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First of all there is Blue. Later there is White, and then
there is Black, and before the beginning there is Brown.

Paul Auster: Ghosts (The New York Trilogy)
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(Ultra)homogeneity

Let A be a (countable) first order structure. A is said to be
(ultra)homogeneous if any isomorphism

ι : B → B′

between its finitely generated substructures is a restriction of an
automorphism α of A: ι = α|B .

Remark
If we restrict to relational structures, ‘finitely generated’ becomes
simply ‘finite’.
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Classification programme for countable ultrahomogeneous
structures

I finite graphs (Gardiner, 1976)

I posets (Schmerl, 1979)

I undirected graphs (Lachlan & Woodrow, 1980)

I tournaments (Lachlan, 1984)

I directed graphs (Cherlin, 1998 – Memoirs of AMS, 160+ pp.)

I finite groups (Cherlin & Felgner, 2000)

I permutations (???) (Cameron, 2002)

I . . .
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Fräıssé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age
Age(A) (the class of its finitely generated substructures) has the
following properties:

I it has countably many isomorphism types;

I it is closed for taking (copies of) substructures;

I it has the joint embedding property (JEP);

I it has the amalgamation property (AP).

A class of finite(ly generated) structures with such properties is
called a Fräıssé class.

Theorem (Fräıssé)

Let C be a Fräıssé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.
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Fräıssé theory (continued)

The structure F from the previous theorem is called the Fräıssé
limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graph −→ the Rado (random) graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations (???) −→ the random permutation
(???!!!)

Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination, oligomorphic automorphism groups,. . .
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Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination, oligomorphic automorphism groups,. . .

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations4
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limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graph −→ the Rado (random) graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations (???) −→ the random permutation
(???!!!)
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limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graph −→ the Rado (random) graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations (???) −→ the random permutation
(???!!!)
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Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination,

oligomorphic automorphism groups,. . .

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations4
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Homomorphism-homogeneity

In 2006, in their seminal paper, P. J. Cameron and J. Nešeťril
investigated what happens if one replaces isomorphisms and
automorphisms in the classical definition of ultrahomogeneity by
other types of morphism.

In particular, a structure A is said to be
homomorphism-homogeneous (HH) if any homomorphism

ϕ : B → B′

between its finitely generated substructures is a restriction of an
endomorphism ψ of A: ϕ = ψ|B .
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Homomorphism-homogeneity vs homogeneity

HH is the ‘semigroup-theoretical analogue’ of ultrahomogeneity!

Theorem (Mašulović & M. Pech, 2011)

A submonoid M of AA is the endomorphism monoid of a HH
structure on A in a residually finite relational language if and only
if it is closed (in the pointwise convergence topology) and
oligomorphic.

Theorem (M & P, 2011)

A structure A is HH if and only if End(A) is oligomorphic (i.e. A
is weakly oligomorphic) and A admits quatifier elimination for
positive formulæ.
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Classification of (countable) HH structures

I finite groups (‘quasi-injective’, Bertholf & Walls, 1979)

I some classes of infinite groups (Tomkinson, 1988)

I posets – of arbitrary cardinality! (Mašulović, 2007)

I finite tournaments with loops (Ilić, Mašulović & Rajković,
2008)

I lattices and some classes of semilattices (ID & Mašulović,
2011)

I some classes of finite (point-line) geometries (Mašulović,
2013)

I mono-unary algebras (Jungábel & Mašulović, 2013)

I Fräıssé limits (ID, 2014) – the ‘one-point homomorphism
extension property’

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations7



Classification of (countable) HH structures

I finite groups (‘quasi-injective’, Bertholf & Walls, 1979)

I some classes of infinite groups (Tomkinson, 1988)

I posets – of arbitrary cardinality! (Mašulović, 2007)
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I Fräıssé limits (ID, 2014) – the ‘one-point homomorphism
extension property’

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations7



Classification of (countable) HH structures

I finite groups (‘quasi-injective’, Bertholf & Walls, 1979)

I some classes of infinite groups (Tomkinson, 1988)

I posets – of arbitrary cardinality! (Mašulović, 2007)
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I Fräıssé limits (ID, 2014) – the ‘one-point homomorphism
extension property’

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations7



Classification of (countable) HH structures

I finite groups (‘quasi-injective’, Bertholf & Walls, 1979)

I some classes of infinite groups (Tomkinson, 1988)

I posets – of arbitrary cardinality! (Mašulović, 2007)
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Classification of (countable) HH structures

WARNING!

co-NP-complete classes of finite HH structures:

I finite undirected graphs with loops (Rusinov & Schweitzer,
2010)

I finite algebras of a (fixed) similarity type containing either a
symbol of arity ≥ 2, or at least two unary symbols (Mašulović,
2013)

I . . .
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2010)
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Few questions

So, what about finite HH permutations?

How, on Earth, is a permutation considered in the role of a
structure???
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What is, in fact, a permutation?

I To an algebraist: an element of the symmetric group Sym(X ),
a bijection π : X → X , e.g.

π =

(
1 2 3 4 5
2 1 3 5 4

)
Has nothing to do with |X |.

I To a combinatorialist: a sequence a1a2 . . . over X in which
each element occurs exactly once, e.g.

21354

Also, can be represented by ‘plots’.
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What is, in fact, a permutation?

I To an algebraist: an element of the symmetric group Sym(X ),
a bijection π : X → X , e.g.

π =

(
1 2 3 4 5
2 1 3 5 4

)
Has nothing to do with |X |.

I To a combinatorialist: a sequence a1a2 . . . over X in which
each element occurs exactly once, e.g.

21354

Also, can be represented by ‘plots’. Runs into trouble when X
is infinite.
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What is, in fact, a permutation?

I To a model theorist: a structure (X ,≤1,≤2), where the set X
is equipped by two linear orders, e.g.

1 <1 2 <1 3 <1 4 <1 5 and 2 <2 1 <2 3 <2 5 <2 4.

Very suitable for infinite generalisations.
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⊕ and 	

Let π and σ be permutations of [1, p] and [1, s], respectively.

(π ⊕ σ)(i) =

{
π(i) for 1 ≤ i ≤ p,

σ(i − p) + p for p + 1 ≤ i ≤ p + s,

(π 	 σ)(i) =

{
π(i) + s for 1 ≤ i ≤ p,

σ(i − p) for p + 1 ≤ i ≤ p + s.

This is particularly convenient to explain on the plots.
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⊕ and 	

Let π and σ be permutations of [1, p] and [1, s], respectively.

(π ⊕ σ)(i) =

{
π(i) for 1 ≤ i ≤ p,

σ(i − p) + p for p + 1 ≤ i ≤ p + s,

(π 	 σ)(i) =

{
π(i) + s for 1 ≤ i ≤ p,

σ(i − p) for p + 1 ≤ i ≤ p + s.

This is particularly convenient to explain on the plots.

Easily generalises to infinite permutations.
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Countable ultrahomogeneous permutations

Theorem (Cameron, 2002)

The countable ultrahomogeneous permutations are precisely the
following:

1. the trivial permutation on a singleton set;

2. Q+ = (Q,≤,≤), where ≤ is the usual order of the rationals;

3. Q− = (Q,≤,≥);

4. · · · 	Q+ 	Q+ 	Q+ 	Q+ 	 . . . ;
5. · · · ⊕Q− ⊕Q− ⊕Q− ⊕Q− ⊕ . . . ;
6. the random permutation Π = the Fräısssé limit of all finite

permutations.

A model for Π: an everywhere dense and independent subset of
Q×Q.
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Changing the view

For the task of characterising HH permutations, yet another
approach is needed. Let (A,≤1,≤2) be a permutation.

Consider now two posets on A: the agreement poset

v1=≤1 ∩ ≤2

and the disagreement (inversion) poset

v2=≤1 ∩ ≥2 .

Now we have v1 ∪ v2=≤1 and v1 ∩ v2= ∆A. So, in fact, we
have a colouring of the non-loop edges of the graph of (A,≤1) into
two colours: blue and red, such that each coloured component
induces a poset on A.
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Changing the view

Let us now call a permutation a structure of the form
(A,≤,v1,v2), where

I ≤ is a linear order of A, and

I (v1,v2) is a partition of ≤ into two partial orders on A, in
the sense that v1 ∪ v2=≤ and v1 ∩ v2= ∆A (so all loops
are violet).
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Changing the view

Example

Permutation black (of the set {a, b, c , k , l})

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations18



Changing the view

We have a categorical equivalence between two ways to represent a
permutation as a structure.

In particular, the following holds.

Lemma
A permutation π = (A,≤1,≤2) is (homomorphism-)homogeneous
if and only if it adjoined ‘permutation’ Pπ = (A,≤1,v1,v2) is
(homomorphism-)homogeneous.

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations19
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The result

Let ιk denote the identical permutation on [1, k], and let π be the
dual permutation of π, obtained by reversing the second order.

Theorem (ID & É. Jungábel)

Let π be a permutation of [1, n]. Then π is HH if and only if either
π = ιr1 ⊕ · · · ⊕ ιrm , or π = ιr1 	 · · · 	 ιrm , where the sequence
(r1, . . . , rm) satisfies one of the following conditions:

(i) m = n and r1 = · · · = rn = 1;

(ii) m ≥ 2, r1 = · · · = rm−1 = 1 and rm > 1;

(iii) m ≥ 2, r1 > 1 and r2 = · · · = rm = 1;

(iv) m ≥ 4 and there exists an index j such that 2 ≤ j ≤ m − 2,
rj , rj+1 > 1, r1 = · · · = rj−1 = 1 and rj+2 = · · · = rm = 1;

(v) m ≥ 3, r1 = rm = 1, and for any pair of indices j , k such that
1 < j < k < m and rj , rk > 1 there exists an index q such that
j < q < k and rq = 1.
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Let π be a permutation of [1, n].

Then π is HH if and only if either
π = ιr1 ⊕ · · · ⊕ ιrm , or π = ιr1 	 · · · 	 ιrm , where the sequence
(r1, . . . , rm) satisfies one of the following conditions:

(i) m = n and r1 = · · · = rn = 1;

(ii) m ≥ 2, r1 = · · · = rm−1 = 1 and rm > 1;

(iii) m ≥ 2, r1 > 1 and r2 = · · · = rm = 1;

(iv) m ≥ 4 and there exists an index j such that 2 ≤ j ≤ m − 2,
rj , rj+1 > 1, r1 = · · · = rj−1 = 1 and rj+2 = · · · = rm = 1;

(v) m ≥ 3, r1 = rm = 1, and for any pair of indices j , k such that
1 < j < k < m and rj , rk > 1 there exists an index q such that
j < q < k and rq = 1.

St Andrews (PMC), April 9, 2014 Igor Dolinka: Finite HH permutations20



The result

Let ιk denote the identical permutation on [1, k], and let π be the
dual permutation of π, obtained by reversing the second order.

Theorem (ID & É. Jungábel)
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The result
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The key step

For a permutation Pπ = (A,≤,v1,v2) let Bπ = (A,v1) be the
‘blue poset’ (agreement), while Rπ = (A,v2) is the ‘red poset’
(inversion).

Proposition

If Pπ is a HH permutation (of arbitrary cardinality!), then both Bπ

and Rπ are HH posets.

Theorem (Mašulović, 2007)

A partially ordered set (A,�) is HH if and only if one of the
following condition holds:

(1) each connected component of (A,�) is a chain;

(2) (A,�) is a tree;

(3) (A,�) is a dual tree;

(4) (A,�) splits into a tree and a dual tree;

(5) (A,�) is locally bounded and X5-dense (A finite ⇒ lattice).
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For a permutation Pπ = (A,≤,v1,v2) let Bπ = (A,v1) be the
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The key step (continued)

Corollary

If Pπ = (A,≤,v1,v2) is a finite HH permutation and |A| > 1,
then at least one of the posets Bπ and Rπ are disconnected and
thus a free sum of at least two chains.

Therefore, by duality of blue and red, w.l.o.g. we may assume that
Bπ is a free sum of chains.

Hence,
π = ιr1 	 · · · 	 ιrm

for some positive integers (r1, . . . , rm) such that r1 + · · ·+ rm = n;
these are the lengths of maximal blue chains.
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The cases

Case 1: Rπ is a free sum of chains =⇒ (i)

Case 2: Rπ is a tree =⇒ (ii)

Case 3: Rπ is a dual tree =⇒ (iii)

Case 4: Rπ splits into a tree and a dual tree =⇒ (iv) or (v)

Case 5: Rπ is a lattice =⇒ (v)
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The converse...

...consists in verifying that each permutation of the type (i)–(v) is
indeed HH.

This is quite a technical proof (which, however, has its hidden
beauties) involving combinatorics of finite posets and partial
order-preserving transformations.

The most complicated case is (v) – its proof exceeds in length the
other four combined.

For details, see

I. Dolinka, É. Jungábel, Finite homomorphism-homogeneous
permutations via edge colourings of chains, Electronic Journal of
Combinatorics 19(4) (2012), #P17, 15 pp.
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Problems

Open Problem

Describe countably infinite homomorphism-homogeneous
permutations.

Open Problem

Describe the finite homomorphism-homogeneous structures with n
independent linear orders, n ≥ 3.
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On certain nights, when it is clear to Blue that Black will
not be going anywhere, he slips out to a bar not far away
for a beer or two, enjoying the conversations he
sometimes has with the bartender, whose name is Red,
and who bears an uncanny resemblance to Green, the
bartender from the Gray Case so long ago.

Paul Auster: Ghosts (The New York Trilogy)
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Preprints may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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