Prefix monoids of groups and right units of special inverse monoids

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad, Serbia

36th NBSAN Meeting, a satellite event to the 75th BMC Manchester, UK, 20 June 2024

Joint work with Robert D. Gray (UEA)

I.Dolinka, R.D.Gray: *Prefix monoids of groups and right units of special inverse monoids*, Forum of Mathematics, Sigma **11** (2023), Article e97, 19 pp.

The "driving engine" (part I)

H. H. Wilhelm Magnus (1930/31):

The word problem for every one-relator group $\operatorname{Gp}\langle A | r = 1 \rangle$ is decidable.

Reason (the Magnus-Moldavansky hierarchy):

- ▶ $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ embeds into an HNN-extension of its (f.g.) subgroup $L = \operatorname{Gp}\langle A' \mid r' = 1 \rangle$ w.r.t. a pair of free ("Magnus") subgroups of L, where |r'| < |r|;
- This suffices to reduce the WP for G to that of L;
- Eventually, we end up with a free group of finite rank, where we trivially solve the WP.
- ▶ NB. There is an older approach (Magnus' original) using amalgamated free products.

The "driving engine" (part II)

Open problem (as of 20 June 2024):

Does every one-relator monoid $Mon\langle A | u = v \rangle$ have a decidable WP?

S.I.Adian (1966) – The word problem for Mon $\langle A \mid u = v \rangle$ is decidable for:

- **special monoids** the def. relation is of the form u = 1,
- ► the case when both u, v are non-empty, and have different initial letters and different terminal letters.

Adian & Oganessian (1987) – The general problem reduces to two particular cases:

- ► Mon $\langle a, b | aUb = a \rangle$ (the "monadic" case).

NB. These presentations define right cancellative monoids.

The Lead Role #1: Prefix monoids (in groups)

Let $G = \operatorname{Gp}\langle A \mid w_i = 1 \ (i \in I) \rangle$ be a group.

The prefix monoid of this group (presentation) = the submonoid of G generated by the elements represented by all prefixes of all w_i 's

The prefix monoid is dependent on the concrete presentation of G – one fixed (isomorphism type of a) group can have many presentations, leading to many prefix monoids.

Prefix Membership Problem (PMP): Given a word over $A \cup A^{-1}$, decide whether it represents an element of the prefix monoid (w.r.t. the given group presentation)

IgD & RDG (TrAMS, 2021): A kaleidoscope of sufficient conditions (via amalgamated products and HNN extensions) ensuring decidability for the PMP

The Lead Role #2: Right units (in inverse monoids)

Let *M* be an inverse monoid.

$$r \in M$$
 is a right unit $\iff r \mathcal{R} 1 \iff rr^{-1} = 1$

Fun facts:

- Right units of M form a right cancellative submonoid R of M.
- ▶ If $M = \text{Inv}\langle A \mid w_i = 1 \ (i \in I)\rangle$ (i.e. M is a special inverse monoid) then R is generated by elements represented by all prefixes of all w_i 's.
- ▶ So, in the natural map $M \to G = \operatorname{Gp}\langle A | w_i = 1 \ (i \in I) \rangle$, the RU-monoid R of M is mapped onto the prefix monoid of G.
- ▶ If *M* happens to be *E*-unitary, the restriction of this map to *R* is a monoid isomorphism.
- ► Consequently, the RU-monoid of any *E*-unitary special inverse monoid (SIM) is group-embeddable.

The "driving engine" (part III)

Ivanov, Margolis & Meakin (JPAA, 2001):

The (right cancellative) monoid Mon $\langle A \, | \, aUb = aVc \rangle \, (b \neq c)$ embeds (as the monoid of right units) into

$$Inv\langle A \mid aUbc^{-1}V^{-1}a^{-1} = 1 \rangle.$$

Similarly, $Mon\langle A \mid aUb = a \rangle$ embeds into $Inv\langle A \mid aUba^{-1} = 1 \rangle$.

Hence, the WP for one-relator monoids reduces to the WP for one-relator inverse monoids.

Fun facts: when w is cyclically reduced then

- ► Inv $\langle A | w = 1 \rangle$ is *E*-unitary;
- ▶ the WP for Inv $\langle A \mid w = 1 \rangle$ reduces to the PMP for $\operatorname{Gp}\langle A \mid w = 1 \rangle$.

Surprise, surprise...!

RDG (Inventiones, 2020):

There exists a one-relator special inverse monoid with an undecidable WP. [!!!]

Fun facts:

- the counterexample(s) is/are even E-unitary;
- ▶ at the heart of the proof is Lohrey-Steinberg's result (JAlg, 2008) that the RAAG $A(P_4)$ has a fixed f.g. submonoid with undecidable membership;
- ▶ then, $A(P_4)$ embeds into a one-relator group $G = Gp\langle a, b | \ldots \rangle$;
- ▶ finally, a one-relator SIM $M = \text{Inv}\langle a, b, t | \dots \rangle$ is constructed so that $u \in \{a, b, a^{-1}, b^{-1}\}^*$ represents an element of the "critical" undecidable f.g. submonoid of $G \iff tut^{-1}$ is a right unit in M.

Still, this does not invalidate the IMM aprroach.

Know your limits

Guba (1997):

For any monadic $M = \text{Mon}\langle a, b \mid aUb = a \rangle$ constructs $G_M = \text{Gp}\langle x, y, A \mid xWyx^{-1} = 1 \rangle$ (for some $W \in (A \cup \{x, y\})^*$) such that the WP for M reduces to PMP for G_M .

However, there are groups $G = \operatorname{Gp}\langle A \mid w = 1 \rangle$ with:

- \triangleright w reduced and undecidable PMP for G (IgD, RDG, 2021);
- ▶ $w = uv^{-1}$ reduced $(u, v \in A^+)$ and undecidable PMP for G (Foniqi, RDG, CFNB, to appear);
- $w \in A^+$ and undecidable submonoid membership problem for G (again, FGNB).

Mon vs Inv

Obviously (imagine Snape's voice here), one-relator/f.p. special monoids and special inverse monoids are very different creatures. For example:

- ▶ the group of units U of a $M = \text{Mon}\langle A \mid w = 1 \rangle$ is a one-relator/f.p. group;
- ▶ the RU-monoid of M is a free product of U and a free monoid of finite rank;
- ▶ all other maximal subgroups of M are $\cong U$.

In contrast:

- ▶ the group of units U of a $M = Inv\langle A | w = 1 \rangle$ can be non-one-relator (RGD, Ruškuc, Jussieu, to appear);
- ▶ the RU-monoid of *M* can be even non-f.p.;
- \triangleright other maximal subgroups of M can be wildly different from U.

The questions

All of this very much justifies the study of prefix monoids in f.p. groups and RU-monoids in f.p. SIMs in their own right.

- (1) What can the prefix monoids of f.p. groups be?
- (2) What can the RU-monoids of f.p. SIMs be?
- (3) What are the possible groups of units of these monoids?
- (4) What are the possible Schützenberger groups of these monoids?

Recursive stuff

A group G is recursively presented if

$$G = \operatorname{\mathsf{Gp}} \langle A \, | \, w_i = 1 \, (i \in I) \rangle$$

where A is finite and $\{w_i: i \in I\}$ is a r.e. language over $A \cup A^{-1}$.

Similarly, a monoid is recursively presented if

$$M = \operatorname{\mathsf{Mon}}\langle A \,|\, u_i = v_i \ (i \in I) \rangle$$

where A is finite and $\{(u_i, v_i): i \in I\}$ is a r.e. subset of $A^* \times A^*$.

The Higman Embedding Theorem: A finitely generated group embeds into a f.p. group if and only if it is recursively presented.

- A finitely generated monoid embeds into a f.p. group if and only if it is group-embeddable and recursively presented.
- Every prefix monoid (of a f.p. group) is f.g. \implies it is recursively presented.

The characterisation of prefix monoids (of f.p. groups)

Two (easy) facts:

- Every group-embeddable f.p. monoid arises as a prefix monoid.
- If a group arises as a prefix monoid then it is f.p. So, not all group-embeddable recursively presented monoids are prefix monoids.

Theorem (IgD, RDG, 2023):

For every group-embeddable recursively presented monoid M there is a natural number μ_M such that

$$M * \Sigma_k^*$$

is a prefix monoid (with $|\Sigma_k| = k$) if and only if $k \ge \mu_M$.

Also:

The class of groups of units of prefix monoids is precisely the recursively presented groups.

Recursively enumerable stuff

Let G be a f.p. group (generated by A). Let $L \subseteq (A \cup A^{-1})^*$ be a recursively enumerable language such that the set of all elements of G represented by words from L forms a subgroup $H \subseteq G$. Then H is said to be a recursively enumerable subgroup of G.

NB. A r.e. subgroup of G is not necessarily finitely generated. However, all f.g. (i.e. recursively presented) subgroups of G are r.e.

Theorem (IgD, RDG, 2023):

A group H arises as a Schützenberger group of a prefix monoid (of a f.p. group) \iff H arises as a r.e. subgroup of a f.p. group.

Ingredients:

- ▶ M (left/right) cancellative \implies every Sch-group embeds into the group of units of M.
- ► For every r.e. subgroup H of a f.p. group G there is a f.p. overgroup $G_1 \ge G$ and and $t \in G_1$ such that $G \cap t^{-1}Gt = H$.

RU-monoids (take 1)

Again, some (easy) facts:

- Every RU-monoid is a right cancellative recursively presented monoid.
- ► If the monoid of right units of a f.p. SIM is a group ⇒ it is f.p.

Theorem 1 (RDG, Kambites, JEMS, to appear):

The class of groups of units of f.p. SIMs (and thus of RU-monoids) is precisely the recursively presented groups.

Theorem 2 (RDG, Kambites):

A group arises as a maximal subgroup (i.e. as a group \mathcal{H} -class) of a f.p. SIM \iff it arises as a r.e. subgroup of a f.p. group.

RC-presentations

$$M = \mathsf{MonRC}\langle A \,|\, \mathfrak{R} \rangle$$

 $\Leftrightarrow M \cong A^*/\mathfrak{R}^{RC}$, where \mathfrak{R}^{RC} is the intersection of all congruences σ of A^* such that

- $\triangleright \mathfrak{R} \subseteq \sigma$,
- $ightharpoonup A^*/\sigma$ is right cancellative.

A.J.Cain (2005) (+ Robertson, Ruškuc, 2008): A concept of formal, syntactic derivation for RC-presentations.

Theorem (IgD, RDG, 2023): Every finitely RC-presented monoid is an RU-monoid.

In a way, this is a generalisation of the Ivanov-Margolis-Meakin result.

RU-monoids (take 2)

Theorem (IgD, RDG, 2023):

The class of Schützenberger groups of RU-monoids is exactly the class of r.e. subgroups of f.p. groups.

Open Problem: Characterise the class of all RU-monoids.

In the remainder of the talk, I'll present two interesting phenomena in this vein discovered by IgD+RDG during this Spring's online sessions.

The RU-monoid in the Gray-Ruškuc construction (1)

RDG, Ruškuc: For any group G (f.p. or not) and f.g. submonoid T of G, a(n E-unitary) SIM M is constructed (which is f.p. when G is) such that:

- \triangleright $U(M) \cong G * U(T),$
- ▶ if the monoid of right units of M is f.p. so must be both G and T.

With the right choice of parameters, this produces:

- a one-relator SIM whose group of units is not one-relator;
- a one-relator SIM whose group of units is f.p. but whose RU-monoid is not f.p.;
- ▶ a f.p. SIM whose group of units is not f.p.

The RU-monoid in the Gray-Ruškuc construction (2)

IgD, RDG (2024):

The RU-monoid of M= the greatest right cancellative image of the HNN-like Otto-Pride extension of G w.r.t. $T \hookrightarrow G=$

$$MonRC\langle A, B, t | u_i = v_i \ (i \in I), \ tw_j = b_j t \ (j \in J) \rangle$$

where $G = \text{Mon}\langle A | u_i = v_i \ (i \in I) \rangle$ and $T = \langle w_j : j \in J \rangle_G$.

Hence:

- ► If *G* is f.p. then the RU-monoid of *M* is necessarily finitely RC-presented;
- The group of units U(M) can still be not f.p., and also the RU-monoid can be not f.p. (as a monoid!);
- ▶ There is a finitely RC-presented monoid S in which the complement of the group of units $S \setminus U$ is an ideal, and still U is not f.p.

Conclusion: RC-presentations are strange animals!

The Gray-Kambites construction (1)

Realising an arbitrary recursively presented group as the group of units of a f.p. SIM. Here we present a slight generalisation (by IgD & RDG).

$$T = \mathsf{MonRC} \langle A | \ u_i = v_i \ (i = 1, \dots, k) \rangle$$

$$S = \langle B \rangle_T - \mathsf{a} \ \mathsf{f.g.} \ \mathsf{submonoid}$$

$$M_{T,S} - \mathsf{a} \ \mathsf{f.p.} \ \mathsf{SIM} \ \mathsf{gen.} \ \mathsf{by} \ A \ \mathsf{and} \ p_0, p_1, \dots, p_k, z, d \ \mathsf{subject} \ \mathsf{to}$$

$$p_i a p_i^{-1} p_i a^{-1} p_i^{-1} = 1 \qquad (a \in A, \ i = 0, 1, \dots, k)$$

$$p_i u_i d^{-1} v_i^{-1} p_i^{-1} = 1 \qquad (i = 1, \dots, k)$$

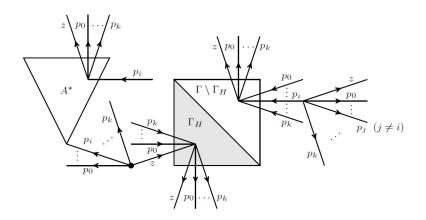
$$p_0 d p_0^{-1} = 1$$

$$z b z^{-1} z b^{-1} z^{-1} = 1 \qquad (b \in B)$$

$$z \left(\prod_{i=1}^k p_i^{-1} p_i\right) z^{-1} = 1.$$

The Gray-Kambites construction (2)

RDG, Kambites (JEMS, to appear): When T = G (a group given by a finite special monoid pres.) and S = H (a f.g. subgroup), then $U(M_{G,H}) \cong H$.



The Gray-Kambites construction (3)

So, what is the RU-monoid of $M_{T,S}$?

IgD, RDG (2024): RC-presented by p_i , q_i (= zp_i^{-1}) (0 $\leq i \leq k$), $a^{(i)}$ (= $p_i a p_i^{-1}$) ($a \in A$, $0 \leq i \leq k$), $b^{(z)}$ (= zbz^{-1}) ($b \in B$), and relations

$$q_{i}w^{(i)}p_{i} = q_{0}w^{(0)}p_{0}$$
 $(w \in A^{*}, i = 1,...,k)$
 $q_{i}u^{(i)} = q_{i}v^{(i)}$ $(u, v \in A^{*} \text{ s.t. } u = v \text{ holds in } T,$
 $i = 0, 1,..., k)$
 $q_{i}b^{(i)} = b^{(z)}q_{i}$ $(b \in B, i = 0, 1,..., k)$

NB. For all $u, v \in B^*$ s.t. u = v holds in S, $u^{(z)} = v^{(z)}$ can be RC-derived. In fact, $\langle b^{(z)} : b \in B \rangle \cong S$.

The Gray-Kambites construction (4)

For example, when we take $T=\{a\}^*$ and $S=\langle\varnothing\rangle=\{1\}$ (and a silly presentation for T, say a=a, to have k=1) we get the RU-monoid

$$\mathsf{MonRC}\langle a_1, a_1, p_0, p_1, q_0, q_1 \mid q_0 a_0^n p_0 = q_1 a_1^n p_1 \ (n \ge 0) \rangle.$$

This can be shown to be:

- not finitely RC-presented,
- with a trivial group of units.

Conclusion: There are non-finitely RC-presented RU-monoids out there!

Thank you!

