Recent developments in combinatorial inverse semigroup theory

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

Matematični kolokvij, FMF, Univerza v Ljubljani Ljubljana, Slovenia, 14 November 2024

Most of the original results presented here...

...are obtained in collaboration with Robert D. Gray (University of East Anglia, Norwich, UK)

The word problem (in groups, monoids,...)

Assume we have given a (finitely generated) group $G = \langle A \rangle$ (e.g. by a presentation, $G = \mathsf{Gp}\langle A | \mathfrak{R} \rangle$, etc.). So, elements of G are represented by words over $\overline{A}=A\cup A^{-1}.$

The word problem for G is the following decision (algorithmic) problem:

INPUT: A word $w \in \overline{A}^*$.

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for semigroups / monoids / inverse monoids / ..., with the difference being that the input requires two words u, v (over A^* or \overline{A}^* , respectively), and then we want to decide if $u = v$ holds in the corresponding semigroup / monoid.

One-relator groups

Some easy word problems:

$$
\blacktriangleright \text{ Mon}\langle a, b \, | \, ab = ba \rangle = \mathbb{N} \times \mathbb{N}
$$

$$
\blacktriangleright \ \text{Gp}\langle a,b \, | \, a^{-1}b^{-1}ab=1 \rangle = \text{Gp}\langle a,b \, | \, ab=ba \rangle = \mathbb{Z} \times \mathbb{Z}
$$

H. H. Wilhelm Magnus (1932):

The word problem for every one-relator group $Gp\langle A | r = 1 \rangle$ is decidable.

Further examples:

- ▶ Baumslag-Solitar groups $B(m, n) = \mathsf{Gp}\langle a, b \, | \, b^{-1}a^{m}ba^{-n} = 1 \rangle$
- \blacktriangleright (orientable) surface groups $Gp\langle a_1, \ldots, a_g, b_1, \ldots, b_g | [a_1, b_1] \ldots [a_g, b_g] = 1 \rangle$

Magnus' result: The strategy

- \triangleright Uses a result from Magnus' PhD thesis (1930), the famous Freiheitssatz, to identify certain free subgroups in a one-relator group $G = \mathsf{Gp}(A | r = 1);$
- \triangleright This gives rise to a (very "controlled") embedding of G into an HNN-extension of its subgroup $L = \mathsf{Gp}\langle A' \,|\, r' = 1 \rangle$ w.r.t. a pair of free subgroups of L, where $|r'| < |r|$;
- \triangleright Such an embedding suffices to reduce the WP for G to that of L;
- \triangleright Eventually, we end up with a free group of finite rank, where we trivially solve the WP.

"Da sind Sie also blind gegangen!"

Max Dehn (Magnus' PhD advisor)

The one-relator monoid problem

Open problem (as of 14 November 2024):

Does every one-relator monoid Mon $\langle A | u = v \rangle$ have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A | u = v \rangle$ is decidable for:

- **If** special monoids the def. relation is of the form $u = 1$,
- \triangleright the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

$$
\blacktriangleright \text{ Mon}\langle a,b \,|\, aUb = aVa \rangle,
$$

$$
\triangleright \text{Mon}\langle a, b \, | \, aUb = a \rangle \text{ (the "monadic" case)}.
$$

NB. These presentations define right cancellative monoids.

Inverse semigroups / monoids [???]

Structures $(\mathcal{S},^{-1})$ where $\mathcal S$ is a semigroup $/$ monoid, and the unary operation satisfies the laws:

$$
(x^{-1})^{-1} = x,
$$
 $(xy)^{-1} = y^{-1}x^{-1},$
\n $xx^{-1}x = x,$ $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$

Just as groups capture the concept of a symmetry of mathematical objects, so do inverse semigroups for their partial symmetries.

Free inverse monoid $FIM(X)$: Munn, Scheiblich (1973/4)

Elements of $FIM(X)$ are represented as Munn $trees = birooted finite subtrees of the Cayley$ graph of $FG(X)$. The Munn tree on the left illustrates the equality

$$
aa^{-1}bb^{-1}ba^{-1}abb^{-1} = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b.
$$

Enter: Combinatorial inverse semigroup theory

The existence of $FIM(A)$ caters for inverse semigroup/monoid presentations $Inv\langle A | \mathcal{R} \rangle$. When all defining relators are of the form $w = 1$, we have special inverse monoids.

Ivanov, Margolis & Meakin (JPAA, 2001): The (right cancellative) monoid Mon $\langle A | aUb = aVc \rangle$ ($b \neq c$) embeds (as the monoid of right units) into $\mathsf{Inv}\langle A | aUbc^{-1}V^{-1}a^{-1} = 1 \rangle.$

Similarly, Mon $\langle A | aUb = a \rangle$ embeds into $Inv\langle A | aUba^{-1} = 1 \rangle$.

Hence, the WP for one-relator monoids reduces to the WP for one-relator (special) inverse monoids.

Surprise, surprise...!

RDG (Inventiones Math, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

This still does not invalidate the IMM-approach, as the counterexample is of a different from (e.g. the relator word is not reduced). But it does show that there are great difficulties ahead.

Gray's Anatomy :-)

 \blacktriangleright At the heart of the proof is Lohrey-Steinberg's result (2008) that the right-angled Artin group $A(P_4)$ has a fixed finitely generated submonoid with undecidable membership problem;

► Then,
$$
A(P_4)
$$
 embeds into a one-relator group
 $G = Gp\langle a, b | ... \rangle$;

Finally, a one-relator SIM $M = Inv\langle a, b, t | ... \rangle$ is constructed so that $u \in \{$, b, a^{-1}, b^{-1}\}^* represents an element of the "critical" undecidable f.g. submonoid of G

⇐⇒ tut⁻¹ is right invertible in M (i.e. $tut^{-1}tu^{-1}t^{-1} = 1$).

The importance of being E-unitary

It is a foundational result of inverse semigroup theory that every inverse semigroup S has a maximum group image G. Let $\phi : S \to G$ be the corresponding natural homomorphism. Clearly, for any idempotent $e \in S$ we must have $\phi(e) = 1$.

However, if the converse holds: $\phi(s)=1\implies s^2=s$, then S is said to be E -unitary.

For example, $M = \ln \sqrt{A}$ $w = 1$ is E-unitary if:

- \blacktriangleright $w = 1$ holds in any group (i.e. w is a Dyck word),
- \triangleright w is cyclically reduced (IMM, 2001).

IMM (2001): If $M = \ln \sqrt{A}$ $w = 1$ is E-unitary then the WP for M reduces to the prefix membership problem (PMP) for its greatest group image $G = \mathsf{Gp}(A | w = 1) = \mathsf{the}$ membership problem for the submonoid of G generated by all prefixes of w .

Further evidence that PMP is very relevant

Guba (1997):

For any monadic $M = \text{Mon}\langle a, b | aUb = a \rangle$ constructs $G_M = Gp\langle x, y, A \, | \, xWyx^{-1} = 1 \rangle$ (for some $W \in (A \cup \{x, y\})^*$ related, but not trivially, to U) such that the WP for M reduces to PMP for G_M .

However, there are groups $G = \mathsf{Gp}(A | w = 1)$ with:

- \triangleright w reduced and undecidable PMP for G (IgD, RDG, 2021);
- ► $w = uv^{-1}$ reduced $(u, v \in A^+)$ and undecidable PMP for G (Foniqi, RDG, Nyberg-Brodda, to appear);
- \triangleright $w \in A^+$ and undecidable submonoid membership problem for G (again, $F+G+NB$).

Problem: What about the case when w is cyclically reduced?

Some one-relator groups with decidable PMP

IgD, RDG (TransAMS, 2021): Theorems providing sufficient conditions for decidability of certain f.g. submonoids of (1) amalgamated free products and (2) HNN-extensions of groups.

Applications:

- **►** Assume a conservative factorisation $w \equiv w_1 \cdots w_k$;
- \blacktriangleright Unique marker letters: pieces axb , ayb , $G_p(a, b, x, y | (axb)(ayb)(ayb)(axb)(ayb)(axb) = 1$;
- \triangleright Sometimes, the application is not immediate, e.g. in the O'Hare example:

 $Gp\langle a, b, c, d \mid (abcd)(acd)(ad)(abbcd)(acd) = 1$;

but the same group (and resulting with the same prefix monoid!) is defined by

$$
Gp\langle a, b, c, d | (aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad)(ad) (aba^{-1})(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad) = 1 \rangle
$$

Some one-relator groups with decidable PMP

 \blacktriangleright Disjoint alphabets:

 $Gp(a, b, c, d \mid (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1$;

Exponent sum zero: $G = Gp\langle A, t | w = 1 \rangle$, where the sum of exponents of t in w is 0. Then (by Moldavanskiı̆, 1967) G is an HNN extension of a group $G_0 = \mathsf{Gp}\langle A' | w' = 1 \rangle$ where $|w'| < |w|$. If G_0 is free and w is prefix *t*-positive \Rightarrow G has decidable PMP:

► Cyclically pinched groups: $Gp\langle A, B | uv^{-1} = 1 \rangle$ $(u \in \overline{A}^*, v \in \overline{B}^*)$

- \triangleright Orientable surface groups (known): $Gp\langle a_1, \ldots, a_n, b_1, \ldots, b_n | [a_1, b_1] \ldots [a_n, b_n] = 1 \rangle;$ \triangleright Non-orientable surface groups (new): $\mathsf{Gp}\langle a_1,\ldots,a_n | a_1^2 \ldots a_n^2 = 1 \rangle;$
- ► Conjugacy pinched groups: $Gp\langle X, t | t^{-1}utv^{-1} = 1 \rangle$ $(u, v \in \overline{X}^*)$ non-empty and reduced) – include the Baumslag-Solitar groups;
- Some Adian-type groups: $Gp\langle X | uv^{-1} = 1 \rangle$, $u, v \in X^*$ are positive words such that the first letters of u , v are different and also the last letters of u, v are different.

All results presented thus far very much justify the study of prefix monoids in f.p. groups and (because of Gray's counterexample) of right unit monoids (RU-monoids) in f.p. SIMs in their own right.

 (1) What can the prefix monoids of f.p. groups be? (2) What can the RU-monoids of f.p. SIMs be?

Recursive stuff

A group G is recursively presented if

$$
G = \mathsf{Gp}\langle A \,|\, w_i = 1\ (i \in I)\rangle
$$

where A is finite and $\{w_i: \,\, i\in I\}$ is a r.e. language over $A\cup A^{-1}.$ Similarly, a monoid is recursively presented if

$$
M=\mathsf{Mon}\langle A\,|\,u_i=v_i\ (i\in I)\rangle
$$

where A is finite and $\{(u_i,v_i):\ i\in I\}$ is a r.e. subset of $A^*\times A^*$.

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

- ☞ A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.
- \mathbb{F} Every prefix monoid (of a f.p. group) is f.g. \implies it is recursively presented.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable $f.p.$ monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is $f.p.$ So, not all group-embeddable recursively presented monoids are prefix monoids.

Theorem (IgD, RDG, 2023):

For every group-embeddable recursively presented monoid M there is a natural number μ_M such that

$$
M*\Sigma_k^*
$$

is a prefix monoid (with $|\Sigma_k| = k$) if and only if $k > \mu_M$.

RU-monoids

M – inverse monoid, $r \in M$ is a right unit (or right invertible) if $rr^{-1} = 1$

Right units form a (plain) submonoid of M that is always right cancellative. Any right cancellative monoid isomorphic to the monoid of right units of a f.p. SIM is called an RU-monoid.

- \blacktriangleright RU-monoids are recursively presented (as monoids);
- \triangleright if a group G arises as an RU-monoid \Rightarrow G is finitely presented;
- \triangleright quite recently it seems we (IgD, RGD, Sept 2024) have shown that if $G * \Sigma^*$ is an RU-monoid $\Rightarrow G$ is finitely presented.

So, there is evidence that the (open) problem of characterising RU-monoids might be actually quite difficult.

RC-presentations

 $M = \text{MonRC}\langle A | \mathfrak{R} \rangle$

 $\Leftrightarrow \mathcal{M}\cong A^*/\mathfrak{R}^{\mathrm{RC}}$, where $\mathfrak{R}^{\mathrm{RC}}$ is the intersection of all congruences σ of A^* such that

- \triangleright $\mathfrak{R} \subset \sigma$.
- A^{*}/ σ is right cancellative.

Theorem (IgD, RDG, 2023): Every finitely RC-presented monoid is an RU-monoid.

In a way, this is a generalisation of the Ivanov-Margolis-Meakin result.

The Gray-Ruškuc construction (2016, published in 2024)

Ingredients: A group G and a f.g. submonoid $T \leq G$. Constructs: An E-unitary SIM $M_{G,T}$ (which is f.p. if G is such).

Effects:

- \triangleright a one-relator SIM whose group of units is not one-relator;
- \triangleright a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- \triangleright a f.p. SIM whose group of units is not f.p.

IgD, RDG (2024): The RU-monoid of $M_{G,T}$ is always finitely RC -presented $(!)$ (even though it might be not f.p. as a monoid, and the group of units might be not f.p.)

 \mathbb{R} If U is the group of units of a monoid M and $M \setminus U$ is an ideal (which is always the case when M is right cancellative) M f.p. as a monoid $\Rightarrow U$ f.p. as a group

The Gray-Kambites construction

RDG, Kambites (2023/24, JEMS, to appear): The groups of units of f.p. SIMs are precisely the recursively presented groups.

Their construction takes a f.g. subgroup H of a f.p. group G and produces a f.p. SIM M_{GH} such that $U(M_{GH}) \cong H$.

The Gray-Kambites construction

IgD, RDG (2024): A generalisation to the situation when we take a f.g. submonoid S of a finitely RC-presented (right cancellative) monoid T.

We have determined an RC-presentation for the right units of $M_{T,S}$.

- \blacktriangleright This monoid is practically never finitely RC-presented;
- \triangleright The group of units might or might not be f.p., it might even be trivial.

Conclusion 1: There are non-finitely RC-presented RU-monoids out there!

Conclusion 2: Right cancellative monoids and RC-presentations are strange animals!

