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Why right unit monoids?

M an (inverse) monoid: a € M is right invertible (or a right unit)
if ax =1 for some x € M.
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Why right unit monoids?

M an (inverse) monoid: a € M is right invertible (or a right unit)
if ax = 1 for some x € M. In inverse monoids: aa—! = 1.

Right units form a right cancellative submonoid RU(M) of M:
ac=bc = a=acc!=bcc!=b.

Membership problem of RU(M) in M undecidable = the word
problem of M undecidable. This is exactly how Gray (2020)
constructed a 1-relator special inverse monoid Inv(A|w = 1) with
undecidable WP. (A stark contrast to groups (Magnus, 1932) and
ordinary special monoids (Adyan, 1966).)

Remark
M = Inv(A|w; =1 (i € l)) is E-unitary
= RU(M) = the prefix monoid of Gp(A|w; =1 (i € I)).
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What did we know thus far? (1)

Theorem (IgD, RDG, 2023):

For every group-embeddable recursively presented monoid M there
is a natural number 15, such that

M+ 53
arises as a prefix monoid (with |Xx| = k) if and only if k > p.
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What did we know thus far? (1)

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there
is a natural number 15, such that

M+ 53
arises as a prefix monoid (with |Xx| = k) if and only if k > p.

» If M is group-embeddable and finitely presented = pp = 0.
» If M is a group and pp = 0 = M is finitely presented.

Let P be the class of all prefix monoids (of f.p. groups).

Let R be the class of all RU-monoids (of f.p. SIMs).
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What did we know thus far? (2)

Fact

» Every RU-monoid is recursively presented (as a monoid).
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RC-presentations:
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p of A* such that
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> A*/pis right cancellative.
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What did we know thus far? (2)

Fact
» Every RU-monoid is recursively presented (as a monoid).
» If a group arises as an RU-monoid = it is finitely presented.

RC-presentations:
M = MonRC(A|R)

& M 22 A*/RRC where 1T is the intersection of all congruences
p of A* such that

> RCp

> A*/pis right cancellative.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.

Hence, RU < P.
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Classes of right cancellative monoids

RC1 = the class of finitely generated submonoids of finitely
RC-presented (r.c.) monoids
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Classes of right cancellative monoids

RC1 = the class of finitely generated submonoids of finitely
RC-presented (r.c.) monoids

RCo = the class of recursively RC-presented monoids
= the class of recursively presented monoids that happen to
be right cancellative

Remark
RU C RC».

Remark
By the Higman Embedding Theorem,

f.g. subgroups of f.p. groups = recursively presented groups.

Analogous results hold for monoids and inverse monoids. However,
at present there is no HET for RC-presentations, and so we don't
know if the containment RCy C RC, is proper or an equality.
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A result on free products as RU-monoids

Theorem (IgD, RDG, 2025):

M —a f.p. SIM, U — the group of units of M. If
RUM)=UxT

for a f.g. monoid T with a trivial group of units

= U is finitely presented.
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A result on free products as RU-monoids

Theorem (IgD, RDG, 2025):
M —a f.p. SIM, U — the group of units of M. If

RUM)= UxT
for a f.g. monoid T with a trivial group of units
= U is finitely presented.
Consequences:

» RU(M) = Up *x X* for a finite X = Uy (and RU(M)) is f.p.
G a f.g. group that is not f.p. = G x X* & RU (Vfinite X).
P L RU.

RC1 € RU.

>
>
>
» RIU is a proper subclass of RC».
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Boundary width and ball covers in graphs

Boundary pair:
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Boundary width and ball covers in graphs

Boundary pair:
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Ball cover of A C V(I): Ay = U, e Br(v)
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Boundary width and ball covers in graphs

Boundary pair:

Boundary width:
B(X) =sup{d(x,y): (x,y) is a boundary pair in X}
Ball cover of A C V(I): A; = U, ecn Br(v)

Finite ball cover of finite boundary width: dr > 0 such that A, has
finite boundary width.
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Graphs as metric spaces: a bit of geometry

(A, €, p)-quasi-isometry f : (X,d) — (X',d") (A >1, e, > 0):
Sd(x,y) e < d(F(x),F(y)) < Md(x,y) + e

and f(X) C X' is p-quasi-dense.
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and f(X) C X' is p-quasi-dense.

Lemma (IgD, RDG, 2025)
f: T — T’ — a quasi-isometry between graphs, A C V/(I').
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(A, €, p)-quasi-isometry f : (X,d) — (X',d") (A >1, e, > 0):

Sdlx,y) e < d/(F(x), F(y)) < Ad(x,y) + e

and f(X) C X' is p-quasi-dense.
Lemma (IgD, RDG, 2025)

f: T — T’ — a quasi-isometry between graphs, A C V/(I').
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Graphs as metric spaces: a bit of geometry

(A, €, p)-quasi-isometry f : (X,d) — (X',d") (A >1, e, > 0):

Sdlx,y) e < d/(F(x), F(y)) < Ad(x,y) + e

and f(X) C X' is p-quasi-dense.

Lemma (IgD, RDG, 2025)
f: T — T’ — a quasi-isometry between graphs, A C V/(I').

» A has a finite ball cover with finite boundary width in T —
f(A) has a finite ball cover with finite boundary width in T'.

» A has a connected finite ball cover in T = f(A) C T has a
connected finite ball cover in T".
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How does this all apply in inverse monoids? (1)

S = (A) — a f.g. inverse monoid, H < S — a subgroup
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A finite cover of H: a union A = U,EF H; O H of finitely many
right cosets of H
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M — a f.g. inverse monoid, H C M — a subgroup of M,
" — the Schiitzenberger graph containing H.
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In this case the graph induced by A is quasi-isometric to the
Cayley graph of the group H.
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How does this all apply in inverse monoids? (1)

S = (A) — a f.g. inverse monoid, H < S — a subgroup

A finite cover of H: a union A = UieF H; O H of finitely many
right cosets of H

A has finite boundary width = A has FBW in ST 4(R), where R
the Z-class containing H (connected...)

Theorem (IgD, RDG, 2025)

M — a f.g. inverse monoid, H C M — a subgroup of M,

" — the Schiitzenberger graph containing H.

Then H is f.g. <= H admits a finite connected cover.

In this case the graph induced by A is quasi-isometric to the
Cayley graph of the group H.

H is f.p. <= H is f.g. and Rips,(A) is simply connected for large
enough r.
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How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S — a f.g. inverse monoid, H — a subgroup of S which has a finite
cover with finite boundary width.
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How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S — a f.g. inverse monoid, H — a subgroup of S which has a finite
cover with finite boundary width. Then H is finitely generated.
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How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S — a f.g. inverse monoid, H — a subgroup of S which has a finite
cover with finite boundary width. Then H is finitely generated.
Moreover, if S is f.p. (as an inv. monoid) = the group H is f.p.
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How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S — a f.g. inverse monoid, H — a subgroup of S which has a finite
cover with finite boundary width. Then H is finitely generated.
Moreover, if S is f.p. (as an inv. monoid) = the group H is f.p.

This then applies to our free product result, as U has finite
boundary width in Ux T. ©@
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RC1 and RU — revisited

RC1 ¢ RU but...
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RC1 and RU — revisited
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Theorem (IgD, RDG, 2025)

For any T € RC; there exists a f.p. SIM M such that RU(M) has
a submonoid containing the group of units of M (which is also the
group of units of RU(M)) that is isomorphic to T.
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RC1 and RU — revisited

RC1 ¢ RU but...

Theorem (IgD, RDG, 2025)

For any T € RC; there exists a f.p. SIM M such that RU(M) has
a submonoid containing the group of units of M (which is also the
group of units of RU(M)) that is isomorphic to T.

...RCq is “dense” in RU

Method: The “generalised Gray-Kambites" construction! 4
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Adapting the GK for right cancellative monoids (1)

Let S = MonRC(A|u; =v; (1 <i<k)) and
T =(B), BC A-af.g. submonoid (T € RC1).
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Adapting the GK for right cancellative monoids (1)

Let S = MonRC(A|u; = v; (1 <i < k)) and
T =(B), BC A-af.g. submonoid (T € RCy).

Ms 1 — the f.p. SIM presented by ¥ = AU {po, p1,...,Pk, 2, d} &

piap; tpiatpt =1 (ae A i=0,1,...,k)
piuid v iprt =1 (i=1,...,k)
podpy ' =1

zbz 7 lzb7 1zt =1 (beB)

k
z (H pilp,-> z =1
i=0
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Adapting the GK for right cancellative monoids (1)

Let S = MonRC(A|u; = v; (1 <i < k)) and

T =(B), BC A-af.g. submonoid (T € RC1).

Ms 1 — the f.p. SIM presented by ¥ = AU {po, p1, - . .

piap; pia tpt =1
p,-u,-dflvi_lpi_1 =1
podpy ' =1

zbz 7 lzb 17 =1

k
z (H pilp,-> z =1
i=0

0. /m.

» Pk Z, d} &

(ac A, i=01,....k)
(i=1,...,k)

(be B)

PO &
‘ LB
i
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Adapting the GK for right cancellative monoids (2)

Theorem (IgD, RDG, 2025)

RU(Ms, 1) is presented by generators: p;, q; (0 <i < k),
a) (ac A 0<i<k) b (be B), and relations:

giwp; = gow@py (we A", 1<i<k)
q;u(i) = q;v(i) (u,v € A" sit. u=v holds in S,0 < j < k)
gib) = bg; (be B, 0<i<k)

and T — RU(Ms 1) such that (the image of) T contains the
group of units of the latter.
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Adapting the GK for right cancellative monoids (2)

Theorem (IgD, RDG, 2025)

RU(Ms, 1) is presented by generators: p;, q; (0 <i < k),
a) (ac A 0<i<k) b (be B), and relations:

giwp; = gow@py (we A", 1<i<k)
q;u(i) = q;v(i) (u,v € A" sit. u=v holds in S,0 < j < k)
gib) = bg; (be B, 0<i<k)

and T — RU(Ms 1) such that (the image of) T contains the
group of units of the latter.

Corollary

The class RU includes r.c. monoids that are not finitely
RC-presented (and even have a trivial group of units).
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The Gray-Ruskuc construction (1)

Q={r:iel},W={w: 1<<k}C(AUATL)
Ko =Mon(AUA™Y|r, =1, (i € 1)) - a group,
Tw = (W) < Kg — a submonoid
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The Gray-Ruskuc construction (1)

Q={r:iel},W={w: 1<<k}C(AUATL)
Ko =Mon(AUA™Y|r, =1, (i € 1)) - a group,
Tw = (W) < Kg — a submonoid

Mg w — the (E-unitary) SIM presented by AU {t} and

=1 (I S I),
apa,t =ayla, =1 (ap € A),
tmgt*ltwj‘ltfl =1 (1<j<k).

Evora, TCA25, 1 July 2025 13 Igor Dolinka



The Gray-Ruskuc construction (1)

Q={r:iel},W={w: 1<<k}C(AUATL)
Ko =Mon(AUA™Y|r, =1, (i € 1)) - a group,
Tw = (W) < Kg — a submonoid

Mg w — the (E-unitary) SIM presented by AU {t} and

=1 (I S I),
apa,t =ayla, =1 (ap € A),
tmgt*ltwj‘ltfl =1 (1<j<k).

Theorem (IgD, RDG, 2025)
Let B be disjoint from AU A™1,

B| = |W|. Then
RU(Mg.w) = MonRC(AU A=Y B, t|ri=1(i € 1), tw; = bt (1 < j < k))
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The Gray-Ruskuc construction (1)

Q={r:iel},W={w: 1<<k}C(AUATL)
Ko =Mon(AUA™Y|r, =1, (i € 1)) - a group,
Tw = (W) < Kg — a submonoid

Mg w — the (E-unitary) SIM presented by AU {t} and

=1 (I S I),
apa,t =ayla, =1 (ap € A),
tmgt*ltwj‘ltfl =1 (1<j<k).

Theorem (IgD, RDG, 2025)
Let B be disjoint from AU A™1,

B| = |W|. Then
RU(Mg.w) = MonRC(AU A=Y B, t|ri=1(i € 1), tw; = bt (1 < j < k))

(Otto-Pride extensions...)
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The Gray-Ruskuc construction (2)

Some consequences:
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The Gray-Ruskuc construction (2)

Some consequences:

> If Kq is finitely presented = RU(Mq w ) is finitely
RC-presented,
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The Gray-Ruskuc construction (2)

Some consequences:
> If Kq is finitely presented = RU(Mq w ) is finitely
RC-presented,
» So, there exists an E-unitary f.p. SIM such that its monoid of
right units is finitely RC-presented but not finitely presented
as a monoid
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The Gray-Ruskuc construction (2)

Some consequences:

> If Kg is finitely presented = RU(Mq ) is finitely
RC-presented,

» So, there exists an E-unitary f.p. SIM such that its monoid of
right units is finitely RC-presented but not finitely presented
as a monoid (because either Kg or Ty not f.p. =
RU(Mq,w) not f.p. as a monoid).

E/vora‘ TCA25, 1 July 2025 14 Igor Dolinka



The Gray-Ruskuc construction (2)

Some consequences:

> If Kg is finitely presented = RU(Mq ) is finitely
RC-presented,

» So, there exists an E-unitary f.p. SIM such that its monoid of
right units is finitely RC-presented but not finitely presented
as a monoid (because either Kg or Ty not f.p. =
RU(Mq,w) not f.p. as a monoid).

» There is a finitely RC-presented monoid whose group of units
is not f.p.
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The Gray-Ruskuc construction (2)

Some consequences:

> If Kg is finitely presented = RU(Mq ) is finitely
RC-presented,

» So, there exists an E-unitary f.p. SIM such that its monoid of
right units is finitely RC-presented but not finitely presented
as a monoid (because either Kg or Ty not f.p. =
RU(Mq,w) not f.p. as a monoid).

» There is a finitely RC-presented monoid whose group of units
is not f.p. (even though the complement of the group of units
is an ideal).
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Thank you! 0V
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