Some new results on the right units of special inverse monoids

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

[Joint work with Robert D. Gray (UEA, Norwich, UK)]

Theoretical and Computational Algebra – TCA25 Évora, Portugal, 1 July 2025

Why right unit monoids?

M an (inverse) monoid: $a \in M$ is right invertible (or a right unit) if ax = 1 for some $x \in M$. In inverse monoids: $aa^{-1} = 1$.

Right units form a right cancellative submonoid RU(M) of M: $ac = bc \Rightarrow a = acc^{-1} = bcc^{-1} = b.$

Membership problem of RU(M) in M undecidable \implies the word problem of M undecidable. This is exactly how Gray (2020) constructed a 1-relator special inverse monoid $Inv\langle A | w = 1 \rangle$ with undecidable WP. (A stark contrast to groups (Magnus, 1932) and ordinary special monoids (Adyan, 1966).)

Remark

$$M = \text{Inv}\langle A | w_i = 1 \ (i \in I) \rangle \text{ is } E \text{-unitary}$$

$$\implies \text{RU}(M) \cong \text{the prefix monoid of } \text{Gp}\langle A | w_i = 1 \ (i \in I) \rangle.$$

What did we know thus far? (1)

Theorem (IgD, RDG, 2023): For every group-embeddable recursively presented monoid M there is a natural number μ_M such that

$$M * \Sigma_k^*$$

arises as a prefix monoid (with $|\Sigma_k| = k$) if and only if $k \ge \mu_M$.

If *M* is group-embeddable and finitely presented ⇒ µ_M = 0.
If *M* is a group and µ_M = 0 ⇒ *M* is finitely presented.

Let \mathcal{P} be the class of all prefix monoids (of f.p. groups).

Let \mathcal{RU} be the class of all RU-monoids (of f.p. SIMs).

What did we know thus far? (2)

Fact

Every RU-monoid is recursively presented (as a monoid).

▶ If a group arises as an RU-monoid ⇒ it is finitely presented.

RC-presentations:

 $M = \mathsf{MonRC}\langle A \,|\, \mathfrak{R} \rangle$

 $\Leftrightarrow M\cong A^*/\Re^{\rm RC}, \ {\rm where} \ \Re^{\rm RC} \ {\rm is \ the \ intersection \ of \ all \ congruences} \\ \rho \ {\rm of} \ A^* \ {\rm such \ that}$

$$\blacktriangleright \ \mathfrak{R} \subseteq \rho,$$

• A^*/ρ is right cancellative.

Theorem (IgD, RDG, 2023): Every finitely RC-presented monoid is an RU-monoid.

Hence, $\mathcal{RU} \not\subseteq \mathcal{P}$.

Classes of right cancellative monoids

 \mathcal{RC}_1 = the class of finitely generated submonoids of finitely RC-presented (r.c.) monoids

 \mathcal{RC}_2 = the class of recursively RC-presented monoids = the class of recursively presented monoids that happen to be right cancellative

Remark

 $\mathcal{RU} \subseteq \mathcal{RC}_2.$

Remark

By the Higman Embedding Theorem,

f.g. subgroups of f.p. groups = recursively presented groups. Analogous results hold for monoids and inverse monoids. However, at present there is no HET for RC-presentations, and so we don't know if the containment $\mathcal{RC}_1 \subseteq \mathcal{RC}_2$ is proper or an equality. A result on free products as RU-monoids

Theorem (IgD, RDG, 2025): M - a f.p. SIM, U - the group of units of M. If $RU(M) \cong U * T$ for a f.g. monoid T with a trivial group of units

 \implies U is finitely presented.

Consequences:

- ▶ $\mathsf{RU}(M) \cong U_M * X^*$ for a finite $X \Longrightarrow U_M$ (and $\mathsf{RU}(M)$) is f.p.
- G a f.g. group that is not f.p. \Longrightarrow $G * X^* \notin \mathcal{RU}$ (\forall finite X).
- $\blacktriangleright \mathcal{P} \not\subseteq \mathcal{RU}.$
- $\blacktriangleright \mathcal{RC}_1 \not\subseteq \mathcal{RU}.$
- \mathcal{RU} is a proper subclass of \mathcal{RC}_2 .

Boundary width and ball covers in graphs

Boundary pair:

Boundary width:

 $\beta(X) = \sup\{d(x, y): (x, y) \text{ is a boundary pair in } X\}$

Ball cover of $\Delta \subseteq V(\Gamma)$: $\Delta_r = \bigcup_{v \in \Delta} \mathcal{B}_r(v)$

Finite ball cover of finite boundary width: $\exists r \geq 0$ such that Δ_r has finite boundary width.

Graphs as metric spaces: a bit of geometry

 (λ, ϵ, μ) -quasi-isometry $f : (X, d) \rightarrow (X', d') \ (\lambda \ge 1, \epsilon, \mu \ge 0)$:

$$rac{1}{\lambda} d(x,y) - \epsilon \leq d'(f(x),f(y)) \leq \lambda d(x,y) + \epsilon$$

and $f(X) \subseteq X'$ is μ -quasi-dense.

Lemma (IgD, RDG, 2025)

 $f: \Gamma \to \Gamma' - a$ quasi-isometry between graphs, $\Delta \subseteq V(\Gamma)$.

- Δ has a finite ball cover with finite boundary width in Γ ⇒ f(Δ) has a finite ball cover with finite boundary width in Γ'.
- Δ has a connected finite ball cover in Γ ⇒ f(Δ) ⊆ Γ' has a connected finite ball cover in Γ'.

How does this all apply in inverse monoids? (1)

 $S = \langle A \rangle$ – a f.g. inverse monoid, $H \leq S$ – a subgroup

A finite cover of H: a union $\Delta = \bigcup_{i \in F} H_i \supseteq H$ of finitely many right cosets of H

 Δ has finite boundary width = Δ has FBW in $S\Gamma_A(R)$, where R the \mathscr{R} -class containing H (connected...)

Theorem (IgD, RDG, 2025)

M – a f.g. inverse monoid, $H \subseteq M$ – a subgroup of M, Γ – the Schützenberger graph containing H. Then H is f.g. $\iff H$ admits a finite connected cover. In this case the graph induced by Δ is quasi-isometric to the Cayley graph of the group H. H is f.p. $\iff H$ is f.g. and $\operatorname{Rips}_r(\Delta)$ is simply connected for large enough r.

How does this all apply in inverse monoids? (2)

Theorem (IgD, RDG, 2025)

S - a f.g. inverse monoid, H - a subgroup of S which has a finite cover with finite boundary width. Then H is finitely generated. Moreover, if S is f.p. (as an inv. monoid) \implies the group H is f.p.

This then applies to our free product result, as U has finite boundary width in U * T.

 $\mathcal{RC}_1 \not\subseteq \mathcal{RU}$ but...

Theorem (IgD, RDG, 2025)

For any $T \in \mathcal{RC}_1$ there exists a f.p. SIM M such that RU(M) has a submonoid containing the group of units of M (which is also the group of units of RU(M)) that is isomorphic to T.

 $...\mathcal{RC}_1$ is "dense" in \mathcal{RU}

Method: The "generalised Gray-Kambites" construction! 🛡

Adapting the GK for right cancellative monoids (1)

Let
$$S = \text{MonRC}\langle A | u_i = v_i \ (1 \le i \le k) \rangle$$
 and
 $T = \langle B \rangle, \ B \subseteq A - a \text{ f.g. submonoid } (T \in \mathcal{RC}_1).$

 $M_{S,T}$ – the f.p. SIM presented by $\Sigma = A \cup \{p_0, p_1, \dots, p_k, z, d\}$ &

Adapting the GK for right cancellative monoids (2)

Theorem (IgD, RDG, 2025) RU($M_{S,T}$) is presented by generators: p_i, q_i ($0 \le i \le k$), $a^{(i)}$ ($a \in A, 0 \le i \le k$), $b^{(z)}$ ($b \in B$), and relations: $q_i w^{(i)} p_i = q_0 w^{(0)} p_0$ ($w \in A^*, 1 \le i \le k$) $q_i u^{(i)} = q_i v^{(i)}$ ($u, v \in A^*$ s.t. u = v holds in $S, 0 \le i \le k$) $q_i b^{(i)} = b^{(z)} q_i$ ($b \in B, 0 \le i \le k$)

and $T \hookrightarrow \mathrm{RU}(M_{S,T})$ such that (the image of) T contains the group of units of the latter.

Corollary

The class \mathcal{RU} includes r.c. monoids that are not finitely RC-presented (and even have a trivial group of units).

The Gray-Ruškuc construction (1)

$$\begin{aligned} Q &= \{r_i: i \in I\}, W = \{w_j: 1 \leq \leq k\} \subseteq (A \cup A^{-1})^*, \\ K_Q &= \operatorname{Mon}\langle A \cup A^{-1} \mid r_i = 1, \ (i \in I) \rangle - \mathsf{a group}, \\ T_W &= \langle W \rangle \leq K_Q - \mathsf{a submonoid} \end{aligned}$$

 $M_{Q,W}$ – the (*E*-unitary) SIM presented by $A \cup \{t\}$ and

$$\begin{split} r_i &= 1 & (i \in I), \\ a_p a_p^{-1} &= a_p^{-1} a_p = 1 & (a_p \in A), \\ t w_j t^{-1} t w_j^{-1} t^{-1} &= 1 & (1 \leq j \leq k). \end{split}$$

Theorem (IgD, RDG, 2025) Let B be disjoint from $A \cup A^{-1}$, |B| = |W|. Then $RU(M_{Q,W}) = MonRC\langle A \cup A^{-1}, B, t | r_i = 1 \ (i \in I), tw_j = b_j t \ (1 \le j \le k) \rangle$ (Otto-Pride extensions...)

The Gray-Ruškuc construction (2)

Some consequences:

- If K_Q is finitely presented $\implies \operatorname{RU}(M_{Q,W})$ is finitely RC-presented,
- So, there exists an *E*-unitary f.p. SIM such that its monoid of right units is finitely RC-presented but not finitely presented as a monoid (because either K_Q or T_W not f.p. ⇒ RU(M_{Q,W}) not f.p. as a monoid).
- There is a finitely RC-presented monoid whose group of units is not f.p. (even though the complement of the group of units is an ideal).

Igor Dolinka