
Prefix monoids of groups and
right units of special inverse monoids

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

36th NBSAN Meeting, a satellite event to the 75th BMC

Manchester, UK, 20 June 2024

 



Joint work with Robert D. Gray (UEA)

I.Dolinka, R.D.Gray: Prefix monoids of groups and right units of
special inverse monoids, Forum of Mathematics, Sigma 11 (2023),
Article e97, 19 pp.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka



The “driving engine” (part I)

H. H. Wilhelm Magnus (1930/31):

The word problem for every
one-relator group Gp〈A | r = 1〉 is decidable.

Reason (the Magnus-Moldavansky hierarchy):

I G = Gp〈A | r = 1〉 embeds into an HNN-extension of its (f.g.)
subgroup L = Gp〈A′ | r ′ = 1〉 w.r.t. a pair of free (“Magnus”)
subgroups of L, where |r ′| < |r |;

I This suffices to reduce the WP for G to that of L;

I Eventually, we end up with a free group of finite rank, where
we trivially solve the WP.

I NB. There is an older approach (Magnus’ original) using
amalgamated free products.
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The “driving engine” (part II)

Open problem (as of 20 June 2024):

Does every one-relator monoid
Mon〈A | u = v〉 have a decidable WP?

S.I.Adian (1966) – The word problem for Mon〈A | u = v〉 is
decidable for:

I special monoids – the def. relation is of the form u = 1,

I the case when both u, v are non-empty, and have different
initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two
particular cases:

I Mon〈a, b | aUb = aVa〉,
I Mon〈a, b | aUb = a〉 (the “monadic” case).

NB. These presentations define right cancellative monoids.
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The Lead Role #1: Prefix monoids (in groups)

Let G = Gp〈A |wi = 1 (i ∈ I )〉 be a group.

The prefix monoid of this group (presentation) = the submonoid of
G generated by the elements represented by all prefixes of all wi ’s

The prefix monoid is dependent on the concrete presentation of G
– one fixed (isomorphism type of a) group can have many
presentations, leading to many prefix monoids.

Prefix Membership Problem (PMP): Given a word over A ∪ A−1,
decide whether it represents an element of the prefix monoid
(w.r.t. the given group presentation)

IgD & RDG (TrAMS, 2021): A kaleidoscope of sufficient
conditions (via amalgamated products and HNN extensions)
ensuring decidability for the PMP
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The Lead Role #2: Right units (in inverse monoids)

Let M be an inverse monoid.

r ∈ M is a right unit ⇐⇒ r R 1 ⇐⇒ rr−1 = 1

Fun facts:

I Right units of M form a right cancellative submonoid R of M.

I If M = Inv〈A |wi = 1 (i ∈ I )〉 (i.e. M is a special inverse
monoid) then R is generated by elements represented by all
prefixes of all wi ’s.

I So, in the natural map M → G = Gp〈A |wi = 1 (i ∈ I )〉, the
RU-monoid R of M is mapped onto the prefix monoid of G .

I If M happens to be E -unitary, the restriction of this map to R
is a monoid isomorphism.

I Consequently, the RU-monoid of any E -unitary special inverse
monoid (SIM) is group-embeddable.
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The “driving engine” (part III)

Ivanov, Margolis & Meakin (JPAA, 2001):
The (right cancellative) monoid Mon〈A | aUb = aVc〉 (b 6= c)
embeds (as the monoid of right units) into

Inv〈A | aUbc−1V−1a−1 = 1〉.

Similarly, Mon〈A | aUb = a〉 embeds into Inv〈A | aUba−1 = 1〉.

Hence, the WP for one-relator monoids reduces to the WP for
one-relator inverse monoids.

Fun facts: when w is cyclically reduced then

I Inv〈A |w = 1〉 is E -unitary;

I the WP for Inv〈A |w = 1〉 reduces to the PMP for
Gp〈A |w = 1〉.
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Surprise, surprise...!

RDG (Inventiones, 2020):
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Know your limits

Guba (1997):
For any monadic M = Mon〈a, b | aUb = a〉 constructs
GM = Gp〈x , y ,A | xWyx−1 = 1〉 (for some W ∈ (A ∪ {x , y})∗)
such that the WP for M reduces to PMP for GM .

However, there are groups G = Gp〈A |w = 1〉 with:

I w reduced and undecidable PMP for G (IgD, RDG, 2021);

I w = uv−1 reduced (u, v ∈ A+) and undecidable PMP for G
(Foniqi, RDG, CFNB, to appear);

I w ∈ A+ and undecidable submonoid membership problem for
G (again, FGNB).
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Mon vs Inv

Obviously (imagine Snape’s voice here), one-relator/f.p. special
monoids and special inverse monoids are very different creatures.

For example:

I the group of units U of a M = Mon〈A |w = 1〉 is a
one-relator/f.p. group;

I the RU-monoid of M is a free product of U and a free monoid
of finite rank;

I all other maximal subgroups of M are ∼= U.

In contrast:

I the group of units U of a M = Inv〈A |w = 1〉 can be
non-one-relator (RGD, Ruškuc, Jussieu, to appear);

I the RU-monoid of M can be even non-f.p.;

I other maximal subgroups of M can be wildly different from U.
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The questions

All of this very much justifies the study of prefix monoids in f.p.
groups and RU-monoids in f.p. SIMs in their own right.

(1) What can the prefix monoids of f.p. groups be?

(2) What can the RU-monoids of f.p. SIMs be?

(3) What are the possible groups of units of these monoids?

(4) What are the possible Schützenberger groups of these
monoids?
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Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka10



Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka10



Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka10



Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka10



Recursive stuff

A group G is recursively presented if

G = Gp〈A |wi = 1 (i ∈ I )〉

where A is finite and {wi : i ∈ I} is a r.e. language over A ∪ A−1.

Similarly, a monoid is recursively presented if

M = Mon〈A | ui = vi (i ∈ I )〉

where A is finite and {(ui , vi ) : i ∈ I} is a r.e. subset of A∗ × A∗.

The Higman Embedding Theorem: A finitely generated group
embeds into a f.p. group if and only if it is recursively presented.

+ A finitely generated monoid embeds into a f.p. group if and
only if it is group-embeddable and recursively presented.

+ Every prefix monoid (of a f.p. group) is f.g.
=⇒ it is recursively presented.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka10



The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

I Every group-embeddable f.p. monoid arises as a prefix monoid.

I If a group arises as a prefix monoid then it is f.p. So, not all
group-embeddable recursively presented monoids are prefix
monoids.

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there
is a natural number µM such that

M ∗ Σ∗k

is a prefix monoid (with |Σk | = k) if and only if k ≥ µM .

Also:
The class of groups of units of prefix monoids is precisely the
recursively presented groups.
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Recursively enumerable stuff

Let G be a f.p. group (generated by A).

Let L ⊆ (A ∪ A−1)∗ be a
recursively enumerable language such that the set of all elements
of G represented by words from L forms a subgroup H ≤ G . Then
H is said to be a recursively enumerable subgroup of G .

NB. A r.e. subgroup of G is not necessarily finitely generated.
However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Theorem (IgD, RDG, 2023):
A group H arises as a Schützenberger group of a prefix monoid (of
a f.p. group) ⇐⇒ H arises as a r.e. subgroup of a f.p. group.

Ingredients:

I M (left/right) cancellative =⇒ every Sch-group embeds into the
group of units of M.

I For every r.e. subgroup H of a f.p. group G there is a f.p. overgroup
G1 ≥ G and and t ∈ G1 such that G ∩ t−1Gt = H.
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RU-monoids (take 1)

Again, some (easy) facts:

I Every RU-monoid is a right cancellative recursively presented
monoid.

I If the monoid of right units of a f.p. SIM is a group
=⇒ it is f.p.

Theorem 1 (RDG, Kambites, JEMS, to appear):
The class of groups of units of f.p. SIMs (and thus of RU-monoids)
is precisely the recursively presented groups.

Theorem 2 (RDG, Kambites):
A group arises as a maximal subgroup (i.e. as a group H -class) of
a f.p. SIM ⇐⇒ it arises as a r.e. subgroup of a f.p. group.
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RC-presentations

M = MonRC〈A |R〉

⇔ M ∼= A∗/RRC, where RRC is the intersection of all congruences
σ of A∗ such that

I R ⊆ σ,

I A∗/σ is right cancellative.

A.J.Cain (2005) (+ Robertson, Ruškuc, 2008): A concept of
formal, syntactic derivation for RC-presentations.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.

In a way, this is a generalisation of the Ivanov-Margolis-Meakin
result.
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RU-monoids (take 2)

Theorem (IgD, RDG, 2023):
The class of Schützenberger groups of RU-monoids is exactly the
class of r.e. subgroups of f.p. groups.

Open Problem: Characterise the class of all RU-monoids.

In the remainder of the talk, I’ll present two interesting phenomena
in this vein discovered by IgD+RDG during this Spring’s online
sessions.
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The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T
of G ,

a(n E -unitary) SIM M is constructed (which is f.p. when G
is) such that:

I U(M) ∼= G ∗ U(T ),

I if the monoid of right units of M is f.p. so must be both G
and T .

With the right choice of parameters, this produces:

I a one-relator SIM whose group of units is not one-relator;

I a one-relator SIM whose group of units is f.p. but whose
RU-monoid is not f.p.;

I a f.p. SIM whose group of units is not f.p.
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RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T
of G , a(n E -unitary) SIM M is constructed (which is f.p. when G
is) such that:

I U(M) ∼= G ∗ U(T ),

I if the monoid of right units of M is f.p. so must be both G
and T .

With the right choice of parameters, this produces:

I a one-relator SIM whose group of units is not one-relator;

I a one-relator SIM whose group of units is f.p. but whose
RU-monoid is not f.p.;

I a f.p. SIM whose group of units is not f.p.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka16



The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of M =

the greatest right cancellative image of
the HNN-like Otto-Pride extension of G w.r.t. T ↪→ G =

MonRC〈A,B, t | ui = vi (i ∈ I ), twj = bj t (j ∈ J)〉

where G = Mon〈A | ui = vi (i ∈ I )〉 and T = 〈wj : j ∈ J〉G .

Hence:

I If G is f.p. then the RU-monoid of M is necessarily finitely
RC-presented;

I The group of units U(M) can still be not f.p., and also the
RU-monoid can be not f.p. (as a monoid!);

I There is a finitely RC-presented monoid S in which the complement
of the group of units S \ U is an ideal, and still U is not f.p.

Conclusion: RC-presentations are strange animals!
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Conclusion: RC-presentations are strange animals!
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IgD, RDG (2024):
The RU-monoid of M = the greatest right cancellative image of
the HNN-like Otto-Pride extension of G w.r.t. T ↪→ G =

MonRC〈A,B, t | ui = vi (i ∈ I ), twj = bj t (j ∈ J)〉

where G = Mon〈A | ui = vi (i ∈ I )〉 and T = 〈wj : j ∈ J〉G .

Hence:

I If G is f.p. then the RU-monoid of M is necessarily finitely
RC-presented;

I The group of units U(M) can still be not f.p., and also the
RU-monoid can be not f.p. (as a monoid!);

I There is a finitely RC-presented monoid S in which the complement
of the group of units S \ U is an ideal, and still U is not f.p.

Conclusion: RC-presentations are strange animals!

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka17



The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of
units of a f.p. SIM.

Here we present a slight generalisation
(by IgD & RDG).

T = MonRC〈A | ui = vi (i = 1, . . . , k)〉
S = 〈B〉T – a f.g. submonoid

MT ,S – a f.p. SIM gen. by A and p0, p1, . . . , pk , z , d subject to

piap
−1
i pia

−1p−1i = 1 (a ∈ A, i = 0, 1, . . . , k)

piuid
−1v−1i p−1i = 1 (i = 1, . . . , k)

p0dp
−1
0 = 1

zbz−1zb−1z−1 = 1 (b ∈ B)

z

(
k∏

i=0

p−1i pi

)
z−1 = 1.
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The Gray-Kambites construction (2)

RDG, Kambites (JEMS, to appear): When T = G (a group given
by a finite special monoid pres.) and S = H (a f.g. subgroup), then

U(MG ,H) ∼= H.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka19



The Gray-Kambites construction (2)

RDG, Kambites (JEMS, to appear): When T = G (a group given
by a finite special monoid pres.) and S = H (a f.g. subgroup), then

U(MG ,H) ∼= H.

36th NBSAN, Manchester, 20 June 2024 Igor Dolinka19



The Gray-Kambites construction (3)

So, what is the RU-monoid of MT ,S?

IgD, RDG (2024): RC-presented by pi , qi (= zp−1i ) (0 ≤ i ≤ k),
a(i) (= piap

−1
i ) (a ∈ A, 0 ≤ i ≤ k), b(z) (= zbz−1) (b ∈ B), and

relations

qiw
(i)pi = q0w

(0)p0 (w ∈ A∗, i = 1, . . . , k)

qiu
(i) = qiv

(i) (u, v ∈ A∗ s.t. u = v holds in T ,

i = 0, 1, . . . , k)

qib
(i) = b(z)qi (b ∈ B, i = 0, 1, . . . , k)

NB. For all u, v ∈ B∗ s.t. u = v holds in S , u(z) = v (z) can be
RC-derived. In fact, 〈b(z) : b ∈ B〉 ∼= S .
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The Gray-Kambites construction (4)

For example, when we take T = {a}∗ and S = 〈∅〉 = {1} (and a
silly presentation for T , say a = a, to have k = 1) we get the
RU-monoid

MonRC〈a1, a1, p0, p1, q0, q1 | q0an0p0 = q1a
n
1p1 (n ≥ 0)〉.

This can be shown to be:

I not finitely RC-presented,

I with a trivial group of units.

Conclusion: There are non-finitely RC-presented RU-monoids
out there!
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Thank you!
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