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Why right unit monoids?

M an (inverse) monoid: a ∈ M is right invertible (or a right unit)
if ax = 1 for some x ∈ M. In inverse monoids: aa−1 = 1.

Right units form a right cancellative submonoid RU(M) of M:
ac = bc ⇒ a = acc−1 = bcc−1 = b.

Membership problem of RU(M) in M undecidable =⇒ the word
problem of M undecidable. This is exactly how Gray (2020)
constructed a 1-relator special inverse monoid Inv〈A |w = 1〉 with
undecidable WP. (A stark contrast to groups (Magnus, 1932) and
ordinary special monoids (Adyan, 1966).)

Remark
M = Inv〈A |wi = 1 (i ∈ I )〉 is E -unitary

=⇒ RU(M) ∼= the prefix monoid of Gp〈A |wi = 1 (i ∈ I )〉.
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What did we know thus far? (1)

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there
is a natural number µM such that

M ∗ Σ∗k

arises as a prefix monoid (with |Σk | = k) if and only if k ≥ µM .

I If M is group-embeddable and finitely presented =⇒ µM = 0.

I If M is a group and µM = 0 =⇒ M is finitely presented.

Let P be the class of all prefix monoids (of f.p. groups).

Let RU be the class of all RU-monoids (of f.p. SIMs).
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What did we know thus far? (2)

Fact
I Every RU-monoid is recursively presented (as a monoid).

I If a group arises as an RU-monoid =⇒ it is finitely presented.

RC-presentations:
M = MonRC〈A |R〉

⇔ M ∼= A∗/RRC, where RRC is the intersection of all congruences
ρ of A∗ such that

I R ⊆ ρ,

I A∗/ρ is right cancellative.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.

Hence, RU 6⊆ P.
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Classes of right cancellative monoids

RC1 = the class of finitely generated submonoids of finitely
RC-presented (r.c.) monoids

RC2 = the class of recursively RC-presented monoids
= the class of recursively presented monoids that happen to

be right cancellative

Remark
RU ⊆ RC2.

Remark
By the Higman Embedding Theorem,

f.g. subgroups of f.p. groups = recursively presented groups.

Analogous results hold for monoids and inverse monoids. However,
at present there is no HET for RC-presentations, and so we don’t
know if the containment RC1 ⊆ RC2 is proper or an equality.
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A result on free products as RU-monoids

Theorem (IgD, RDG, 2025):
M – a f.p. SIM, U – the group of units of M. If

RU(M) ∼= U ∗ T
for a f.g. monoid T with a trivial group of units
=⇒ U is finitely presented.

Consequences:

I RU(M) ∼= UM ∗X ∗ for a finite X =⇒ UM (and RU(M)) is f.p.

I G a f.g. group that is not f.p. =⇒ G ∗ X ∗ 6∈ RU (∀ finite X ).

I P 6⊆ RU .

I RC1 6⊆ RU .

I RU is a proper subclass of RC2.
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Boundary width and ball covers in graphs

Boundary pair:

Boundary width:

β(X ) = sup{d(x , y) : (x , y) is a boundary pair in X}

Ball cover of ∆ ⊆ V (Γ): ∆r =
⋃

v∈∆ Br (v)

Finite ball cover of finite boundary width: ∃r ≥ 0 such that ∆r has
finite boundary width.
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Graphs as metric spaces: a bit of geometry

(λ, ε, µ)-quasi-isometry f : (X , d)→ (X ′, d ′) (λ ≥ 1, ε, µ ≥ 0):

1

λ
d(x , y)− ε ≤ d ′(f (x), f (y)) ≤ λd(x , y) + ε

and f (X ) ⊆ X ′ is µ-quasi-dense.

Lemma (IgD, RDG, 2025)

f : Γ→ Γ′ – a quasi-isometry between graphs, ∆ ⊆ V (Γ).

I ∆ has a finite ball cover with finite boundary width in Γ =⇒
f (∆) has a finite ball cover with finite boundary width in Γ′.

I ∆ has a connected finite ball cover in Γ =⇒ f (∆) ⊆ Γ′ has a
connected finite ball cover in Γ′.
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How does this all apply in inverse monoids? (1)

S = 〈A〉 – a f.g. inverse monoid, H ≤ S – a subgroup

A finite cover of H: a union ∆ =
⋃

i∈F Hi ⊇ H of finitely many
right cosets of H

∆ has finite boundary width = ∆ has FBW in SΓA(R), where R
the R-class containing H (connected...)

Theorem (IgD, RDG, 2025)

M – a f.g. inverse monoid, H ⊆ M – a subgroup of M,
Γ – the Schützenberger graph containing H.
Then H is f.g. ⇐⇒ H admits a finite connected cover.
In this case the graph induced by ∆ is quasi-isometric to the
Cayley graph of the group H.
H is f.p. ⇐⇒ H is f.g. and Ripsr (∆) is simply connected for large
enough r .
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How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S – a f.g. inverse monoid, H – a subgroup of S which has a finite
cover with finite boundary width. Then H is finitely generated.
Moreover, if S is f.p. (as an inv. monoid) =⇒ the group H is f.p.

This then applies to our free product result, as U has finite
boundary width in U ∗ T .
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RC1 and RU – revisited

RC1 6⊆ RU but...

Theorem (IgD, RDG, 2025)

For any T ∈ RC1 there exists a f.p. SIM M such that RU(M) has
a submonoid containing the group of units of M (which is also the
group of units of RU(M)) that is isomorphic to T .

...RC1 is “dense” in RU

Method: The “generalised Gray-Kambites” construction!
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Adapting the GK for right cancellative monoids (1)

Let S = MonRC〈A | ui = vi (1 ≤ i ≤ k)〉 and
T = 〈B〉, B ⊆ A – a f.g. submonoid (T ∈ RC1).

MS ,T – the f.p. SIM presented by Σ = A ∪ {p0, p1, . . . , pk , z , d} &

piap
−1
i pia

−1p−1
i = 1 (a ∈ A, i = 0, 1, . . . , k)

piuid
−1v−1

i p−1
i = 1 (i = 1, . . . , k)

p0dp
−1
0 = 1

zbz−1zb−1z−1 = 1 (b ∈ B)

z

(
k∏

i=0

p−1
i pi

)
z−1 = 1.
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Adapting the GK for right cancellative monoids (2)

Theorem (IgD, RDG, 2025)

RU(MS ,T ) is presented by generators: pi , qi (0 ≤ i ≤ k),

a(i) (a ∈ A, 0 ≤ i ≤ k), b(z) (b ∈ B), and relations:

qiw
(i)pi = q0w

(0)p0 (w ∈ A∗, 1 ≤ i ≤ k)

qiu
(i) = qiv

(i) (u, v ∈ A∗ s.t. u = v holds in S , 0 ≤ i ≤ k)

qib
(i) = b(z)qi (b ∈ B, 0 ≤ i ≤ k)

and T ↪→ RU(MS ,T ) such that (the image of) T contains the
group of units of the latter.

Corollary

The class RU includes r.c. monoids that are not finitely
RC-presented (and even have a trivial group of units).
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The Gray-Ruškuc construction (1)

Q = {ri : i ∈ I},W = {wj : 1 ≤≤ k} ⊆ (A ∪ A−1)∗,
KQ = Mon〈A ∪ A−1 | ri = 1, (i ∈ I )〉 – a group,
TW = 〈W 〉 ≤ KQ – a submonoid

MQ,W – the (E -unitary) SIM presented by A ∪ {t} and

ri = 1 (i ∈ I ),

apa
−1
p = a−1

p ap = 1 (ap ∈ A),

twj t
−1tw−1

j t−1 = 1 (1 ≤ j ≤ k).

Theorem (IgD, RDG, 2025)

Let B be disjoint from A ∪ A−1, |B| = |W |. Then

RU(MQ,W ) = MonRC〈A ∪ A−1,B, t | ri = 1 (i ∈ I ), twj = bj t (1 ≤ j ≤ k)〉

(Otto-Pride extensions...)
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The Gray-Ruškuc construction (2)

Some consequences:

I If KQ is finitely presented =⇒ RU(MQ,W ) is finitely
RC-presented,

I So, there exists an E -unitary f.p. SIM such that its monoid of
right units is finitely RC-presented but not finitely presented
as a monoid (because either KQ or TW not f.p. ⇒
RU(MQ,W ) not f.p. as a monoid).

I There is a finitely RC-presented monoid whose group of units
is not f.p. (even though the complement of the group of units
is an ideal).
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Thank you!
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