# Recent developments in combinatorial inverse semigroup theory

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

Matematični kolokvij, FMF, Univerza v Ljubljani Ljubljana, Slovenia, 14 November 2024



# Most of the original results presented here...



#### ...are obtained in collaboration with Robert D. Gray (University of East Anglia, Norwich, UK)

The word problem (in groups, monoids,...)

Assume we have given a (finitely generated) group  $G = \langle A \rangle$ (e.g. by a presentation,  $G = \text{Gp}\langle A | \mathfrak{R} \rangle$ , etc.). So, elements of G are represented by words over  $\overline{A} = A \cup A^{-1}$ .

The word problem for G is the following decision (algorithmic) problem:

**INPUT**: A word  $w \in \overline{A}^*$ .

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for semigroups / monoids / inverse monoids / ..., with the difference being that the input requires two words u, v (over  $A^*$  or  $\overline{A}^*$ , respectively), and then we want to decide if u = v holds in the corresponding semigroup / monoid.

# One-relator groups

Some easy word problems:

• 
$$\mathsf{Mon}\langle a, b \, | \, ab = ba \rangle = \mathbb{N} \times \mathbb{N}$$

$$\blacktriangleright \ \mathsf{Gp}\langle a, b \, | \, a^{-1}b^{-1}ab = 1 \rangle = \mathsf{Gp}\langle a, b \, | \, ab = ba \rangle = \mathbb{Z} \times \mathbb{Z}$$

The word problem for every one-relator group  $\operatorname{Gp}\langle A | r = 1 \rangle$  is decidable.

Further examples:

- ▶ Baumslag-Solitar groups B(m, n) = Gp⟨a, b | b<sup>-1</sup>a<sup>m</sup>ba<sup>-n</sup> = 1⟩
- (orientable) surface groups  $Gp\langle a_1, \ldots, a_g, b_1, \ldots, b_g | [a_1, b_1] \ldots [a_g, b_g] = 1 \rangle$



# Magnus' result: The strategy

- ► Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group G = Gp⟨A| r = 1⟩;
- ► This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup L = Gp⟨A' | r' = 1⟩ w.r.t. a pair of free subgroups of L, where |r'| < |r|;</p>
- Such an embedding suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.

"Da sind Sie also blind gegangen!"

Max Dehn (Magnus' PhD advisor)

# The one-relator monoid problem

Open problem (as of 14 November 2024):

Does every one-relator monoid  $Mon\langle A \mid u = v \rangle$  have a decidable WP?

S.I.Adian (1966) – The word problem for  $Mon\langle A | u = v \rangle$  is decidable for:

- **•** special monoids the def. relation is of the form u = 1,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

• Mon
$$\langle a, b | aUb = aVa \rangle$$
,

• Mon
$$\langle a, b | aUb = a \rangle$$
 (the "monadic" case).

NB. These presentations define right cancellative monoids.

# Inverse semigroups / monoids [???]

Structures  $(S, {}^{-1})$  where S is a semigroup / monoid, and the unary operation satisfies the laws:

$$(x^{-1})^{-1} = x,$$
  $(xy)^{-1} = y^{-1}x^{-1},$   
 $xx^{-1}x = x,$   $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$ 

Just as groups capture the concept of a symmetry of mathematical objects, so do inverse semigroups for their partial symmetries.

Free inverse monoid FIM(X): Munn, Scheiblich (1973/4)



Elements of FIM(X) are represented as Munn trees = birooted finite subtrees of the Cayley graph of FG(X). The Munn tree on the left illustrates the equality

$$aa^{-1}bb^{-1}ba^{-1}abb^{-1} = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b.$$

# Enter: Combinatorial inverse semigroup theory

The existence of FIM(A) caters for inverse semigroup/monoid presentations  $Inv\langle A | \mathfrak{R} \rangle$ . When all defining relators are of the form w = 1, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001): The (right cancellative) monoid  $Mon\langle A | aUb = aVc \rangle$  ( $b \neq c$ ) embeds (as the monoid of right units) into  $Inv\langle A | aUbc^{-1}V^{-1}a^{-1} = 1 \rangle$ .

Similarly,  $Mon\langle A | aUb = a \rangle$  embeds into  $Inv\langle A | aUba^{-1} = 1 \rangle$ .

Hence, the WP for one-relator monoids reduces to the WP for one-relator (special) inverse monoids.

# Surprise, surprise...!

|              | $Gp\langle X   w=1  angle$ | $Mon\langle X   w=1  angle$ | $  Inv\langle X     w = 1  angle$ |
|--------------|----------------------------|-----------------------------|-----------------------------------|
| decidable WP | 1                          | 1                           | ? 🗡                               |
|              | (Magnus, 1932)             | (Adyan, 1966)               | (Gray, 2019)                      |

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

This still does not invalidate the IMM-approach, as the counterexample is of a different from (e.g. the relator word is not reduced). But it does show that there are great difficulties ahead.

# Gray's Anatomy :-)

At the heart of the proof is Lohrey-Steinberg's result (2008) that the right-angled Artin group  $A(P_4)$  has a fixed finitely generated submonoid with undecidable membership problem;

Finally, a one-relator SIM M = Inv⟨a, b, t |...⟩ is constructed so that u ∈ {a, b, a<sup>-1</sup>, b<sup>-1</sup>}\* represents an element of the "critical" undecidable f.g. submonoid of G

 $tut^{-1}$  is right invertible in M (i.e.  $tut^{-1}tu^{-1}t^{-1} = 1$ ).

# The importance of being *E*-unitary

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let  $\phi: S \to G$  be the corresponding natural homomorphism. Clearly, for any idempotent  $e \in S$  we must have  $\phi(e) = 1$ .

However, if the converse holds:  $\phi(s) = 1 \implies s^2 = s$ , then S is said to be *E*-unitary.

For example,  $M = Inv\langle A | w = 1 \rangle$  is *E*-unitary if:

- w = 1 holds in any group (i.e. w is a Dyck word),
- ▶ *w* is cyclically reduced (IMM, 2001).

IMM (2001): If  $M = Inv\langle A | w = 1 \rangle$  is *E*-unitary then the WP for *M* reduces to the prefix membership problem (PMP) for its greatest group image  $G = Gp\langle A | w = 1 \rangle$  = the membership problem for the submonoid of *G* generated by all prefixes of *w*.

## Further evidence that PMP is very relevant

### Guba (1997):

For any monadic  $M = \text{Mon}\langle a, b | aUb = a \rangle$  constructs  $G_M = \text{Gp}\langle x, y, A | xWyx^{-1} = 1 \rangle$  (for some  $W \in (A \cup \{x, y\})^*$ related, but not trivially, to U) such that the WP for Mreduces to PMP for  $G_M$ .

However, there are groups  $G = \operatorname{Gp}\langle A | w = 1 \rangle$  with:

- ▶ *w* reduced and undecidable PMP for *G* (IgD, RDG, 2021);
- ▶  $w = uv^{-1}$  reduced  $(u, v \in A^+)$  and undecidable PMP for *G* (Foniqi, RDG, Nyberg-Brodda, to appear);
- w ∈ A<sup>+</sup> and undecidable submonoid membership problem for G (again, F+G+NB).

Problem: What about the case when w is cyclically reduced?

# Some one-relator groups with decidable PMP

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

### Applications:

- Assume a conservative factorisation  $w \equiv w_1 \cdots w_k$ ;
- ► Unique marker letters: pieces axb, ayb, Gp(a, b, x, y | (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1);
- Sometimes, the application is not immediate, e.g. in the O'Hare example:

 $\mathsf{Gp}\langle a, b, c, d | (abcd)(acd)(ad)(abbcd)(acd) = 1 \rangle;$ 

but the same group (and resulting with the same prefix monoid!) is defined by

$$\begin{aligned} \mathsf{Gp}\langle a,b,c,d\,|\,(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad)(ad) \\ (aba^{-1})(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad) = 1 \rangle \end{aligned}$$

# Some one-relator groups with decidable PMP

#### Disjoint alphabets:

 $\mathsf{Gp}(a, b, c, d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1);$ 

Exponent sum zero: G = Gp⟨A, t | w = 1⟩, where the sum of exponents of t in w is 0. Then (by Moldavanskiĭ, 1967) G is an HNN extension of a group G<sub>0</sub> = Gp⟨A' | w' = 1⟩ where |w'| < |w|. If G<sub>0</sub> is free and w is prefix t-positive ⇒ G has decidable PMP;

• Cyclically pinched groups:  $Gp\langle A, B \mid uv^{-1} = 1 \rangle$   $(u \in \overline{A}^*, v \in \overline{B}^*)$ 

 > Orientable surface groups (known): Gp⟨a<sub>1</sub>,..., a<sub>n</sub>, b<sub>1</sub>,..., b<sub>n</sub> | [a<sub>1</sub>, b<sub>1</sub>]...[a<sub>n</sub>, b<sub>n</sub>] = 1⟩;

 > Non-orientable surface groups (new): Gp⟨a<sub>1</sub>,..., a<sub>n</sub> | a<sub>1</sub><sup>2</sup>...a<sub>n</sub><sup>2</sup> = 1⟩;

- Conjugacy pinched groups: Gp⟨X, t | t<sup>-1</sup>utv<sup>-1</sup> = 1⟩ (u, v ∈ X<sup>\*</sup> non-empty and reduced) – include the Baumslag-Solitar groups;
- Some Adian-type groups: Gp⟨X | uv<sup>-1</sup> = 1⟩, u, v ∈ X\* are positive words such that the first letters of u, v are different and also the last letters of u, v are different.

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

(1) What can the prefix monoids of f.p. groups be?(2) What can the RU-monoids of f.p. SIMs be?

# Recursive stuff

A group G is recursively presented if

$$G = \mathsf{Gp}\langle A \,|\, w_i = 1 \; (i \in I) 
angle$$

where A is finite and  $\{w_i : i \in I\}$  is a r.e. language over  $A \cup A^{-1}$ . Similarly, a monoid is recursively presented if

$$M = \operatorname{Mon}\langle A \,|\, u_i = v_i \ (i \in I) \rangle$$

where A is finite and  $\{(u_i, v_i): i \in I\}$  is a r.e. subset of  $A^* \times A^*$ .

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

- A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.
- Every prefix monoid (of a f.p. group) is f.g.  $\implies$  it is recursively presented.

The characterisation of prefix monoids (of f.p. groups)

## Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

#### Theorem (IgD, RDG, 2023):

For every group-embeddable recursively presented monoid M there is a natural number  $\mu_M$  such that

$$M * \Sigma_k^*$$

is a prefix monoid (with  $|\Sigma_k| = k$ ) if and only if  $k \ge \mu_M$ .

## **RU-monoids**

M - inverse monoid,  $r \in M$  is a right unit (or right invertible) if  $rr^{-1} = 1$ .

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

- RU-monoids are recursively presented (as monoids);
- if a group G arises as an RU-monoid  $\Rightarrow$  G is finitely presented;
- quite recently it seems we (IgD, RGD, Sept 2024) have shown that if  $G * \Sigma^*$  is an RU-monoid  $\Rightarrow G$  is finitely presented.

So, there is evidence that the (open) problem of characterising RU-monoids might be actually quite difficult.

# **RC**-presentations

 $M = \mathsf{MonRC}\langle A \,|\, \mathfrak{R} \rangle$ 

 $\Leftrightarrow M\cong A^*/\mathfrak{R}^{\mathrm{RC}}, \text{ where } \mathfrak{R}^{\mathrm{RC}} \text{ is the intersection of all congruences } \sigma \text{ of } A^* \text{ such that}$ 

- $\blacktriangleright \ \mathfrak{R} \subseteq \sigma,$
- $A^*/\sigma$  is right cancellative.

**Theorem** (IgD, RDG, 2023): *Every finitely RC-presented monoid is an RU-monoid.* 

In a way, this is a generalisation of the Ivanov-Margolis-Meakin result.

The Gray-Ruškuc construction (2016, published in 2024)

Ingredients: A group G and a f.g. submonoid  $T \leq G$ . Constructs: An *E*-unitary SIM  $M_{G,T}$  (which is f.p. if G is such).

Effects:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- ▶ a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of  $M_{G,T}$  is always finitely RC-presented(!) (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

If U is the group of units of a monoid M and  $M \setminus U$  is an ideal (which is always the case when M is right cancellative) M f.p. as a monoid  $\Rightarrow U$  f.p. as a group

# The Gray-Kambites construction

RDG, Kambites (2023/24, JEMS, to appear): The groups of units of f.p. SIMs are precisely the recursively presented groups.

Their construction takes a f.g. subgroup H of a f.p. group G and produces a f.p. SIM  $M_{G,H}$  such that  $U(M_{G,H}) \cong H$ .



# The Gray-Kambites construction

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of  $M_{T,S}$ .

- This monoid is practically never finitely RC-presented;
- The group of units might or might not be f.p., it might even be trivial.

Conclusion 1: There are non-finitely RC-presented RU-monoids out there!

Conclusion 2: Right cancellative monoids and RC-presentations are strange animals!



