A small retrospective of my collaboration with Misha Volkov

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

Algebra and Its Role in Computer Science A tribute to Mikhail V. Volkov on his 70th birthday Lisbon, Portugal, 26 June 2025

Kovačević winery, Irig, Serbia, August 2009

Temerin, Serbia, August 2009

The finite basis problem (1)

A (very) large proportion of Misha's work in algebra in devoted to the Finite Basis Problem (FBP), particularly for finite semigroups and similar structures.

Let us briefly explain the concept.

Let \mathcal{K} be a class of first-order structures of a given similarity type. \mathcal{K} is axiomatisable if there is a set of fomulæ Σ such that $\mathcal{K} = Mod(\Sigma)$.

 \mathcal{K} – a class of similar algebraic structures, Σ – a set of identities $\longrightarrow \mathcal{K}$ is an equational class.

The finite basis problem (2)

A variety is a class of algebras closed for taking (a) homomorphic images, (b) subalgebras, and (c) direct products.

Theorem (Birkhoff)

A class of algebraic structures ${\cal V}$ is a variety if and only if it is an equational class.

 $\mathcal{V}(\mathbf{A})$ – the smallest variety containing the algebra \mathbf{A}

If $\mathcal{V}(\mathbf{A}) = \operatorname{Mod}(\Sigma)$ for a set of identities Σ then Σ is the equational basis of \mathbf{A} . The FBP asks for an algebra \mathbf{A} (usually but not necessarily finite) if it has a finite (equational) basis.

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- ▶ finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
- algebras generating congruence A-semidistributive varieties with a finite residual bound (Willard, 2000)

Some negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

the 6-element Brandt inverse monoid
 B¹₂ = ⟨a, b: a² = b² = 0, aba = a, bab = b⟩ ∪ {1}.
 (Perkins, 1968)

- a certain finite pointed group (Bryant, 1982)
- ► the full transformation semigroup T_n for n ≥ 3 and the full semigroup of binary relations R_n for n ≥ 2
- a certain 7-element semiring of binary relations (IgD, 2007)

Algorithmic decidability?

Tarski's Finite Basis Problem: Is there any algorithmic way to distinguish between finite FB and NFB algebras?

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB? This problem is still open.

So, what can we do?

Theorem (M.V.Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d = e$ such that

Corollary

The following semigroups are NFB:

- the full transformation semigroup \mathcal{T}_n $(n \geq 3)$
- the full semigroup of binary relations \mathcal{B}_n ($n \ge 2$)
- the semigroup of partial transformations \mathcal{PT}_n ($n \ge 2$)
- matrix semigroups $\mathcal{M}_n(\mathbb{F})$ for any $n \geq 2$ and any finite field \mathbb{F}

Unary semigroups

Unary semigroup: a structure $(S, \cdot, *)$ such that (S, \cdot) is a semigroup and * is a unary operation on S

Involution semigroup: a unary semigroup satisfying $(xy)^* = y^*x^*$ and $(x^*)^* = x$ ("socks and shoes")

Examples

- inverse semigroups
- regular *-semigroups $(xx^*x = x)$
- matrix semigroups with transposition $\mathcal{M}_n(\mathbb{F}) = (M_n(\mathbb{F}), \cdot, \mathbb{T})$

"Unary version" of Volkov's Theorem (1)

For a unary semigroup S, let H(S) denote the Hermitian subsemigroup of S, generated by aa^* for all $a \in S$.

For a variety \mathcal{V} of unary semigroups, let $H(\mathcal{V})$ be the subvariety of \mathcal{V} generated by all H(S), $S \in \mathcal{V}$.

Furthermore, let K_3 be the 10-element unary Rees matrix semigroup over a trivial group $E = \{1\}$ with the sandwich matrix

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

while $(i, 1, j)^* = (j, 1, i)$ and $0^* = 0$.

Fact

*K*₃ generates the variety of all strict combinatorial regular *-semigroups (studied by K.Auinger in 1992).

"Unary version" of Volkov's Theorem (2)

Theorem (K.Auinger, M.V.Volkov – Oberwolfach, 1991) Let S be a unary semigroup such that $\mathcal{V}(S)$ contains K_3 . If there exist a group G which belongs to \mathcal{V} but not to $H(\mathcal{V})$ \implies S is NFB.

Corollary

The following unary semigroups are NFB:

- ▶ the full involution semigroup of binary relations \mathcal{R}_n^{\vee} ($n \ge 2$), endowed with relational converse
- ► matrix semigroups with transposition M_n(𝔅), where 𝔅 is a finite field, |𝔅| ≥ 3
- matrix semigroups (M₂(𝔅), ·,[†]), where 𝔅 is either a finite field such that |𝔅| ≡ 3 (mod 4), or a subfield of 𝔅 closed under complex conjugation, and [†] is the unary operation of taking the Moore-Penrose inverse.

However...

The Auinger-Volkov manuscript remained unpublished, because, as Karl and Misha said at the time, it bothered them that the following question remained unsolved:

Problem

Exactly which of the involution semigroups $\mathcal{M}_n(\mathbb{F})$ are NFB, $n \geq 2$, \mathbb{F} is a finite field? (i.e. what about the case $|\mathbb{F}| = 2$?)

Also, the following open problem was both intriguing and inviting. Problem

Do finite INFB involution semigroups exist at all?

What the... INFB?

An algebra A is inherently nonfinitely based (INFB) if:

- \triangleright $\mathcal{V}(A)$ is locally finite, and
- \mathcal{V} is locally finite & $A \in \mathcal{V} \Longrightarrow \mathcal{V}$ is NFB.

 $\iff \text{for any finite set of identities } \Sigma \text{ satisfied by } A \text{, the variety} \\ \text{defined by } \Sigma \text{ is not locally finite.}$

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is "contagious":

if $\mathcal{V}(A)$ is locally finite and contains an INFB algebra B, then A is (I)NFB.

Finite INFB semigroups: a success story

M.V.Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: $Z_1 = x_1$ and $Z_{n+1} = Z_n x_{n+1} Z_n$ for $n \ge 1$.

Theorem (Sapir, 1987)

Let S be a finite semigroup. Then

S is INFB \iff S does not satisfy $Z_n = W$

for all $n \ge 1$ and all words $W \ne Z_n$.

Sapir also found an effective structural description of finite INFB semigroups, thus proving

Theorem (Sapir, 1987)

It is decidable whether a finite semigroup is INFB or not.

Examples of finite INFB semigroups

Proposition

 B_2^1 fails to satisfy a nontrivial identity of the form $Z_n = W$. Hence, it is INFB.

Corollary

For any $n \ge 2$ and any (semi)ring R, the matrix semigroup $\mathcal{M}_n(R)$ is (I)NFB.

Since $B_2^1 \in \mathcal{V}(A_2^1)$, where A_2 is the 5-element semigroup from Volkov's theorem, we have that A_2^1 is (I)NFB as well.

The same argument applies to \mathcal{T}_n $(n \ge 3)$, \mathcal{R}_n $(n \ge 2)$, \mathcal{PT}_n $(n \ge 2)$,...

What a difference an involution makes? Well...

How on Earth can be the case of unary semigroups different?

For example, an involution * can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: 0, 1, *ab*, *ba*) being fixed. This turns B_2^1 into an inverse semigroup. Surprise...!!!

Theorem (Sapir, 1993)

 B_2^1 is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at all!

Still, the inverse semigroup B_2^1 is NFB (Kleiman, 1979).

So, once again:

Problem

Do finite INFB involution semigroups exist at all?

An INFB criterion for involution semigroups

Yes!

Theorem (IgD, cca. Spring 2008)

Let S be an involution semigroup such that $\mathcal{V}(S)$ is locally finite. If S fails to satisfy any nontrivial identity of the form

$$Z_n = W,$$

where W is an involutorial word (a word over the "doubled" alphabet $X \cup X^*$), then S is INFB.

Great Igor, but... how about a (finite) example?

"C'mon baby, let's do the twist ... !"

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents *a*, *b* (and, of course, 0, 1) to be fixed by *, which results in $(ab)^* = ba$ and $(ba)^* = ab$.

In this way we obtain the twisted Brandt monoid TB_2^1 .

Proposition

 TB_2^1 fails to satisfy a nontrivial identity of the form $Z_n = W$. Hence, it is INFB.

Similarly to B_2^1 , this little guy is quite powerful.

Remark

Analogously, one can also define TA_2^1 , the "involutorial version" of A_2^1 , which is also INFB.

One thing led to another...

K.Auinger, IgD, M.V.Volkov, Matrix identities involving multiplication and transposition, *Journal of the European Mathematical Society* **14** (2012), 937–969.

K.Auinger, IgD, M.V.Volkov, Equational theories of semigroups with involution, *Journal of Algebra* **369** (2012), 203–225.

IgD, On identities of finite involution semigroups, *Semigroup Forum* **80** (2010), 105–120.

K.Auinger, IgD, T.V.Pervukhina, M.V.Volkov, Unary enhancements of inherently non-finitely based semigroups, *Semigroup Forum* **89** (2014), 41–51.

IgD, S.V.Gusev, M.V.Volkov, Semiring and involution identities of powers of inverse semigroups, *Communications in Algebra* **52** (2024), 1922–1929.

Examples of finite INFB involution semigroups

▶ \mathcal{R}_n^{\vee} , the involution semigroup of binary relations on an *n*-element set, $n \ge 2$,

 \blacktriangleright \mathbb{R}^{1}_{2} embeds into \mathcal{R}_{2}^{\vee}

$$\begin{array}{l} \blacktriangleright \ \mathcal{M}_2(\mathbb{F}) \text{ when } |\mathbb{F}| \not\equiv 3 \pmod{4}, \\ \qquad \blacktriangleright \ \mathbb{E}^{3} \ TB_2^1 \text{ embeds into } \mathcal{M}_2(\mathbb{F}) \Longleftrightarrow x^2 + 1 \text{ has a root in } \mathbb{F} \end{array}$$

- $\mathcal{M}_n(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F} .
 - ► TB₂¹ embeds into M_n(𝔅) as a consequence of the Chevalley-Warning theorem from algebraic number theory (!).

So, what about $\mathcal{M}_2(\mathbb{F})$ if $|\mathbb{F}| \equiv 3 \pmod{4}$? (We already know it is NFB.)

Non-INFB results (IgD, 2010)

Theorem

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_n = W$ such that $B_2^1 \notin \mathcal{V}(S)$. Then S is not INFB.

Theorem

Let S be a finite semigroup satisfying an identity of the form $Z_n = Z_n W$. Then S is not INFB.

Margolis & Sapir (1995) + certain semigroup quasiidentities can be "encoded" into unary semigroup identities.

Corollary

```
No finite regular *-semigroup is INFB.
(Namely, x = x(x^*x) holds.)
```

Power involution semigroups

Corollary

For any finite group G, the involution semigroup of subsets $\mathcal{P}_{G}^{*} = (\mathcal{P}(G), \cdot, ^{*})$ is not INFB. (Namely, \mathcal{P}_{G}^{*} satisfies $Z_{n} = Z_{n} x_{1}^{*} x_{1}$ for n = |G| + 2.)

Remark

The ordinary power semigroup $\mathcal{P}_G = (\mathcal{P}(G), \cdot)$ is INFB if and only if G is not Dedekind.

Theorem (Gusev, Volkov, 2023) G solvable and not Dedekind $\implies \mathcal{P}_G^*$ is NFB.

Theorem (IgD, Gusev, Volkov, 2024)

If S is an inverse semigroup that is either not a semilattice of groups or all subgroups are solvable and at least one is not Dedekind $\implies \mathcal{P}_{S}^{*}$ is NFB.

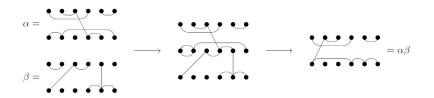
The (I)NFB problem for matrix involution semigroups

Two facts:

- Crvenković, 1982) if a finite involution semigroup S admits a Moore-Penrose inverse [†], then the inverse is term-definable in S; (So, S satisfies x = x ⋅ w(x, x*) ⋅ x for some w ⇒ it is not INFB.)
- ► the involution semigroup of 2 × 2 matrices over a finite field F with transposition admits a Moore-Penrose inverse if and only if |F| ≡ 3 (mod 4).

Theorem (Auinger, IgD, Volkov, 2012)
Let
$$n \ge 2$$
 and \mathbb{F} be a finite field. Then
(1) $\mathcal{M}_n(\mathbb{F})$ is not finitely based;
(2) $\mathcal{M}_n(\mathbb{F})$ is INFB if and only if either $n \ge 3$, or $n = 2$ and
 $|\mathbb{F}| \not\equiv 3 \pmod{4}$.

Applying our results to diagram monoids



The following regular *-semigroups are NFB:

- the partition monoids \mathcal{P}_n for $n \geq 2$;
- the Brauer monoids \mathcal{B}_n for $n \geq 4$;
- the partial Brauer monoids \mathcal{PB}_n for $n \geq 3$;
- the annular monoids A_n for $n \ge 4$, n even or a prime power;
- ▶ the partial annular monoids \mathcal{PA}_n for $n \in \{2^k + 2, p^k, p^k + 1\}$, p prime, $k \ge 1$.

INFB finite regular semigroups with involution

Let
$$TSL_3 = \langle a \mid aa^* = a^*a = 0 \rangle$$
.

Theorem (Auinger, IgD, Pervukhina, Volkov, 2014) If (S, \cdot) is a finite INFB semigroup and $TSL_3 \in \mathcal{V}(S) \implies (S, \cdot, ^*)$ is INFB.

Theorem (Auinger, IgD, Pervukhina, Volkov, 2014) *TFAE for a regular finite semigroup with involution S:*

- 1. S is INFB,
- 2. (S, \cdot) is INFB and $TSL_3 \in \mathcal{V}(S)$,
- 3. S fails to satisfy a nontrivial identity of the form $Z_n = W$.

I hope Andy is down there.

I hope I can make it across the border.

I hope to see my friend and shake his hand.

I hope the Pacific is as blue as it has been in my dreams.

I hope.

Stephen King: Rita Hayworth and the Shawshank Redemption

