Prefix monoids of groups and right units of special inverse monoids

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

36th NBSAN Meeting, a satellite event to the 75th BMC Manchester, UK, 20 June 2024

Joint work with Robert D. Gray (UEA)

I.Dolinka, R.D.Gray: Prefix monoids of groups and right units of special inverse monoids, Forum of Mathematics, Sigma 11 (2023), Article e97, 19 pp.

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

> The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

- $G=\operatorname{Gp}\langle A \mid r=1\rangle$ embeds into an HNN-extension of its (f.g.) subgroup $L=G p\left\langle A^{\prime} \mid r^{\prime}=1\right\rangle$ w.r.t. a pair of free ("Magnus") subgroups of L, where $\left|r^{\prime}\right|<|r|$;

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

> The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

- $G=G p\langle A \mid r=1\rangle$ embeds into an HNN-extension of its (f.g.) subgroup $L=G p\left\langle A^{\prime} \mid r^{\prime}=1\right\rangle$ w.r.t. a pair of free ("Magnus") subgroups of L, where $\left|r^{\prime}\right|<|r|$;
- This suffices to reduce the WP for G to that of L;

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

> The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

- $G=G p\langle A \mid r=1\rangle$ embeds into an HNN-extension of its (f.g.) subgroup $L=G p\left\langle A^{\prime} \mid r^{\prime}=1\right\rangle$ w.r.t. a pair of free ("Magnus") subgroups of L, where $\left|r^{\prime}\right|<|r|$;
- This suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

> The word problem for every one-relator group $\mathrm{Gp}\langle A \mid r=1\rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

- $G=G p\langle A \mid r=1\rangle$ embeds into an HNN-extension of its (f.g.) subgroup $L=G p\left\langle A^{\prime} \mid r^{\prime}=1\right\rangle$ w.r.t. a pair of free ("Magnus") subgroups of L, where $\left|r^{\prime}\right|<|r|$;
- This suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.
- NB. There is an older approach (Magnus' original) using amalgamated free products.

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian \& Oganessian (1987) - The general problem reduces to two particular cases:

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian \& Oganessian (1987) - The general problem reduces to two particular cases:

- $\operatorname{Mon}\langle a, b \mid a U b=a V a\rangle$,

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian \& Oganessian (1987) - The general problem reduces to two particular cases:

- Mon $\langle a, b \mid a U b=a V a\rangle$,
- Mon $\langle a, b \mid a U b=a\rangle$ (the "monadic" case).

The "driving engine" (part II)

Open problem (as of 20 June 2024):
Does every one-relator monoid
$\operatorname{Mon}\langle A \mid u=v\rangle$ have a decidable WP?
S.I.Adian (1966) - The word problem for $\operatorname{Mon}\langle A \mid u=v\rangle$ is decidable for:

- special monoids - the def. relation is of the form $u=1$,
- the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian \& Oganessian (1987) - The general problem reduces to two particular cases:

- $\operatorname{Mon}\langle a, b \mid a U b=a V a\rangle$,
- Mon $\langle a, b \mid a U b=a\rangle$ (the "monadic" case).

NB. These presentations define right cancellative monoids.

The Lead Role \#1: Prefix monoids (in groups)

Let $G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ be a group.

The Lead Role \#1: Prefix monoids (in groups)

Let $G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ be a group.
The prefix monoid of this group (presentation) = the submonoid of G generated by the elements represented by all prefixes of all w_{i} 's

The Lead Role \#1: Prefix monoids (in groups)

Let $G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ be a group.
The prefix monoid of this group (presentation) $=$ the submonoid of G generated by the elements represented by all prefixes of all w_{i} 's

The prefix monoid is dependent on the concrete presentation of G - one fixed (isomorphism type of a) group can have many presentations, leading to many prefix monoids.

The Lead Role \#1: Prefix monoids (in groups)

Let $G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ be a group.
The prefix monoid of this group (presentation) $=$ the submonoid of G generated by the elements represented by all prefixes of all w_{i} 's

The prefix monoid is dependent on the concrete presentation of G - one fixed (isomorphism type of a) group can have many presentations, leading to many prefix monoids.

Prefix Membership Problem (PMP): Given a word over $A \cup A^{-1}$, decide whether it represents an element of the prefix monoid (w.r.t. the given group presentation)

The Lead Role \#1: Prefix monoids (in groups)

Let $G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ be a group.
The prefix monoid of this group (presentation) $=$ the submonoid of G generated by the elements represented by all prefixes of all w_{i} 's The prefix monoid is dependent on the concrete presentation of G - one fixed (isomorphism type of a) group can have many presentations, leading to many prefix monoids.
Prefix Membership Problem (PMP): Given a word over $A \cup A^{-1}$, decide whether it represents an element of the prefix monoid (w.r.t. the given group presentation)

IgD \& RDG (TrAMS, 2021): A kaleidoscope of sufficient conditions (via amalgamated products and HNN extensions) ensuring decidability for the PMP

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

- Right units of M form a right cancellative submonoid R of M.

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

- Right units of M form a right cancellative submonoid R of M.
- If $M=\operatorname{lnv}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ (i.e. M is a special inverse monoid) then R is generated by elements represented by all prefixes of all w_{i} 's.

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

- Right units of M form a right cancellative submonoid R of M.
- If $M=\operatorname{lnv}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ (i.e. M is a special inverse monoid) then R is generated by elements represented by all prefixes of all w_{i} 's.
- So, in the natural map $M \rightarrow G=\mathrm{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$, the RU-monoid R of M is mapped onto the prefix monoid of G.

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

- Right units of M form a right cancellative submonoid R of M.
- If $M=\operatorname{lnv}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ (i.e. M is a special inverse monoid) then R is generated by elements represented by all prefixes of all w_{i} 's.
- So, in the natural map $M \rightarrow G=\mathrm{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$, the RU-monoid R of M is mapped onto the prefix monoid of G.
- If M happens to be E-unitary, the restriction of this map to R is a monoid isomorphism.

The Lead Role \#2: Right units (in inverse monoids)

Let M be an inverse monoid.
$r \in M$ is a right unit $\Longleftrightarrow r \mathscr{R} 1 \Longleftrightarrow r r^{-1}=1$
Fun facts:

- Right units of M form a right cancellative submonoid R of M.
- If $M=\operatorname{lnv}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$ (i.e. M is a special inverse monoid) then R is generated by elements represented by all prefixes of all w_{i} 's.
- So, in the natural map $M \rightarrow G=\mathrm{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle$, the RU-monoid R of M is mapped onto the prefix monoid of G.
- If M happens to be E-unitary, the restriction of this map to R is a monoid isomorphism.
- Consequently, the RU-monoid of any E-unitary special inverse monoid (SIM) is group-embeddable.

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{Inv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle .
$$

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{lnv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle
$$

Similarly, $\operatorname{Mon}\langle A \mid a U b=a\rangle$ embeds into $\operatorname{Inv}\left\langle A \mid a U b a^{-1}=1\right\rangle$.

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{Inv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle
$$

Similarly, $\operatorname{Mon}\langle A \mid a U b=a\rangle$ embeds into $\operatorname{Inv}\left\langle A \mid a U b a^{-1}=1\right\rangle$. Hence, the WP for one-relator monoids reduces to the WP for one-relator inverse monoids.

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{Inv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle
$$

Similarly, $\operatorname{Mon}\langle A \mid a U b=a\rangle$ embeds into $\operatorname{Inv}\left\langle A \mid a U b a^{-1}=1\right\rangle$.
Hence, the WP for one-relator monoids reduces to the WP for one-relator inverse monoids.

Fun facts: when w is cyclically reduced then

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{Inv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle
$$

Similarly, $\operatorname{Mon}\langle A \mid a U b=a\rangle$ embeds into $\operatorname{Inv}\left\langle A \mid a U b a^{-1}=1\right\rangle$.
Hence, the WP for one-relator monoids reduces to the WP for one-relator inverse monoids.

Fun facts: when w is cyclically reduced then

- $\operatorname{lnv}\langle A \mid w=1\rangle$ is E-unitary;

The "driving engine" (part III)

Ivanov, Margolis \& Meakin (JPAA, 2001):
The (right cancellative) monoid $\operatorname{Mon}\langle A \mid a U b=a V c\rangle(b \neq c)$ embeds (as the monoid of right units) into

$$
\operatorname{Inv}\left\langle A \mid a U b c^{-1} V^{-1} a^{-1}=1\right\rangle
$$

Similarly, $\operatorname{Mon}\langle A \mid a U b=a\rangle$ embeds into $\operatorname{Inv}\left\langle A \mid a U b a^{-1}=1\right\rangle$.
Hence, the WP for one-relator monoids reduces to the WP for one-relator inverse monoids.

Fun facts: when w is cyclically reduced then
$-\operatorname{lnv}\langle A \mid w=1\rangle$ is E-unitary;

- the WP for $\operatorname{lnv}\langle A \mid w=1\rangle$ reduces to the PMP for $\operatorname{Gp}\langle A \mid w=1\rangle$.

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

- the counterexample(s) is/are even E-unitary;

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

- the counterexample(s) is/are even E-unitary;
- at the heart of the proof is Lohrey-Steinberg's result (JAlg, 2008) that the RAAG $A\left(P_{4}\right)$ has a fixed f.g. submonoid with undecidable membership;

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

- the counterexample(s) is/are even E-unitary;
- at the heart of the proof is Lohrey-Steinberg's result (JAlg, 2008) that the RAAG $A\left(P_{4}\right)$ has a fixed f.g. submonoid with undecidable membership;
- then, $A\left(P_{4}\right)$ embeds into a one-relator group $G=\mathrm{Gp}\langle a, b \mid \ldots\rangle$;

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

- the counterexample(s) is/are even E-unitary;
- at the heart of the proof is Lohrey-Steinberg's result (JAlg, 2008) that the RAAG $A\left(P_{4}\right)$ has a fixed f.g. submonoid with undecidable membership;
- then, $A\left(P_{4}\right)$ embeds into a one-relator group $G=\mathrm{Gp}\langle a, b \mid \ldots\rangle$;
- finally, a one-relator $\operatorname{SIM} M=\operatorname{lnv}\langle a, b, t \mid \ldots\rangle$ is constructed so that $u \in\left\{a, b, a^{-1}, b^{-1}\right\}^{*}$ represents an element of the "critical" undecidable f.g. submonoid of $G \Longleftrightarrow t u t^{-1}$ is a right unit in M.

Surprise, surprise...!

RDG (Inventiones, 2020):
There exists a one-relator special inverse monoid with an undecidable WP. [!!!]
Fun facts:

- the counterexample(s) is/are even E-unitary;
- at the heart of the proof is Lohrey-Steinberg's result (JAlg, 2008) that the RAAG $A\left(P_{4}\right)$ has a fixed f.g. submonoid with undecidable membership;
- then, $A\left(P_{4}\right)$ embeds into a one-relator group $G=G p\langle a, b \mid \ldots\rangle$;
- finally, a one-relator SIM $M=\operatorname{lnv}\langle a, b, t \mid \ldots\rangle$ is constructed so that $u \in\left\{a, b, a^{-1}, b^{-1}\right\}^{*}$ represents an element of the "critical" undecidable f.g. submonoid of $G \Longleftrightarrow t u t^{-1}$ is a right unit in M.

Still, this does not invalidate the IMM aprroach.

Know your limits

Guba (1997):
For any monadic $M=\operatorname{Mon}\langle a, b \mid a U b=a\rangle$ constructs
$G_{M}=G p\left\langle x, y, A \mid x W y x^{-1}=1\right\rangle\left(\right.$ for some $\left.W \in(A \cup\{x, y\})^{*}\right)$ such that the WP for M reduces to PMP for G_{M}.

Know your limits

Guba (1997):
For any monadic $M=\operatorname{Mon}\langle a, b \mid a U b=a\rangle$ constructs
$G_{M}=G p\left\langle x, y, A \mid x W y x^{-1}=1\right\rangle\left(\right.$ for some $\left.W \in(A \cup\{x, y\})^{*}\right)$ such that the WP for M reduces to PMP for G_{M}.

However, there are groups $G=G p\langle A \mid w=1\rangle$ with:

Know your limits

Guba (1997):
For any monadic $M=\operatorname{Mon}\langle a, b \mid a U b=a\rangle$ constructs
$G_{M}=G p\left\langle x, y, A \mid x W y x^{-1}=1\right\rangle\left(\right.$ for some $\left.W \in(A \cup\{x, y\})^{*}\right)$ such that the WP for M reduces to PMP for G_{M}.

However, there are groups $G=G p\langle A \mid w=1\rangle$ with:

- w reduced and undecidable PMP for G (IgD, RDG, 2021);

Know your limits

Guba (1997):
For any monadic $M=\operatorname{Mon}\langle a, b \mid a U b=a\rangle$ constructs
$G_{M}=G p\left\langle x, y, A \mid x W y x^{-1}=1\right\rangle\left(\right.$ for some $\left.W \in(A \cup\{x, y\})^{*}\right)$ such that the WP for M reduces to PMP for G_{M}.

However, there are groups $G=G p\langle A \mid w=1\rangle$ with:

- w reduced and undecidable PMP for G (lgD, RDG, 2021);
- $w=u v^{-1}$ reduced $\left(u, v \in A^{+}\right)$and undecidable PMP for G (Foniqi, RDG, CFNB, to appear);

Know your limits

Guba (1997):
For any monadic $M=\operatorname{Mon}\langle a, b \mid a U b=a\rangle$ constructs
$G_{M}=G p\left\langle x, y, A \mid x W y x^{-1}=1\right\rangle\left(\right.$ for some $\left.W \in(A \cup\{x, y\})^{*}\right)$ such that the WP for M reduces to PMP for G_{M}.

However, there are groups $G=G p\langle A \mid w=1\rangle$ with:

- w reduced and undecidable PMP for G (lgD, RDG, 2021);
- $w=u v^{-1}$ reduced $\left(u, v \in A^{+}\right)$and undecidable PMP for G (Foniqi, RDG, CFNB, to appear);
- $w \in A^{+}$and undecidable submonoid membership problem for G (again, FGNB).

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures. For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.
For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;
- the RU-monoid of M is a free product of U and a free monoid of finite rank;

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.
For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;
- the RU-monoid of M is a free product of U and a free monoid of finite rank;
- all other maximal subgroups of M are $\cong U$.

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.
For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;
- the RU-monoid of M is a free product of U and a free monoid of finite rank;
- all other maximal subgroups of M are $\cong U$.

In contrast:

- the group of units U of a $M=\operatorname{Inv}\langle A \mid w=1\rangle$ can be non-one-relator (RGD, Ruškuc, Jussieu, to appear);

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.
For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;
- the RU-monoid of M is a free product of U and a free monoid of finite rank;
- all other maximal subgroups of M are $\cong U$.

In contrast:

- the group of units U of a $M=\operatorname{lnv}\langle A \mid w=1\rangle$ can be non-one-relator (RGD, Ruškuc, Jussieu, to appear);
- the RU-monoid of M can be even non-f.p.;

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures.
For example:

- the group of units U of a $M=\operatorname{Mon}\langle A \mid w=1\rangle$ is a one-relator/f.p. group;
- the RU-monoid of M is a free product of U and a free monoid of finite rank;
- all other maximal subgroups of M are $\cong U$.

In contrast:

- the group of units U of a $M=\operatorname{Inv}\langle A \mid w=1\rangle$ can be non-one-relator (RGD, Ruškuc, Jussieu, to appear);
- the RU-monoid of M can be even non-f.p.;
- other maximal subgroups of M can be wildly different from U.

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.
(1) What can the prefix monoids of f.p. groups be?

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.
(1) What can the prefix monoids of f.p. groups be?
(2) What can the RU-monoids of f.p. SIMs be?

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.
(1) What can the prefix monoids of f.p. groups be?
(2) What can the RU-monoids of f.p. SIMs be?
(3) What are the possible groups of units of these monoids?

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.
(1) What can the prefix monoids of f.p. groups be?
(2) What can the RU-monoids of f.p. SIMs be?
(3) What are the possible groups of units of these monoids?
(4) What are the possible Schützenberger groups of these monoids?

Recursive stuff

A group G is recursively presented if

$$
G=\mathrm{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle
$$

where A is finite and $\left\{w_{i}: i \in I\right\}$ is a r.e. language over $A \cup A^{-1}$.

Recursive stuff

A group G is recursively presented if

$$
G=G p\left\langle A \mid w_{i}=1(i \in I)\right\rangle
$$

where A is finite and $\left\{w_{i}: i \in I\right\}$ is a r.e. language over $A \cup A^{-1}$.
Similarly, a monoid is recursively presented if

$$
M=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle
$$

where A is finite and $\left\{\left(u_{i}, v_{i}\right): i \in I\right\}$ is a r.e. subset of $A^{*} \times A^{*}$.

Recursive stuff

A group G is recursively presented if

$$
G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle
$$

where A is finite and $\left\{w_{i}: i \in I\right\}$ is a r.e. language over $A \cup A^{-1}$.
Similarly, a monoid is recursively presented if

$$
M=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle
$$

where A is finite and $\left\{\left(u_{i}, v_{i}\right): i \in I\right\}$ is a r.e. subset of $A^{*} \times A^{*}$.
The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

Recursive stuff

A group G is recursively presented if

$$
G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle
$$

where A is finite and $\left\{w_{i}: i \in I\right\}$ is a r.e. language over $A \cup A^{-1}$.
Similarly, a monoid is recursively presented if

$$
M=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle
$$

where A is finite and $\left\{\left(u_{i}, v_{i}\right): i \in I\right\}$ is a r.e. subset of $A^{*} \times A^{*}$.
The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

10 A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.

Recursive stuff

A group G is recursively presented if

$$
G=\operatorname{Gp}\left\langle A \mid w_{i}=1(i \in I)\right\rangle
$$

where A is finite and $\left\{w_{i}: i \in I\right\}$ is a r.e. language over $A \cup A^{-1}$.
Similarly, a monoid is recursively presented if

$$
M=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle
$$

where A is finite and $\left\{\left(u_{i}, v_{i}\right): i \in I\right\}$ is a r.e. subset of $A^{*} \times A^{*}$.
The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

108 A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.
189 Every prefix monoid (of a f.p. group) is f.g.
\Longrightarrow it is recursively presented.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there is a natural number μ_{M} such that

$$
M * \Sigma_{k}^{*}
$$

is a prefix monoid (with $\left|\Sigma_{k}\right|=k$) if and only if $k \geq \mu_{M}$.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

Theorem (IgD, RDG, 2023):
For every group-embeddable recursively presented monoid M there is a natural number μ_{M} such that

$$
M * \Sigma_{k}^{*}
$$

is a prefix monoid (with $\left|\Sigma_{k}\right|=k$) if and only if $k \geq \mu_{M}$.
Also:
The class of groups of units of prefix monoids is precisely the recursively presented groups.

Recursively enumerable stuff

Let G be a f.p. group (generated by A).

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated. However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated. However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Theorem (IgD, RDG, 2023):
A group H arises as a Schützenberger group of a prefix monoid (of a f.p. group $) \Longleftrightarrow H$ arises as a r.e. subgroup of a f.p. group.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated. However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Theorem (IgD, RDG, 2023):
A group H arises as a Schützenberger group of a prefix monoid (of a f.p. group $) \Longleftrightarrow H$ arises as a r.e. subgroup of a f.p. group. Ingredients:

- M (left/right) cancellative \Longrightarrow every Sch-group embeds into the group of units of M.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq\left(A \cup A^{-1}\right)^{*}$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \leq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated. However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Theorem (IgD, RDG, 2023):
A group H arises as a Schützenberger group of a prefix monoid (of a f.p. group $) \Longleftrightarrow H$ arises as a r.e. subgroup of a f.p. group. Ingredients:

- M (left/right) cancellative \Longrightarrow every Sch-group embeds into the group of units of M.
- For every r.e. subgroup H of a f.p. group G there is a f.p. overgroup $G_{1} \geq G$ and and $t \in G_{1}$ such that $G \cap t^{-1} G t=H$.

RU-monoids (take 1)

Again, some (easy) facts:

- Every RU-monoid is a right cancellative recursively presented monoid.

RU-monoids (take 1)

Again, some (easy) facts:

- Every RU-monoid is a right cancellative recursively presented monoid.
- If the monoid of right units of a f.p. SIM is a group \Longrightarrow it is f.p.

RU-monoids (take 1)

Again, some (easy) facts:

- Every RU-monoid is a right cancellative recursively presented monoid.
- If the monoid of right units of a f.p. SIM is a group \Longrightarrow it is f.p.

Theorem 1 (RDG, Kambites, JEMS, to appear):
The class of groups of units of f.p. SIMs (and thus of RU-monoids) is precisely the recursively presented groups.

RU-monoids (take 1)

Again, some (easy) facts:

- Every RU-monoid is a right cancellative recursively presented monoid.
- If the monoid of right units of a f.p. SIM is a group \Longrightarrow it is f.p.

Theorem 1 (RDG, Kambites, JEMS, to appear):
The class of groups of units of f.p. SIMs (and thus of RU-monoids) is precisely the recursively presented groups.

Theorem 2 (RDG, Kambites):
A group arises as a maximal subgroup (i.e. as a group \mathscr{H}-class) of a f.p. SIM \Longleftrightarrow it arises as a r.e. subgroup of a f.p. group.

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \Re\rangle
$$

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \Re\rangle
$$

$\Leftrightarrow M \cong A^{*} / \mathfrak{R}^{\mathrm{RC}}$,

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \Re\rangle
$$

$\Leftrightarrow M \cong A^{*} / \mathfrak{R}^{\mathrm{RC}}$, where $\mathfrak{R}^{\mathrm{RC}}$ is the intersection of all congruences σ of A^{*} such that

- $\mathfrak{R} \subseteq \sigma$,
- A^{*} / σ is right cancellative.

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \Re\rangle
$$

$\Leftrightarrow M \cong A^{*} / \mathfrak{R}^{\mathrm{RC}}$, where $\mathfrak{R}^{\mathrm{RC}}$ is the intersection of all congruences σ of A^{*} such that

- $\mathfrak{R} \subseteq \sigma$,
- A^{*} / σ is right cancellative.
A.J.Cain (2005) (+ Robertson, Ruškuc, 2008): A concept of formal, syntactic derivation for RC-presentations.

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \mathfrak{R}\rangle
$$

$\Leftrightarrow M \cong A^{*} / \mathfrak{R}^{\mathrm{RC}}$, where $\mathfrak{R}^{\mathrm{RC}}$ is the intersection of all congruences σ of A^{*} such that

- $\mathfrak{R} \subseteq \sigma$,
- A^{*} / σ is right cancellative.
A.J.Cain (2005) (+ Robertson, Ruškuc, 2008): A concept of formal, syntactic derivation for RC-presentations.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.

RC-presentations

$$
M=\operatorname{MonRC}\langle A \mid \mathfrak{R}\rangle
$$

$\Leftrightarrow M \cong A^{*} / \mathfrak{R}^{\mathrm{RC}}$, where $\mathfrak{R}^{\mathrm{RC}}$ is the intersection of all congruences σ of A^{*} such that

- $\mathfrak{R} \subseteq \sigma$,
- A^{*} / σ is right cancellative.
A.J.Cain (2005) (+ Robertson, Ruškuc, 2008): A concept of formal, syntactic derivation for RC-presentations.

Theorem (IgD, RDG, 2023):
Every finitely RC-presented monoid is an RU-monoid.
In a way, this is a generalisation of the Ivanov-Margolis-Meakin result.

RU-monoids (take 2)

Theorem (IgD, RDG, 2023):
The class of Schützenberger groups of RU-monoids is exactly the class of r.e. subgroups of f.p. groups.

RU-monoids (take 2)

Theorem (IgD, RDG, 2023):
The class of Schützenberger groups of RU-monoids is exactly the class of r.e. subgroups of f.p. groups.

Open Problem: Characterise the class of all RU-monoids.

RU-monoids (take 2)

Theorem (IgD, RDG, 2023):
The class of Schützenberger groups of RU-monoids is exactly the class of r.e. subgroups of f.p. groups.

Open Problem: Characterise the class of all RU-monoids.
In the remainder of the talk, I'll present two interesting phenomena in this vein discovered by $\lg \mathrm{D}+$ RDG during this Spring's online sessions.

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G,

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

$$
U(M) \cong G * U(T)
$$

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

- $U(M) \cong G * U(T)$,
- if the monoid of right units of M is f.p. so must be both G and T.

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

- $U(M) \cong G * U(T)$,
- if the monoid of right units of M is f.p. so must be both G and T.

With the right choice of parameters, this produces:

- a one-relator SIM whose group of units is not one-relator;

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

- $U(M) \cong G * U(T)$,
- if the monoid of right units of M is f.p. so must be both G and T.

With the right choice of parameters, this produces:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

- $U(M) \cong G * U(T)$,
- if the monoid of right units of M is f.p. so must be both G and T.

With the right choice of parameters, this produces:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- a f.p. SIM whose group of units is not f.p.

The RU-monoid in the Gray-Ruškuc construction (2)

lgD, RDG (2024):
The RU-monoid of $M=$

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G$

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$
$\operatorname{MonRC}\left\langle A, B, t \mid u_{i}=v_{i}(i \in I), t w_{j}=b_{j} t(j \in J)\right\rangle$
where $G=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$ and $T=\left\langle w_{j}: j \in J\right\rangle_{G}$.

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$
$\operatorname{MonRC}\left\langle A, B, t \mid u_{i}=v_{i}(i \in I), t w_{j}=b_{j} t(j \in J)\right\rangle$
where $G=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$ and $T=\left\langle w_{j}: j \in J\right\rangle_{G}$.
Hence:

- If G is f.p. then the RU-monoid of M is necessarily finitely RC-presented;

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$
$\operatorname{MonRC}\left\langle A, B, t \mid u_{i}=v_{i}(i \in I), t w_{j}=b_{j} t(j \in J)\right\rangle$
where $G=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$ and $T=\left\langle w_{j}: j \in J\right\rangle_{G}$. Hence:

- If G is f.p. then the RU-monoid of M is necessarily finitely RC-presented;
- The group of units $U(M)$ can still be not f.p., and also the RU-monoid can be not f.p. (as a monoid!);

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$
$\operatorname{MonRC}\left\langle A, B, t \mid u_{i}=v_{i}(i \in I), t w_{j}=b_{j} t(j \in J)\right\rangle$
where $G=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$ and $T=\left\langle w_{j}: j \in J\right\rangle_{G}$. Hence:

- If G is f.p. then the RU-monoid of M is necessarily finitely RC-presented;
- The group of units $U(M)$ can still be not f.p., and also the RU-monoid can be not f.p. (as a monoid!);
- There is a finitely RC-presented monoid S in which the complement of the group of units $S \backslash U$ is an ideal, and still U is not f.p.

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):
The RU-monoid of $M=$ the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$
$\operatorname{MonRC}\left\langle A, B, t \mid u_{i}=v_{i}(i \in I), t w_{j}=b_{j} t(j \in J)\right\rangle$
where $G=\operatorname{Mon}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$ and $T=\left\langle w_{j}: j \in J\right\rangle_{G}$. Hence:

- If G is f.p. then the RU-monoid of M is necessarily finitely RC-presented;
- The group of units $U(M)$ can still be not f.p., and also the RU-monoid can be not f.p. (as a monoid!);
- There is a finitely RC-presented monoid S in which the complement of the group of units $S \backslash U$ is an ideal, and still U is not f.p.

Conclusion: RC-presentations are strange animals!

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM.

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM. Here we present a slight generalisation (by $\lg D \& R D G$).

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM. Here we present a slight generalisation (by $\lg D \& R D G$).
$T=\operatorname{MonRC}\left\langle A \mid u_{i}=v_{i}(i=1, \ldots, k)\right\rangle$
$S=\langle B\rangle_{T}-$ a f.g. submonoid

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM. Here we present a slight generalisation (by $\lg D \& R D G$).
$T=\operatorname{MonRC}\left\langle A \mid u_{i}=v_{i}(i=1, \ldots, k)\right\rangle$
$S=\langle B\rangle_{T}-$ a f.g. submonoid
$M_{T, S}$ - a f.p. SIM gen. by A and $p_{0}, p_{1}, \ldots, p_{k}, z, d$

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM. Here we present a slight generalisation (by $\lg D \& R D G$).
$T=\operatorname{MonRC}\left\langle A \mid u_{i}=v_{i}(i=1, \ldots, k)\right\rangle$
$S=\langle B\rangle_{T}-$ a f.g. submonoid
$M_{T, S}$ - a f.p. SIM gen. by A and $p_{0}, p_{1}, \ldots, p_{k}, z, d$ subject to

$$
\begin{array}{lr}
p_{i} a p_{i}^{-1} p_{i} a^{-1} p_{i}^{-1}=1 & (a \in A, i=0,1, \ldots, k) \\
p_{i} u_{i} d^{-1} v_{i}^{-1} p_{i}^{-1}=1 & (i=1, \ldots, k) \\
p_{0} d p_{0}^{-1}=1 & (b \in B) \\
z b z^{-1} z b^{-1} z^{-1}=1 & \\
z\left(\prod_{i=0}^{k} p_{i}^{-1} p_{i}\right) z^{-1}=1 . &
\end{array}
$$

The Gray-Kambites construction (2)

RDG, Kambites (JEMS, to appear): When $T=G$ (a group given by a finite special monoid pres.) and $S=H$ (a f.g. subgroup), then

$$
U\left(M_{G, H}\right) \cong H .
$$

The Gray-Kambites construction (2)

RDG, Kambites (JEMS, to appear): When $T=G$ (a group given by a finite special monoid pres.) and $S=H$ (a f.g. subgroup), then

$$
U\left(M_{G, H}\right) \cong H .
$$

The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T, S}$?

The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T, S}$?

$$
\begin{aligned}
& \operatorname{lgD}, \operatorname{RDG}(2024): \text { RC-presented by } p_{i}, q_{i}\left(=z p_{i}^{-1}\right)(0 \leq i \leq k), \\
& a^{(i)}\left(=p_{i} a p_{i}^{-1}\right)(a \in A, 0 \leq i \leq k), b^{(z)}\left(=z b z^{-1}\right)(b \in B),
\end{aligned}
$$

The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T, S}$?
$\operatorname{lgD}, \mathrm{RDG}(2024): \mathrm{RC}$-presented by $p_{i}, q_{i}\left(=z p_{i}^{-1}\right)(0 \leq i \leq k)$, $a^{(i)}\left(=p_{i} a p_{i}^{-1}\right)(a \in A, 0 \leq i \leq k), b^{(z)}\left(=z b z^{-1}\right)(b \in B)$, and relations

$$
\begin{array}{lr}
q_{i} w^{(i)} p_{i}=q_{0} w^{(0)} p_{0} & \left(w \in A^{*}, i=1, \ldots, k\right) \\
q_{i} u^{(i)}=q_{i} v^{(i)} & \left(u, v \in A^{*} \text { s.t. } u=v \text { holds in } T,\right. \\
& i=0,1, \ldots, k) \\
q_{i} b^{(i)}=b^{(z)} q_{i} & (b \in B, i=0,1, \ldots, k)
\end{array}
$$

The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T, S}$?
$\operatorname{lgD}, \mathrm{RDG}(2024): \mathrm{RC}$-presented by $p_{i}, q_{i}\left(=z p_{i}^{-1}\right)(0 \leq i \leq k)$, $a^{(i)}\left(=p_{i} a p_{i}^{-1}\right)(a \in A, 0 \leq i \leq k), b^{(z)}\left(=z b z^{-1}\right)(b \in B)$, and relations

$$
\begin{array}{lr}
q_{i} w^{(i)} p_{i}=q_{0} w^{(0)} p_{0} & \left(w \in A^{*}, i=1, \ldots, k\right) \\
q_{i} u^{(i)}=q_{i} v^{(i)} & \left(u, v \in A^{*} \text { s.t. } u=v \text { holds in } T,\right. \\
i=0,1, \ldots, k) \\
q_{i} b^{(i)}=b^{(z)} q_{i} & (b \in B, i=0,1, \ldots, k)
\end{array}
$$

NB. For all $u, v \in B^{*}$ s.t. $u=v$ holds in $S, u^{(z)}=v^{(z)}$ can be RC-derived.

The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T, S}$?
$\operatorname{lgD}, \mathrm{RDG}(2024): \mathrm{RC}$-presented by $p_{i}, q_{i}\left(=z p_{i}^{-1}\right)(0 \leq i \leq k)$, $a^{(i)}\left(=p_{i} a p_{i}^{-1}\right)(a \in A, 0 \leq i \leq k), b^{(z)}\left(=z b z^{-1}\right)(b \in B)$, and relations

$$
\begin{array}{lr}
q_{i} w^{(i)} p_{i}=q_{0} w^{(0)} p_{0} & \left(w \in A^{*}, i=1, \ldots, k\right) \\
q_{i} u^{(i)}=q_{i} v^{(i)} & \left(u, v \in A^{*} \text { s.t. } u=v \text { holds in } T,\right. \\
i=0,1, \ldots, k) \\
q_{i} b^{(i)}=b^{(z)} q_{i} & (b \in B, i=0,1, \ldots, k)
\end{array}
$$

NB. For all $u, v \in B^{*}$ s.t. $u=v$ holds in $S, u^{(z)}=v^{(z)}$ can be RC-derived. In fact, $\left\langle b^{(z)}: b \in B\right\rangle \cong S$.

The Gray-Kambites construction (4)

For example, when we take $T=\{a\}^{*}$ and $S=\langle\varnothing\rangle=\{1\}$ (and a silly presentation for T, say $a=a$, to have $k=1$) we get the RU-monoid
$\operatorname{MonRC}\left\langle a_{1}, a_{1}, p_{0}, p_{1}, q_{0}, q_{1} \mid q_{0} a_{0}^{n} p_{0}=q_{1} a_{1}^{n} p_{1}(n \geq 0)\right\rangle$.

The Gray-Kambites construction (4)

For example, when we take $T=\{a\}^{*}$ and $S=\langle\varnothing\rangle=\{1\}$ (and a silly presentation for T, say $a=a$, to have $k=1$) we get the RU-monoid
$\operatorname{MonRC}\left\langle a_{1}, a_{1}, p_{0}, p_{1}, q_{0}, q_{1} \mid q_{0} a_{0}^{n} p_{0}=q_{1} a_{1}^{n} p_{1}(n \geq 0)\right\rangle$.
This can be shown to be:

- not finitely RC-presented,
- with a trivial group of units.

The Gray-Kambites construction (4)

For example, when we take $T=\{a\}^{*}$ and $S=\langle\varnothing\rangle=\{1\}$ (and a silly presentation for T, say $a=a$, to have $k=1$) we get the RU-monoid

$$
\operatorname{MonRC}\left\langle a_{1}, a_{1}, p_{0}, p_{1}, q_{0}, q_{1} \mid q_{0} a_{0}^{n} p_{0}=q_{1} a_{1}^{n} p_{1}(n \geq 0)\right\rangle .
$$

This can be shown to be:

- not finitely RC-presented,
- with a trivial group of units.

Conclusion: There are non-finitely RC-presented RU-monoids out there!

Thank you!

Thank you!

(2)

