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The finite basis problem (1)

A (very) large proportion of Misha’s work in algebra in devoted to
the Finite Basis Problem (FBP),

particularly for finite semigroups
and similar structures.

Let us briefly explain the concept.

Let K be a class of first-order structures of a given similarity type.
K is axiomatisable if there is a set of fomulæ Σ such that
K = Mod(Σ).

K – a class of similar algebraic structures, Σ – a set of identities
−→ K is an equational class.
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The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic
images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures V is a variety if and only if it is an
equational class.

V(A) – the smallest variety containing the algebra A

If V(A) = Mod(Σ) for a set of identities Σ then Σ is the
equational basis of A. The FBP asks for an algebra A (usually but
not necessarily finite) if it has a finite (equational) basis.

Lisbon, Volkov70, 26 June 2025 Igor Dolinka2



The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic
images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures V is a variety if and only if it is an
equational class.

V(A) – the smallest variety containing the algebra A

If V(A) = Mod(Σ) for a set of identities Σ then Σ is the
equational basis of A. The FBP asks for an algebra A (usually but
not necessarily finite) if it has a finite (equational) basis.

Lisbon, Volkov70, 26 June 2025 Igor Dolinka2



The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic
images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures V is a variety if and only if it is an
equational class.

V(A) – the smallest variety containing the algebra A

If V(A) = Mod(Σ) for a set of identities Σ then Σ is the
equational basis of A. The FBP asks for an algebra A (usually but
not necessarily finite) if it has a finite (equational) basis.

Lisbon, Volkov70, 26 June 2025 Igor Dolinka2



The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic
images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures V is a variety if and only if it is an
equational class.

V(A) – the smallest variety containing the algebra A

If V(A) = Mod(Σ) for a set of identities Σ then Σ is the
equational basis of A.

The FBP asks for an algebra A (usually but
not necessarily finite) if it has a finite (equational) basis.

Lisbon, Volkov70, 26 June 2025 Igor Dolinka2



The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic
images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures V is a variety if and only if it is an
equational class.

V(A) – the smallest variety containing the algebra A

If V(A) = Mod(Σ) for a set of identities Σ then Σ is the
equational basis of A. The FBP asks for an algebra A (usually but
not necessarily finite) if it has a finite (equational) basis.

Lisbon, Volkov70, 26 June 2025 Igor Dolinka2



Some classical positive results

Each of the following algebras is FB:

I finite groups (Oates & Powell, 1964)

I commutative semigroups (Perkins, 1968)

I finite lattices and lattice-based algebras (McKenzie, 1970)

I finite (associative) rings (L’vov; Kruse, 1973)

I algebras generating congruence distributive varieties with a
finite residual bound (Baker, 1977)

I algebras generating congruence modular varieties with a finite
residual bound (McKenzie, 1987)

I algebras generating congruence ∧-semidistributive varieties
with a finite residual bound (Willard, 2000)

I ...
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Some negative results

Examples of finite NFB algebras:

I
0 1 2

0 0 0 0
1 0 0 1
2 0 2 2

(Murskĭı, 1965)

I the 6-element Brandt inverse monoid

B1
2 = 〈a, b : a2 = b2 = 0, aba = a, bab = b〉 ∪ {1}.

(Perkins, 1968)

I a certain finite pointed group (Bryant, 1982)

I the full transformation semigroup Tn for n ≥ 3 and the full
semigroup of binary relations Rn for n ≥ 2

I a certain 7-element semiring of binary relations (IgD, 2007)
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Algorithmic decidability?

Tarski’s Finite Basis Problem: Is there any algorithmic way to
distinguish between finite FB and NFB algebras?

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property,
especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether
a finite semigroup is FB? This problem is still open.
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So, what can we do?

Theorem (M.V.Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S . Assume that
there exist a positive integer d and a group G satisfying xd = e
such that

I ad ∈ T for all a ∈ S , and

I G ∈ V(S), but G 6∈ V(T ).

A2 = 〈a, b : a2 = a = aba, b2 = 0, bab = b〉 ∈ V(S) ⇒ S is NFB.

Corollary

The following semigroups are NFB:

I the full transformation semigroup Tn (n ≥ 3)

I the full semigroup of binary relations Bn (n ≥ 2)

I the semigroup of partial transformations PT n (n ≥ 2)

I matrix semigroups Mn(F) for any n ≥ 2 and any finite field F
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Unary semigroups

Unary semigroup: a structure (S , ·,∗ ) such that (S , ·) is a
semigroup and ∗ is a unary operation on S

Involution semigroup: a unary semigroup satisfying (xy)∗ = y∗x∗

and (x∗)∗ = x (“socks and shoes”)

Examples

I groups

I inverse semigroups

I regular ∗-semigroups (xx∗x = x)

I matrix semigroups with transposition Mn(F) = (Mn(F), ·,T )
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“Unary version” of Volkov’s Theorem (1)

For a unary semigroup S , let H(S) denote the Hermitian
subsemigroup of S , generated by aa∗ for all a ∈ S .

For a variety V of unary semigroups, let H(V) be the subvariety of
V generated by all H(S), S ∈ V.

Furthermore, let K3 be the 10-element unary Rees matrix
semigroup over a trivial group E = {1} with the sandwich matrix 1 1 1

1 1 0
1 0 1

 ,

while (i , 1, j)∗ = (j , 1, i) and 0∗ = 0.

Fact
K3 generates the variety of all strict combinatorial regular
∗-semigroups (studied by K.Auinger in 1992).
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Furthermore, let K3 be the 10-element unary Rees matrix
semigroup over a trivial group E = {1} with the sandwich matrix 1 1 1

1 1 0
1 0 1

 ,

while (i , 1, j)∗ = (j , 1, i) and 0∗ = 0.

Fact
K3 generates the variety of all strict combinatorial regular
∗-semigroups (studied by K.Auinger in 1992).
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“Unary version” of Volkov’s Theorem (2)

Theorem (K.Auinger, M.V.Volkov – Oberwolfach, 1991)

Let S be a unary semigroup such that V(S) contains K3.
If there exist a group G which belongs to V but not to H(V)
=⇒ S is NFB.

Corollary

The following unary semigroups are NFB:

I the full involution semigroup of binary relations R∨n (n ≥ 2),
endowed with relational converse

I matrix semigroups with transposition Mn(F), where F is a
finite field, |F| ≥ 3

I matrix semigroups (M2(F), ·,† ), where F is either a finite field
such that |F| ≡ 3 (mod 4), or a subfield of C closed under
complex conjugation, and † is the unary operation of taking
the Moore-Penrose inverse.
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However...

The Auinger-Volkov manuscript remained unpublished, because, as
Karl and Misha said at the time, it bothered them that the
following question remained unsolved:

Problem
Exactly which of the involution semigroups Mn(F) are NFB,
n ≥ 2, F is a finite field? (i.e. what about the case |F| = 2 ?)

Also, the following open problem was both intriguing and inviting.

Problem
Do finite INFB involution semigroups exist at all?
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What the... INFB?

An algebra A is inherently nonfinitely based (INFB) if:

I V(A) is locally finite, and

I V is locally finite & A ∈ V =⇒ V is NFB.

⇐⇒ for any finite set of identities Σ satisfied by A, the variety
defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact
Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property;
namely, the INFB property is “contagious”:

if V(A) is locally finite and contains an INFB algebra B,
then A is (I)NFB.
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Finite INFB semigroups: a success story

M.V.Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: Z1 = x1 and Zn+1 = Znxn+1Zn for n ≥ 1.

Theorem (Sapir, 1987)

Let S be a finite semigroup. Then

S is INFB⇐⇒ S does not satisfy Zn = W

for all n ≥ 1 and all words W 6= Zn.

Sapir also found an effective structural description of finite INFB
semigroups, thus proving

Theorem (Sapir, 1987)

It is decidable whether a finite semigroup is INFB or not.
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Examples of finite INFB semigroups

Proposition

B1
2 fails to satisfy a nontrivial identity of the form Zn = W .

Hence, it is INFB.

Corollary

For any n ≥ 2 and any (semi)ring R, the matrix semigroup Mn(R)
is (I)NFB.

Since B1
2 ∈ V(A1

2), where A2 is the 5-element semigroup from
Volkov’s theorem, we have that A1

2 is (I)NFB as well.

The same argument applies to Tn (n ≥ 3), Rn (n ≥ 2),
PT n (n ≥ 2),...
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What a difference an involution makes? Well...

How on Earth can be the case of unary semigroups different?

For example, an involution ∗ can be defined on B1
2 by a∗ = b,

b∗ = a, the remaining 4 elements (which are idempotents:
0, 1, ab, ba) being fixed. This turns B1

2 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B1
2 is not INFB as an inverse semigroup.

In fact, there is no finite INFB inverse semigroup at all!

Still, the inverse semigroup B1
2 is NFB (Kleiman, 1979).

So, once again:

Problem
Do finite INFB involution semigroups exist at all?
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An INFB criterion for involution semigroups

Yes!

Theorem (IgD, cca. Spring 2008)

Let S be an involution semigroup such that V(S) is locally finite.
If S fails to satisfy any nontrivial identity of the form

Zn = W ,

where W is an involutorial word (a word over the “doubled”
alphabet X ∪ X ∗), then S is INFB.

Great Igor, but... how about a (finite) example?
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“C’mon baby, let’s do the twist...!”

Rescue: Luckily, B1
2 admits one more involution aside from the

inverse one: define the nilpotents a, b (and, of course, 0, 1) to be
fixed by ∗, which results in (ab)∗ = ba and (ba)∗ = ab.

In this way we obtain the twisted Brandt monoid TB1
2 .

Proposition

TB1
2 fails to satisfy a nontrivial identity of the form Zn = W .

Hence, it is INFB.

Similarly to B1
2 , this little guy is quite powerful.

Remark
Analogously, one can also define TA1

2, the “involutorial version” of
A1
2, which is also INFB.
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One thing led to another...

K.Auinger, IgD, M.V.Volkov, Matrix identities involving
multiplication and transposition, Journal of the European
Mathematical Society 14 (2012), 937–969.

K.Auinger, IgD, M.V.Volkov, Equational theories of semigroups
with involution, Journal of Algebra 369 (2012), 203–225.

IgD, On identities of finite involution semigroups,
Semigroup Forum 80 (2010), 105–120.

K.Auinger, IgD, T.V.Pervukhina, M.V.Volkov, Unary
enhancements of inherently non-finitely based semigroups,
Semigroup Forum 89 (2014), 41–51.

IgD, S.V.Gusev, M.V.Volkov, Semiring and involution identities
of powers of inverse semigroups, Communications in Algebra
52 (2024), 1922–1929.
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Examples of finite INFB involution semigroups

I R∨n , the involution semigroup of binary relations on an
n-element set, n ≥ 2,

I + TB1
2 embeds into R∨

2

I M2(F) when |F| 6≡ 3 (mod 4),

I + TB1
2 embeds into M2(F) ⇐⇒ x2 + 1 has a root in F

I Mn(F) for all n ≥ 3 and all finite fields F.

I + TB1
2 embeds into Mn(F) as a consequence of the
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Non-INFB results (IgD, 2010)

Theorem
Let S be a finite involution semigroup satisfying a nontrivial
identity of the form Zn = W such that B1

2 6∈ V(S).
Then S is not INFB.

Theorem
Let S be a finite semigroup satisfying an identity of the form
Zn = ZnW . Then S is not INFB.

+ Margolis & Sapir (1995) + certain semigroup quasiidentities can be

“encoded” into unary semigroup identities.

Corollary

No finite regular ∗-semigroup is INFB.

(Namely, x = x(x∗x) holds.)
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Power involution semigroups

Corollary

For any finite group G , the involution semigroup of subsets
P∗G = (P(G ), ·, ∗) is not INFB.

(Namely, P∗G satisfies Zn = Znx
∗
1x1 for n = |G |+ 2.)

Remark
The ordinary power semigroup PG = (P(G ), ·) is INFB if and only
if G is not Dedekind.

Theorem (Gusev, Volkov, 2023)

G solvable and not Dedekind =⇒ P∗G is NFB.

Theorem (IgD, Gusev, Volkov, 2024)

If S is an inverse semigroup that is either not a semilattice of
groups or all subgroups are solvable and at least one is not
Dedekind =⇒ P∗S is NFB.
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The (I)NFB problem for matrix involution semigroups

Two facts:

I (Crvenković, 1982) if a finite involution semigroup S admits a
Moore-Penrose inverse †, then the inverse is term-definable in
S ;

(So, S satisfies x = x ·w(x , x∗) · x for some w =⇒ it is not
INFB.)

I the involution semigroup of 2× 2 matrices over a finite field F
with transposition admits a Moore-Penrose inverse if and only
if |F| ≡ 3 (mod 4).

Theorem (Auinger, IgD, Volkov, 2012)

Let n ≥ 2 and F be a finite field. Then

(1) Mn(F) is not finitely based;

(2) Mn(F) is INFB if and only if either n ≥ 3, or n = 2 and
|F| 6≡ 3 (mod 4).
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Applying our results to diagram monoids

The following regular ∗-semigroups are NFB:

I the partition monoids Pn for n ≥ 2;

I the Brauer monoids Bn for n ≥ 4;

I the partial Brauer monoids PBn for n ≥ 3;

I the annular monoids An for n ≥ 4, n even or a prime power;

I the partial annular monoids PAn for n ∈ {2k + 2, pk , pk + 1},
p prime, k ≥ 1.
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INFB finite regular semigroups with involution

Let TSL3 = 〈a | aa∗ = a∗a = 0〉.

Theorem (Auinger, IgD, Pervukhina, Volkov, 2014)

If (S , ·) is a finite INFB semigroup and TSL3 ∈ V(S)
=⇒ (S , ·,∗ ) is INFB.

Theorem (Auinger, IgD, Pervukhina, Volkov, 2014)

TFAE for a regular finite semigroup with involution S :

1. S is INFB,

2. (S , ·) is INFB and TSL3 ∈ V(S),

3. S fails to satisfy a nontrivial identity of the form Zn = W .
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I hope Andy is down there.

I hope I can make it across the border.

I hope to see my friend and shake his hand.

I hope the Pacific is as blue as it has been in my dreams.

I hope.

Stephen King: Rita Hayworth
and the Shawshank Redemption
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Thank you!

Lisbon, Volkov70, 26 June 2025 Igor Dolinka


