use (s, dist(s, w)) to update NN s(w), and use (w, dist(s,w)) to
update NN s(s);

9 end

10 end

11 until Termination condition is met
12 return G.

Online RW-Descent and online NW-Descent have one crucial issue. They
work under the assumption that the points did not change considerably, i.e., that
they stayed in their extended neighborhoods. The algorithms make use of this
assumption when they look for points’ new nearest neighbors by performing short
walks—Dby doing this, the algorithms try to update points’ NN lists by looking at
their extended neighborhoods. When a point did not change significantly, that
is, when it stayed in the same extended neighborhood, the algorithms perform
very well and very fast. However, the problem arises when the point did change
significantly. In that case the point’s new nearest neighbors can not be found in its
extended neighborhood, and, therefore, there is a high probability that the point
will get confined in wrong local minimum, without finding its real neighbors.

After the previous statement, an additional question arises. In the original
RW-Descent and NW-Descent, points also start from wrong initial neighborhoods,

but the aforementioned problem does not hold there. Therefore, the question is:
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Algorithm 12: Outline of the complete online RW-Descent and online
NW-Descent algorithms.
input : data set .S, distance function dist, neighborhood size k, balancing
function b(s), convergence conv, random comparisons count 7,
previous k-NNG G, list of G’s changed nodes changed nodes
output: k&-NNG approximation G

// Note: Function GetAffectedNodes is defined in Algorithm 9.

1 G + copy of G;

2 for update < GetAffectedNodes(G, changed nodes);

3 S" « for _update;

4 repeat

5 foreach data point s € S’ do

6 R < Sample(S \ {s},r);

7 foreach data point u € R do

8 d + dist(s, u);

9 Use (s, d) to update u’s NN list in G, and use (u,d) to update s’s
NN list in G;

10 end

11 if s’s NN list was not updated more than r - conv times then

12 | S S\ {s}

13 end

14 end

15 foreach data point s € for update that did not converge do

16 walks < choose b(s) walks in G that start in s;

17 foreach walk € walks do

18 w < ending point of walk;

19 Use (s, dist(s, w)) to update NN s(w), and use (w, dist(s, w)) to
update NN (s);

20 end

21 end

22 until Termination condition s met
23 return G.

why the problem exists in online RW-Descent and online NW-Descent, while it
does not exist in RW-Descent and NW-Descent? The reason for this is that
RW-Descent and NW-Descent start with a random initial graph. In a very first
iteration, a point s is compared with b(s) completely random points, among which
the nearest ones are inserted in s’s NN list. Contrary to that, online variants
of the algorithms do not start with a random initial graph, but with the pre-
vious version of k-NNG. Consequently, the first iteration of online RW-Descent

and online NW-Descent does not imply comparisons with b(s) uniformly random
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points, but with b(s) points from the s’s old extended neighborhood. Unlike in
RW-Descent and NW-Descent, where a point initially gets to choose among differ-
ent neighborhoods (multiple uniformly random points come, with high probability,
from multiple neighborhoods), in online variants a point starts with a single neigh-
borhood, which is a very nice starting point if that neighborhood is “good”, but

otherwise it is a very bad place to start from.

Table 6.1: List of parameters of online RW-Descent and online NW-Descent.

Parameter Description

G Existing k-NNG.
k  Neighborhood size (size of NN lists).
dist  Distance function.
changed _nodes G’s nodes that have changed.
it Number of iterations. Note: present only for fized iterations
termination condition.
conv  Convergence criterion (a value from range (0, 1]). This param-
eter configures two different things. 1) Convergence criterion
(a value from range (0,1]). A point converges when there
is in average less than conv - b(s) updates in the hd most
recent iterations. The algorithm converges when all points
converge. Note: present only for convergence termination
condition. 2) A point participates in randomization phases
as long as the number of its NN list updates in most recent
randomization phase is greater than conv - r.
hd History depth (a value from range [0,00))—see parameter
conv for more information. Note: present only for conver-
gence termination condition.
b(s) Balancing function that returns number of local joins for a
point s.
r Number of random comparisons of a single point in the ran-
domization phase.

For this reason, previously presented algorithms are extended with the idea on
which R-NN-Descent is based (see Section 5.6)—more precisely, online RW-Descent
and online NW-Descent are extended with the randomization phase. Before each
iteration, the randomization phase is performed, in which points from pre-computed
set are compared with r other dataset points that are chosen uniformly at ran-
dom. This allows points to consider more than one neighborhood in the ini-
tial phase of the algorithm, which is exactly what is happening in RW-Descent
and NW-Descent, but was missing from their online variants. Additionally, in

R-NN-Descent, a point is excluded from future randomization phases as soon as
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the random comparisons from the current phase fail to update the point’s NN
list. As we already discussed in Section 5.6, if a point’s NN list does not get up-
dated, the probability that the point is in a “good” neighborhood is reasonably
high, and for that reason the point does not have to participate in the future
randomization phases. The same idea is implemented in online RW-Descent and
online NW-Descent, but with a minor technical change—a point is excluded from
future randomization phases when the number of NN list updates is not greater
than a predefined threshold. If that threshold is zero, than the approach comes
down to the one included in R-NN-Descent. The threshold is defined by conv
parameter—if, for a point s, less than conv - r comparisons with random points
resulted with s’s NN list update, s is excluded from the future randomization
phases. The same parameter conv is used for convergence termination condition,
as well. The updated version of online RW-Descent and online NW-Descent is
presented in Algorithm 12, while the overview of their parameters can be found in
Table 6.1.

6.3 Methods evaluation

As previously explained, the main goal of online RW-Descent and online
NW-Descent algorithms is to fasten the k-NNG update. In order to verify if
the goal was met, intensive experiments were conducted. The algorithms were
compared with the naive partial .-NNG update, presented in Section 6.1, but also
with construction of k-NNG from scratch by using an existing fast approximation
algorithm NN-Descent, presented in Section 3.2.

Online RW-Descent and online NW-Descent can be useful in any scenario
in which multiple £-NNGs must be created on similar datasets—first dataset’s
k-NNG graph is in that case created with any k-NNG construction algorithm,
while £-NNGs of all the other datasets are created by online RW-Descent or online
NW-Descent. Moreover, the most natural application of online RW-Descent and
online NW-Descent is probably the construction of temporal k&-NNGs (as explained
in Section 3.3, a temporal k-NNG is a k-NNG that is built on temporal data). Each
time data change over time, online RW-Descent or online NW-Descent can be used
to create a new k-NNG approximation.

Therefore, for the experiments, we simulated a real-world system in which data
change over time, and we verified online RW-Descent and online NW-Descent
in that context. When it comes to temporal data, time series are usually the

first choice, hence these simulations are based on time series data. In the Sub-
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section 6.3.1 we introduce datasets that we used in the experiments, in Subsec-
tion 6.3.2 we thoroughly describe the design of the simulations, Subsection 6.3.3
gives an overview of the experimental setup, and last but not least, Subsection 6.3.4

presents the final results.

6.3.1 Datasets

As already said, we used time series data as the basis of our experiments (see
Section 2.1 for more insights about time series). If k-NNG was built on such data,
it has to be updated as the time series change, which is an ideal use case for
verification of online RW-Descent and online NW-Descent.

The most famous and most complete time series data repository is the UCR
Time Series Classification Archive [16]. For that reason we verified online
RW-Descent on all the datasets from UCR repository. The repository contains
128 datasets, each of them having different properties.

In order to adapt the datasets for our experiments, we had to perform a small
preprocessing step. The preprocessing included only removal of entries with miss-
ing values. The reason behind this was that missing values, as such, could not be
interpreted by the distance functions we used—these distance functions can accept
only numerical values. There are two possibilities for dealing with this problem:
1) to replace each missing value with some appropriate numerical value (such as
average of non-missing time series’ values) and 2) to ignore/remove entries with
missing values. At the end we went for the second option, which is to remove
entries with missing values.

The properties of datasets after the preprocessing phase are given in Table 6.2.
The table contains information about dataset name (dataset), minimum and max-
imum time series length (min/max ts), and the number of time series within a
dataset (size). Before the preprocessing phase, all the time series within a single
dataset were of equal length. However, after removal of entries with missing values,

time series lengths within a dataset may vary.

6.3.2 Simulation design

In this subsection we will present the design of simulations used to verify online
RW-Descent and online NW-Descent. Let us start by presenting the real-world
scenario that we simulated in our experiments. First of all, there is a dataset
whose instances are time series. Data that is preserved in the time series are mea-

surements of a certain phenomenon at different moments in time—each time series
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Table 6.2: Properties of UCR datasets after the preprocessing step.

dataset min/max ts  size dataset min/max ts size
ACSF1 1460/1460 200 ItalyPowerDemand 24/24 1096
Adiac 176/176 781 LargeKitchenAppliances 720/720 750
AllGestureWiimoteX 2/385 1000 Lightning2 637/637 121
AllGestureWiimoteY 2/385 1000 Lightning7 319/319 143
AllGestureWiimoteZ 2/385 1000 Mallat 1024/1024 2400
ArrowHead 251/251 211 Meat 448/448 120
Beef 470/470 60 Medicallmages 99/99 1141
BeetleFly 512/512 40 MelbournePedestrian 24/24 3650
BirdChicken 512/512 40 MiddlePhalanxOutlineAgeGroup 80/80 554
BME 128/128 180 MiddlePhalanxOutlineCorrect 80/80 891
Car 577/577 120 MiddlePhalanxTW 80/80 553
CBF 128/128 930 MixedShapesRegularTrain 1024/1024 2925
Chinatown 24/24 365 MixedShapesSmallTrain 1024/1024 2525
ChlorineConcentration 166,/166 4307 MoteStrain 84/84 1272
CinCECGTorso 1639/1639 1420 NonlInvasiveFetal ECGThorax1 750/750 3765
Coffee 286/286 56 NonlnvasiveFetal ECGThorax2 750/750 3765
Computers 720/720 500 OliveOil 570/570 60
CricketX 300/300 780 OSULeaf 427/427 442
CricketY 300/300 780 PhalangesOutlinesCorrect 80,/80 2658
CricketZ 300/300 780 Phoneme 1024/1024 2110
Crop 46/46 24000 PickupGestureWiimoteZ 29/361 100
DiatomSizeReduction 345/345 322 PigAirwayPressure 2000/2000 312
DistalPhalanxOutlineAgeGroup 80/80 539 PigArtPressure 2000/2000 312
DistalPhalanxOutlineCorrect 80/80 876 PigCVP 2000/2000 312
DistalPhalanxTW 80/80 539 PLAID 101/1344 1074
DodgerLoopDay 215/288 158 Plane 144/144 210
DodgerLoopGame 215/288 158 PowerCons 144/144 360
DodgerLoopWeekend 215/288 158 ProximalPhalanxOutlineAgeGroup  80/80 605
Earthquakes 512/512 461 ProximalPhalanxOutlineCorrect 80/80 891
ECG200 96,/96 200 ProximalPhalanxTW 80/80 605
ECG5000 140/140 5000 RefrigerationDevices 720/720 750
ECGFiveDays 136/136 884 Rock 2844/2844 70
ElectricDevices 96,/96 16637 ScreenType 720/720 750
EOGHorizontalSignal 1250/1250 724 SemgHandGenderCh2 1500/1500 900
EOGVerticalSignal 1250/1250 724 SemgHandMovementCh2 1500/1500 900
EthanolLevel 1751/1751 1004 SemgHandSubjectCh2 1500/1500 900
FaceAll 131/131 2250 ShakeGestureWiimoteZ 40/385 100
FaceFour 350/350 112 ShapeletSim 500/500 200
FacesUCR 131/131 2250 ShapesAll 512/512 1200
FiftyWords 270/270 905 SmallKitchenAppliances 720/720 750
Fish 463/463 350 SmoothSubspace 15/15 300
FordA 500/500 4921 Sony AIBORobotSurfacel 70/70 621
FordB 500/500 4446 Sony AIBORobotSurface2 65/65 980
FreezerRegularTrain 301/301 3000 StarLightCurves 1024/1024 9236
FreezerSmallTrain 301/301 2878 Strawberry 235/235 983
Fungi 201,201 204 SwedishLeaf 128/128 1125
GestureMidAirD1 80/360 338 Symbols 398/398 1020
GestureMidAirD2 80/360 338 SyntheticControl 60/60 600
GestureMidAirD3 80/360 338 ToeSegmentationl 277277 268
GesturePebbleZ1 100/455 304 ToeSegmentation2 343/343 166
GesturePebbleZ2 100/455 304 Trace 275/275 200
GunPoint 150/150 200 TwoLeadECG 82/82 1162
GunPointAgeSpan 150/150 451 TwoPatterns 128/128 5000
GunPointMaleVersusFemale 150/150 451 UMD 150/150 180
GunPointOldVersusYoung 150/150 451 UWaveGestureLibrary All 945/945 4478
Ham 431/431 214 UWaveGestureLibraryX 315/315 4478
HandOutlines 2709/2709 1370 UWaveGestureLibraryY 315/315 4478
Haptics 1092/1092 463 UWaveGestureLibraryZ 315/315 4478
Herring 512/512 128 Wafer 152/152 7164
HouseTwenty 2000,/2000 159 Wine 234/234 111
InlineSkate 1882/1882 650 WordSynonyms 270/270 905
InsectEPGRegularTrain 601,/601 311 Worms 900/900 258
InsectEPGSmallTrain 601,601 266 WormsTwoClass 900/900 258
InsectWingbeatSound 256/256 2200 Yoga 426/426 3300
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holds measurements for an object it represents. Moreover, time series preserve at
most d last measurements of the phenomenon; meaning that, if a time series al-
ready holds d values and a new value comes, the oldest value has to be discarded.
Therefore, the upper bound of time series length is d. This dataset is then used
as a node set of a k-NNG. The k-NNG must always be up to date, meaning that
when any of the time series change, the graph must be updated as well.

As can be seen, such scenario implies data flow. To simulate such data flow
by using static datasets presented in the previous section, we will employ sliding
window technique. Generally speaking, sliding window technique is applied when
an array of values is never of interest as a whole. The current area of interest
within the array is then defined by a sliding window. A sliding window has its
size denoted by d, which suggests how many array elements it represents, and
its starting position within the array denoted by 7. Finally, a sliding window of
size d and starting position ¢ represents the sub-array that starts at index ¢ and
ends at index ¢ + d — 1. Moreover, the sliding windows have property that their
starting positions change during the execution of an algorithm that uses them. The
algorithm itself dictates how sliding window’s starting position changes, however,
very often sliding window position is initially 0, and then it monotonically increases
until reaching [ — d, where [ is the time series length. Figure 6.1 visualizes an
example of sliding window technique application. The sliding window is depicted
by the colored array cells, while each of the numbered six rows represents a different
state of the same array. An algorithm in its first step initializes the sliding window
to the leftmost starting position within the array. Then, in each step the algorithm
moves the sliding window by three steps towards right, until the sliding window
reaches the rightmost position (notice that in the last step, the algorithm could
not move the sliding window by three steps, since there was no room for it). The
purpose of the whole process is that the algorithm in each step could perform some

operation on the sub-array represented by the current sliding window position.
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In the simulations we will use the sliding window technique inside individual
time series. For that purpose we introduce parameter sliding window size,

in further text denoted by sw. Each time series within a dataset will have its

76



CHAPTER 6. NN-DESCENT-BASED APPROXIMATION
ALGORITHMS FOR K-NN GRAPH UPDATES

own sliding window of size sw. During the simulation, k-NNGs will never be
constructed on the whole time series, but only on their segments defined by their
sliding windows. At the beginning of a simulation, sliding windows inside each
time series have starting position 0. As the simulation proceeds, sliding windows
are moved towards right, in a manner we will describe later. Each time some

sliding window(s) move(s), a k~-NNG must be updated.

A simulation is executed iteratively. In each iteration a certain number of time
series is selected, and their sliding windows are moved towards right for a certain
number of steps, after which, as said, a k-NNG update follows. The number of
steps by which a sliding window is moved, is defined by parameters minimum and
maximum batch size, in further text denoted by by, and by,qs, respectively.
For a sliding window which needs to be moved, a random value r from the range
[Dimins bmin] 1s taken, and its starting position ¢ increases by r. Additionally, as
already said, i is upper-bounded by | — sw (I being time series length), therefore,
if i +r >1— sw, then 7 is set to [ — sw. If b,,;, and b,,,, are equal, then we will
denote them simply by b. As a conclusion, batch size value determines how much
time series change in a single simulation iteration—the higher batch size value,
the greater is the time series change. The reason for having the minimum and
maximum batch size values instead of a single batch size is to support behavior of

systems in which time series values do not come in regular manner.

The number of time series whose sliding windows move inside a single iteration,
is defined by parameters minimum and maximum points count, in further
text Poin and Diaq, respectively. Similarly as with batch size, if p,.;, and p,,.. are
equal, we refer to them simply as p. The actual number of time series that are
selected in a single iteration is then randomly chosen from the range [pmin, Prmaz|—
let us denote that number by r. These r time series are selected uniformly at
random from all the datasets’s time series whose sliding windows did not reached

rightmost position. If there are less than r such time series, all of them are selected.

There are two additional simulation parameters: an algorithm for initial k~-NNG
construction, in further text initial algorithm, and an algorithm for k-NNG
update, in further text update algorithm. Moreover, the input of a simulation
is a single time series dataset.

Let us now summarize the flow of a single simulation. Each time series within
the input dataset has its sliding window whose length is sw, and initial starting
position is 0. Before proceeding any further, an initial .-NNG is constructed by the
initial algorithm. The k-NNG is not constructed on the whole dataset’s time series,

but only on their segments defined by their sliding windows. A simulation then
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Figure 6.2: Outline of the simulation flow.

proceeds with an iterative execution. In each iteration a number r is randomly
chosen from range [pmin, Pmaz), and then r random time series are selected for
update. Each time series’ update implies movement of its sliding window towards
right, by the number of steps which is randomly chosen from range [bin, bmaz]-
After the updates of all » randomly chosen time series, the current version of
k-NNG is updated by the update algorithm. This finalizes an iteration. Simulation
continues iterating until all the time series’ sliding windows are in the rightmost

position.

Figure 6.2 visualizes the simulation flow. The simulation from the figure is con-
figured as follows: sw = 6, b = 2, p = 2, the initial algorithm is an arbitrary chosen
k-NNG construction algorithm, while the update algorithm is online RW-Descent.
Left hand side of the figure depicts sliding window updates. Snapshots of sliding
window positions are presented inside gray rectangles—each rectangle presents
sliding window positions of a single iteration. Similarly as in Figure 6.1, sliding
windows are depicted by the colored cells. Sliding windows colored with darker
shade are the ones that are selected for update, and therefore moved to the right.

In the middle of the figure there are rectangles which represent algorithms. Arrows
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that go inside these rectangles are the algorithms inputs, while the arrows that go
outside of the rectangles are the algorithms outputs. k-NNGs on the right hand
side are the ones that were constructed on the colored part of dataset from their
left hand side. Finally, as can be seen, online RW-Descent always takes the current
dataset and the previous k-NNG, and creates a new k-NNG approximation.
Finally, the list of all simulation parameters is given in Table 6.3. Moreover,
there are certain constraints and restrictions among the simulation parameters.
They are given in (6.1), (6.2) and (6.3), in which n stands for dataset size, while

tSmin stands for the length of the shortest time series within the dataset.

Table 6.3: List of simulation parameters.

Parameter Description

initial algorithm The algorithm that is used for construction of initial k-NNG,
together with all its parameters.
update algorithm The algorithm that is used for k-NNG updates, together
with all its parameters.
sw Sliding window size.
bmin,  Minimum batch size.
bz Maximum batch size.
Pmin  Minimum points count.
Pmae  Maximum points count.

0 < sw < tSmin (6.1)
0 < bpin < ez < sw (6.2)
0< Pmin S Pmaz S n (63)

6.3.3 Experimental setup

The main purpose of the experiments was to compare four different approaches
for solving k-NNG update problem, which are: naive partial k--NNG update,
NN-Descent, online RW-Descent and NW-Descent. The datasets used in the ex-
periments are presented in Subsection 6.3.1. The experiments are completely based
on simulations introduced in Subsection 6.3.2, therefore, in this subsection we will
give an overview of the simulation parameters settings.

Update algorithms of the simulation were set to be exactly the four algorithms
mentioned above. Moreover, each of these algorithms comes with its parameters,

which are configured as follows. For all the algorithms we used values 5 and 10 for
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parameter k, and Euclidean distance and DTW! as distance measures. Both dis-
tance measures are chosen for their popularity—FEuclidean distance is commonly
used in general, while DTW is commonly used with time series data. Further-
more, parameters for NN-Descent were: p = 1, conv = 0.01. For both, online
RW-Descent and online NW-Descent, we used two different parameter setups:
1) conv = 0.001, hd = 3, r = 55, and balancing function that always returns 5,
2) conv = 0.001, hd = 3, r = 3z,

The parameter r depicts the number of disjoint, distinct extended neighborhoods

and balancing function that always returns 10.

in the dataset?. Namely, if a dataset does not contain hubness phenomenon, each
point has around 2k direct and reverse neighbors. Since the extended neighbor-

hood contains neighbors of neighbors, its size is 4k?. Ruffly said, a dataset then has

_n_
4k2

gets a chance to find its best neighborhood among nearly all dataset’s extended

distinct extended neighborhoods. Therefore, with such parameter r, a point

neighborhoods.

In the further text we will denote naive partial k-NNG update algorithm by
naive, NN-Descent by nndes, the first setting of online RW-Descent by orwdes-5,
the second setting by orwdes-10, the first setting of NW-Descent by onwdes-5, and
the second one by onwdes-10.

Talking about initial algorithm setting, we paired each of the update algo-
rithms with a different initial algorithm. The initial algorithm that we paired
with the naive partial k-NNG update was the regular naive brute-force k-NNG
construction algorithm. NN-Descent was paired with NN-Descent itself—we used
it both for initial and for update algorithm, by configuring it in the same way in
both cases. Finally, with online RW-Descent we used RW-Descent, and with online
NW-Descent we used NW-Descent as the initial algorithm. Moreover, RW-Descent
and NW-Descent in a role of the initial algorithm were configured analogously to

the algorithms they were paired with.

For the sliding window size we used values 10 and 50. Due to (6.1), for
both sw values, we could not use datasets AllGestureWiimoteX, AllGestureWi-
imoteY and AllGestureWiimoteZ, while for sw = 50 we additionally could not
use datasets Chinatown, Crop, ItalyPowerDemand, MelbournePedestrian, Pick-

upGestureWiimoteZ, ShakeGestureWiimoteZ and SmoothSubspace, because of

!Note that DTW is not actually a real distance function, since it does not satisfy triangle
inequality condition.

2The notion of disjoint extended neighborhood is very vague in this context, since we do not
refer here to any formal graph substructure (e.g. strongly connected component). Here we are
assuming artificial linear division of graph nodes into disjoint subsets of size 4k2, that we refer
to as extended neighborhoods.
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Figure 6.3: Distribution of simulation iterations counts.

their ts,,;,, value. For the batch size b we used values 0.5 - sw and sw, while
for the points count p we used 0.2 -n and 0.5 - n, where n is dataset size.

The overview of all values used for all the parameters is given in Table 6.4. The
total number of simulations per dataset were 192, except for the 7 aforementioned
datasets (which were run only for sw = 10) where the number of simulations
per dataset was 96. This leads to a total of 23,328 simulations that were run
inside this experiment. In each simulation the four examined algorithms were
run inside each iteration. The exact number of iterations depends on simulation
parameters and time series length. The histogram of number of iterations among
all simulations that were run, is given in Figure 6.3 (note that the z axis of the
figure is logarithmic). As can be seen, the simulation iterations counts are spread
between 1 and 3,000, most of them being around 70.

Table 6.4: Simulation parameters values that were used in experiments.

parameter values

algorithms (total: 6) naive, nndes, orwdes-5, orwdes-10, onwdes-5,
onwdes-10.
dataset (total: 125 for sw = 10 and 118 for sw = 50) Datasets
from Table 6.2.
k  (total: 2) 5, 10
dist (total: 2) Ly, DTW
sw (total: 2) 10, 50
b (total: 2) 0.5 sw, sw
p (total: 2) 0.2-n,0.5-n

The algorithms are evaluated by using three different measures: recall (see
(2.2)), scan rate (see (2.3)) and harmonic mean (see (2.5)). A good algorithm

should maximize recall and harmonic mean, while minimizing scan rate.
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6.3.4 Results and discussion

In this subsection we will present results produced by all the simulations. The
main focus of this analysis is to compare the four approaches. The first part
will be devoted to the overall results. In the second part we will investigate the
influence of different parameters on the algorithms’ performance. At the end,
we will analyse the simulation flow, with the main focus on determining if the
results change over time. Namely, there is a possibility that the recall of online
RW-Descent and online NW-Descent decreases over time, as a consequence of the
accumulated error.

The overall averages of the recall, scan rate and harmonic mean for all the
four approaches are presented in Table 6.5 and Figure 6.4. The presented averages
were obtained in the following way. Firstly, the averages for each simulation are
calculated—the average values for a simulation is calculated upon the results of
all simulation’s iterations. Then, the values for each simulation were used for the

final average values presented in the table and the figure.

Table 6.5: Average recall, scan rate and harmonic mean for all the presented
k-NNG update approaches.

naive nndes orwdes-5  orwdes-10 onwdes-5 onwdes-10
recall 1 0.98 0.84 0.91 0.78 0.86
scan rate 0.91 1.06 0.13 0.2 0.16 0.23
harmonic 0.16 0.43 0.84 0.84 0.79 0.8
1.00 naive
0.75 I nndes
orwdes-5
0.50 B orwdes-10
onwdes-5
025 . . s onwdes-10
0.00
recall scan rate harmonic

Figure 6.4: Average recall, scan rate and harmonic mean for all the presented
k-NNG update approaches.

The average recall value for naive k-NNG update algorithm is the highest pos-
sible, since this algorithm is not an approximation algorithm. For the case of
NN-Descent the average recall is 0.98, which is very high, as expected. As we al-

ready discussed, NN-Descent produces highly accurate approximations in datasets
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with low ID. Having that the values in a time series are usually highly correlated,
intrinsic dimensionality of time series datasets is small, which justifies high average
recall value of NN-Descent. For the case of online RW-Descent, average recalls
are 0.84 for parameter configuration orwdes-5, and 0.91 for orwdes-10. These
two average recall values are very high as well, especially for the case of orwdes-10.
However, they are smaller than the average recall obtained by NN-Descent. Online
NW-Descent performs slightly worse than online RW-Descent in terms of average
recall. It reported average recall of 0.78 for parameter configuration onwdes-5,
and 0.86 for onwdes-10. As a conclusion, the accuracy is, naturally, the highest
for the naive k-NNG update algorithm, then for NN-Descent, which produces ex-
tremely high recall values, then for online RW-Descent, and it is lowest for online
NW-Descent. Moreover, the worst obtained average recall value (obtained by on-
line NW-Descent) is still reasonably high, which means that all the approaches are

reasonably accurate.

Talking about the average scan rate values, it is evident that the online
RW-Descent and online NW-Descent significantly reduce the number of distance
calculations. The average scan rate of naive k-NNG update algorithm is very high,
amounting to 0.91. NN-Descent reports scan rate that is even higher than 1, which
is caused by the small-sized datasets. Namely, NN-Descent reports very high scan
rates for very small datasets, and these values highly influence the average. How-
ever, as we will discuss later, NN-Descent’s scan rates drastically decrease with
the increase of dataset size. Finally, online RW-Descent and online NW-Descent
report very low average scan rates. Moreover, online RW-Descent reports smaller
average scan rates than online NW-Descent, which we will additionally discuss
later. For the parameter settings orwdes-10 and onwdes-10 average scan rate val-
ues are naturally higher than for the orwdes-5 and onwdes-5. This increase in scan

rate values is followed by the increase in recall values.

Finally, let us analyze average harmonic mean values, that take into account
both recall and scan rate values. Average harmonic mean is evidently highest for
the online RW-Descent and online NW-Descent algorithms. The worst harmonic
mean is, of course, associated with naive k-NNG update algorithm. NN-Descent
is considerably better than naive approach, but its average harmonic mean is
still much lower than the harmonic means of the online algorithms. What might
seem unexpected is that, while having higher recall and lower scan rate than
NN-Descent, naive k-NNG update algorithm has lower harmonic mean. The rea-
son for this is that the harmonic mean treats equally all the scan rate values equal

or higher than 1. Consequently, extremely high scan rate values of a few small
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datasets do not influence harmonic mean at great extent. Regarding the online al-
gorithms, as said, both report high average harmonic mean, online RW-Descent be-
ing better than online NW-Descent. Interestingly, the harmonic means of different
parameter configurations of online RW-Descent, and also of online NW-Descent,
are the same, or almost the same—both orwdes-5 and orwdes-10 have average har-
monic mean of 0.84, while onwdes-5 and onwdes-10 have 0.79 and 0.8, respectively.
This implies that the increased number of walks leads to nearly proportional in-
crease of recall. Consequently, higher recall could easily be achieved at the cost of
increased scan rate, simply by increasing the number of walks. However, there is
an upper bound of the number of walks per point—there is no purpose for walks
number to be higher than the number of a point’s extended neighborhood (which

is around 4k? for a dataset which does not have hubness phenomenon).

naive e nndes orwdes-5 e orwdes-10 onwdes-5 e onwdes-10
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harmonic
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Figure 6.5: Influence of dataset size on performance of k.-NNG update algorithms.

We already said that dataset size influences NN-Descent’s speedup. Let us
now see if the same holds for online RW-Descent and online NW-Descent. In
Figure 6.5 we show how recall, scan rate and harmonic mean are influenced by
dataset size for all the four algorithms (note that the x axis of the figure is loga-
rithmic). Each dot in the scatter plot represents a single dataset, while the plotted
lines are regression lines. Result for a single dataset represents an average of all

dataset’s simulations’ values. As can be seen, dataset size does not influence naive
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k-NNG update algorithm. Contrary to that, dataset size influences all the other
algorithms, in certain extent. Dataset size influence is most evident for scan rate
values of NN-Descent. For smaller datasets, NN-Descent produces extremely bad
scan rate values, that go even up to 5, making the algorithm unusable. However,
as dataset size gets higher, the scan rate exponentially decays. Talking about
NN-Descent’s recall values, they also depend on dataset size, but at much lower
extent. NN-Descent’s recall values decrease at slow rate as dataset size increases.
For the online algorithms, scan rate values are also influenced by dataset size,
but much less than for NN-Descent. Unlike with NN-Descent, scan rates that are
higher than 1 are really rare with the online algorithms, especially with orwdes-5
and onwdes-5. Consequently, even for very small datasets, the online algorithms
outperform naive k-NNG update algorithm in this matter. Recall values of orwdes-
5 and onwdes-10 are not influenced by dataset size, while for the orwdes-10 and
onwdes-10 a slight influence emerged—as dataset size gets higher, recall value gets
higher as well. Finally, harmonic means summarize everything. Harmonic mean
of NN-Descent exponentially grows, which is dictated by the exponential decay
of scan rate value. For all the online algorithms, harmonic means also grow with
dataset size; growth being more evident for orwdes-10 and onwdes-10. As a con-
clusion, the online algorithms are undoubtedly the best choice in small to medium
sized datasets, while in the large ones, NN-Descent approaches the performance

of the online algorithms.

As can be seen in Figure 6.5, dataset size does not significantly influence the
online algorithms’ recall values. However, some datasets still have higher, while
the others have lower average recall. For that reason, we further investigated
how dataset properties influence the algorithms. Before going any further, let us
point out one important fact—Ilarger the nodes changes are, harder it is for the
online algorithms to find the nodes’ new neighborhoods. The dataset property that
dictates the extent of nodes changes, is time series variability. If the successive
values in time series are very different, the node changes during the simulation
are large, and an online algorithm is faced with a harder task. Figure 6.6 shows
that time series variability indeed influences the online algorithms (note that the
x axis of the figure is logarithmic). The dots in scatter plot are again representing
individual datasets. The values on z axis are obtained in the following way. Each
time series in dataset is differenced, meaning that its values become the differences
between the old consecutive values. Afterwards, standard deviation is calculated
on the differenced time series. Finally, average value of all time series’ standard

deviations is calculated, which results with a value shown on the figure’s x axis.
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Moreover, to reduce the impact of dataset size, in Figure 6.6 we show only 20

datasets of similar sizes; more precisely, only datasets which size is in the range
[800, 1200] are shown.
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Figure 6.6: Influence of time series variability on performance of k-NNG update
algorithms.

The influence of time series variability on the online algorithms’ recall values is
quite evident—as the variability increases, recall decreases. The problem is even
more evident for the parameter settings with lower number of walks, which are
orwdes-b and onwdes-5. Moreover, it can also be seen that online NW-Descent
is more sensitive to time series variability, than online RW-Descent is. Regarding
the scan rate values, the influence is present, but not very strong. It is expressed
as a slight increase of scan rate values as variability increases. One interesting
phenomenon appeared in recall values of NN-Descent—increase of time series vari-
ability is followed by slight decrease of NN-Descent’s recall values. The reason for
this is the higher intrinsic dimensionality of time series with high variability, which
then negatively influences NN-Descent.

Let us now analyze the influence of the different parameters on the final results.
We will start with the parameter k. The Figure 6.7 shows how k affects the
algorithms. As expected, the influence of £ on NN-Descent’s scan rate is very

high. However, even though for the smaller £ values NN-Descent’s scan rate is
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much smaller, it is still significantly higher than the scan rates obtained by the
online algorithms. Additionally, increased k value negatively influences online
NW-Descent—for larger k, online NW-Descent’s recall is smaller, while the scan
rate is higher. The problem of the decreased recall can be solved by increasing
the walks count. Actually, it is natural that the walks count depend on k—Ilarger
neighborhoods should be explored with more walks. If we look at the onwdes-5
with £ = 5, and onwdes-10 with £ = 10, we see that the increase of walks count for
larger k does solve the problem, having that the recall is greater for the second case.
On the other side, the scan rate increased due to a slower algorithm convergence.
Talking about online RW-Descent, interestingly, the recall of this approach does
not change with k£, meaning that this approach does not need additional walks for
larger neighborhoods. Moreover, scan rate of the online RW-Descent increases only
slightly. As a conclusion, for smaller k values, online NW-Descent behaves very
good—for onwdes-10 parameter configuration, it even outperforms RW-Descent by
achieving similar recall for the lower scan rate. However, for the larger k values,

online RW-Descent is the best option.
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Figure 6.7: Influence of parameter k£ on performance of k-NNG update algorithms.

Figure 6.8 show how results depend on distance function. All the approx-
imation algorithms have slightly lower recall for the case of DTW. Moreover,
NN-Descent report slightly higher scan rate value for DTW, while the other ap-
proaches did not show dependence of scan rate on distance function. What is
especially important to point out is that the online NW-Descent did not show sig-
nificant decrease of recall values for DTW, even though it was originally designed
only for L, distance function.

Dependence on simulation parameter sw is given in Figure 6.9. This parameter

actually influences time series’ dimensionalities. For that reason, all the approx-
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Figure 6.8: Influence of distance function on performance of k&-NNG update algo-
rithms.

imation algorithms reported slightly lower recall values for higher sw. For the
scan rate values, the dependence is also consistent among all the approximation

algorithms—all of them reported slight increase of scan rate values for higher sw.
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Figure 6.9: Influence of simulation parameter sw on performance of k--NNG update
algorithms.

Simulation parameters p and b both determine the extent to which data change
inside a single simulation iteration. For that reason we presented these two param-
eters together in Figure 6.10. As can be seen, these parameters do not influence
NN-Descent, since NN-Descent constructs k-NNG from the scratch, and therefore
is not aware of data changes. Regarding the update algorithms, their recall values
were expected to be negatively influenced by the increase of these two parameters,
for the same reason they are negatively influenced by times series variability. Sur-
prisingly, the experiments did not confirm this reasoning—online algorithms did
not report decrease of recall values for higher values of parameters p and b. The
only influence regarded these two parameters is that the increase of the parameter
p negatively influences scan rate values, which must be the case since higher p

value implies the update of NN lists of more dataset points.
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Figure 6.10: Influence of simulation parameters p and b on performance of k-NNG
update algorithms.

Figure 6.11 shows how the performance of the algorithms changes among dif-
ferent iterations of the simulations. The data shown in the figure is created in the
following way. Let i., be the number of iterations in a simulation. Each simulation
then produces i. recall, scan rate and harmonic mean values—one value per each
iteration. Let a resulting array of a simulation be an array that contains values of
some measure (either recall, scan rate or harmonic mean) obtained for individual
simulation’s iterations. Resulting arrays are then always of size ic,. Let 703 be

maximum 7., among all the simulations. We now increase sizes of resulting arrays

max
cnt

between each two successive array elements. Now that all simulations have evenly

of all the other simulations to @ by evenly inserting linearly interpolated values
sized resulting arrays, we are able to create averaged resulting array for each mea-
sure. The averaged resulting array is such that the value on the index ¢ represents
an average of elements positioned as well on the index 7 in all the simulations’
resulting arrays. Finally the figure presents averaged resulting arrays for different
measures and different algorithms.

First of all, let us notice that NN-Descent’s performance did not significantly
change during the simulations execution. As already discussed, this is due to the
fact that NN-Descent constructs k-NNGs independently in each iteration, and
hence its results do not depend on the previously created k-NNG, nor on the node
changes.

The second thing to notice is the decrease of scan rate values near the end of
simulations execution, for all the algorithms except for NN-Descent. This decrease

is caused only by the nature of the simulations. When a simulation approaches
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its end, sliding windows of many points are already very near, or exactly at their
rightmost positions. That implies lower extent of point changes near the end of
a simulation, which further implies lower scan rate values. Moreover, Figure 6.11
gives us a new insight into naive k-NNG update algorithm—its scan rate is actually
very near to the 1 throughout simulation, while only at the end it significantly
drops. Therefore, previously presented average scan rate values for this approach
might be a bit misleading, having that the average scan rate is highly influenced by
the small values appearing near the simulations’ end. The same does not hold for
online RW-Descent and online NW-Descent, because the drop of scan rate is not
high for these algorithms, meaning that it does not influence their average values
as much. Additionally, for these two algorithms, higher scan rates followed by a
sudden drop can be detected at the beginning of the simulations. The reason for
this is that these algorithms must create complete k-NNG approximation, while

later they only update NN lists for real subsets of graph nodes.
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Figure 6.11: Performance of the .-NNG update algorithms during the simulations
execution.

The main reason for the analysis of the simulation flow, presented in Fig-
ure 6.11, is to determine if online RW-Descent and online NW-Descent have a
problem of accumulating error. Namely, these algorithms are very dependent on
the previous k-NNG, so if the algorithms keep adding new erroneous neighbors,
while preserving the old ones, the quality of the approximation will drop over

time. As can be seen in the figure, the two algorithms do have this problem at
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some extent—the recall values decrease over time. Luckily, the decrease is not
high. The problem is even less evident for online NW-Descent than for online
RW-Descent—online NW-Descent has the initial high drop in recall values, which
is not related to the accumulating error, while afterwards the recall values only
slightly decrease over time. The reason for the initial drop is that the first k-NNG
is created by iteratively improving a random graph, so the points are introduced
with many different random neighborhoods. Afterwards, the algorithm, due to
its nature which implies reduced randomness, more often fails to introduce points
with their “good” neighborhoods. Even though the randomization phase helps, it
still does not achieve the results obtained when starting from a random graph.
Finally, even though the problem of accumulating error exists at some extent for
both online algorithms, there is a way to deal with it. After a certain number
of iterations, k-NNG can be generated from scratch, just like at the beginning of
the simulations. After that, the accumulated error is eliminated, and the update
process can be continued.

As a conclusion, the results of the online RW-Descent and online NW-Descent
proved to be very competitive. While reducing the recall values slightly, these
approaches introduce immense decrease of scan rate values. Moreover, online
RW-Descent performed generally better than online NW-Descent, while online
NW-Descent still has a benefit of lower accumulated error. The results also suggest
that these algorithms are naturally more suitable when data change at lower extent.
Moreover, the algorithms are performing much better than NN-Descent in small
to medium sized datasets, while for large datasets NN-Descent performs equally

well.
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Chapter 7

Conclusions

Having that k-NNG is used as a building block in many algorithms and problems,
fast approximation algorithms for its construction are a very important topic.
This thesis focused on such algorithms. We analyzed and explained the problems
of one existing approximation algorithm called NN-Descent, and we proposed its
modifications that overcome these problems to a certain extent. Additionally, we

proposed two NN-Descent-based approximation algorithms for .-NNG updates.
In the first part of the thesis we analyzed the poor performance of NN-Descent,

which produces highly inaccurate approximations on high-dimensional data. We
showed that the poor performance of NN-Descent is related to the phenomenon
called hubness. Hubness refutes basic NN-Descent’s assumption that two points
sharing a neighbor are also likely to be neighbors. As a consequence, the algorithm
performs poorly on data with hubness phenomenon. Additionally, we confirmed

these statements with an experimental analysis.

In order to address this NN-Descent’s shortcoming, we proposed five different
variants of the original algorithm: 1) hubness aware variant (HA-NN-Descent),
2) oversized NN list variant (O-NN-Descent), 3) random walk descent variant
(RW-Descent), 4) nearest walk descent variant (NW-Descent) and 5) randomized
NN-Descent variant (R-NN-Descent). To validate the results of the proposed
algorithms, we conducted the experiments on six high-dimensional datasets, two
of which are synthetic. The results of the experimental analysis show that all new
NN-Descent variants achieve better recalls at the certain expense of increased scan
rate. Moreover, the suitability of the individual algorithms depends on the nature
of a problem setup—some algorithms might be suitable for one problem setup, but

not for the other.

Since HA-NN-Descent increases scan rate values only slightly, it is most suitable
when the execution time is highly important. Contrary to that, O-NN-Descent

should be used when accuracy is more important than the execution time—this
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approach achieves high increase of recall values, but with more evident increase
of scan rates. RW-Descent and NW-Descent are very convenient when one needs
to configure the amount of “work” on individual nodes’ neighborhood approxima-
tions. RW-Descent achieves slightly higher recall than NW-Descent, but it also
has higher scan rate. Moreover, NW-Descent should be used in a similar man-
ner as HA-NN-Descent, i.e. when execution time is highly important. Finally,
R-NN-Descent is usually second best with respect to recall values, the only bet-
ter algorithm being O-NN-Descent. However, this algorithm produces scan rate
values that are usually higher than the ones obtained by O-NN-Descent, which
makes it rarely the best choice.

The second research direction of this thesis were approximation algorithms for
k-NNG updates. To the best of our knowledge, there are not many algorithms for
k-NNG updates—the focus of the literature are the algorithms that build k-NNG
from scratch. In this thesis we proposed two online approximation algorithms
for k.-NNG updates: online RW-Descent and online NW-Descent. We conducted
extensive simulation-based experimental analysis on time series data. The exper-
iments show that these two algorithms outperform brute-force update algorithm
and NN-Descent. In general, online RW-Descent and online NW-Descent report
slightly lower recall values than NN-Descent, but the decrease of scan rate values

is significant, especially for the smaller datasets.

7.1 Directions for future work

The algorithms presented in this thesis can be further explored and improved in
number of ways. In this section we will present some of them.

NN-Descent’s sampling technique can be improved by replacing random selec-
tion of p - k points by some more appropriate selection that makes certain assess-
ments and chooses p - k best candidates. Since O-NN-Descent is advised to be
used together with the sampling technique, the improved sampling would improve
O-NN-Descent results as well.

In HA-NN-Descent algorithm, the replacement probability relies on linear map-
ping of hubness values to the interval [0, 1]. However, some non-linear mappings,
such as logarithmic transformations, could also be used instead. Therefore, various
mappings can be explored, in order to get the best performing one.

In our experiments we used the simplest possible balancing function for
RW-Descent and NW-Descent. This balancing function assigns the same number

of walks to all dataset points. However, these two algorithms might be significantly
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improved with a better balancing function that should probably rely on hubness
values approximations of dataset points. Therefore, another direction for future
work would be to explore different balancing functions.

In this thesis, in Chapter 5, we analyzed all the proposed algorithms separately,
even though some of the approaches are complementary and could be combined to-
gether. By combining multiple approaches together, one might achieve even better
results. For example, HA-NN-Descent, O-NN-Descent and R-NN-Descent could
be all used together, each having its own role—HA-NN-Descent would make sure
that hubs are not being extensively compared with other points, O-NN-Descent
would increase NN lists, aiming for a higher recall, while R-NN-Descent would try
to place points in their "good" initial neighborhoods. Moreover, RW-Descent, as
well as NW-Descent, could be combined with O-NN-Descent and R-NN-Descent—
it would be interesting to analyze how RW-Descent and NW-Descent behave in
extended neighborhoods introduced in O-NN-Descent, and also to see whether the
randomization phase introduced in R-NN-Descent would be beneficial.

One additional research direction is theoretical analyses of the proposed al-
gorithms. Such analyses would give more insights into the performance of the
algorithms.

Finally, regarding the online algorithms for k-NNG updates, there is a possi-
bility to improve these algorithms by using a balancing function that assigns more

walks and random comparisons to the points that changed more.
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Appendix A

Console application for algorithms related
to k-NN graphs

In order to conduct the experiments presented in this thesis, we developed a C++
library for algorithms related to k-NNG. Moreover, we developed a console appli-
cation that provides an easy way to use the library. In this appendix, we present
the commands supported by the console application. Each command, together
with its parameters, is passed to the console application through its arguments.
The commands are described with the following properties: 1) command’s name
(command), 2) syntax of the command (syntaz), 3) list of descriptions of each
command’s parameter (params), and 4) general command’s description (desc).
Complete C++ source code of the library can be found on the GitHub repository

https://github.com/brankicabratic/knng.

Command: knng
Syntax: knng ds_path ds_type ds_inst_type out_path dist k
Params: ds_path - Path to the dataset file.
ds_type - Dataset type. Possible wvalues:
csv[delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)
ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.
out_path - Path to the file where k-NN graph will be stored.
dist - Distance function. Possible values: 12, dtw.
k - Number of neighbors in k-NN graph.
Desc: Creates k—NN graph.
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Command:

Syntax:

Params:

Desc:

nndescent

nndescent ds_path ds_type ds_inst_type out_path dist k

nndes_type (it_count | conv_ratio) [sampling]

ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

nndes_type - NN-Descent termination condition. Possible
values: "it" (NN-Descent terminates when given number of
iterations is reached), "conv" (NN-Descent terminates
when number of updates is less than threshold).

it_count - This value is present when nndes_type is "it".
It represents the number of algorithm’s iterations.

conv_ratio - This value is present when nndes_type is
"conv". If there are less than conv_ratioxnxk updates of
NN lists in most recent iteration, the algorithm
terminates.

sampling - The portion of neighbors to be used in local
joins. If not given, value 1 is assumed.

Creates k-NN graph approximation by using NN-Descent

algorithm.

Command:

Syntax:

Params:

hanndescent
hanndescent ds_path ds_type ds_inst_type out_path dist k

ha_nndes_type (it_count
ds_path - Path to the dataset file.
ds_type - Dataset type. Possible values:

conv_ratio) h_min h_max [sampling]

csv[delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)
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ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

ha_nndes_type - Hubness aware NN-Descent termination
condition. Possible values: "it" (HA-NN-Descent
terminates when given number of iterations is reached),
"conv" (HA-NN-Descent terminates when number of updates
is less than threshold).

it_count - This value is present when ha_nndes_type 1is
"it". It represents the number of algorithm’s iterations.

conv_ratio - This value is present when ha_nndes_type is
"conv". If there are less than conv_ratioxnxk updates of
NN lists in most recent iteration, the algorithm
terminates.

h_min - Minimum hubness value for replacement probability.

h_max - Maximum hubness value for replacement probability.

sampling - The portion of neighbors to be used in local

joins. If not given, value 1 is assumed.

Desc: Creates k-NN graph approximation by using hubness aware
NN-Descent algorithm.

Command: osnndescent

Syntax: osnndescent ds_path ds_type ds_inst_type out_path dist k
os_nndes_type (it_count | conv_ratio) k2 [sampling]

Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv[delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

os_nndes_type - O-NN-Descent termination condition.
Possible values: "it" (O-NN-Descent terminates when

given number of iterations is reached), "conv"
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(O-NN-Descent terminates when number of updates is less
than threshold).

it_count - This value is present when os_nndes_type is
"it". It represents number of algorithm’s iterations.

conv_ratio - This value is present when os_nndes_type is
"conv". If there are less than conv_ratioxnxk updates of
NN lists in most recent iteration, the algorithm
terminates.

k2 - Enlarged neighborhood size.

sampling - The portion of neighbors to be used in local

joins. If not given, value 1 is assumed.

Desc: Creates k-NN graph approximation by using O-NN-Descent
algorithm.

Command: rwdescent

Syntax: rwdescent ds_path ds_type ds_inst_type out_path dist k
rws_count rand_count rwdes_type (it_count | max_it_count)
[conv_ratio] [rw_pr]

Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

rws_count - Random walks count. It is the number of random
walks that start from each node (it is recommended to be
some factor of k wvalue).

rand _count - Number of random comparisons per point in the
randomization phase.

rwdes_type - RW-Descent termination condition. Possible
values: "it" (RW-Descent terminates when given number of
iterations is reached), "conv" (RW-Descent terminates
when number of updates of each node’s NN list is less
than threshold) .

it_count - This value is present when rwdes_type is "it".

It represents the number of algorithm’s iterations.
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max_it_count - This value is present when rwdes_type is
"conv". It represents the upper bound on algorithm’s
iterations count. Namely, the algorithm terminates after
max_it_count iterations, regardless of convergence.

conv_ratio - This value is present when rwdes_type is
"conv". A point converges when there is in average less
than conv_ratioxrws_count updates in a few recent
iterations. The algorithm converges when all points
converge.

rw_pr - Algorithm for edge traversal probabilities.

Possible values: uniform, edge_maturity.

Desc: Creates k-NN graph approximation by using RW-Descent
algorithm.

Command: nwdescent

Syntax: nwdescent ds_path ds_type ds_inst_type out_path dist k
ws_count rand_count nwdes_type (it_count | max_it_count)
[conv_ratio]

Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv[delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

ws_count - Walks count. It is the number of walks that
start from each node (it is recommended to be some
factor of k wvalue).

rand _count - Number of random comparisons per point in the
randomization phase.

nwdes_type - NW-Descent termination condition. Possible
values: "it" (NW-Descent terminates when given number of
iterations is reached), "conv" (NW-Descent terminates
when number of updates of each node’s NN list is less
than threshold) .

it_count - This value is present when nwdes_type is "it".

It represents the number of algorithm’s iterations.
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max_it_count - This value is present when nwdes_type is
"conv". It represents the upper bound on algorithm’s
iterations count. Namely, the algorithm terminates after
max_it_count iterations, regardless of convergence.

conv_ratio - This value is present when nwdes_type is
"conv". A point converges when there is in average less
than conv_ratioxnws_count updates in a few recent

iterations. The algorithm converges when all points

converge.

Desc: Creates k-NN graph approximation by using NW-Descent
algorithm.

Command: rnndescent

Syntax: rnndescent ds_path ds_type ds_inst_type out_path dist k
r_nndes_type (it_count | conv_ratio) r [sampling]

Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv[delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

out_path - Path to the file where k-NN graph approximation
will be stored.

dist - Distance function. Possible values: 12, dtw.

k - Number of neighbors in k-NN graph.

r nndes_type - Randomized NN-Descent termination condition.
Possible values: "it" (Randomized NN-Descent terminates
when given number of iterations is reached), "conv"
(Randomized NN-Descent terminates when number of updates
is less than threshold).

it_count - This value is present when r_nndes_type is "it".
It represents number of algorithm iterations.

conv_ratio - This value is present when r_nndes_type is
"conv". If there are less than conv_ratioxnxk updates of
NN lists in most recent iteration, the algorithm
terminates.

r — Number of random comparisons of a single point in the
randomization phase.

sampling - The portion of neighbors to be used in local

102




APPENDIX A. CONSOLE APPLICATION FOR ALGORITHMS
RELATED TO K-NN GRAPHS

joins. If not given, value 1 is assumed.

Desc: Creates k-NN graph approximation by using randomized
NN-Descent algorithm.
Command: partial_knng
Syntax: partial_knng ds_path ds_type ds_inst_type out_path dist k
min_id max_id
Params: ds_path - Path to the dataset file.
ds_type - Dataset type. Possible wvalues:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)
ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.
out_path - Path to the file where partial k-NN graph will
be stored.
dist - Distance function. Possible values: 12, dtw.
k - Number of neighbors in k-NN graph.
min_id - NN lists of points with id less than min_id will
not be calculated.
max_id - NN lists of points with id greater than max_id
will not be calculated.
Desc: Creates NN lists for all nodes whose id is a value in range
[min_id, max_id].
Command: reduce_knng
Syntax: reduce_knng ds_path ds_type ds_inst_type knng_path
out_path k
Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

knng_path - Path to the file where original k-NN graph is
stored.

out_path - Path to the file where reduced k-NN graph will

be stored.
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k - Number of neighbors in reduced k-NN graph.

Desc: Reduces k-NN graph to given k.
Command: recall
Syntax: recall real_knng_path approx_knng_path [out]
Params: real _knng path - Path to the file where real k-NN graph is
stored.
approx_knng path - Path to the file where k-NN graph
approximation is stored.
out - If present, the recall will be output to the file
called the same as k-NNG approximation file, but with
suffix "_recall". Possible wvalues: "out".
Desc: Outputs the recall of the k-NN graph approximation.
Command: simulation
Syntax: simulation ds_path ds_type ds_inst_type sliding_window runs
out k dist (batch_size | (batch_size_min batch_size_max
[points_min points_max]))
Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
timeseries.

sliding_window - Sliding window size.

runs - Number of simulation runs.

out - If value "cout" is given, the results will be written
in the standard output. Otherwise, the file path should
be given, in which case the results will be written in
that file. The results of a single iteration are written
in a single line, formatted in the following way:
"time,dist_calcs{;time,dist_calcs, recall}", where curly
braces are not a part of the output, but denote
repeating part (each repeated string represents results
of one approximation algorithm). The part before curly
braces represents results of exact k-NN graph
construction.

k - k value of the k—-NN Graph.

dist - Distance function. Possible values: 12, dtw.

batch_size - The size of the batch that will be loaded into

time series during the updates.
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batch_size_min - When this value is given, the size of the
batch that will be loaded into time series during the
updates is randomly chosen. This value is the lower
bound of randomly chosen batch wvalue.

batch_size_max - When this value is given, the size of the
batch that will be loaded into time series during the
updates is randomly chosen. This value is the upper
bound of randomly chosen batch wvalue.

points_min - When this value is given, the number of points
that will be updated during one update is randomly
chosen. This value is then lower bound of number of
updated points.

points_max - When this value is given, the number of points
that will be updated during one update is randomly
chosen. This value is then upper bound of number of

updated points.

Desc: Executes simulation whose purpose is to evaluate
performance of approximation algorithms for k-NN graph
updates.

Command: prepare_simulation

Syntax: prepare_simulation ds_path ds_type ds_inst_type
sliding_window runs k dist (batch_size | (batch_size_min
batch_size_max [points_min points_max]))

Params: ds_path - Path to the dataset file.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
timeseries.

sliding window - Sliding window size.

runs - Number of simulation runs.

k - k value of the k-NN Graph.

dist - Distance function. Possible values: 12, dtw.

batch_size - The size of the batch that will be loaded into
time series during the updates.

batch_size_min - When this value is given, the size of the
batch that will be loaded into time series during the
updates is randomly chosen. This value is the lower

bound of randomly chosen batch value.
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batch_size_max - When this value is given, the size of the
batch that will be loaded into time series during the
updates is randomly chosen. This value is the upper
bound of randomly chosen batch value.

points_min - When this value is given, the number of points
that will be updated during one update is randomly
chosen. This value is then lower bound of number of
updated points.

points_max - When this value is given, the number of points
that will be updated during one update is randomly
chosen. This value is then upper bound of number of
updated points.

Desc: Does a preparation for a simulation by creating all k-NN
graphs that are needed for calculation of approximations’
recall values. If this command is not ran before command
"simulation", command "simmulation" will construct these
graphs itself. These graphs are stored in cache_sim folder,
which is created for this purpose on the same location
where executable file is stored.

Command: clear sim cache

Syntax: clear_sim_cache ds_name

Params: ds_name - Name of the dataset, which is considered to be

the file name of the dataset, without extension.

Desc: Removes all simulation cache for the given dataset.

Command: create_ds

Syntax: create_ds ds_path ds_type ds_inst_type inst_cnt dim
[min_val max_val]

Params: ds_path - Output path.

ds_type - Dataset type. Possible values:
csv([delimiter] {label_index} (Represents a CSV format.
Delimiter should be given in square brackets. Square
brackets can be omitted, in which case delimiter is
comma. Label index is given in curly brackets. Curly
brackets can also be omitted in which case it is assumed
that the dataset is not labeled.)

ds_inst_type - Type of dataset instances. Possible values:
point, timeseries.

inst_cnt - Number of instances.

dim - Dataset dimensionality.

min_val (default -1) - Instances’ values are generated
randomly, minimum value being min_val.

max_val (default 1) - Instances’ values are generated

randomly, maximum value being max_val.
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Desc: Creates new dataset by generating values randomly (by using

uniform distribution).

Command: script
Syntax: script script_path
Params: script_path - Path of the script file.

Desc: Executes commands from the external script file.

Command: ;

Syntax: command {; command }

Params: command - Arbitrary command with all its belonging
parameters.

Desc: All given commands will be executed one after the other.

Command: &é&

Syntax: command {&& command }

Params: command - Arbitrary command with all its belonging
parameters.
Desc: Executes commands one by one. The current command is

executed only if the preceding command has executed

successfully.
Command: ||
Syntax: command {|| command }
Params: command - Arbitrary command with all its belonging
parameters.
Desc: Executes commands one by one. The current command is

executed only if the preceding command has executed

unsuccessfully.

Command: help

Syntax: help [command]

Params: command - Arbitrary command.

Desc: Outputs help. If "command" parameter is not present, all
available commands will be listed together with their
descriptions. Otherwise, if command parameter is present,

only description of that command will be shown.
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Appendix B

Detailed results of the experiments related

to k-NIN graph update algorithms

In Chapter 6 we proposed two algorithms for .-NNG update. The algorithms were
evaluated by the extensive experimental analysis. In this appendix we show more
detailed insight into the results of the experiments. Table B.1 present average
recall and scan rate values for each dataset and each examined algorithm.
Resulting files of all conducted simulations can be found on the GitHub repos-

itory: https://github.com/brankicabratic/knng-update-experiments.

Table B.1: Average simulations results per dataset.

naive nndes orwdes-5  orwdes-10 onwdes-5 onwdes-10

dataset
rc ST rc ST rc ST rc sr rc ST rc ST

ACSF1 1.0 095 1.0 1.62 091 0.23 097 035 0.88 0.27 0.92 0.35
Adiac 1.0 087 099 061 084 0.08 093 0.12 0.83 0.09 0.91 0.12
ArrowHead 1.0 092 1.0 163 092 02 097 031 09 0.25 0.93 0.34
Beef 1.0 092 1.0 357 09 044 095 069 0.83 0.66 0.85 0.85
BeetleFly 1.0 092 1.0 492 077 064 079 1.01 0.69 1.01 0.7 1.33
BirdChicken 1.0 09 10 453 0.72 048 0.77 0.77 0.63 0.85 0.68 1.11
BME 1.0 094 099 1.82 0.78 0.21 0.83 0.32 0.71 0.27 0.77 0.36
Car 1.0 092 1.0 232 084 025 083 0.39 0.72 0.34 0.78 0.44
CBF 1.0 092 093 06 071 0.09 084 0.14 0.63 0.09 0.81 0.15
Chinatown 1.0 0.84 0.99 1.18 0.77 0.16 0.88 0.24 0.79 0.18 0.89 0.25
ChlorineConcentration 1.0 0.82 099 0.15 0.79 0.02 0.89 0.03 0.8 0.02 0.89 0.03
CinCECGTorso 1.0 095 099 0.37 089 0.05 096 0.07 0.84 0.06 0.91 0.08
Coffee 1.0 0.89 1.0 361 07 039 072 058 0.69 0.63 0.7 0.75
Computers 1.0 094 097 083 089 0.06 094 0.1 0.8 0.08 0.87 0.12
CricketX 1.0 093 098 064 085 0.09 093 0.13 0.78 0.1 0.89 0.15
CricketY 1.0 0.93 0.98 0.64 0.84 0.09 093 0.13 0.77 0.1 0.89 0.15
CricketZ 1.0 093 098 0.64 084 0.09 093 0.14 0.78 0.1 0.89 0.15
Crop 1.0 085 0.84 0.04 062 0.02 0.76 0.02 0.54 0.02 0.72 0.02
DiatomSizeReduction 1.0 0.88 0.99 1.15 0.87 0.13 094 0.2 087 0.16 091 0.2
DistalPhalanxOutlineAgeGroup 1.0 089 098 085 0.8 0.11 0.89 0.17 0.79 0.12 0.88 0.18
DistalPhalanxOutlineCorrect 1.0 09 098 058 0.8 008 09 0.12 0.77 0.09 0.88 0.13
DistalPhalanxTW 1.0 0.89 098 085 0.8 0.11 0.89 0.17 0.79 0.12 0.88 0.18
DodgerLoopDay 1.0 091 098 228 0.76 0.3 0.83 049 0.7 0.37 0.81 0.57
DodgerLoopGame 1.0 091 098 228 075 03 084 049 0.7 0.37 0.81 0.58

Continued on the next page.
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Table B.1: Average simulations results per dataset (continued).

naive nndes orwdes-5  orwdes-10 onwdes-5 onwdes-10
dataset
rc ST rc ST rc sr rc sr rc ST rc ST
DodgerLoopWeekend 1.0 091 098 228 0.76 0.3 0.82 0.48 0.71 0.37 0.78 0.56
Earthquakes 1.0 0.93 093 0.89 0.76 0.14 0.8 0.22 0.67 0.14 0.82 0.23
ECG200 1.0 0.93 0.99 1.77 0.88 0.27 096 0.41 0.86 0.32 0.92 0.45
ECG5000 1.0 086 096 0.14 074 0.03 0.87 0.04 0.7 0.03 0.86 0.04
ECGFiveDays 1.0 0.88 0.99 0.56 0.84 0.08 094 0.11 0.8 0.08 0.9 0.12
ElectricDevices 1.0 0.93 0.74 0.05 0.65 0.03 0.74 0.03 0.58 0.03 0.68 0.03
EOGHorizontalSignal 1.0 095 099 061 092 0.06 097 0.09 0.83 0.08 0.86 0.1
EOGVerticalSignal 1.0 0.95 0.99 0.61 092 0.06 097 0.09 0.84 0.08 0.87 0.11
EthanolLevel 1.0 0.94 0.99 047 093 0.06 098 0.08 091 0.07 0.93 0.09
FaceAll 1.0 0.89 0.95 0.29 0.72 0.05 0.86 0.07 0.61 0.05 0.79 0.07
FaceFour 1.0 0.93 0.99 267 083 038 083 0.6 0.76 0.47 0.81 0.68
FacesUCR 1.0 0.88 0.95 0.28 0.73 0.05 0.86 0.07 0.61 0.05 0.8 0.07
FiftyWords 1.0 091 099 0.55 0.89 0.08 0.96 0.11 0.87 0.09 0.93 0.12
Fish 1.0 09 10 1.12 09 014 097 02 09 0.16 094 0.21
FordA 1.0 0.92 095 0.15 0.74 0.03 0.87 0.04 0.68 0.04 0.84 0.05
FordB 1.0 0.92 094 0.16 0.74 0.04 0.87 0.05 0.68 0.04 0.84 0.05
FreezerRegularTrain 1.0 091 098 0.19 088 0.03 095 0.04 0.83 0.03 0.9 0.04
FreezerSmallTrain 1.0 091 098 0.2 0.88 0.03 095 0.04 083 0.03 09 0.04
Fungi 1.0 093 1.0 1.66 0.92 0.21 097 0.31 0.88 0.26 0.92 0.35
GestureMidAirD1 1.0 083 10 114 093 0.1 098 0.16 0.89 0.13 0.91 0.18
GestureMidAirD2 1.0 08 1.0 1.14 093 0.1 098 0.16 0.88 0.13 0.9 0.19
GestureMidAirD3 1.0 0.85 1.0 1.11 094 0.09 098 0.14 0.88 0.12 0.89 0.16
GesturePebbleZ1 1.0 082 099 132 09 0.14 096 0.22 0.84 0.17 0.91 0.25
GesturePebbleZ2 1.0 0.82 099 132 09 0.14 096 0.22 0.84 0.17 0.91 0.25
GunPoint 1.0 094 1.0 1.63 093 0.18 098 0.26 0.89 0.23 0.92 0.3
GunPointAgeSpan 1.0 093 10 087 093 0.09 098 0.13 0.89 0.11 0.91 0.14
GunPointMaleVersusFemale 1.0 094 1.0 0.87 093 0.09 098 0.13 0.89 0.11 091 0.14
GunPointOldVersusYoung 1.0 094 1.0 0.87 093 0.09 098 0.13 0.89 0.11 091 0.14
Ham 1.0 091 099 1.7 088 024 096 0.37 0.87 0.28 0.93 0.4
HandOutlines 1.0 094 0.99 0.36 0.93 0.05 098 0.07 092 0.05 0.94 0.07
Haptics 1.0 091 1.0 09 091 0.11 097 0.16 09 0.12 093 0.17
Herring 1.0 09 10 223 065 02 069 032 0.6 0.29 0.63 0.36
HouseTwenty 1.0 095 099 19 0.78 0.18 0.83 0.29 0.64 0.25 0.73 0.36
InlineSkate 1.0 095 1.0 0.67 094 0.07 098 0.1 0.89 0.09 0.9 0.12
InsectEPGRegularTrain 1.0 094 1.0 1.12 095 0.07 098 0.1 082 0.11 0.83 0.14
Insect EPGSmallTrain 1.0 094 1.0 1.25 096 0.07 098 0.11 0.83 0.12 0.83 0.15
InsectWingbeatSound 1.0 0.92 0.99 0.27 0.87 0.05 095 0.06 0.83 0.05 0.92 0.07
ItalyPowerDemand 1.0 085 098 049 0.73 007 0.85 0.1 072 0.07 0.85 0.1
LargeKitchenAppliances 1.0 0.94 0.98 0.57 095 0.04 097 0.05 0.86 0.05 0.9 0.06
Lightning2 1.0 092 1.0 235 091 024 096 0.39 0.84 0.36 0.88 0.53
Lightning7 1.0 092 1.0 215 091 0.25 097 041 0.83 0.35 0.9 0.52
Mallat 1.0 09 099 024 089 0.04 096 0.05 0.87 0.04 0.93 0.05
Meat 1.0 09 1.0 215 0.57 0.19 06 0.29 055 0.28 0.57 0.33
Medicallmages 1.0 0.89 0.98 046 0.83 0.07 093 0.1 0.77 0.08 0.89 0.11
MelbournePedestrian 1.0 0.86 0.98 0.17 0.76 0.03 0.87 0.04 0.74 0.03 0.86 0.04
MiddlePhalanxOutlineAgeGroup 1.0 09 099 0.83 0.83 0.11 091 0.17 082 0.12 09 0.17
MiddlePhalanxOutlineCorrect 1.0 0.89 0.98 0.57 0.79 0.08 0.89 0.12 0.78 0.08 0.88 0.12
MiddlePhalanxTW 1.0 089 099 083 081 0.11 09 0.16 0.82 0.12 0.89 0.17
MixedShapesRegularTrain 1.0 092 099 0.2 091 0.04 097 0.05 0.9 0.04 0.94 0.05
MixedShapesSmallTrain 1.0 0.93 0.99 0.23 091 0.04 097 0.05 0.9 0.04 0.94 0.05
MoteStrain 1.0 091 096 043 0.78 0.07 0.9 0.11 0.69 0.08 0.84 0.11

Continued on the next page.
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APPENDIX B. DETAILED RESULTS OF THE EXPERIMENTS
RELATED TO K-NN GRAPH UPDATE ALGORITHMS

Table B.1: Average simulations results per dataset (continued).

naive nndes orwdes-5  orwdes-10 onwdes-5 onwdes-10
dataset
rc ST rc sr rc ST rc ST rc ST rc ST
NonlInvasiveFetal ECGThorax1 1.0 091 0.97 0.17 0.83 0.03 0.92 0.04 0.79 0.04 0.9 0.05
NonlInvasiveFetal ECGThorax2 1.0 091 0.98 0.17 0.85 0.03 0.94 0.04 0.81 0.03 0.91 0.04
OliveOil 1.0 09 1.0 326 062 03 063 042 0.61 0.48 0.62 0.56
OSULeaf 1.0 093 099 0.99 091 0.13 097 02 09 0.15 094 0.21
PhalangesOutlinesCorrect 1.0 0.89 0.97 0.24 0.78 0.04 0.88 0.06 0.73 0.04 0.86 0.06
Phoneme 1.0 094 094 03 0.72 0.05 0.8 0.08 0.6 0.05 0.8 0.08
PickupGestureWiimoteZ 1.0 08 1.0 279 094 029 098 0.47 0.85 0.41 0.89 0.6
PigAirwayPressure 1.0 095 1.0 1.15 094 0.1 0.98 0.15 0.85 0.14 0.86 0.18
PigArtPressure 1.0 096 1.0 1.22 093 0.15 098 0.23 0.89 0.19 0.92 0.26
PigCVP 1.0 096 0.99 1.27 092 0.16 0.98 0.24 0.89 0.19 0.92 0.27
PLAID 1.0 056 0.99 0.45 0.91 0.02 0.96 0.03 0.83 0.02 0.87 0.03
Plane 1.0 086 1.0 156 0.85 0.2 092 0.3 0.83 0.23 0.88 0.3
PowerCons 1.0 093 0.99 1.18 0.86 0.18 0.94 0.27 0.77 0.2 0.9 0.3

ProximalPhalanxOutlineAgeGroup 1.0 0.9 099 0.77 083 0.1 091 0.15 083 0.11 091 0.15
ProximalPhalanxOutlineCorrect 1.0 0.89 098 056 0.81 007 09 011 0.8 0.08 0.89 0.11

ProximalPhalanxTW 1.0 09 099 0.77 0.83 0.1 091 0.15 0.83 0.11 091 0.15
RefrigerationDevices 1.0 094 097 063 088 0.08 095 0.12 0.76 0.09 0.87 0.13
Rock 1.0 092 1.0 3.13 0.86 0.19 0.87 0.29 0.78 0.39 0.78 0.5

ScreenType 1.0 094 097 059 09 0.05 095 0.07 0.81 0.06 0.87 0.08
SemgHandGenderCh2 1.0 095 091 0.67 062 0.1 0.78 0.16 041 0.1 0.68 0.19
SemgHandMovementCh2 1.0 095 091 067 062 01 0.78 0.16 0.41 0.1 0.68 0.19
SemgHandSubjectCh2 1.0 095 091 0.67 0.62 0.1 0.78 0.16 0.41 0.1 0.68 0.19
ShakeGestureWiimoteZ 1.0 086 1.0 281 093 0.34 098 0.56 0.86 0.47 09 0.69
ShapeletSim 1.0 095 09 239 0.69 0.36 081 0.62 0.61 0.39 0.78 0.67
ShapesAll 1.0 092 099 043 091 0.06 097 0.09 0.89 0.07 0.94 0.09
SmallKitchenAppliances 1.0 094 096 059 09 0.04 094 0.06 0.82 0.05 0.87 0.07
SmoothSubspace 1.0 097 096 156 08 025 09 039 073 026 0.86 0.41
SonyAIBORobotSurfacel 1.0 0.89 097 0.82 0.76 0.11 0.87 0.17 0.68 0.12 0.84 0.19
SonyAIBORobotSurface2 1.0 091 096 0.56 0.76 0.09 0.88 0.14 0.64 0.1 0.83 0.14
StarLightCurves 1.0 093 0.99 0.08 091 0.02 0.97 0.03 0.89 0.02 0.94 0.03
Strawberry 1.0 0.86 0.99 049 0.84 0.06 0.93 0.09 0.85 0.07 0.92 0.09
SwedishLeaf 1.0 0.85 0.98 047 0.78 0.07 09 0.1 073 0.07 0.87 0.1

Symbols 1.0 09 099 047 091 0.06 0.97 0.09 09 0.07 0.93 0.09
SyntheticControl 1.0 094 094 086 0.76 0.13 0.87 0.21 0.66 0.14 0.81 0.22
ToeSegmentationl 1.0 094 099 147 09 021 097 033 088 0.25 0.93 0.36
ToeSegmentation2 1.0 095 1.0 1.99 0.92 0.27 097 0.43 088 0.35 0.92 0.5

Trace 1.0 094 099 1.69 093 0.19 097 029 0.86 0.25 0.89 0.34
TwoLead ECG 1.0 09 099 046 0.84 0.07 092 0.1 081 0.07 09 0.1

TwoPatterns 1.0 092 0.89 0.14 0.68 0.04 0.81 0.05 0.57 0.04 0.75 0.05
UMD 1.0 094 099 192 0.79 0.22 0.83 034 0.69 0.28 0.77 04

UWaveGestureLibraryAll 1.0 092 098 0.15 086 0.03 094 0.04 08 0.03 091 0.04
UWaveGestureLibraryX 1.0 091 0.98 0.15 0.87 0.03 0.95 0.04 0.83 0.03 0.92 0.04
UWaveGestureLibraryY 1.0 091 098 0.15 0.87 0.03 0.95 0.04 0.83 0.03 0.92 0.04
UWaveGestureLibraryZ 1.0 091 098 0.15 087 0.03 095 0.04 0.83 0.03 0.92 0.04
Wafer 1.0 09 098 0.09 09 0.02 096 0.02 0.83 0.02 0.89 0.03
Wine 1.0 087 1.0 224 0.56 0.2 0.58 0.28 0.54 0.28 0.56 0.31
WordSynonyms 1.0 09 099 055 089 0.08 096 0.11 0.87 0.09 0.93 0.12
Worms 1.0 095 1.0 145 093 0.18 0.98 0.27 0.89 0.22 0.92 0.32
WormsTwoClass 1.0 095 1.0 145 0.93 0.18 0.98 0.27 0.89 0.22 0.92 0.31
Yoga 1.0 09 097 0.18 087 0.03 094 0.04 0.85 0.03 0.92 0.04
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Prosireni 1zvod

Medusobno sli¢éni (bliski) objekti su u manjoj ili ve¢oj meri sastavni deo mnogih
problema. Pri reSavanju pomenutih problema vrlo ¢esto se koristi graf k£ najblizih
suseda (k-NN graf) u ulozi strukture podataka koja modelira veze sli¢nosti izmedu
objekata (2, 3, 5, 10, 14, 24, 25, 32, 35, 44, 45, 60|. k-NN graf je usmeren graf ¢iji
su ¢vorovi sami objekti. Svaki ¢vor je povezan usmerenim granama sa njegovih k
najblizih suseda. Najjednostavniji nac¢in generisanja k-NN grafa jeste racunanje
distanci izmedu svaka dva objekta, nakon cega se svakom objektu dodeli nje-
govih k£ najblizih suseda. Ovakav pristup podrazumeva (Z) rac¢unanja distanci, sto
uzrokuje kvadratnu vremensku slozenost.

Postoje brojni algoritmi za generisanje k-NN grafova ¢iji je cilj smanjenje vre-
menske slozenosti. Ovakvi algoritmi se mogu podeliti u tri klase. Prva klasa
podrazumeva algoritme koji u problem uvode restrikcije povoljnih karakteristika,
koje onda omogucavaju dalju optimizaciju [1, 2, 19, 39, 41, 50, 54, 55]. Drugi
nac¢in optimizacije generisanja k-NN grafova je paralelizacija, te druga klasa pred-
stavlja paralelne algoritme za generisanje k-NN grafova [11, 12, 15, 34, 45|. Treca
klasa podrazumeva aproksimativne algoritme, koji za cilj imaju minimizovanje vre-
menske slozenosti algoritma i maksimizovanje ta¢nosti finalne aproksimacije k-NN
grafa [13, 20, 30, 42, 43, 51, 57, 59|.

Upravo aproksimativni algoritmi za generisanje k-NN grafova su fokus ove teze.
NN-Descent je jedan takav algoritam koji se pokazao vrlo efikasnim [20]|. Zasno-
van je na pretpostavci: ,sused mog suseda je s velikom verovatnoé¢om i moj sused”.
Ovaj algoritam pocinje od sluc¢ajnog k-NN grafa, kog potom iterativno unapreduje.
Unutar jedne iteracije, algoritam rac¢una distance izmedu tacki koje imaju zajed-
nickog suseda, a potom te distance koristi za azuriranje aproksimacije k-NN grafa.
Iako vrlo efikasan u vecini sluc¢ajeva, ovaj algoritam se nije dobro pokazao nad
visokodimenzionalnim podacima.

Prvi pravac istrazivanja ove teze podrazumeva detekciju i objasnjavanje razloga
loseg ponasanja NN-Descent algoritma nad podacima visoke dimenzionalnosti.

Pokazali smo da je ovakvo ponaSanje algoritma mahom uslovljeno frenomenom
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zvanim habnes [8, 9, 48]. Habnes je jedna od posledica kletve dimenzionalnosti,
koja podrazumeva postojanje ¢vorova izuzetno visokih ulaznih stepena. Cvorovi
visokih ulaznih stepena umanjuju verovatnoc¢u da dve tacke koje imaju zajednickog
suseda takode budu susedi. Buduéi da je upravo ova verovatnoca srz pretpostavke
NN-Descent algoritma, jasno je da habnes ima negativan uticaj. Sve pomenuto je

u okviru teze potvrdeno eksperimentalnim analizama.

U okviru teze predstavili smo pet novih modifikacija NN-Descent algoritma,
koje za cilj imaju ublazavanje gorepomenutog problema. Prva modifikacija je za-
snovana na Cinjenici da ¢vorovi visokih ulaznih stepena imaju dobre aproksimacije
najblizih suseda, dok su glavni problem zapravo ¢vorovi niskih ulaznih stepena,
Cije su aproksimacije susedstva vrlo lose. U skladu sa tim, algoritam za cilj ima
da usmeri racunarske resurse upravo na odredivanje suseda ¢vorova niskih ulaznih
stepena. Druga modifikacija uzima u obzir ¢injenicu da je tacnost NN-Descent
algoritma veca za vece k vrednosti. Ideja je onda da se generise k-NN graf za
veéu k vrednost, a da se potom redukuje na zeljenu £ vrednost. Treca i Cetvrta
modifikacija omoguéavaju da se koli¢ina utroSenih ra¢unarskih resursa podesava
na nivou pojedinac¢nih ¢vorova, Sto onda moze dalje da se iskoristi tako da se vise
resursa dodeli ¢vorovima koji imaju losa susedstva. Peta, a ujedno i poslednja,
modifikacija, zasnovana je na Cinjenici da pozicija ¢vora u inicijalnom slu¢ajnom
grafu igra veliku ulogu u tacnosti finalne aproksimacije susedstva. Stoga ova mod-
ifikacija sprovodi dodatna nasumicna poredenja tacki koje su u pogresnom sused-
stvu u okviru inicijalnog grafa. Svih pet modifikacija NN-Descent algoritma su
evaluirane eksperimentalnom analizom nad dva sinteticka i Cetiri realna visokodi-

menzionalna skupa podataka.

Drugi pravac istrazivanja je usmeren na problem azuriranja k-NN grafa. Naime,
podaci ¢esto imaju tendenciju da se menjaju vremenom. Zbog toga postoji potreba
za algoritmima koji bi efikasno azurirali k-NN graf nakon $to se podskup njegovih
¢vorova promeni. Najjednostavniji nacin da se k-NN graf azurira jeste da se iznova
kreira nad novim podacima. Ovakav pristup svakako nije efikasan, buduéi da se
podaci Cesto samo parcijalno menjaju, te bi mnogo efikasnije bilo azurirati samo
relevantni deo grafa. Jedan nacin da se to realizuje jeste primenom metoda grube
sile koji ponovo rac¢una samo distance koje su afektovane izmenom podataka, a
potom na osnovu novoizracunatih distanci azurira graf. Problem ovog algoritma
grube sile je $to moze biti nedovoljno brz, narocito u slucajevima kada izmena

podataka obuhvata veliki broj ¢vorova.

U okviru ove teze, predstavili smo i dva aproksimativna algoritma za azuriranje

k-NN grafa, koji su zasnovani na NN-Descent algoritmu. Unutar oba algoritma
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sprovode se kratke Setnje koje pocinju od ¢vorova koji su izmenjeni. Potom se
racunaju distance izmedu pocetnih i krajnjih ¢vorova ovih Setnji, a na osnovu tih
distanci se onda i k-NN graf azurira. PredloZeni algoritmi su evaluirani obimnim
eksperimentima nad vremenskim serijama. Eksperimenti zapravo predstavljaju
simulacije realnog scenarija, u kom vremenske serije dobijaju nove vrednosti kako

vreme prolazi.

Osnovni pojmovi i definicije

Graf k najblizih suseda (k-NN graf) G je usmeren graf ¢iji ¢vorovi predsta-
vljaju objekte ulaznog skupa S, nad kojima je definisana neka funkcija razdaljine.
Cvor s € S povezan je usmerenom granom sa ¢vorom s € S samo ukoliko je
¢vor ¢ jedan od k najblizih ¢vorova ¢voru s. U tom slucaju je s’ sused ¢vora s,
a s reverzni sused ¢vora s’. Listu svih suseda ¢vora s unutar grafa G nazvaé¢emo
NN (nearest neighbor) listom, a oznaciti sa NN(s); listu svih reverznih suseda
nazvacemo R-NN (revearse nearest neighbor) listom, a oznaciti sa RNN(s). Za
evaluaciju aproksimativnih algoritama za generisanje k-NN grafova, koristi¢emo
mere recallz, scanrates i harmonicz. Prva navedena mera, tj. recalls, ocenjuje
ta¢nost aproksimacije G grafa G—veca vrednost sugeriSe ve¢u tacnost aproksima-
cije; vrednost scanrates direktno je proporcionalna broju izrac¢unatih razdaljina,
te su u ovom slucaju manje vrednosti pozeljnije; harmonics evaluira algortam
uzimajudéi u obzir i ta¢nost (recalls) i broj izrac¢unatih razdaljina (scanrategs).
Habnes je aspekt kletve dimenzionalnonsti koji se javlja u k-NN grafovima.
Neka je hg(s) = |RNNg(s)| habnes vrednost évora s iz grafa G, Sq C R? skup od
n nasumice izabranih tacki, i neka je Gy k-NN graf generisan nad Sy za neko fiksno
k. Kako se dimenzionalnost d povecava, tako se distribucija vrednosti funkcije A,
znacajno menja—neki ¢vorovi, koje ¢emo nazvati habovima, nalaze se u velikom
broju NN lista drugih ¢vorova. Habnes fenomen je onda u datom skupu podataka

prisutan ukoliko taj skup podataka sadrzi habove.

NN-Descent

NN-Descent |20] je brz, aproksimativni algoritam za generisanje k-NN grafova.
Glavna pretpostavka ovog algoritma glasi: ,sused mog suseda je s velikom verovat-
noc¢om i moj sused”. Ovaj algoritam se moze koristiti u kombinaciji sa bilo kojom

funkcijom razdaljine; Stavise, moze se koristiti i u kombinaciji sa funkcijom koja
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ne zadovoljava neki od metrickih uslova, medutim, u tom slucaju tacnost aproksi-
macije zavisi od stepena uskladenosti funkcije sa gorepomenutom pretpostavkom
algoritma.

Algoritam pocinje od sluc¢ajnog k-NN grafa, koji se potom iterativno unapreduje.
Unutar jedne iteracije se ra¢unaju razdaljine izmedu svake dve tacke koje imaju za-
jednickog suseda. To se realizuje tako sto svaka tacka unutar jedne iteracije odigra
ulogu pwvot tacke. Za svaku pivot tacku se onda racunaju razdaljine izmedu svaka
dva njena suseda. Na osnovu ovih razdaljina se aproksimacija k-NN grafa azurira.
NN-Descent iterira dok god se ne ispuni kriterijum za zavrSetak algoritma, koji
moze biti definisan na jedan od slede¢a dva na¢ina: 1) izvrSava se unapred zadati
broj iteracija, nakon ¢ega se algoritam zavrSava, ili 2) algoritam se zavrSava onda
kada se u poslednjoj iteraciji aproksimacija k-NN grafa nije previSe izmenila, u
kom slucaju kazemo da je NN-Descent konvergirao.

NN-Descent u velikom broju slu¢ajeva veoma efikasno proizvodi vrlo ta¢ne ap-
roksimacije k-NN grafa. Medutim, ipak postoje situacije u kojima NN-Descent
ne daje dobre rezultate. Prvo, vremenska slozenost algoritma ima kvadratnu za-
visnost od parametra k. Stoga, za dovoljno veliko k, algoritam postaje sporiji od
metoda grube sile. Drugi problem NN-Descent algoritma je taj Sto tacnost nje-
govih aproksimacija opada kako se dimenzionalnost ulaznih podataka povecava;
te nad visokodimenzionalnim podacima algoritam daje veoma loSe aproksimacije.
Unutar ove teze ¢emo se izmedu ostalog baviti i drugim problemom NN-Descent
algoritma—opisa¢emo razloge koji stoje iza loSeg ponaSanja algoritma nad vi-
sokodimenzionalnim podacima, a potom ¢emo uvesti nekoliko novih njegovih verz-

ija, ¢iji je cilj prvenstveno prevazilazenje pomenutog problema.

INN-Descent nad visokodimenzionalnim podacima

Kao $to je veé¢ receno, NN-Descent ne generiSse dobre aproksimacije k-NN grafa
nad podacima velike dimenzionalnosti. Cest uzro¢nik loseg rada algoritama masin-
skog ucenja nad visokodimenzionalnim podacima je gorepomenuti fenomen zvani
habnes. Zbog toga je bilo vazno ispitati kako ovaj fenomen utice na NN-Descent
algoritam.

Na slici 4.2 su prikazane distribucije habnes vrednosti pojedinacnih tacki za
razli¢ite recall vrednosti. Slika sadrzi Cetiri grafikona za ¢etiri razli¢ite dimenzion-
alnosti podataka. Sa histograma, koji se nalaze sa desne strane unutar svakog
grafikona, moze se videti da performanse NN-Descent algoritma nisu zadovol-

javajuce s obzirom na to da veliki broj tacki ima malu recall vrednost. Takode
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se moze videti da se performanse dodatno pogorSavaju kako se dimenzionalnost
povecava. Pored toga, sa boks plotova, koji se nalaze sa leve strane unutar svakog
grafikona, moze se zapaziti jedan vrlo interesantan fenomen—kako se se recall
vrednosti povecavaju, tako se pove¢avaju i habnes vrednosti. Na osnovu ovoga se
moze izvesti zakljucak da, u visokodimenzionalnim podacima, habovi imaju veéu

verovatnocéu da ostvare visoku recall vrednost.
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Slika 4.2 (ponovljeno): Distribucije habnes vrednosti pojedina¢nih tacki za razli¢ite
recall vrednosti.

Pored uticaja habnes vrednosti, na recall vrednosti pojedinacnih tacki utice i
njihova pozicija u inicijalnom slu¢ajnom grafu. Da bismo ovu tvrdnju verifiko-
vali, izvrsili smo algoritam 100 puta, pri ¢emu se slu¢ajne promenljive nezavisno
generi$u pri svakom izvrSavanju, a potom smo posmatrali kako se recall vrednosti
pojedinac¢nih tacki menjaju kroz razlicita izvrSsavanja. Na slici 4.4 predstavljeni su
rezultati ovog eksperimenta. Intenzitet boje na ovoj slici predstavlja aritmeticku

sredinu recall vrednosti dobijenih kroz 100 nezavisnih pustanja algoritma, pri cemu
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veli intenzitet boje predstavlja veéu vrednost. Na slici se moze videti da za & = 10
i k = 20, tacke malih habnes vrednosti imaju relativno visoku standardnu devi-
jaciju recall vrednosti, dok standardna devijacija za tacke velikih habnes vrednosti
tezi nuli. Buduéi da se recall vrednost pojedinacnih tacki malih habnes vrednosti
drasti¢no menja kroz razli¢ita izvrsavanja algoritma, moze se zakljuciti da pozicija
ovih tacki unutar inicijalnog sluc¢ajnog grafa, igra bitnu ulogu za njihove recall
vrednosti.

Medutim, vazno je ista¢i da pomenuto ne vazi za k = 5. Naime, kao $to se moze
videti na slici 4.4, za £ = 5 uocavamo da standardne devijacije recall vrednosti
nisu nuzno velike za tacke malih habnes vrednosti. Razlog za ovakvo ponaSanje je
taj sto za male k£ vrednosti NN-Descent algoritam daje izuzetno loSe rezultate za
veliku veéinu tacki malih habnes vrednosti. Samim tim, Sansa da se tacka male
habnes vrednosti nade medu onima koje imaju visoku recall vrednost je drasti¢no
manja. Posledica toga je da je algoritam potrebno izvrsiti mnogo veéi broj puta
da bi data tacka najzad dosla do tacnijeg susedstva.
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Slika 4.4 (ponovljeno): Zavisnost habnes vrednosti pojedinac¢nih tacki i standard-
nih devijacija njihovih recall vrednosti dobijenih za 100 nezavisnih izvrSavanja
NN-Descent algoritma.

Zakljucak ovih analiza je da tacke malih habnes vrednosti imaju manju verovat-
noc¢u da njihovo susedstvo u aproksimaciji k-NN grafa bude ispravno, i obrnuto,
tacke velikih habnes vrednosti imaju ve¢u verovatno¢u da njihovo susedstvo bude
tacno. Pored toga, recall vrednost pojedinacnih tacki zavisi od njihove pozicije u

inicijalnom slucajnom grafu.
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Modifikacije NN-Descent algoritma

Da bismo u odredenoj meri prevazisli problem NN-Descent algoritma koji se javlja

u visokodimenzionalnim podacima, uveséemo pet njegovih modifikacija.

NN-Descent varijanta svesna habnesa

U okviru ove modifikacije NN-Descent algoritma, koju é¢emo skraé¢eno oslovlja-
vati sa HA-NN-Descent, habnes vrednosti se koriste pri odredivanju parova tacki
izmedu kojih ¢e se racunati razdaljina. Naime, pre ove modifikacije, unutar jedne
iteracije NN-Descent algoritma, poredile su se sve tacke koje imaju zajednickog
suseda. S obzirom na to da habovi imaju dobra susedstva u aproksimaciji k-NN
grafa, a tacke malih habnes vrednosti nemaju, ideja ove modifikacije jeste da se
habovi manje porede sa drugim tackama, a da se umesto toga vise medusobno
porede tacke malih habnes vrednosti.

Opisano ponaSanje se realizuje ubacivanjem jednog dodatnog koraka koji nas-
tupa neposredno pre nego sto se susedi date pivot tacke medusobno uporede. Neka
je L lista inicijalizovana direktnim i reverznim susedima date pivot tacke. Novi ko-
rak algoritma podrazumeva zamenu habova iz liste L nasumice izabranim tackama
ulaznog skupa. Nakon ovog koraka se svake dve tacke iz liste L medusobno porede,
u skladu sa originalnim NN-Descent algoritmom.

Jedino sto u opisanom postupku ostaje nerazjasnjeno jeste kako se odlucuje
da li je neka tacka hab, tj. kako se odlucuje da li ¢e data tacka biti zamenjena
nasumice izabranom tackom. Za tu svrhu uvodimo verovatnoc¢u da tacka bude
zamenjena (5.1). Za svaku tacku iz liste L se onda racuna ova verovatnoca, i po

njoj se nasumice odlucuje da li ée tacka biti zamenjena.

0, if s (8) < oanin,
Pr[replace,| = ¢ 1, if ha(s) > hmax, (5.1)
—Z?n i‘i):: min - otherwise.

NN-Descent varijanta proSirenih NN lista

Veé je receno da se NN-Descent algoritam sporije izvrsava za veée k vrednosti.
Medutim, sporije izvrSavanje dolazi u paru sa ve¢om tacnoséu finalne aproksima-
cije k-NN grafa. Ovakvo ponasSanje algoritma se moze videti na slici 5.3, gde su

prikazane recall vrednosti (y osa) za razli¢ite k vrednosti (x osa), i razli¢ite dimen-
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zionalnosti ulaznih podataka (d vrednost; razli¢ite dimenzionalnosti su obojene

razli¢itim bojama).

1.0 — d

/ — 10
05 "™ *

00 .__é:l

recallg

— 100

Slika 5.3 (ponovljeno): Recall vrednosti aproksimacija k-NN grafa dobijenih
NN-Descent algoritmom, za razli¢ite k vrednosti.

Ova varijanta NN-Descent algoritma, koju ¢emo skraceno oslovljavati sa
O-NN-Descent, funkcioniSe vrlo jednostavno. NN-Descent se pusta za veéu k
vrednost, a potom se tako dobijena aproksimacija k-NN grafa redukuje na Zeljeno
k. Redukcija aproksimacije k-NN grafa je vrlo jednostavan proces u kom se za

svaku tacku odbacuje visak suseda, tj. zadrzava se samo k najblizih.

NN-Descent varijanta bazirana na slucajnim Setnjama

Glavna svrha ove NN-Descent varijante jeste da omoguéi da se broj poredenja kon-
figurise na nivou pojedinacnih tacki. Na taj nacin bi se mogle isprobati razlic¢ite
strategije balansiranja pri raspodeli raspolozivih poredenja tacki: na primer, mo-
gao bi se dodeliti jednak broj poredenja svim tackama, ili bi se recimo mogao
dodeliti veéi broj poredenja tackama malih habnes vrednosti, itd.

Da bi se njena svrha realizovala, ova NN-Descent varijanta se zasniva na sluca-
jnim Setnjama, zbog ¢ega njena skracenica glasi RW-Descent (random walk de-
scent). Naime, umesto da se u jednoj iteraciji porede svake dve tacke koje imaju
zajednickog suseda, u RW-Descent algoritmu se iz svake tacke pusta odredeni broj
kratkih slucajnih Setnji. Nakon svake slucajne Setnje porede se njena pocetna
i krajnja tacka. Pominjane strategije balansiranja onda odreduju broj slucajnih

Setnji za svaku tacku ulaznog skupa unutar svake iteracije algoritma.

NN-Descent varijanta bazirana na bliskim Setnjama

Ova NN-Descent varijanta je vrlo slicna RW-Descent varijanti. Jedina razlika u

odnosu na RW-Descent jeste da Setnje nisu sluc¢ajne, veé¢ su odabrane na osnovu
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J4! D2

(c) (d)

Slika 5.6 (ponovljeno): Medusobni odnosi tacki koje ucestvuju u Setnji. Up-
ravo medusobni odnos ovih tacki odreduje verovatnoc¢u da data Setnja vodi ka
poboljsanju NN liste njene pocetne tacke.

odredenih obzervacija. Skracenica ove varijante je NW-Descent (nearest walk de-
scent). U njoj se razmatraju sve moguce Setnje koje pocinju u datoj tacki, a koje
su duzine dva, a onda se medu njima biraju one koje su najbolje po kriterijumu
kog ¢emo u narednom tekstu opisati. Ono §to je vazno napomenuti jeste da ova

NN-Descent varijanta funkcionige samo sa L, merom razdaljine.

Neka je (s, s, s”) Setnja koja pocinje u s, prolazi kroz s" i zavrsava se u s”. Neka
je x = dist(s, s'), y = dist(s’, ") i r = dist(s, sx), gde s; predstavlja k-tog suseda

od s (tj. najdaljeg suseda iz NN liste tacke s). Dodatno, uveséemo dve hipersfere
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S'15’. Centar hipersfere S je u s, a njen polupre¢nik je r, $to znaci da su sve tacke
iz trenutnog susedstva tacke s, unutar S. Centar hipersfere S’ je u s’, dok je njen
poluprecnik y, $to znaci da se tacka s” nalazi negde na povrsini hipersfere S’. Ove
dve hipersfere mogu medusobno biti pozicionirane na ¢etiri razli¢ita nacina: 1) S’
se nalazi unutar S; 2) S se nalazi unutar S’; 3) S 1S’ su medusobno disjunktni;
4) S i S se seku. Dodatno, prvi slucaj je definisan nejednakoséu = +y < r,
drugi slu¢aj nejednakoséu x +r < y, treéi y +r < x i najzad, ukoliko nijedna od
navedenih nejednakosti nije zadovoljena, podrazumeva se cetvrti slucéaj. Ova Cetiri
sluc¢aja su ilustrovana u dvodimenzionalnom prostoru na slici 5.6.

U prvom slucaju (slika 5.6a) je verovatnoc¢a da s” upadne u NN listu od s
jednaka 1, u drugom i tre¢em slucaju (slike 5.6b i 5.6¢) ta verovatnoca je 0, dok
u Cetvrtom slucaju (slika 5.6d) verovatnoca nije trivijalna. Naime, u Cetvrtom
slucaju, tacka s” ée biti ubacena u NN listu tacke s samo ako se nalazi na delu
S” koji je unutar S (ovaj deo je na slici oznacen svetlo plavom bojom). Stoga je
verovatnoca jednaka odnosu izmedu veli¢ine pomenutog dela hipersfere S’ i veli¢ine
cele hipersfere S’. Neka je P neka ravan koja sadrzi s i s', i neka su p; i py tacke
preseka P, S i S’. Pomenuti odnos je u tom slucaju jednak 3-, gde a = Zp;s'ps.
Dodatno, ugao o se moZe trivijalno izrac¢unati na osnovu trougla Ass'p;, ¢ije su

sve stranice poznate (5.3). Kao zakljucak, verovatnoca u cetvrtom slucaju je 5-.

22 4+ y? — 2
2xy

Kao sto je veé receno, ova varijanta NN-Descent algoritma za datu tacku raz-

a = 2 arccos

(5.3)

matra sve Setnje duzine dva, i bira one koje su najbolje. Najbolje Setnje definisane

su goreopisanom verovatno¢om—veca verovatnoca sugerise da je Setnja bolja.

NN-Descent varijanta sa dodatnim slucajnim poredenjima

Ova NN-Descent varijanta, koju ¢emo zvati i R-NN-Descent, uzima u obzir veé
opisani fenomen po kojem tacnost susedstva neke tacke zavisi od njene pozicije u
inicijalnom slucajnom k-NN grafu (pogledati sliku 4.4). Unutar ove varijante, na
pocetku svake iteracije, izvrSava se novi korak algoritma, kog ¢emo nazvati fazom
slucajnih poredenja. Cilj ove faze jeste da tacke stavi u pravo susedstvo, kako bi
se maksimizovala recall vrednost svake tacke.

Na samom pocetku izvrSavanja algoritma inicijalizova¢emo novi skup S’ svim
tackama ulaznog skupa S. Za svaku tacku s iz skupa S’ ¢e se na pocetku svake
iteracije, unutar novog koraka algoritma, izvrsiti poredenja sa unapred definisanim

brojem nasumice izabranih tacki iz S. Ukoliko dovoljan broj ovih poredenja ne
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rezultuje azuriranjem NN liste tacke s, s se izbacuje iz S’ te u sledecoj iteraciji
nece biti poredena sa nasumice izabranim tackama. Izbacivanje tacke iz skupa S’
zapravo znadi da je ona vrlo verovatno ve¢ u dobrom susedstvu k-NN grafa, te nije

potrebno traziti joj novo susedstvo.

Rezultati NN-Descent varijanti

Da bismo evaluirali nove NN-Descent varijante, sproveli smo eksperimentalnu anal-
izu koja podrazumeva pustanje svih algoritama nad realnim i sintetickim visokodi-
menzionalnim skupovima podataka. Svi algoritmi su pustane za k € {5,10,20} i

Ly funkciju razdaljine. Rezultati svih algoritama se mogu videti na slici 5.7.

mmm NN-Descent HA-NN-Descent O-NN-Descent mmm RW-Descent mmm NW-Descent mml R-NN-Descent
recall scan rate recall scan rate
0.8 0.6 0.6 0.2
) |||‘ ‘“ ) ‘ “‘ ) | ‘ll ) | | |
0||||| o.|.|I||| 0__|||I| 0 |||||
5 10 20 5 10 20 5 10 20 5 10 20
k k k k
(a) 1100004100 (b) 11000004100
recall scan rate recall scan rate
1.0 0.2 1.0 0.6
5 10 20 5 10 20 5 10 20 5 10 20
k k k k
(c) BCI5 (d) Google-23
recall scan rate recall scan rate
1.0 0.6 1.0 0.2
0 0" III I III |I 0 0" --I [ | llI I II
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k k k k
(e) ISOLET (f) MNIST

Slika 5.7 (ponovljeno): Performanse NN-Descent algoritma i svih njegovih vari-
janti, izrazene recall i scan rate vrednostima.

Kao $to se moze videti sa slike iznad, O-NN-Descent u vecini sluc¢ajeva postize

najbolje recall vrednosti, ali u isto vreme ovaj algoritam ima i najvece scan rate
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vrednosti. Stoga, kada je tacnost aproksimacije k-NN grafa vaznija od brzine
izvrsavanja, O-NN-Descent je dobar izbor.

S druge strane, kada je vreme izvrSavanja vaznije od tac¢nosti, najbolje su se
pokazali HA-NN-Descent i NW-Descent. Naime, HA-NN-Descent i NW-Descent
povecavaju recall vrednost u sluc¢aju visokodimenzionalnih skupova podataka, odr-
zavajudi scan rate istim ili skoro istim.

RW-Descent ima sli¢ne recall vrednosti kao i NW-Descent, s tim §to mu je scan
rate vrednost nesto ve¢a. Medutim, za neke pojedina¢ne skupove podataka, ovaj
algoritam je dao bolje rezultate od svih ostalih.

Za kraj, R-NN-Descent je u veéini slucaja drugi po recall vrednosti, ali je
njegova mana to Sto su mu scan rate vrednosti uglavnom veoma visoke. Stoga
ovaj algoritam obi¢no nije prvi izbor.

Sve predlozene varijante NN-Descent algoritma nad visokodimenzionalnim po-
dacima imaju bolje rezultate od originalnog NN-Descent algoritma. Dodatno,
nijedna od ovih varijanti nije ultimativno najbolja—eksperimenti su pokazali da
svaka od njih ima svoje prednosti i mane, te se za razli¢ite primene, razli¢ite vari-
jante pokazuju najboljim. Iako ne postoji ultimativno najbolje resenje, predlozene
NN-Descent varijante zajedno pokrivaju razne probleme i scenarije, predstavlja-
juéi mocan alat za reSavanje problema generisanja aproksimacije k-NN grafa nad

visokodimenzionalnim podacima.

Algoritmi za azuriranje aproksimacije k-NN grafa

U realnom svetu, podaci se ¢esto menjaju vremenom. Ukoliko je k-NN graf gener-
isan nad podacima koji su se potom izmenili, potrebno je generisani graf azurirati.
Najjednostavniji nac¢in azuriranja k-NN grafa jeste da se prosto izgenerise ispocetka
bilo kojim algoritmom za generisanje k-NN grafova. Medutim, ovaj pristup je
neoptimalan, s obzirom na to da se podaci uglavnom ne menjaju u celosti, veé
parcijalno, te je moguce iskoristiti prethodnu verziju grafa i u njoj izmeniti samo

ono §to je neophodno.

Metod grube sile za azuriranje k-NN grafa

Prvi nacin da se odradi parcijalno azuriranje k-NN grafa je metod grube sile.
Pretpostavimo da se izmenio ¢vor s k-NN grafa. U tom sluc¢aju se moraju iznova
izracunati razdaljine izmedu s i svih ostalih ¢vorova grafa, sto ¢e rezultovati iz-

menama NN listi nekih ¢vorova. Pored toga, potrebno je izracunati razdaljine i
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izmedu ¢vorova iz R-NN liste ¢vora s i svih ostalih ¢vorova. Razlog za to je Sto
¢vorovi koji imaju s u svojoj NN listi mozda umesto s sada treba da imaju neki

drugi ¢vor.

Onlajn varijante algoritama RW-Descent i NW-Descent

Opisani metod grube sile vr§i parcijalno azuriranje k-NN grafa, sto rezultuje novim,
egzaktnim k-NN grafom. Ukoliko to nije dovoljno brzo, jedna opcija je razvijanje
aproksimativnog algoritma za azuriranje k-NN grafa. U ovoj sekciji predstavi¢emo
onlajn verzije algoritama RW-Descent i NW-Descent, koji su po svojoj srzi upravo
aproksimativni algoritmi za azuriranje k-NN grafa.

Onlajn verzije pomenutih algoritama funkcioni$u na sledeé¢i na¢in. Na samom
pocetku algoritma, pravi se skup ¢vorova ¢ije NN liste treba azurirati. Sli¢no
kao u metodu grube sile, taj skup sadrzi sve izmenjene ¢vorove, ali i njihove
reverzne susede. Potom se nad prethodnom verzijom k-NN grafa RW-Descent
i NW-Descent primenjuju na uobic¢ajen na¢in, uz malu izmenu koja podrazumeva
da Setnje ne zapocinju od svih ¢vorova, ve¢ samo od onih koji se nalaze u prethodno
pomenutom skupu tacki ¢ije NN liste treba izmeniti.

Opisani onlajn RW-Descent i onlajn NW-Descent algoritmi imaju jedan oz-
biljan problem. Naime, ovi algoritmi rade pod pretpostavkom da se ¢vorovi nisu
znacajno izmenili, tj. da su nakon izmene ostali u svom Sirem susedstvu. Ova
pretpostavka se koristi onda kada se novi susedi izmenjenih tacki traze Setnjama
duzine dva—na ovaj nacin algoritam trazi nove susede date tacke gledajuéi samo
u njeno Sire susedstvo. Medutim, ukoliko se neki ¢vor znacajno izmenio, postoji
velika Sansa da ¢e ovim postupkom ostati zaglavljen u nekom lokalnom minimumu,
bez uspeha u pronalazenju svojih novih suseda.

Ono $to je zanimljivo jeste da se opisani problem ne javlja u originalnim verzi-
jama RW-Descent i NW-Descent algoritama, tj. u originalnim verzijama se tacke
sa manjom verovatnoc¢om zaglavljuju u lokalnim minimumima. Razlog za to je sto
originalni RW-Descent i NW-Descent poc¢inju od sluc¢ajnog grafa, te se u prvoj
iteraciji algoritama svaka tacka poredi sa odredenim brojem slu¢ajno odabranih
tacki (jer se Setnje vrSe unutar slu¢ajnog grafa). Ovo dalje implicira da se svaka
tacka u prvoj iteraciji algoritama poredi sa veéim brojem tacki koje poticu iz
razli¢itih susedstva. Za razliku od toga, onlajn varijante ne poc¢inju od sluc¢ajnog
grafa, ve¢ od prethodne verzije k-NN grafa. Kao posledica toga, tacke se porede sa
drugim tackama koje potic¢u iz istog susedstva, ¢ime se ne daje prilika izmenjenim

tackama da razmatraju viSe susedstva i odaberu najbolje.
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Da bi se taj problem resio, onlajn RW-Descent i NW-Descent su proSireni ide-
jom na kojoj je baziran algoritam R-NN-Descent. Tacnije, pomenute algoritme
smo prosirili fazom slucajnih poredenja, koja se izvrSava na pocetku svake iteracije,
a koja podrazumeva poredenje izmenjenih tacki sa unapred zadatim brojem sluca-
jno odabranih tacki. Na taj nacin se daje prilika izmenjenim tackama da pronadu

svoje Sire susedstvo.

Rezultati onlajn RW-Descent i onlajn NW-Descent algori-

tama

Kao sto smo ve¢ pomenuli, glavni cilj onlajn RW-Descent i NW-Descent algori-
tama jeste da ubrzaju proces azuriranja k-NN grafova. Da bismo utvrdili da li je
ovaj cilj uspesno realizovan, sproveli smo opsirne eksperimente. Unutar eksperime-
nata poredili smo performanse pomenuta dva algoritma sa performansama metoda
grube sile, ali i sa performansama brzog aproksimativnog algoritma NN-Descent.

Eksperimenti su zapravo bazirani na simulacijama realnog scenarija koji po-
drazumeva azuriranje k-NN grafova koji su generisani nad vremenskim serijama.
Naime, vremenske serije se po svojoj prirodi menjaju vremenom, te ukoliko je nad
takvim podacima generisan k-NN graf, potrebno je azurirati ga svaki put kada vre-
menske serije dobiju nove vrednosti. Stoga se unutar eksperimenata vrsi simulacija
izmena vremenskih serija, $to je propra¢eno azuriranjem k-NN grafa. Za eksper-
imente smo koristili 128 skupa podataka sac¢injenih od vremenskih serija, koji su

preuzeti iz ¢uvenog repozitorijuma UCR Time Series Classification Archive [16].

1.00 naive
0.75 I nndes
orwdes-5
0.50 B orwdes-10
onwdes-5
025 . . s onwdes-10
0.00

recall scan rate harmonic

Slika 6.4 (ponovljeno): Prose¢ne recall, scan rate i harmonic vrednosti svih pred-
stavljenih metoda za azuriranje k-NN grafa.

Rezultati razlicitih algoritama su prikazani na slici 6.4. Na slici naziv naive
predstavlja metod grube sile, nndes predstavlja NN-Descent, orwdes-5 i orwdes-10

predstavljaju onlajn RW-Descent algoritam za dve razli¢ite konfiguracije njegovih
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parametara, dok onwdes-5 1 onwdes-10 predstavljaju onlajn NW-Descent, takode

za dve razlicite konfiguracije parametara.

Na slici se moze videti da je recall vrednost metoda grube sile maksimalna
moguca, jer ovaj algoritam nije aproksimativni. NN-Descent algoritam takode daje
vrlo visoku recall vrednost od 0.98, Sto je svakako i bilo o¢ekivano s obzirom na
to da podaci nad kojima smo algoritme pustali nisu visokodimenzionalni. Onlajn
RW-Descent algoritam proizvodi recall vrednosti od 0.84 i 0.91 za njegove dve
konfiguracije, $to pokazuje da je ovaj algoritam takode vrlo kompetetivan. Za
kraj, recall vrednosti onlajn NW-Descent algoritma su 0.78 i 0.86, sto je losije od

onlajn RW-Descent algoritma, ali je ipak vrlo zadovoljavajuce.

Sto se tife scan rate vrednosti, vrlo jasno se vidi da onlajn RW-Descent i
onlajn NW-Descent znacajno smanjuju broj izra¢unatih razdaljina. Kao Sto je
to i ocekivano, prose¢na scan rate vrednost metoda grube sile je vrlo visoka, i
iznosi 0.91. NN-Descent ima prosecnu scan rate vrednost koja je ¢ak i veca od
1, $to je posledica skupova podataka koji su vrlo mali. Naime, NN-Descent ima
karakteristiku da nad dovoljno malim skupovima podataka radi losije od metoda
grube sile. Stoga su mali skupovi podataka uticali na to da NN-Descent ima losu
prose¢nu scan rate vrednost, ali treba imati u vidu da se njegove performanse

drasti¢no poboljsavaju nad veé¢im skupovima podataka.

Za kraj ¢emo analizirati vrednosti harmonijske sredine, koja uzima u obzir i
recall i scan rate vrednosti, omogucavajuci evaluaciju algoritama i iz perspektive
tacnosti aproksimacije i iz perspektive brzine izvrsavanja. Kao sto se moze videti,
harmonijska sredina je vidno najbolja za onlajn RW-Descent i onlajn NW-Descent.
Prirodno, najgoru harmonijsku sredinu ima metod grube sile. NN-Descent ima
harmonijsku sredinu koja je bolja od metoda grube sile, ali ipak znacajno losija

od predstavljenih onlajn algoritama.

Uopsteno govoreédi, ovi eksperimenti sugerisu da su onlajn RW-Descent i on-
lajn NW-Descent vrlo kompetetivni algoritmi. Iako su njihove recall vrednosti
neznatno manje od NN-Descent algoritma i metoda grube sile, ovi algoritmi vrlo
znacajno smanjuju scan rate vrednosti. Takode, moze se videti da onlajn
RW-Descent ostvaruje nesto bolje rezultate od onlajn NW-Descent algoritma.
Medutim, dodatne analize su pokazale da onlajn NW-Descent algoritam ima manju
akumulacionu gresku (tj. uzastopnim primenjivanjem algoritma nad grafom koji
se menja, greSka aproksimacije se manje akumulira). Takode, eksperimenti su
pokazali da se ovi algoritmi bolje pokazuju u slu¢aju kada su izmene podataka

manje. I za kraj je bitno napomenuti da onlajn algoritmi daju mnogo bolje rezul-
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tate od NN-Descent algoritma nad manjim do srednjim skupovima podataka, dok

je nad velikim skupovima podataka i NN-Descent dovoljno dobar.

Ziakljucak

S obzirom na to da su k-NN grafovi sastavni deo mnogih algoritama i problema,
brzi aproksimativni algoritmi za njihovo generisanje su veoma vazni. Ova teza je
fokusirana upravo na aproksimativne algoritme za generisanje k-NN grafova. Anal-
izirali smo i objasnili probleme jednog takvog algoritma, koji se zove NN-Descent,
a pored toga smo uveli i njegove modifikacije koje za cilj imaju prevazilazenje
pomenutih problema. Dodatno, uveli smo i dva aproksimativna algoritma za azuri-
ranje k-NN grafova.

Prvi deo teze je dakle posveéen analiziranju losih performansi NN-Descent algo-
ritma u slucaju kada je pusten nad visokodimenzionalnim podacima. Pokazali smo
da su loSe aproksimacije posledica fenomena koji se zove habnes. Habnes pobija
osnovnu pretpostavku NN-Descent algoritma da je sused suseda vrlo verovatno
takode sused. Kao posledica toga, NN-Descent se lose ponasa nad skupovima
podataka koji unutar sebe imaju habnes fenomen. Sve to smo dokazali eksperi-
mentalnim analizama.

Kako bismo prevazisli pomenutu manu NN-Descent algoritma, uveli smo nje-
govih pet modifikacija. Performanse ovih modifikacija evaluirane su eksperimen-
talnom analizom nad Sest visokodimenzionalnih skupova podataka, od kojih su
dva sinteticka. Rezultati eksperimentalne analize su pokazali da sve modifikacije
uvode porast recall vrednosti, ali na Stetu scan rate vrednosti, koja je uglavnom
nesto losija od scan rate vrednosti originalnog algoritma.

Drugi pravac istrazivanja odnosio se na aproksimativne algoritme za azuriranje
k-NN grafova. U literaturi nema mnogo radova na ovu temu—fokus je veé¢inski na
algoritmima za generisanje novih k-NN grafova, a ne na azuriranju postoje¢ih. U
ovoj tezi smo predlozili dva aproksimativna algoritma za azuriranje k-NN grafova.
Sproveli smo opsirne eksperimente nad 128 skupa podataka koji sadrze vremenske
serije. Rezultati eksperimenata sugerisu da novi algoritmi imaju nesto losije recall

vrednosti, ali da zato znacajno smanjuju scan rate.
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