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The word problem (in groups, monoids,...)

Assume we have given a (finitely generated) group G = 〈A〉

(e.g. by a presentation, G = Gp〈A |R〉, etc.).
So, elements of G are represented by words over A = A ∪ A−1.

The word problem for G is the following decision (algorithmic)
problem:

INPUT: A word w ∈ A
∗
.

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for
semigroups / monoids / inverse monoids / ..., with the difference
being that the input requires two words u, v (over A∗ or A

∗
,

respectively), and then we want to decide if u = v holds in the
corresponding semigroup / monoid.
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One-relator groups

Some easy word problems:

I Mon〈a, b | ab = ba〉 = N× N

I Gp〈a, b | a−1b−1ab = 1〉 = Gp〈a, b | ab = ba〉 = Z× Z

H. H. Wilhelm Magnus (1932):

The word problem for every
one-relator group Gp〈A | r = 1〉 is decidable.

Further examples:

I Baumslag-Solitar groups
B(m, n) = Gp〈a, b | b−1amba−n = 1〉

I (orientable) surface groups
Gp〈a1, . . . , ag , b1, . . . , bg | [a1, b1] . . . [ag , bg ] = 1〉
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka2



One-relator groups

Some easy word problems:

I Mon〈a, b | ab = ba〉 = N× N
I Gp〈a, b | a−1b−1ab = 1〉 = Gp〈a, b | ab = ba〉 = Z× Z

H. H. Wilhelm Magnus (1932):

The word problem for every
one-relator group Gp〈A | r = 1〉 is decidable.

Further examples:

I Baumslag-Solitar groups
B(m, n) = Gp〈a, b | b−1amba−n = 1〉

I (orientable) surface groups
Gp〈a1, . . . , ag , b1, . . . , bg | [a1, b1] . . . [ag , bg ] = 1〉
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Magnus’ result: The strategy

I Uses a result from Magnus’ PhD thesis (1930), the famous
Freiheitssatz, to identify certain free subgroups in a
one-relator group G = Gp〈A | r = 1〉;

I This gives rise to a (very “controlled”) embedding of G into
an HNN-extension of its subgroup L = Gp〈A′ | r ′ = 1〉 w.r.t. a
pair of free subgroups of L, where |r ′| < |r |;

I Such an embedding suffices to reduce the WP for G to that
of L;

I Eventually, we end up with a free group of finite rank, where
we trivially solve the WP.

“Da sind Sie also blind gegangen!”

Max Dehn (Magnus’ PhD advisor)
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The one-relator monoid problem

Open problem (as of 14 November 2024):

Does every one-relator monoid
Mon〈A | u = v〉 have a decidable WP?

S.I.Adian (1966) – The word problem for Mon〈A | u = v〉 is
decidable for:

I special monoids – the def. relation is of the form u = 1,

I the case when both u, v are non-empty, and have different
initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two
particular cases:

I Mon〈a, b | aUb = aVa〉,
I Mon〈a, b | aUb = a〉 (the “monadic” case).

NB. These presentations define right cancellative monoids.
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Inverse semigroups / monoids [???]

Structures (S ,−1) where S is a semigroup / monoid, and the unary
operation satisfies the laws:

(x−1)−1 = x , (xy)−1 = y−1x−1,

xx−1x = x , xx−1yy−1 = yy−1xx−1.

Just as groups capture the concept of a symmetry of mathematical objects,

so do inverse semigroups for their partial symmetries.

Free inverse monoid FIM(X ): Munn, Scheiblich (1973/4)

Elements of FIM(X ) are represented as Munn
trees = birooted finite subtrees of the Cayley
graph of FG (X ). The Munn tree on the left
illustrates the equality

aa−1bb−1ba−1abb−1 = bbb−1a−1ab−1aa−1b.
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Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid
presentations Inv〈A |R〉.

When all defining relators are of the form
w = 1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001):
The (right cancellative) monoid Mon〈A | aUb = aVc〉 (b 6= c)
embeds (as the monoid of right units) into

Inv〈A | aUbc−1V−1a−1 = 1〉.
Similarly, Mon〈A | aUb = a〉 embeds into Inv〈A | aUba−1 = 1〉.

Hence, the WP for one-relator monoids reduces to the WP for
one-relator (special) inverse monoids.
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka6



Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid
presentations Inv〈A |R〉. When all defining relators are of the form
w = 1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001):
The (right cancellative) monoid Mon〈A | aUb = aVc〉 (b 6= c)
embeds (as the monoid of right units) into

Inv〈A | aUbc−1V−1a−1 = 1〉.
Similarly, Mon〈A | aUb = a〉 embeds into Inv〈A | aUba−1 = 1〉.

Hence, the WP for one-relator monoids reduces to the WP for
one-relator (special) inverse monoids.
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Surprise, surprise...!

Gp〈X |w = 1〉 Mon〈X |w = 1〉 Inv〈X |w = 1〉

decidable WP 3 3 ?
(Magnus, 1932) (Adyan, 1966)

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid
with an undecidable WP. [!!!]

This still does not invalidate the IMM-approach, as the
counterexample is of a different from (e.g. the relator word
is not reduced). But it does show that there are great difficulties
ahead.
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Gray’s Anatomy :-)

I At the heart of the proof is Lohrey-Steinberg’s result (2008)
that the right-angled Artin group A(P4) has a fixed finitely
generated submonoid with undecidable membership problem;

I Then, A(P4) embeds into a one-relator group
G = Gp〈a, b | . . .〉;

I Finally, a one-relator SIM M = Inv〈a, b, t | . . .〉 is constructed
so that u ∈ {a, b, a−1, b−1}∗ represents an element of the
“critical” undecidable f.g. submonoid of G

⇐⇒
tut−1 is right invertible in M (i.e. tut−1tu−1t−1 = 1).
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The importance of being E -unitary

It is a foundational result of inverse semigroup theory that every inverse

semigroup S has a maximum group image G .

Let φ : S → G be the

corresponding natural homomorphism. Clearly, for any idempotent e ∈ S

we must have φ(e) = 1.

However, if the converse holds: φ(s) = 1 =⇒ s2 = s, then S is
said to be E -unitary.

For example, M = Inv〈A |w = 1〉 is E -unitary if:

I w = 1 holds in any group (i.e. w is a Dyck word),

I w is cyclically reduced (IMM, 2001).

IMM (2001): If M = Inv〈A |w = 1〉 is E -unitary then the WP
for M reduces to the prefix membership problem (PMP) for its
greatest group image G = Gp〈A |w = 1〉 = the membership
problem for the submonoid of G generated by all prefixes of w .
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Further evidence that PMP is very relevant

Guba (1997):
For any monadic M = Mon〈a, b | aUb = a〉 constructs
GM = Gp〈x , y ,A | xWyx−1 = 1〉 (for some W ∈ (A ∪ {x , y})∗
related, but not trivially, to U) such that the WP for M
reduces to PMP for GM .

However, there are groups G = Gp〈A |w = 1〉 with:

I w reduced and undecidable PMP for G (IgD, RDG, 2021);

I w = uv−1 reduced (u, v ∈ A+) and undecidable PMP for G
(Foniqi, RDG, Nyberg-Brodda, to appear);

I w ∈ A+ and undecidable submonoid membership problem
for G (again, F+G+NB).

Problem: What about the case when w is cyclically reduced?
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Some one-relator groups with decidable PMP

IgD, RDG (TransAMS, 2021): Theorems providing sufficient
conditions for decidability of certain f.g. submonoids of
(1) amalgamated free products and (2) HNN-extensions of groups.

Applications:

I Assume a conservative factorisation w ≡ w1 · · ·wk ;

I Unique marker letters: pieces axb, ayb,

Gp〈a, b, x , y | (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1〉;
I Sometimes, the application is not immediate, e.g. in the

O’Hare example:

Gp〈a, b, c , d | (abcd)(acd)(ad)(abbcd)(acd) = 1〉;
but the same group (and resulting with the same prefix monoid!) is
defined by

Gp〈a, b, c , d | (aba−1)(aca−1)(ad)(aca−1)(ad)(ad)

(aba−1)(aba−1)(aca−1)(ad)(aca−1)(ad) = 1〉
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka11



Some one-relator groups with decidable PMP

I Disjoint alphabets:

Gp〈a, b, c , d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1〉;

I Exponent sum zero: G = Gp〈A, t |w = 1〉, where the sum of
exponents of t in w is 0. Then (by Moldavanskĭı, 1967) G is an
HNN extension of a group G0 = Gp〈A′ |w ′ = 1〉 where |w ′| < |w |.
If G0 is free and w is prefix t-positive ⇒ G has decidable PMP;

I Cyclically pinched groups: Gp〈A,B | uv−1 = 1〉 (u ∈ A
∗
, v ∈ B

∗
)

I Orientable surface groups (known):
Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1] . . . [an, bn] = 1〉;

I Non-orientable surface groups (new):
Gp〈a1, . . . , an | a2

1 . . . a
2
n = 1〉;

I Conjugacy pinched groups: Gp〈X , t | t−1utv−1 = 1〉 (u, v ∈ X
∗

non-empty and reduced) – include the Baumslag-Solitar groups;

I Some Adian-type groups: Gp〈X | uv−1 = 1〉, u, v ∈ X ∗ are positive
words such that the first letters of u, v are different and also the last
letters of u, v are different.
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HNN extension of a group G0 = Gp〈A′ |w ′ = 1〉 where |w ′| < |w |.
If G0 is free and w is prefix t-positive ⇒ G has decidable PMP;

I Cyclically pinched groups: Gp〈A,B | uv−1 = 1〉 (u ∈ A
∗
, v ∈ B

∗
)

I Orientable surface groups (known):
Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1] . . . [an, bn] = 1〉;

I Non-orientable surface groups (new):
Gp〈a1, . . . , an | a2

1 . . . a
2
n = 1〉;

I Conjugacy pinched groups: Gp〈X , t | t−1utv−1 = 1〉 (u, v ∈ X
∗

non-empty and reduced) – include the Baumslag-Solitar groups;

I Some Adian-type groups: Gp〈X | uv−1 = 1〉, u, v ∈ X ∗ are positive
words such that the first letters of u, v are different and also the last
letters of u, v are different.
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Two questions

All results presented thus far very much justify the study of prefix
monoids in f.p. groups and (because of Gray’s counterexample) of
right unit monoids (RU-monoids) in f.p. SIMs in their own right.

(1) What can the prefix monoids of f.p. groups be?

(2) What can the RU-monoids of f.p. SIMs be?
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Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.
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The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

I Every group-embeddable f.p. monoid arises as a prefix monoid.

I If a group arises as a prefix monoid then it is f.p. So, not all
group-embeddable recursively presented monoids are prefix
monoids.

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there
is a natural number µM such that

M ∗ Σ∗k

is a prefix monoid (with |Σk | = k) if and only if k ≥ µM .
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka15



The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

I Every group-embeddable f.p. monoid arises as a prefix monoid.

I If a group arises as a prefix monoid then it is f.p. So, not all
group-embeddable recursively presented monoids are prefix
monoids.

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there
is a natural number µM such that

M ∗ Σ∗k

is a prefix monoid (with |Σk | = k) if and only if k ≥ µM .
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RU-monoids

M – inverse monoid, r ∈ M is a right unit (or right invertible) if

rr−1 = 1.

Right units form a (plain) submonoid of M that is always right
cancellative. Any right cancellative monoid isomorphic to the
monoid of right units of a f.p. SIM is called an RU-monoid.

I RU-monoids are recursively presented (as monoids);

I if a group G arises as an RU-monoid ⇒ G is finitely presented;

I quite recently it seems we (IgD, RGD, Sept 2024) have shown
that if G ∗ Σ∗ is an RU-monoid ⇒ G is finitely presented.

So, there is evidence that the (open) problem of characterising
RU-monoids might be actually quite difficult.
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RC-presentations

M = MonRC〈A |R〉

⇔ M ∼= A∗/RRC, where RRC is the intersection of all congruences
σ of A∗ such that

I R ⊆ σ,

I A∗/σ is right cancellative.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.

In a way, this is a generalisation of the Ivanov-Margolis-Meakin
result.
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The Gray-Ruškuc construction (2016, published in 2024)

Ingredients: A group G and a f.g. submonoid T ≤ G .

Constructs: An E -unitary SIM MG ,T (which is f.p. if G is such).

Effects:

I a one-relator SIM whose group of units is not one-relator;

I a one-relator SIM whose group of units is f.p. but whose
RU-monoid is not f.p.;

I a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of MG ,T is always finitely
RC-presented(!) (even though it might be not f.p. as a monoid,
and the group of units might be not f.p.)

+ If U is the group of units of a monoid M and M \ U is an
ideal (which is always the case when M is right cancellative)
M f.p. as a monoid ⇒ U f.p. as a group
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka18
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The Gray-Kambites construction

RDG, Kambites (2023/24, JEMS, to appear): The groups of units
of f.p. SIMs are precisely the recursively presented groups.

Their construction takes a f.g. subgroup H of a f.p. group G and
produces a f.p. SIM MG ,H such that U(MG ,H) ∼= H.
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The Gray-Kambites construction

IgD, RDG (2024): A generalisation to the situation when we take
a f.g. submonoid S of a finitely RC-presented (right cancellative)
monoid T .

We have determined an RC-presentation for the right units of
MT ,S .

I This monoid is practically never finitely RC-presented;

I The group of units might or might not be f.p., it might even
be trivial.

Conclusion 1: There are non-finitely RC-presented RU-monoids
out there!

Conclusion 2: Right cancellative monoids and RC-presentations
are strange animals!
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Matematični kolokvij, Ljubljana, 14 November 2024 Igor Dolinka20



Thank you!
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