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Oh, sorry, wrong pic...!

(Or maybe not that terribly wrong... ©)
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This is the Chicago O'Hare International Airport
(IATA code: ORD)

It is the second busiest airport on the planet (after Atlanta).
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Two mathematicians engage in a most lovely conversation

John, T think
we should

" idempotents!
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Some words have (dire) consequences

and Homeland

Security offices

Norwich, 9-11 Jan 2018 Igor Dolinka



Escape

Fortunately, Elwood and Jake show up with their Bluesmobile
just in time to save Stu and John from an awkward situation...
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She caught the Katy (and left me a mule to ride)

The O'Hare inverse monoid is defined by the presentation

Inv(a, b, c,d|abcdacdadabbcdacd = 1).

Or, as we shall prefer it few minutes later,

Inv(a,b,c,d|abcd - acd - ad - abbed - acd = 1)

It was specifically designed by Margolis and Meakin (while waiting for a
connecting flight at ORD) as an example of a special inverse one-relator
monoid which eluded thus far the solution of the WP, exhibited
interesting/strange geometric properties, and even threatened at some
point a positive solution of the E-unitary conjecture...

But: what’s the such big fuss about special inverse monoids in the
first place?
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The old landmark

Theorem (W. Magnus, 1932)

Every one-relator group has a solvable word problem.

Theorem (Adjan, 1966)
The word problem for Mon{ A|u = v ) is decidable if either:
» one of u,v is empty, or
» both u,v are non-empty, and have different initial letters and

different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs
for the first case (of special monoids Mon{A|u =1)). The proof
of Zhang is particularly compact and elegant.
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(You better) Think

Adjan and Oganessian (1987): The word problem for one-relator
monoids can be reduced to the special case of

Mon( A | asb = atc)

where a,b,c € A, b # c and s, t € A* (and their duals). It is
known that all such monoids are right (resp. left) cancellative.

Theorem (Ivanov, Margolis & Meakin, 2001)

If the word problem is decidable for all special inverse monoids
Inv(A|w = 1) — where w is a reduced word over AU A~! — then
the word problem is decidable for every one-relator monoid.

This holds basically because M = Mon( A | asb = atc) embeds into
I =Inv(A|asbc 1t 1a"l =1).
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Changing the perspective

Note that the word asbc~tt~1a~1 is always reduced, but not
cyclically reduced.

Hence, studying the word problem for Inv(A|w = 1) where w is
cyclically reduced might be more manageable.

Even though this case seems to have zero intersection with the
one-relator monoid problem, it is still important to study in order
to gain some understanding how the WP works for special
one-relator inverse monoids.
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The prefix monoid

For M = Inv(A|w = 1) consider its greatest group image
G=Gp(Alw=1).

Let P, denote the submonoid of G generated by its elements
represented by all the prefixes of w. This is the prefix monoid of G
relative to w.

Theorem (lvanov, Margolis & Meakin, 2001)

Let w be cyclically reduced. Then Inv(A|w = 1) has a soluble
word problem provided that the membership problem for P,, in G
is decidable.

This allows to solve the word problem of M for an array of various
types of words w € (AU A~1)*.
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A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent
conditions hold:
» Forany e € E(S) and x € §,
e < x (in the natural inverse semigroup order) = x € E(S).
» The minimum group congruence o on S is idempotent-pure,
which means that E(S) constitutes a single o-class.
» 0 =n~, where ~ is the compatibility relation (defined by
a~b & alhab~t e E(S)).
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A key ingredient: The E-unitary property

Theorem (lvanov, Margolis & Meakin, 2001)
If w is cyclically reduced, then M = Inv(A|w = 1) is E-unitary.

This confirmed a conjecture by M, M & Stephen published way
back in 1987.

In particular, this implies that Uy, the group of units of M,
embeds into G = Gp(A|w = 1). In fact, its image is already
contained in P, (as the group of its units).

E-unitary non-examples:
» Inv(a,b,c,d|abc =1, adc=1).

» Inv(A|uvu~! = 1) provided u, v € At have different terminal
letters (so that uvu~! is reduced as written).
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Searching for simpler generators of P,

A factorisation

w= 1Bk

is called unital if all B; represent elements of Uy, where
M =Inv(A|w =1). Then it is not difficult to show

Lemma

P,, is generated by Ufle pref(5;), i.e. by the elements of

G = Gp(A|w = 1) represented by prefixes of individual ‘invertible
factors’ 3;.

In fact, for any factorisation w = 3 - - - Bx we can consider the
submonoid of G

k
M(B1,..., Bi) = <U pref(/a,-)> D Py
i=1
If = holds, we say that the considered factorisation is conservative.
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Searching for simpler generators of P,

So, the previous lemma reads as:

Lemma
Every unital factorisation of w is conservative.

However,

Lemma (ID & RDG, 2017)

IfInv(A|w = 1) is E-unitary (e.g. if w is cyclically reduced), then
every conservative factorisation of w is unital.

Theorem (ID & RDG, 2017)

There is a (unique) finest conservative factorisation w = [31 - - - B
of w. In the E-unitary case,

Uv = <617"'7/8k>
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Gimme some lovin’

Back to the O'Hare inverse monoid. Recall, this is given by

Inv(a, b, c,d|abcdacdadabbcdacd = 1).

I'd like to convince you that

w = abcd - acd - ad - abbcd - acd
a y

is the finest conservative/unital factorisation of the O'Hare word w.
First | am going to show that it is a) unital, and then that it is

b) finest. For each of these statements | am going to show you two
proofs: one ‘geometric’, and one ‘combinatorial’.
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Stephen’s procedure

J. B. Stephen (‘Presentations of inverse monoids’, JPAA, 1990)
gives an effective procedure which results (at co) in the
Schiitzenberger graph of an inverse monoid presentation = the

Cayley graph of the monoid restricted to right invertible elements
(aka the Z-class of 1).

Roughly, in the case of Inv(A|w = 1) it consists of two
operations:
> add (‘sew’) cycle labelled by w at any vertex constructed so far;

> ‘fold’ — identify outgoing/incoming edges from/to a vertex labelled
by the same letter.

Any graph obtained after a finite number of sewings—+foldings is
called a finite approximation of the Schiitzenberger graph in
question, and it represents a particular piece of that graph.
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Shake your tail feather
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Shake your tail feather
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Shake your tail feather
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Shake your tail feather
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Shake your tail feather
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Shake your tail feather
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Check, please!

> The original relation:
abcd - acd - ad - abbed - acd =1

v

The red cycle from the blue initial vertex:
ad - abbcd - acd - abed - acd =1

v

The blue cycle from the violet initial vertex:
abbcd - acd - abed - acd - ad =1

v

The violet cycle from the green initial vertex:
acd - ad - abbcd - acd - abcd =1

v

The green cycle from the red initial vertex:
acd - abcd - acd - ad - abbcd =1

So, each of abcd, acd, ad, abbcd is both right and left invertible.
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Invertible pieces of w reloaded

Lemma

Let u € (AU A~1)* be any word representing a right invertible
element of M = Inv(A|w = 1), and let T be the
(free-group-)reduced form of u. Then u =1 holds in M.

So, since
B=ad"la=(ap)(58) e
holds in FG(A) = it also holds in M = f is (right) invertible.
Similarly, (af70)~! = B(aBy6B)~! holding in FG(A)
= af~0 is (left) invertible.

In a similar fashion we obtain that a3y, af and « are invertible,
and so are y and 4.
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Finest unital factorisation — Take 1

An easy (inductive) analysis of the Stephen procedure for the
O’Hare monoid shows that the initial vertex (corresponding to
1 € M) is incident with precisely two edges: an outgoing edge
labelled a2 and an incoming edge labelled d.

Hence, any word representing a right invertible element of M must
begin with either a or d~!. Analogously, any word representing a
left invertible element of M must end with either a~* or d.

It follows immediately that there can be no unital factorisation of
the O'Hare word finer than

abcd - acd - ad - abbcd - acd.
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Finest unital factorisation — Take 2

Deductions of the type:

ab invertible = bcd invertible (because of abbcd)
= a invertible (because of abcd) = d invertible (because of ad)
= c invertible (becuase of acd) = b invertible (because of abcd)

All possible cases lead to the same conclusion: if there would be a
finer unital factorisation = all of a, b, ¢, d would be invertible and
M would be a group.

However, this is not the case (thank you, Nik!) as M admits a
homomorphism onto the bicyclic monoid B = Inv(x,y |xy =1)
via a+ x, b,c — 1, d — y (taking the O'Hare word to xyxyxyxy,
a relator in B).

Corollary
Um = (abcd, acd, ad, abbed) = (aba™!, aca™?, ad)

(even as a monoid).
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(Dancin’ to the) Jailhouse rock

G = Gp(a, b, c,d| abcdacdadabbcdacd = 1)

p{a,b,c,d,x,y,z| b= a_lxa, c= a_lza, d= a_lz, xyzyzzxxyzyz = 1)

(
Gp(a,b,c,d,x,y,z|x=aba ', y =aca ', z = ad, xyzyzzxxyzyz =1)
Gp(
Gp(a, x,y, z | xyzyzzxxyzyz = 1)

P, = Mon(a, ab, abc, abcd, ac, acd, ad, abb, abbc, abbcd)
= Mon(a, aba™', aca !, ad) = Mon(a, x, y, z)
So, the prefix monoid P,, of G w.r.t. the O'Hare presentation is in

fact the positive part/submonoid of G w.r.t. the new presentation
<37X,y,Z|XyZyZZXXyzyz = 1> 11
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The band! The band!! | can see the light!!!

Theorem (Blues Brothers, 2017)

Let u be a strictly positive word over A. Then the positive part of
Gp(A|u=1) has a decidable membership problem.

Proof sketch.

Let C C A be the set of all letters that actually appear in v, and let
B=A\C. Then G = FG(B) * Gp(C|u=1). As the inverse of any
letter from C can be expressed in G by a positive word over C,

Gp( C|u=1) coincides with its postive part. Thus the positive part of
G is B*x Gp(C|u=1) (here  refers to the monoid free product).

So, a word v over AU A~! represents an element from the positive part
of G if and only if V fails to contain any letter from B~ L]

This implies that the prefix monoid P,, of the O'Hare group has a
decidable membership problem. By the lvanov-Margolis-Meakin
Theorem, the WP of the O'Hare inverse monoid is soluble.
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Everybody needs somebody (or some problem) to love

> Can we at least prove (via the prefix monoid method) that
Inv(A|w = 1) has a solvable WP if w is a positive word
(i.e. € AT)? Do clever changes of generators + Tietze
transformations suffice? Some weaker generalisations?

> We have seen that for E-unitary M = Inv(A|w = 1) we have
Uyw=Up, <P, <G=Gp(Alw=1).

It would be worthwhile to study the situation H < S < G where
G, H are groups, G is one-relator, and S is a monoid (then S is a
union of some cosets of H). Can we ‘decompose’ the membership
problem of S in G to the membership problem of H in G and an
additional condition on the cosets involved?

» This points to the old & famous problem: the generalised WP for
one-relator groups. In particular, what about the subgroups
generated by aq, ..., ak for an arbitrary factorisation ag - - - a of
the (positive) relator w?
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THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie
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