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Variants of semigroups

Let (S,-) be a semigroup and a € S.
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Variants of semigroups

Let (S,-) be a semigroup and a € S. Given these, one can easily
define an alternative product x, on S, namely

X *, y = xay.
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Variants of semigroups

Let (S,-) be a semigroup and a € S. Given these, one can easily
define an alternative product x, on S, namely

X %3 Y = xay.

This is the variant $? = (S, %,) of S with respect to a.
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Variants of semigroups

Let (S,-) be a semigroup and a € S. Given these, one can easily
define an alternative product x, on S, namely

X %3 Y = xay.

This is the variant $? = (S, %,) of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from
1960 (in Russian).
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Variants of semigroups

Let (S,-) be a semigroup and a € S. Given these, one can easily
define an alternative product x, on S, namely

X %3 Y = xay.

This is the variant $? = (S, %,) of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from
1960 (in Russian).

Magill (1967): Semigroups of functions X — Y under an
operation defined by
f-g=rfobog,

where 0 is a fixed function Y — X.
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Variants of semigroups

Let (S,-) be a semigroup and a € S. Given these, one can easily
define an alternative product x, on S, namely

X %3 Y = xay.

This is the variant $? = (S, %,) of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from
1960 (in Russian).

Magill (1967): Semigroups of functions X — Y under an
operation defined by
f-g=rfobog,

where 0 is a fixed function Y — X. For Y = X, this is exactly a
variant of Tx.
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups
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History of variants — continued
Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups).
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups T,
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups T,

» classification of non-isomorphic variants
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups T,

» classification of non-isomorphic variants

» idempotents, Green's relations
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups T,

» classification of non-isomorphic variants
» idempotents, Green's relations

» analogous questions for PT,
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History of variants — continued

Hickey (1980s): Variants of general semigroups — a new
characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups T,

» classification of non-isomorphic variants
» idempotents, Green's relations
» analogous questions for PT,

A more accessible account of her results may be found in the
monograph of Ganyushkin & Mazorchuk Classical Finite
Transformation Semigroups (Springer, 2009).
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.

On the other hand, if S the bicyclic monoid, then a,b€ S, a# b
implies 52 2 Sb.
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.

On the other hand, if S the bicyclic monoid, then a,b€ S, a# b
implies 52 2 Sb.

If S is a monoid, a,u,v € S, and u, v are units, then S¥@V = §°
via X — vxu.
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.

On the other hand, if S the bicyclic monoid, then a,b€ S, a# b
implies 52 2 Sb.
If S is a monoid, a,u,v € S, and u, v are units, then S¥@V = §°

via X = vxu.

Thus, for any a € Tx there exists e € E(Tx) such that 72 = T¢.
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.

On the other hand, if S the bicyclic monoid, then a,b€ S, a# b
implies 52 2 Sb.
If S is a monoid, a,u,v € S, and u, v are units, then S¥@V = §°

via X = vxu.

Thus, for any a € Tx there exists e € E(Tx) such that 72 = T¢.

A WORD OF CAUTION: If S is a regular semigroup, S? is not
regular in general!
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Several examples

For a group G and a € G, we always have G2 = G via x — xa.

The identity element in G? is a— 1.

On the other hand, if S the bicyclic monoid, then a,b€ S, a# b
implies 52 2 Sb.
If S is a monoid, a,u,v € S, and u, v are units, then S¥@V = §°

via X = vxu.

Thus, for any a € Tx there exists e € E(Tx) such that 72 = T¢.

A WORD OF CAUTION: If S is a regular semigroup, S? is not
regular in general! However, for regular S and arbitrary a € S,
Reg(5?) is always a subsemigroup of S (Khan & Lawson).
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A word of caution, you said...?

ni{n{n{n{a{n/ln/in/ln[njnjiu
] X\\ S oaEt

Egg-box picture of 7,2 for a =1,2,3, 3]
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A word of caution, you said...”?

Egg-box picture of 72 for a=11,1,3, 3]
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A word of caution, you said...”?

Egg-box picture of T2 for a=1[1,1,1,4]
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Three important sets

P1={x€S: xaZ x},
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Three important sets

P1={xeS: xaZ x}, P,={xeS: ax Z x},
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Three important sets

P1={xeS: xaZ x}, P,={xeS: ax Z x},

P=P NP
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Three important sets

P1={xeS: xaZ x}, P,={xeS: ax Z x},

P=PiNP

Easy facts:
»yebP & L, C P,
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Three important sets

P1={xeS: xaZ x}, P,={xeS: ax Z x},

P=PiNP

Easy facts:
»yehbP & L, C Py,
»yehP, & R CP,
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Three important sets

P1={xeS: xaZ x}, P,={xeS: ax Z x},

P=PiNP

Easy facts:
»yehbP & L, C Py,
»yehP & R CP,
» Reg(S?)C P
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Green's relations: %2, .2, 7°°, 9?

R? =

X

ReNPy ifxe Py
{x} if xS\ Py,
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Green's relations: %2, .2, 7°°, 9?

R — ReNPy ifxe Py
T {x} ifxeS\ P,

L2 =

X

L.NnP, ifxehPs
(x}  ifxeS\ P,
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Green's relations: %2, .2, 7°°, 9?

R — ReNPy ifxe Py
T {x} ifxeS\ P,

La_{LxﬂPg if x € P

T x if x € S\ Py,
o = P if x € P
(x} if x €S\ P,
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Green's relations: %2, .2, 7°°, 9?

R NP
Rj_{ nn
{x}
L2 — L, NP
{x}
e - {HX
{x}
D,NP
a
pr =
R
{x}

if xe Py
if xS\ P,

if x € P,
ifXGS\Pz,

if xe P
if xeS\P,

if xe P

if xe€ P\ Py

if xe P\ P,

if xe€ S\ (P1UP).
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Group H-classes vs group H?-classes (in P)

Let S= T4 and a=1,2,3,3].
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Group H-classes vs group H?-classes (in P)

Let S=7T4and a=[1,2,3,3].

X Is Hy a group s -class of T4? | Is Hy a group ##°-class of 7,7
[1,1,3,3] Yes Yes
[4,2,2,4] Yes No
[2,4,2,4] No Yes
[1,3,1,3] No No
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Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of
T3¢ where | X| = n and a is a fixed transformation on X.
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Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of
T3¢ where | X| = n and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with

r = rank(a) < n,
(Al Ar>
a= :
al e ar

so that a; € A; for all i € [1,r].
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Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of
T3¢ where | X| = n and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with

r = rank(a) < n,
(Al Ar>
a= :
al e ar

so that a; € A; for all i € [1,r].

Here A=im(a) = {a1,...,ar} and o = ker(a) = (A1] - - |Ar),
with \; = |A,|
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Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of
T3¢ where | X| = n and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with

r = rank(a) < n,
(Al Ar>
a= :
al e ar

so that a; € A; for all i € [1,r].

Here A=im(a) = {a1,...,ar} and o = ker(a) = (A1] - - |Ar),
with \; = |A;|. Furthermore, for I = {i1,...,im} C[1, r] we write
/\/ :)\,'1-"A,'m and /\:Al---)\r,
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X.
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X. We say that
B saturates 3 if each (-class contains at least one element of B.
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X. We say that
B saturates 3 if each (-class contains at least one element of B.
Also, we say that 3 separates B if each (§-class contains at most
one element of B.
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X. We say that
B saturates 3 if each (-class contains at least one element of B.
Also, we say that 3 separates B if each (§-class contains at most
one element of B.

Py = {f € Tx : rank(fa) = rank(f)}
= {f € Tx : « separates im(f)}
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X. We say that
B saturates 3 if each (-class contains at least one element of B.
Also, we say that 3 separates B if each (§-class contains at most
one element of B.

P1 = {f € Tx : rank(fa) = rank(f)}
={f € Tx : « separates im(f)}

P, = {f € Tx : rank(af) = rank(f)}
= {f € Tx : A saturates ker(f)}
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Pl, P2, P in 7;?

Let B C X and let 8 be an equivalence relation on X. We say that
B saturates 3 if each (-class contains at least one element of B.
Also, we say that 3 separates B if each (§-class contains at most
one element of B.

P1 = {f € Tx : rank(fa) = rank(f)}
={f € Tx : « separates im(f)}

P, = {f € Tx : rank(af) = rank(f)}
= {f € Tx : A saturates ker(f)}

P = {f € Tx : rank(afa) = rank(f)} = Reg(T¥) < T¥
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Green's relations in 7y (Tsyaputa, 2004)

R2 — RenPy iffePy
P71} if feTx\ Py,
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Green's relations in 7y (Tsyaputa, 2004)

R2 — RenPy iffePy
R P 3! if feTx\ Py,

La_{LmP2 if f € Py
-

{f} if feTx\ P,
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Green's relations in 7y (Tsyaputa, 2004)

RenPy if feP
R?:{f 1 Trer

{f} if feTx\ P,

la— Len Py iffebpP
A if feTx\ Pa,
. [He iffep

{f} if feTx\P,
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Green's relations in 7y (Tsyaputa, 2004)

Ra _ RenPy iffebP
R P 3! if feTx\ Py,

La_{mez if f € Py
-

{f} if £€7Tx\ Pa,
Lo | Hr if f e P
R P 3! if feTx\P,
DiNP iffeP
pDa — L? iffEPg\Pl
T R? if f € P\ Py
(f} i feTx\(PLUP).
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‘High-energy semigroup theory’
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‘High-energy semigroup theory’

» Recall that in Tx, the Z-classes form a chain:

D,>Dp 1>--->Dy> Ds.
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‘High-energy semigroup theory’

» Recall that in Tx, the Z-classes form a chain:

D,>Dp_1>--->Dy> Ds.

» Each of the P-classes D, 1, ..., D, is completely ‘shattered’
into singleton ‘shrapnels’ / Z?-classes in 7.
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‘High-energy semigroup theory’

» Recall that in Tx, the Z-classes form a chain:

D,>Dp_1>--->Dy> Ds.

» Each of the P-classes D, 1, ..., D, is completely ‘shattered’
into singleton ‘shrapnels’ / Z?-classes in 7.

» Since all constant maps trivially belong to P, D; is preserved,
and remains a right zero band.
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‘High-energy semigroup theory’

» Recall that in Tx, the Z-classes form a chain:
D,>Dp_1>--->Dy> Ds.
» Each of the P-classes D, 1, ..., D, is completely ‘shattered’

into singleton ‘shrapnels’ / Z?-classes in 7.

» Since all constant maps trivially belong to P, D; is preserved,
and remains a right zero band.

> For 2 < m < r, the class D, separates into a single regular
chunk D, N P and a number of non-regular pieces, as seen on
the following picture...
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‘High-energy semigroup theory’

ch Z P ch Z P

ch . . . . ) ch . . E ? g
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:

| 2 f:g'
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:

> f = g'
» rank(f) < rank(aga),
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:

| 2 f =g,
» rank(f) < rank(aga),
» im(f) C im(ag),
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:

> f =g,

» rank(f) < rank(aga),
» im(f) Cim(ag),

> ker(f) D ker(ga).
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Order of the &°-classes

Let f,g € Tx. Then D7 < D2 in T¢ if and only if one of the
following holds:

> f =g,

» rank(f) < rank(aga),
» im(f) Cim(ag),

> ker(f) D ker(ga).

The maximal Z?-classes are those of the form D7 = {f} where
rank(f) > r.
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Order of the &°-classes
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Igor Dolinka: Variants of T,

NBSAN, York, January 14, 2015



The rank of 7¢

Let M = {f € Tx : rank(f) > r}.
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The rank of 7¢

Let M = {f € Tx : rank(f) > r}.

Then T¢ = (M); furthermore, any generating set for 7¢ contains
M.
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The rank of 7¢

Let M = {f € Tx : rank(f) > r}.

Then T¢ = (M); furthermore, any generating set for 7¢ contains
M.

Consequently, M is the unique minimal (with respect to
containment or size) generating set of 72, and

rank(73) = |M| = Z snm< ) !

m=r—+1

where S(n, m) denotes the Stirling number of the second kind.
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‘Positioning’ with respect to the regular classes
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
» If g € P, then D7 < D if and only if rank(f) < ran

k(g)-
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
> If g € P, then D7 < Dz if and only if rank(f) < rank(g).
Consequences:
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
> If g € P, then D7 < Dz if and only if rank(f) < rank(g).
Consequences:

» The regular Z°-classes of T¢ form a chain: Df < --- < D}
(where D2, = {f € P: rank(f) = m} for m € [1,r]).
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
» If g € P, then D7 < D; if and only if rank(f) < rank(g).
Consequences:

» The regular Z°-classes of T¢ form a chain: Df < --- < D}
(where D2, = {f € P: rank(f) = m} for m € [1,r]).
» ‘Co-ordinatisation’ of the non-regular, ‘fragmented’

P°-classes: if rank(f) = m < r and rank(afa) = p < m, then
D¢ sits below Dp, and above Dj.
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
» If g € P, then D7 < D; if and only if rank(f) < rank(g).

Consequences:

» The regular Z°-classes of T¢ form a chain: Df < --- < D}
(where D2, = {f € P: rank(f) = m} for m € [1,r]).

» ‘Co-ordinatisation’ of the non-regular, ‘fragmented’
P°-classes: if rank(f) = m < r and rank(afa) = p < m, then
D¢ sits below Dp, and above Dj.

» The ‘crown’: A maximal Z°-class D7 = {f} sits above D; if
and only if rank(afa) = r.
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‘Positioning’ with respect to the regular classes

» If f € P, then D7 < Dz if and only if rank(f) < rank(aga).
» If g € P, then D7 < D; if and only if rank(f) < rank(g).

Consequences:

» The regular Z°-classes of T¢ form a chain: Df < --- < D}
(where D2, = {f € P: rank(f) = m} for m € [1,r]).

» ‘Co-ordinatisation’ of the non-regular, ‘fragmented’
P°-classes: if rank(f) = m < r and rank(afa) = p < m, then
D¢ sits below Dp, and above Dj.

» The ‘crown’: A maximal Z°-class D7 = {f} sits above D; if
and only if rank(afa) = r. The number of such Z?-classes is
equal to (n"~" — r"")rlA.
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Reg(Ty) — examples

[3]+]5] BRBE
[1:]7] BRBE
BEB BRBE
[3[:]3] BREE
BEB BRBE
[3]=]3] BBEEE
BEB BRBE
[1=]5] BBEEE
BE BRBE
2[2]2]2]2]2 2[2]2]2]2]2
BBBBBE BRBBBE
BEBBBE BBRBBBE
BBEBBBE ABBEBE
BBBE 2a]2 ]z [2]:] i 220z ([E NEBE
2222 222 2]z AEE BE ABBE
2222 2222 2]z G 22| 2]z BEBE
2222 BEBBEBEEE AREEEPE BEBE
ABBE 2222 2]z 2] BRBE
2222 222222 (2222 BRBE
BBBE BB RaaE BBBE
BEBE 2222 2]z 22 ]2 HBEE

([T e R« e e e e [ [Dia/mimEE Bo000

Egg-box diagrams of the regular subsemigroups P = Reg(75’) in the cases
(from left to right): a=[1,1,1,1,1], a=[1,2,2,2,2], a=[1,1,2,2,2],
a=1[1,2,3,3,3], a=[1,2,2,3,3], a=[1,2,3,4,4].
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Do you see what | am seeing???

[N]
&

[N]
[N]

2
2
2
2

l
oo falle]1<]

Egg-box diagrams of T3 (left) and Reg(7s’) for a =[1, 2,2, 3, 3] (right).
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No, this is not just a coincidence...!
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No, this is not just a coincidence...!

T(X,A) = {f € Tx : im(f) C A}
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No, this is not just a coincidence...!

T(X,A) = {f € Tx : im(f) C A}

T(X,a)={f € Tx : ker(f) D a}
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No, this is not just a coincidence...!

T(X,A)={f € Tx: im(f) C A}

T(X,a)={f € Tx : ker(f) D a}

— transformation semigroups with restricted range (Sanwong &
Sommanee, 2008), and restricted kernel (Mendes-Gongalves &
Sullivan, 2010).
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No, this is not just a coincidence...!

T(X,A)={f € Tx: im(f) C A}

T(X,a)={f € Tx : ker(f) D a}

— transformation semigroups with restricted range (Sanwong &

Sommanee, 2008), and restricted kernel (Mendes-Gongalves &
Sullivan, 2010).

Fact:
Reg(T(X,A)) =T (X,A) NP,
Reg(T(X,a)) =T(X,a)N Py
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Structure Theorem — Part 1

Y f > (fa, af)

is a well-defined embedding of Reg(7y) into the direct product
Reg(T(X,A)) x Reg(T (X, a)).
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Structure Theorem — Part 1

Y f > (fa, af)

is a well-defined embedding of Reg(7y) into the direct product
Reg(T (X, A)) x Reg(T(X,a)). Its image consists of all pairs
(g, h) such that

rank(g) =rank(h) and g|a = (ha)|a.
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Structure Theorem — Part 1

Y f > (fa, af)

is a well-defined embedding of Reg(7y) into the direct product
Reg(T (X, A)) x Reg(T(X,a)). Its image consists of all pairs
(g, h) such that

rank(g) =rank(h) and g|a = (ha)|a.

Thus Reg(7y) is a subdirect product of Reg(7¢) and
Reg(T (X, a)).
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Structure Theorem — Part 2

The maps
o1 Reg(T(X,A) = Ta:g— gla
¢2 : Reg(T(X,0)) = Ta: g+ (g3)la

are epimorphisms,
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Structure Theorem — Part 2

The maps
o1 Reg(T(X,A) = Ta:g— gla

¢2 : Reg(T(X,0)) = Ta: g+ (g3)la

are epimorphisms, and the following diagram commutes:

Reg(Tx)

a))

&  Sow
RN
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Structure Theorem — Part 2

The maps
o1 Reg(T(X,A) = Ta:g— gla

¢2 : Reg(T(X,0)) = Ta: g+ (g3)la

are epimorphisms, and the following diagram commutes:

Reg(T¥)

a))

.
/

Further, the induced map ¢ = 11¢1 = V2o = Reg(T¢) = Ta is
an epimorphism that is ‘group / non-group preserving'.

/.
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Size and rank of P = Reg(T})
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Size and rank of P = Reg(T})

|P| = Z mim"~"S(r, m) Z A

= ()
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Size and rank of P = Reg(T})

r

|P| = Z mim"~"S(r, m) Z A

- ()

Let D be the top (rank-r) Z°-class of P.
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Size and rank of P = Reg(T})

|P| = i m'm"~"S(r, m) Z A
m=1

(")
Let D be the top (rank-r) Z°-class of P.

rank(P) = rank(D) + rank(P: D) =r"""+1
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The idempotent generated subsemigroup (E,(7%)),
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The idempotent generated subsemigroup (E,(7%)),

» E(TX)={f €Tx: (af)|im(f) = id|im(f)}'
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The idempotent generated subsemigroup (E,(7%))a

= (Ta) = {f € Tx : (af)|im(f = id|im(f)}'

> |E, TX)\—Zm" ™A
e ()

NBSAN, York, January 14, 2015 24 Igor Dolinka: Variants of T,



The idempotent generated subsemigroup (E,(73%)).

» ES(T3)={feTx: (af)‘im(f = id|im(f)}'

- |Eo TX)\—Zm" "3 AL
(%)
» We obtain a pleasing generalisation of celebrated Howie's
Theorem:

Ex = (Es(TX))a = Es(D)U (P \ D).
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The idempotent generated subsemigroup (E,(7%)),

rank(Ex) = idrank(Ex) = r"" + py,

where pp =2 and p, = (}) if r > 3.
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The idempotent generated subsemigroup (E,(73%)).

rank(Ex) = idrank(Ex) = r"" + py,
where pp =2 and p, = (;) if r > 3.
» The number of idempotent generating sets of £5 of the

minimal possible size is

1
— )" AVAIS(F7 A )
[(r=1)""AJ" NS (rm T, )rzdr O E

where T, is the set of all strongly connected tournaments on r
vertices.
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The ideals of P

» The ideals of P are precisely
12 ={f € P: rank(f) < m}

for me [1,r].
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The ideals of P

» The ideals of P are precisely
17 ={f € P: rank(f) < m}

for me [1,r].

» They are all idempotent generated (by E,(DZ,)) except
P =17 itself.
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The ideals of P

» The ideals of P are precisely

17 ={f € P: rank(f) < m}

for me [1,r].
» They are all idempotent generated (by E,(DZ,)) except
P =17 itself.
>
nrs if 1
rank(/2) = idrank(/3) = m (r,m) I smsr
n if m=1.
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Future work
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Future work

» Conduct an analogous study for variants of:
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Future work

» Conduct an analogous study for variants of:
» full linear (matrix) monoids
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Future work

» Conduct an analogous study for variants of:

» full linear (matrix) monoids
> symmetric inverse semigroups
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Future work

» Conduct an analogous study for variants of:
» full linear (matrix) monoids
> symmetric inverse semigroups
» various diagram semigroups (partition, (partial) Brauer,
(partial) Jones, wire, Kaufmann,...)

NBSAN, York, January 14, 2015 27 Igor Dolinka: Variants of T,



Future work

» Conduct an analogous study for variants of:
» full linear (matrix) monoids
> symmetric inverse semigroups
» various diagram semigroups (partition, (partial) Brauer,

(partial) Jones, wire, Kaufmann,...)
> .

» Consider an ‘Ehresmann-style’ defined small (semi)category
(aka partial monoid / semigroup) S.
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Future work

» Conduct an analogous study for variants of:
» full linear (matrix) monoids
> Symmetrlc Inverse semigroups
» various diagram semigroups (partition, (partial) Brauer,
(partial) Jones, wire, Kaufmann,...)
> .

» Consider an ‘Ehresmann-style’ defined small (semi)category
(aka partial monoid / semigroup) S. One can turn each
hom-set Sj; (i - domain, j - codomain) into a semigroup by
fixing a ‘sandwich’ element a € S;; and defining

Xxy=xo0aoy.
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Future work

» Conduct an analogous study for variants of:
» full linear (matrix) monoids
> Symmetrlc Inverse semigroups
» various diagram semigroups (partition, (partial) Brauer,
(partial) Jones, wire, Kaufmann,...)
> .

» Consider an ‘Ehresmann-style’ defined small (semi)category
(aka partial monoid / semigroup) S. One can turn each
hom-set Sj; (i - domain, j - codomain) into a semigroup by
fixing a ‘sandwich’ element a € S;; and defining

Xxy=xo0aoy.

These sandwich semigroups generalise the variants.
» applicable to functions, matrices, diagrams,. ..
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THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie

NBSAN, York, January 14, 2015 28 Igor Dolinka: Variants of T,



