
The finite basis problem for
unary matrix semigroups

Igor Dolinka
dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

St Andrews, September 12, 2012

 



Glossary of terms

The equational theory Eq(A) of an algebra A

= the set of all identities (over some fixed countably infinite set
X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity p ≈ q is a consequence of
Σ, written Σ |= p ≈ q,

= every algebra that satisfies all identities from Σ also satisfies
p ≈ q.

If Σ ⊆ Eq(A) is such that every identity from Eq(A) is a
consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is
that of having a finite basis. If there is a finite basis for identities
of A, then A is said to be finitely based (FB). Otherwise, it is
nonfinitely based (NFB).
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Some classical positive results

Each of the following algebras is FB:

I finite groups (Oates & Powell, 1964)

I commutative semigroups (Perkins, 1968)

I finite lattices and lattice-based algebras (McKenzie, 1970)

I finite (associative) rings (L’vov; Kruse, 1973)

I algebras generating congruence distributive varieties with a
finite residual bound (Baker, 1977)

I algebras generating congruence modular varieties with a finite
residual bound (McKenzie, 1987)

I algebras generating congruence ∧-semidistributive varieties
with a finite residual bound (Willard, 2000)
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Negative results

Examples of finite NFB algebras:

I

0 1 2

0 0 0 0
1 0 0 1
2 0 2 2

(Murskĭı, 1965)

I a certain 6-element semigroup of matrices (Perkins, 1968)

I a certain finite pointed group (Bryant, 1982)

I the full transformation semigroup Tn for n ≥ 3 and the full
semigroup of binary relations Rn for n ≥ 2

I a certain 7-element semiring of binary relations (ID, 2007)

Tarski’s Finite Basis Problem: Is there any algorithmic way to
distinguish between finite FB and NFB algebras?
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McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property,
especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether
a finite semigroup is FB? This problem is still open.

M. V. Volkov: The finite basis problem for finite semigroups,
Sci. Math. Jpn. 53 (2001), 171–199.
http://csseminar.kadm.usu.ru/MATHJAP revisited.pdf
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Volkov’s NFB criterion (1989)

Let A2 be the 5-element semigroup given by the presentation

〈a, b : a2 = a = aba, b2 = 0, bab = b〉.

This is just the Rees matrix semigroup over a trivial group
E = {e} with the sandwich matrix(

e e
0 e

)

Fact
Of all varieties generated by Rees matrix semigroups with trivial
subgroups, A2 generates the largest one.

Fact
A2 is representable by matrices (over any field).
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Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that
there exist a positive integer d and a group G satisfying xd ≈ e
such that

I ad ∈ T for all a ∈ S, and

I G ∈ var S, but G 6∈ var T .

If A2 ∈ var S, then S is NFB.

Corollary

The following semigroups are NFB:

I the full transformation semigroup Tn (n ≥ 3)

I the full semigroup of binary relations Bn (n ≥ 2)

I the semigroup of partial transformations PT n (n ≥ 2)

I matrix semigroups Mn(F) for any n ≥ 2 and any finite field F
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Unary semigroups

Unary semigroup

= a structure (S , ·,∗ ) such that (S , ·) is a semigroup and ∗ is a
unary operation on S

Involution semigroup

= a unary semigroup satisfying (xy)∗ ≈ y∗x∗ and (x∗)∗ ≈ x

Examples

I groups

I inverse semigroups

I regular ∗-semigroups (xx∗x ≈ x)

I matrix semigroups with transposition Mn(F) = (Mn(F), ·,T )
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‘Unary version’ of Volkov’s Theorem

For a unary semigroup S , let H(S) denote the Hermitian
subsemigroup of S , generated by aa∗ for all a ∈ S .

For a variety V of unary semigroups, let H(V) be the subvariety of
V generated by all H(S), S ∈ V.

Furthermore, let K3 be the 10-element unary Rees matrix
semigroup over a trivial group E = {e} with the sandwich matrix e e e

e e 0
e 0 e

 ,

while (i , e, j)∗ = (j , e, i) and 0∗ = 0.

Fact
K3 generates the variety of all strict combinatorial regular
∗-semigroups (studied by K. Auinger in 1992).
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‘Unary version’ of Volkov’s Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that V = var S contains K3. If
there exist a group G which belongs to V but not to H(V), then S
is NFB.

Corollary

The following unary semigroups are NFB:

I the full involution semigroup of binary relations R∨n (n ≥ 2),
endowed with relational converse

I matrix semigroups with transposition Mn(F), where F is a
finite field, |F| ≥ 3

I matrix semigroups (M2(F), ·,† ), where F is either a finite field
such that |F| ≡ 3 (mod 4), or a subfield of C closed under
complex conjugation, and † is the unary operation of taking
the Moore-Penrose inverse.
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Further applications (Auinger, ID, Volkov, 2012)

Aside the few ‘sporadic’ cases, the following involution semigroups
are NFB:

I the partition semigroup Cn,

I the Brauer semigroup Bn,

I the partial Brauer semigroup PBn,

I the annular semigroup An,

I the partial annular semigroup PAn,

I the Jones semigroup Jn,

I the partial Jones semigroup PJn.

All these semigroups play significant roles in representation theory.
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However...

The Auinger-Volkov paper remained unpublished for 20 years (!),
because the following question remained unsettled.

Problem
Exactly which of the involution semigroups Mn(F) are NFB,
n ≥ 2, F is a finite field?

Also, the following open problem was both intriguing and inviting.

Problem
Do finite INFB involution semigroups exist at all?
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INFB...(?)

An algebra A is inherently nonfinitely based (INFB) if:

I A generates a locally finite variety, and

I any locally finite variety V containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the
variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact
Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property;
namely, the INFB property is “contagious”:

if var A is locally finite and contains an INFB algebra B,
then A is NFB.

In particular, B is NFB.
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Finite INFB semigroups: a success story

M. V. Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: Z1 = x1 and Zn+1 = Znxn+1Zn for n ≥ 1.

Theorem (Sapir, 1987)

Let S be a finite semigroup. Then

S is INFB⇐⇒ S 6|= Zn ≈W

for all n ≥ 1 and all words W 6= Zn.

Sapir also found an effective structural description of finite INFB
semigroups, thus proving

Theorem (Sapir, 1987)

It is decidable whether a finite semigroup is INFB or not.
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Examples of finite INFB semigroups

The example: the 6-element Brandt inverse monoid

B1
2 = 〈a, b : a2 = b2 = 0, aba = a, bab = b〉 ∪ {1}.

B1
2 is representable by matrices (over any field):(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)
.

B1
2 is obtained by adjoining an identity element to the Rees matrix

semigroup over the trivial group E = {e} with the sandwich matrix(
e 0
0 e

)
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Examples of finite INFB semigroups

Proposition

B1
2 fails to satisfy a nontrivial identity of the form Zn ≈W . Hence,

it is INFB.

Corollary

For any n ≥ 2 and any (semi)ring R, the matrix semigroup Mn(R)
is (I)NFB.

Since B1
2 ∈ var A1

2, where A2 is the 5-element semigroup from
Volkov’s theorem, we have that A1

2 is (I)NFB as well.

The same argument applies to Tn (n ≥ 3), Rn (n ≥ 2),
PT n (n ≥ 2),...
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What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution ∗ can be defined on B1
2 by a∗ = b,

b∗ = a, the remaining 4 elements (which are idempotents:
0, 1, ab, ba) being fixed. This turns B1

2 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B1
2 is not INFB as an inverse semigroup. In fact, there is no finite

INFB inverse semigroup at all!

Still, the inverse semigroup B1
2 is NFB (Kleiman, 1979).

So, once again:

Problem
Do finite INFB involution semigroups exist at all?
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An INFB criterion for involution semigroups

Yes!

Theorem (ID, 2010)

Let S be an involution semigroup such that var S is locally finite.
If S fails to satisfy any nontrivial identity of the form

Zn ≈W ,

where W is an involutorial word (a word over the ‘doubled’
alphabet X ∪ X ∗), then S is INFB.

How about a (finite) example?
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‘C’mon baby, let’s do the twist...!’

Rescue: Luckily, B1
2 admits one more involution aside from the

inverse one: define the nilpotents a, b (and, of course, 0, 1) to be
fixed by ∗, which results in (ab)∗ = ba and (ba)∗ = ab.

In this way we obtain the twisted Brandt monoid TB1
2 .

Proposition

TB1
2 fails to satisfy a nontrivial identity of the form Zn ≈W .

Hence, it is INFB.

Similarly to B1
2 , this little guy is quite powerful.

Remark
Analogously, one can also define TA1

2, the “involutorial version” of
A1
2, which is also INFB.
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Examples of finite INFB involution semigroups

I R∨n , the involution semigroup of binary relations, is (I)NFB for
all n ≥ 2,

I Reason: TB1
2 embeds into R∨

2 .

I M2(F), provided |F| 6≡ 3 (mod 4),
I Reason: This is precisely the case when −1 has a square root

in F, which is sufficient and necessary for TB1
2 to embed into

M2(F).

I Mn(F) for all n ≥ 3 and all finite fields F.
I Reason: TB1

2 embeds into Mn(F) as a consequence of the
Chevalley-Warning theorem from algebraic number theory (!!!).

So, what about M2(F) if |F| ≡ 3 (mod 4)?

(We already know it is NFB.)
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Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial
identity of the form Zn ≈W such that B1

2 6∈ var S. Then S is not
INFB.

Proof idea: Either W is an ordinary semigroup word, or for any ∗-fixed
idempotent e of S , var eSe consists of involution semilattices of Archimedean
semigroups.

Theorem (ID, 2010)

Let S be a finite semigroup satisfying an identity of the form
Zn ≈ ZnW . Then S is not INFB.

Proof idea: Stretching the approach of Margolis & Sapir (1995) developed for
finitely generated quasivarieties of semigroups to what seems to be the final
limits of that method: certain semigroup quasiidentities can be “encoded” into
unary semigroup identities.
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Non-INFB results

Corollary

No finite regular ∗-semigroup is INFB.

(Namely, x ≈ x(x∗x) holds.)

Corollary (ID, 2010)

For any finite group G, the involution semigroup of subsets
P∗G = (P(G ), ·, ∗) is not INFB.

(Namely, P∗G satisfies Zn ≈ Znx∗1x1 for n = |G |+ 2.)

Remark
The ordinary power semigroup PG = (P(G ), ·) is INFB if and only
if G is not Dedekind.
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No finite regular ∗-semigroup is INFB.

(Namely, x ≈ x(x∗x) holds.)

Corollary (ID, 2010)

For any finite group G, the involution semigroup of subsets
P∗G = (P(G ), ·, ∗) is not INFB.

(Namely, P∗G satisfies Zn ≈ Znx∗1x1 for n = |G |+ 2.)

Remark
The ordinary power semigroup PG = (P(G ), ·) is INFB if and only
if G is not Dedekind.
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Non-INFB results

Proposition (Crvenković, 1982)

If a finite involution semigroup S admits a Moore-Penrose inverse
†, then the inverse is term-definable in S.

In particular, such a semigroup satisfies x ≈ x · w(x , x∗) · x for
some w =⇒ it is not INFB.

Proposition

The involution semigroup of 2× 2 matrices over a finite field F
with transposition admits a Moore-Penrose inverse if and only if
|F| ≡ 3 (mod 4).

This completes our classification! ♥
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Solution to the (I)NFB problem for
matrix involution semigroups

Theorem (Auinger, ID, Volkov)

Let n ≥ 2 and F be a finite field. Then

(1) Mn(F) is not finitely based;

(2) Mn(F) is INFB if and only if either n ≥ 3, or n = 2 and
|F| 6≡ 3 (mod 4).
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The gap

Unfortunately, we have not yet accomplished a full classification of
finite involution semigroups with respect to the INFB property. We
don’t know what to do with finite involution semigroups (if they
exist) such that:

(a) B1
2 ∈ var S ,

(b) S satisfies a nontrivial identity of the form Zn ≈W ,

(c) S , however, fails to satisfy an identity of the form Zn ≈ ZnW ′.

This “gap” does not occur for ordinary semigroups, as (b) renders
(a) impossible. But this is no longer the case for involution
semigroups!

Test-Example

Is xyxzxyx ≈ xyxx∗xzxyx implying the non-INFB property?
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TAPADH LEAT!
THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://sites.dmi.rs/personal/dolinkai
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