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ldempotent generated semigroups

Many natural semigroups are idempotent generated (S = (E(S))):
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ldempotent generated semigroups

Many natural semigroups are idempotent generated (S = (E(S))):

» The semigroup 7, \ S, of singular (non-invertible)
transformations on a finite set (Howie, 1966);

» The singular part of M, (F), the semigroup of all n x n
matrices over a field F' (Erdos (not Paul!), 1967);

» In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated,;

» The singular part of P, the partition monoid on a finite set
(East, FitzGerald, 2012);
Hence:
What can we say about the structure of the free-est
idempotent-generated (IG) semigroup with a fixed struc-
ture/configuration of idempotents 777
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Errr,... ‘structure of idempotents’' 777

Biordered sets!
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Errr,... ‘structure of idempotents’' 777

Biordered sets!

Basic pair {e, f} of idempotents:
{e,f}N{ef,fe} # @

thatis, ef = eoref =for fe=eor fe =f.
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Errr,... ‘structure of idempotents’' 777

Biordered sets!
Basic pair {e, f} of idempotents:
{e,f}N{ef, fe} # o

thatis, ef = eoref =f or fe=e or fe =f.
(Note: if, for example, ef € {e, f}, then (fe)? = fe.)
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Errr,... ‘structure of idempotents’' 777

Biordered sets!

Basic pair {e, f} of idempotents:
{e,f}N{ef, fe} # o

thatis, ef = eoref =f or fe=e or fe =f.
(Note: if, for example, ef € {e, f}, then (fe)? = fe.)

Biordered set of a semigroup S = the partial algebra
&s = (E(5),*)

obtained by retaining the products of basic pairs (in S).
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Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can
be finitely axiomatised (as a class of partial algebras)
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Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can
be finitely axiomatised (as a class of partial algebras)
— abstract biordered sets £ = (E, *)

Remark
A big chunk of the axioms are expressed in terms of the
quasi-orders

eg(/)f(@e:ef, e<) foe=tfe

(hence the name, “bi-ordered set").
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Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can
be finitely axiomatised (as a class of partial algebras)
— abstract biordered sets £ = (E, *)

Remark
A big chunk of the axioms are expressed in terms of the
quasi-orders

eg(/)f(@e:ef, e<) foe=tfe

(hence the name, “bi-ordered set”). From these, we can read off
many relevant semigroup-theoretical relationships:

SZS(I) N S(’)7 R4 :S(I) m(g(’))*% )7 :S(’) m(g(f))*lj

D=ZLVNX.
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IG(E)

Let £ be a biordered set.
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IG(E)

Let £ be a biordered set. Consider the following category.

Objects: Pairs (S, ¢) where S is a semigroup and ¢ : £ — &g is an
isomorphism of biordered sets;

Morphisms: 6 : (S, ¢) — (T,1) — semigroup homomorphisms

0 :S — T such that ¢ = 1.
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IG(E)

Let £ be a biordered set. Consider the following category.

Objects: Pairs (S, ¢) where S is a semigroup and ¢ : £ — &g is an
isomorphism of biordered sets;

Morphisms: 6 : (S, ¢) — (T,1) — semigroup homomorphisms
0 :S — T such that ¢ = 1.

It can be shown that this category has an initial object (IG(E), ¢g).
Here IG(&) is the free idempotent generated semigroup on &.

A more accessible definition:

o]

IG() = (E : €f = ex f whenever {e, f} is a basic pair).
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Key properties of IG(£) (Easdown, 1985)

Let 0 :1G(E) — S (where S = (E)) be the natural surjective
homomorphism.
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E—&s.
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Key properties of IG(£) (Easdown, 1985)

Let 0 :1G(E) — S (where S = (E)) be the natural surjective
homomorphism.

» The restriction of 6 to E is an isomorphism of biordered sets
E— 55.
» Hence, the ‘eggbox pictures’ of Dg (in IG(€)) and D, (in S)

have the ‘same shape’ (same dimensions, same distribution of
idempotents,...).
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Key properties of IG(£) (Easdown, 1985)

Let 0 :1G(E) — S (where S = (E)) be the natural surjective
homomorphism.

» The restriction of 6 to E is an isomorphism of biordered sets
E— 55.

» Hence, the ‘eggbox pictures’ of Dg (in IG(€)) and D, (in S)
have the ‘same shape’ (same dimensions, same distribution of
idempotents,...).

» The maximal subgroup He (in S) is the image (under 6) of
the maximal subgroup Hg (in 1G(E)).

» IG(E) may contain other, non-regular D-classes.

So, understanding IG(£) is essential in understanding the structure
of arbitrary |G semigroups.
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I. Allegro vivace

A joyous quest for maximal subgroups
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The (breakdown of the) freeness conjecture

Question
Which groups arise as maximal subgroups of I1G(£)?
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» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief/conjecture that these
maximal subgroups must always be free groups.

» This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z @& Z (from a
particular 73-element semigroup arising from a combinatorial
design), and IF* for an arbitrary field F.
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The (breakdown of the) freeness conjecture

Question
Which groups arise as maximal subgroups of I1G(£)?

» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief/conjecture that these
maximal subgroups must always be free groups.

» This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z @& Z (from a
particular 73-element semigroup arising from a combinatorial
design), and IF* for an arbitrary field F.

» Finally, Gray and Ruskuc (2012) proved that every group
arises as a maximal subgroup of some free idempotent
generated semigroup (!!1).
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The (breakdown of the) freeness conjecture

Question
Which groups arise as maximal subgroups of I1G(£)?

» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief/conjecture that these
maximal subgroups must always be free groups.

» This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z @& Z (from a
particular 73-element semigroup arising from a combinatorial
design), and IF* for an arbitrary field F.

» Finally, Gray and Ruskuc (2012) proved that every group
arises as a maximal subgroup of some free idempotent
generated semigroup (!!!). If the group in question is finitely
generated, the biordered set may be assumed to arise from a
finite semigroup.
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Presentation for the maximal subgroups (1)

Obtained by Gray & Ruskuc from the Reidemeister-Schreier
rewriting process for subgroups of semigroups.
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Presentation for the maximal subgroups (1)

Obtained by Gray & Ruskuc from the Reidemeister-Schreier
rewriting process for subgroups of semigroups.
» The generators f;) for Hg are in a bijective correspondence
with idempotents ¢;) that are Z-related to e.
» Three types of relations:
> Some generators are = 1 (f; (jy = 1);
> Some generators are equal (fix = fi,);
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Presentation for the maximal subgroups (1)

Obtained by Gray & Ruskuc from the Reidemeister-Schreier
rewriting process for subgroups of semigroups.

» The generators f;) for Hg are in a bijective correspondence
with idempotents ¢;) that are Z-related to e.
» Three types of relations:
> Some generators are = 1 (f; (jy = 1);
> Some generators are equal (fix = fi,);

> ﬁ;lﬁ-# = )5.;115-# whenever (i, j; A, ) is a singular square.

SandGAL, Cremona, 10-13 June 2019 7 Igor Dolinka



Singular squares

e

F
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Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set £ comes from an
idempotent generated regular semigroup, Brittenham, Margolis &
Meakin (2009) showed that the maximal subgroups of IG(E) are
precisely the fundamental groups of connected components (=
P-classes) of the Graham-Houghton complex of &:
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idempotent generated regular semigroup, Brittenham, Margolis &
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» Edges: correspond to idempotents e;y € R; N L)
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Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set £ comes from an
idempotent generated regular semigroup, Brittenham, Margolis &
Meakin (2009) showed that the maximal subgroups of IG(E) are
precisely the fundamental groups of connected components (=
P-classes) of the Graham-Houghton complex of &:

» Vertices: Z-classes R; and Z-classes L)

» Edges: correspond to idempotents e;y € R; N L)

» 2-cells: correspond to singular squares
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Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set £ comes from an
idempotent generated regular semigroup, Brittenham, Margolis &
Meakin (2009) showed that the maximal subgroups of IG(E) are
precisely the fundamental groups of connected components (=
P-classes) of the Graham-Houghton complex of &:

» Vertices: Z-classes R; and Z-classes L)

» Edges: correspond to idempotents e;y € R; N L)

» 2-cells: correspond to singular squares

This provides an alternative presentation for these groups; a clever
choice of a spanning tree may speed up computations.
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Refinements of the Gray-Ruskuc universality result

» IgD & Ruskuc, 2013: Every (finitely generated) group arises
as a maximal subgroup of 1G(€g), where B is a (finite) band.
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Refinements of the Gray-Ruskuc universality result

» IgD & Ruskuc, 2013: Every (finitely generated) group arises
as a maximal subgroup of 1G(Eg), where B is a (finite) band.

» Gould & Yang, 2014: G arises as a maximal subgroup of
IG(Es), where S is the endomorphism monoid of a free G-act.
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Computing some natural examples

Goal

Determine the maximal subgroups of 1G(€s) for some natural
examples of 5. In particular, are they the same as the
corresponding subgroups of S ?
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Computing some natural examples

Goal

Determine the maximal subgroups of 1G(€s) for some natural
examples of 5. In particular, are they the same as the
corresponding subgroups of S ?

» Full transformation monoids: Gray & Ruskuc, 2012
(symmetric groups, provided rank < n —2);
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Computing some natural examples

Goal

Determine the maximal subgroups of 1G(€s) for some natural
examples of 5. In particular, are they the same as the
corresponding subgroups of S ?

» Full transformation monoids: Gray & Ruskuc, 2012
(symmetric groups, provided rank < n —2);

» Partial transformation monoids: IgD, 2013
(symmetric groups again);
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Computing some natural examples

Goal

Determine the maximal subgroups of 1G(€s) for some natural
examples of 5. In particular, are they the same as the
corresponding subgroups of S ?

» Full transformation monoids: Gray & Ruskuc, 2012
(symmetric groups, provided rank < n —2);

» Partial transformation monoids: IgD, 2013
(symmetric groups again);

» Full matrix monoid over a skew field: IgD & Gray, 2014
(general linear groups, if rank < n/3, otherwise...);
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Computing some natural examples

Goal

Determine the maximal subgroups of 1G(€s) for some natural
examples of 5. In particular, are they the same as the
corresponding subgroups of S ?

» Full transformation monoids: Gray & Ruskuc, 2012
(symmetric groups, provided rank < n —2);

» Partial transformation monoids: IgD, 2013
(symmetric groups again);

» Full matrix monoid over a skew field: IgD & Gray, 2014
(general linear groups, if rank < n/3, otherwise...);

» Endomorphism monoid of a free G-act: IgD, Gould & Yang,
2015 (wreath products of G by symmetric groups).
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Il. Andante con moto
A taste of the word problem: the good and the ‘bad’

Andante con moto.

Flauto L.
Flauto IL ;
Oboi.
Clarinefti in A
Fagotti. |
Corni in A.
Violino I

Violino II.

SandGAL, Cremona, 10-13 June 2019 Igor Dolinka



Recognising regular elements

From now on, & is always finite.

SandGAL, Cremona, 10-13 June 2019 12 Igor Dolinka



Recognising regular elements

From now on, & is always finite.

Theorem (IgD, Gray, Ruskuc, 2017)

There exists an algorithm which, given w € E™, decides whether
w isi regular element of IG(E), and if so, returns f,g € E such
that f # W £ g.
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Recognising regular elements

From now on, & is always finite.

Theorem (IgD, Gray, Ruskuc, 2017)

There exists an algorithm which, given w € E™, decides whether
w isE regular element of IG(E), and if so, returns f,g € E such
that f # W £ g.

Namely, w is regular if and only if there is a factorisation
w = uev

such that ve £ e Z ev.
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Recognising regular elements

From now on, & is always finite.

Theorem (IgD, Gray, Ruskuc, 2017)

There exists an algorithm which, given w € E™, decides whether
w isE regular element of IG(E), and if so, returns f,g € E such
that f # W £ g.

Namely, w is regular if and only if there is a factorisation
w = uev

such that e £ e # ev. In such a case, € 2 w, and e is called the
seed of w.
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Recognising regular elements

From now on, & is always finite.

Theorem (IgD, Gray, Ruskuc, 2017)

There exists an algorithm which, given w € E™, decides whether
w isg regular element of IG(E), and if so, returns f,g € E such
that f # W £ g.

Namely, w is regular if and only if there is a factorisation
w = uev

such that e . € #Z ev. In such a case, € Z w, and e is called the
seed of w. (The decidability of this condition ultimately harks back
to the Howie-Lallement Lemma.)
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The word problem for regular elements of 1G(€)

Theorem (DGR, 2017)

(i) There exists an algorithm which, given a finite biorder &,
computes the presentations of all maximal subgroups of IG(E).
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The word problem for regular elements of 1G(€)

Theorem (DGR, 2017)

(i) There exists an algorithm which, given a finite biorder &,
computes the presentations of all maximal subgroups of IG(E).

(ii) If all these presentations have soluble word problems, then
there exists an algorithm which, for u,v € E™ representing
regular elements of |G(E), decides whether T = v.
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The word problem for regular elements of 1G(€)

Theorem (DGR, 2017)
(i) There exists an algorithm which, given a finite biorder &,
computes the presentations of all maximal subgroups of IG(E).
(ii) If all these presentations have soluble word problems, then
there exists an algorithm which, for u,v € E™ representing
regular elements of |G(E), decides whether T = v.

Method | (DGR, 2017):
Decide if u 2# v, and then Reidemeister-Schreier.
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The word problem for regular elements of 1G(€)

Theorem (DGR, 2017)

(i) There exists an algorithm which, given a finite biorder &,
computes the presentations of all maximal subgroups of IG(E).

(ii) If all these presentations have soluble word problems, then
there exists an algorithm which, for u,v € E™ representing
regular elements of |G(E), decides whether T = v.

Method | (DGR, 2017):
Decide if u 2# v, and then Reidemeister-Schreier.

Method Il (IgD, Gould, Yang, 2019):
Rees matrix ‘coordinatisation’ (via an effective version of an old

result of FitzGerald) — wait for Mov.3
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band Bg 1y (with Bg H denoting the
corresponding biorder) with the following two properties:
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band Bg 1y (with Bg H denoting the
corresponding biorder) with the following two properties:

(i) Every maximal subgroup of |G(Bg. ) is either trivial or
isomorphic to G;
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band Bg 1y (with Bg H denoting the
corresponding biorder) with the following two properties:

(i) Every maximal subgroup of IG(B¢ n) is either trivial or
isomorphic to G;

(ii) The solubility of the word problem of |G(B¢ 1) implies the
decidability of the membership problem of H in G.
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band Bg 1y (with Bg H denoting the
corresponding biorder) with the following two properties:

(i) Every maximal subgroup of IG(B¢ n) is either trivial or
isomorphic to G;
(ii) The solubility of the word problem of |G(B¢ 1) implies the
decidability of the membership problem of H in G.
Therefore, there exists a finite band B such that |G(Eg) has
undecidable word problem even though the word problems of all of
its maximal subgroups are decidable.
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band Bg 1y (with Bg H denoting the
corresponding biorder) with the following two properties:
(i) Every maximal subgroup of IG(B¢ n) is either trivial or
isomorphic to G;
(ii) The solubility of the word problem of |G(B¢ 1) implies the
decidability of the membership problem of H in G.

Therefore, there exists a finite band B such that |G(Eg) has
undecidable word problem even though the word problems of all of
its maximal subgroups are decidable. (Because G = F, x F, and
the Mihailova construction.)
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However... the ‘bad’ news (synopsis)

» The construction of Bg y is an adaptation of the IgD+Ruskuc
construction from 2013.
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However... the ‘bad’ news (synopsis)

» The construction of Bg y is an adaptation of the IgD+Ruskuc
construction from 2013.

» It allows for encoding the membership problem of H in G into
equalities of products of certain pairs of regular elements

a(g) b(g), g € G.

SandGAL, Cremona, 10-13 June 2019 15 Igor Dolinka



However... the ‘bad’ news (synopsis)

» The construction of Bg y is an adaptation of the IgD+Ruskuc
construction from 2013.

» It allows for encoding the membership problem of H in G into
equalities of products of certain pairs of regular elements
a(g),b(g), g € G. In fact, we get

a(1)b(1) = a(g~")b(g)

if and only if g € H.
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I1l. Con moto moderato

Working the way:
factorisations, fingerprints, coordinates

e
Violino L = =
—
Violino IL.
FT
Viola.
¥ 2=
Violoneello, (|2FFEIE=E = = == '_Tﬁg— = é
Basso. DirSEs
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p; ... pm, such that all of
Pi,--.,Pm are regular elements of IG(&)
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p; ... p,y such that all of
P1i,--.,Pm are regular elements of 1G(E)

Factorisations (and so r-factorisations) of a word w can be
naturally ordered: (p1,...,pm) = (q1,-..,qs) means
g1-.-Qs is finer than py ... pm.
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p; ... p,y such that all of
P1i,--.,Pm are regular elements of 1G(E)

Factorisations (and so r-factorisations) of a word w can be
naturally ordered: (p1,...,pm) = (q1,-..,qs) means
g1-.-Qs is finer than py ... pm.

The unique maximal r-factorisation is the factorisation into
(idempotent) letters.
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p; ... p,y such that all of
P1i,--.,Pm are regular elements of 1G(E)

Factorisations (and so r-factorisations) of a word w can be
naturally ordered: (p1,...,pm) = (q1,-..,qs) means
q1.--qs is finer than p; ... pm.

The unique maximal r-factorisation is the factorisation into
(idempotent) letters.

We are, however, interested in the minimal r-factorisations =
coarsest factorisations into regular-element-inducing factors.
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p; ... p,y such that all of
P1i,--.,Pm are regular elements of 1G(E)

Factorisations (and so r-factorisations) of a word w can be
naturally ordered: (p1,...,pm) = (q1,-..,qs) means
q1.--qs is finer than p; ... pm.

The unique maximal r-factorisation is the factorisation into
(idempotent) letters.

We are, however, interested in the minimal r-factorisations =
coarsest factorisations into regular-element-inducing factors.

As it turns out, all minimal factorisations of a word are pretty
‘similar’ w.r.t. IG(E).
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~ and ~

For two sequences of words over E™ we define

(pla"'apm)%(qlw'"qs)

if and only if m = s and one of the three following conditions hold:
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~ and ~

For two sequences of words over E™ we define

(Pla-‘-aPm)%(Qb-"aqs)

if and only if m = s and one of the three following conditions hold:

(i) pi =qj for some 1 <i < mand p; = g; for all j # i;
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~ and ~

For two sequences of words over E™ we define

(Pla-‘-aPm)%(Qb--'aqs)

if and only if m = s and one of the three following conditions hold:
(i) pi =qj for some 1 <i < mand p; = g; for all j # i;
(i) pi = i€ and g1 = €p;11 forsome 1 < i< mand e € E,
and pj = gj forall j & {i,i+1};
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~ and ~

For two sequences of words over E™ we define

(P, spm) = (qu, - -, 95)

if and only if m = s and one of the three following conditions hold:

(i)

(i) pi = i€ and g1 = €p;11 forsome 1 < i< mand e € E,
and pj = gj forall j & {i,i+1};

(iii) g; = pie and pj;1 = €gj+1 forsome 1 < i< mand e € E,
and p; = gj for all j & {i,i+1}.

3|

i = q; forsome 1 < i< mand p; =g forall j #i;

SandGAL, Cremona, 10-13 June 2019 17 Igor Dolinka



~ and ~

For two sequences of words over E™ we define

(Pla-‘-aPm)%(QI,---aqs)

if and only if m = s and one of the three following conditions hold:

(i)

(i) pi = i€ and g1 = €p;11 forsome 1 < i< mand e € E,
and pj = gj forall j & {i,i+1};

(iii) g; = pie and pj;1 = €gj+1 forsome 1 < i< mand e € E,
and p; = gj for all j & {i,i+1}.

3|

i = q; forsome 1 < i< mand p; =g forall j #i;

~ is the transitive closure of ~.
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The Z-fingerprint

Theorem

u,v € ET such that i =Vv. Also, let u=py...pm and

V=qi...qs be minimal r-factorisations. Then m = s and
piZq (L<i<m)
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The Z-fingerprint

Theorem

u,v € E* such that u =v. Also, let u=p1...pm and
V=qi...qs be minimal r-factorisations. Then m = s and
pi 2 qi (L <i<m). (Furthermore, p1 % i and ppm L Gm.)
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The Z-fingerprint

Theorem

u,v € E* such that u =v. Also, let u=p1...pm and
V=qi...qs be minimal r-factorisations. Then m = s and
pi 2 qi (L <i<m). (Furthermore, p1 % i and ppm L Gm.)

So, given w € E™, the sequence of Z-classes

(Der, - - Dpry)

is an invariant of w (where w = p;y ... pn, is @ minimal
r-factorisation).
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The Z-fingerprint

Theorem

u,v € E* such that u =v. Also, let u=p1...pm and
V=qi...qs be minimal r-factorisations. Then m = s and
pi 2 qi (L <i<m). (Furthermore, p1 % i and ppm L Gm.)

So, given w € E™, the sequence of Z-classes

(Der, - - Dpry)

is an invariant of w (where w = p;y ... pn, is @ minimal
r-factorisation). This is the Z-fingerprint of w.
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The Z-fingerprint

Theorem

u,v € E* such that u =v. Also, let u=p1...pm and
V=qi...qs be minimal r-factorisations. Then m = s and
pi 2 qi (L <i<m). (Furthermore, p1 % i and ppm L Gm.)

So, given w € E™, the sequence of Z-classes
(Dpr, - -+ Dpy)

is an invariant of w (where w = p;y ... pn, is @ minimal
r-factorisation). This is the Z-fingerprint of w. Two words must
share the same Z-fingerprint to stand any chance to represent the
same element of IG(E).
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The word problem via ~

Theorem
u,v e ET. TFAE:

(1) @

v,

SandGAL, Cremona, 10-13 June 2019 19

Igor Dolinka



The word problem via ~

Theorem

u,v € ET. TFAE:

(1) u=v,

(2) There exists an integer m > 1 such that all minimal
r-factorisations of u and v, respectively, have precisely m
factors, and whenever u=p1...pm andv =qi...qm are
such factorisations we have

(Pla--me)N(QIwHan)-
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the ZL-classes of £ (from the Z-class corresponding to D);
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the ZL-classes of £ (from the Z-class corresponding to D);
g € G: the max. subgroup of D, g represented by a group word
over generators f;).

SandGAL, Cremona, 10-13 June 2019 20 Igor Dolinka



The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the Z-classes of £ (from the Z-class corresponding to D);
g € G: the max. subgroup of D, g represented by a group word
over generators f;).

Can this representation be performed effectively?
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the Z-classes of £ (from the Z-class corresponding to D);
g € G: the max. subgroup of D, g represented by a group word
over generators f;).

Can this representation be performed effectively? Yes.
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the Z-classes of £ (from the Z-class corresponding to D);
g € G: the max. subgroup of D, g represented by a group word
over generators f;).

Can this representation be performed effectively? Yes.
What about ~ ?
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The coordinatisation idea

Fact
If £ is finite then Z = 7 in IG(E).

So, for any regular Z-class D, D° is a Rees matrix semigroup, thus
the regular elements of IG(£) may be ‘coordinatised’ as

(i,8,7)

i € I: the Z-classes of £ (from the Z-class corresponding to D);
A € A\: the ZL-classes of £ (from the Z-class corresponding to D);
g € G: the max. subgroup of D, g represented by a group word
over generators f;).

Can this representation be performed effectively? Yes.
What about ~ 7 Yup, that too.
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The partial maps 0. and 7,

Lemma
Let (i,g,\) € D and e € E such that D < Ds.
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The partial maps 0. and 7

Lemma
Let (i,g,\) € D and e € E such that D < Ds.

(a) e(i,g,\) € D=2(i,g,\) Z (i,g,)\)
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The partial maps 0. and 7

Lemma

Let (i,g,\) € D and e € E such that D < Ds.

(a) e(i,g,\) € D=2(i,g,\) Z (i,g,)\)
(b) (i,g,\)ee D= (i,g,\)eZ (i,g,\)
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The partial maps 0. and 7

Lemma
Let (i,g,\) € D and e € E such that D < Dg.

(a) e(i,g,\) € D=¢(i,g,\) L (i,g,\)
(b) (i,g,\)ee D= (i,g,\)eZ (i,g,\)

Define o = i+ " if e(i,g,\) = (i, h, \) for some g,h € G, A € \.
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The partial maps 0. and 7

Lemma
Let (i,g,\) € D and e € E such that D < Dg.

(a) e(i,g,\) € D=¢(i,g,\) L (i,g,\)
(b) (i,g,\)ee D= (i,g,\)eZ (i,g,\)

Define o = i+ " if e(i,g,\) = (i, h, \) for some g,h € G, A € \.

Analogously, let 7o : A+ X if (i,g,\)e = (i,h, \) for some i € I,
g,heG.
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The partial maps 0. and 7

Lemma
Let (i,g,\) € D and e € E such that D < Dg.

(a) e(i,g,\) € D=¢(i,g,\) L (i,g,\)
(b) (i,g,\)ee D= (i,g,\)eZ (i,g,\)

Define o = i+ " if e(i,g,\) = (i, h, \) for some g,h € G, A € \.

Analogously, let 7o : A+ X if (i,g,\)e = (i,h, \) for some i € I,
g,heG.

It follows already from the results of [DGR17] that all of these
partial maps are effectively computable from £.

SandGAL, Cremona, 10-13 June 2019 21 Igor Dolinka



The ‘effective’ FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and a € S a regular
element. Then a = e;...e, for some idempotents e, ..., e, € D,.
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The ‘effective’ FitzGerald

Lemma (Des FitzGerald, 1972)
Let S be an idempotent generated semigroup and a € S a regular
element. Then a = e;...e, for some idempotents e, ..., e, € D,.

Now, given a word w = ue;j\v representing a regular element of
IG(E) (with a distinguished seed),
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The ‘effective’ FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and a € S a regular
element. Then a = e;...e, for some idempotents e, ..., e, € D,.

Now, given a word w = ue;j\v representing a regular element of
IG(E) (with a distinguished seed), one can effectively rewrite this
word (using the partial maps from the previous slide) into

/ — . . . . .
W' = €l - - - Cigpu CIXCj1 A - - - €Ny

so that w = w':
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The ‘effective’ FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and a € S a regular
element. Then a = e;...e, for some idempotents e, ..., e, € D,.

Now, given a word w = ue;j\v representing a regular element of
IG(E) (with a distinguished seed), one can effectively rewrite this
word (using the partial maps from the previous slide) into

/ — . . . . .
W' = €l - - - Cigpu CIXCj1 A - - - €Ny

so that W = w’: hence,

— 1 _
w = <117 fllul py T flk;tk i fl)\f;l)\ fjl/\l 6/)\/ 1 JI)\/’ Al)
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IV. Saltarello: Presto
WP for IG is a CSP in FGG

SALTARELLO.
Presto.

Flauti.
Oboi.

Fagotti.

Corniin E.
Trombe inE.
Timpani i E.
Violino L. ([
Violino II.
Viola.
Violoncello.

Basso.
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Idempotent actions: the full story

Ife(i,g,\) Z (i,g,\) (i.e. if oei is defined) then

E(iag7 )‘) = (Uei7 faei,)\o 7(,'7_)\%,83 )‘)a

where \g is any fixed (=image) point of 7.
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Idempotent actions: the full story

Ife(i,g,\) Z (i,g,\) (i.e. if oei is defined) then
&8, 0) = (0el, fr,i 0 f 280 M),
where \g is any fixed (=image) point of 7.
Similarly, if A7 is defined then
(i, 8, A& = (i, g5, 1y rrr ATe)

for any fixed point iy of oe.
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Idempotent actions: the full story

Ife(i,g,\) Z (i,g, ) (i.e. if oei is defined) then
(i, 8, A) = (0ei, fyi 0o fron8s M),
where \g is any fixed (=image) point of 7.
Similarly, if A7 is defined then
(i, 8, A& = (i, g5, 1y rrr ATe)
for any fixed point iy of oe.

Thus we finally get to fiddle with automata (yay!!!)
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Idempotent actions: the full story

Ife(i,g,\) Z (i,g, ) (i.e. if oei is defined) then
&8, 0) = (0el, fr,i 0 f 280 M),
where \g is any fixed (=image) point of 7.
Similarly, if A7 is defined then
(i, 8, A& = (i, g5, 1y rrr ATe)
for any fixed point iy of oe.

Thus we finally get to fiddle with automata (yay!!!) with
group-labelled transitions.
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Contact automata

We want to capture the following transformation:

(...g. N h,...)
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Contact automata

We want to capture the following transformation:

[(....g", m)el(i,h,...)
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Contact automata

We want to capture the following transformation:

(....g" el h,...)]
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Contact automata

We want to capture the following transformation:

(....g" WU, H,...)
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Contact automata

We want to capture the following transformation:

(....g" WU, H,...)
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Contact automata

We want to capture the following transformation:
(ceeng )i,

Let D1, D, be two regular Z-classes of IG(£), coordinatised by
I x G x Ay and b x H x Ny, respectively.
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Contact automata

We want to capture the following transformation:
(ceeng )i,

Let D1, D, be two regular Z-classes of IG(£), coordinatised by

I x G x Ay and b x H x Ay, respectively. We define the

contact automaton A(Dy, Ds), a two-way NFA with states A; X b
and alphabet E, where the transitions are defined and labelled by
elements of G x H? as follows:
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Contact automata

We want to capture the following transformation:
(ceeng )i,

Let D1, D, be two regular Z-classes of IG(£), coordinatised by

I x G x Ay and b x H x Ay, respectively. We define the

contact automaton A(Dy, Ds), a two-way NFA with states A; X b
and alphabet E, where the transitions are defined and labelled by
elements of G x H? as follows:

Q) @~ 1

e:(5a A

if (A= ,ur(l) and o?i =Jj) or ()\Te( ) = 1 and i =0 J).
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.

Gi,..., Gy — finitely presented groups
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.

Gi,..., Gy — finitely presented groups
P1,---,Pm—1 — rational subsets of G; x G2‘9, ey Gt X G,‘?,
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.

Gi,..., Gy — finitely presented groups
P1,---,Pm—1 — rational subsets of G; x G2‘9, ey Gt X G,‘?,

The problem P(Gi, ..., Gmip1y- oy Pm—1):
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.

Gi,..., Gy — finitely presented groups
P1,---,Pm—1 — rational subsets of G; x G2‘9, ey Gt X G,‘?,

The problem P(Gi, ..., Gmip1y- oy Pm—1):
INPUT: ag, by € Gk (1L < k < m).
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The CSP

So, the WP for IG(£) essentially comes down to chasing paths in
various contact automata with suitable group labels.

Gi,..., Gy — finitely presented groups
P1,---,Pm—1 — rational subsets of G; x Gza, ey Gt X G,‘?,

The problem P(Gi, ..., Gmip1y- oy Pm—1):

INPUT: ag, by € Gk (1L < k < m).
OUTPUT: Decide if there exist x; € G¢, 2 < t < m — 1, such that

(al_lbla X2) S P1,

(a; 1% by, xr11) € pr 2<r<m-2),

-1 -1 ~1
(am—lxm—lbm—la bmam ) € Pm—1-
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The main theorem

Theorem (IgD, Gould, Yang, 2019)
Assume Dy is coordinatised by Iy x Gi x M.
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The main theorem

Theorem (IgD, Gould, Yang, 2019)

Assume Dy is coordinatised by I, X Gx x Ni. Then there exist
rational subsets

ps()\a I,,U,J) g Gs X G58+1 (1 S S < m7 )\,,LL E AS7 I’J 6 IS+1)

that are effectively computable from £
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The main theorem

Theorem (IgD, Gould, Yang, 2019)

Assume Dy is coordinatised by I, X Gx x Ni. Then there exist
rational subsets

ps(M i) € Gex Gy (< s<m, \p€Ns, ij€ly)
that are effectively computable from & such that

(ilv 81, )‘1) s (im; 8m, )\m) = (jla hl? lu’l) s (_jm, hm’ :U’m)

holds in 1G(E) if and only if
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Assume Dy is coordinatised by I, X Gx x Ni. Then there exist
rational subsets

ps(M i) € Gex Gy (< s<m, \p€Ns, ij€ly)
that are effectively computable from & such that

(i17 g17 )\1) e (Ima gm7 )\m) - (jla h17 /-‘t].) s (_Im7 hma ,Ufm)

holds in IG(E) if and only if it = j1, Am = tim,

SandGAL, Cremona, 10-13 June 2019 26 Igor Dolinka



The main theorem

Theorem (IgD, Gould, Yang, 2019)

Assume Dy is coordinatised by I, X Gx x Ni. Then there exist
rational subsets

ps(N i 1J) € Gex G2y (1< s<m, \peNs, ij€ i)
that are effectively computable from & such that
(i17 81, )\1) ce (ima 8m; )‘m) = (j17 hi, Ml) cee (jma hm, ,Um)
holds in |G(E) if and only if it = j1, Am = ftm, and the problem
P(G1,.-., Gmip1(A1, 2 g1, 2)s - - -, pm=1(Am—1, imi pm—1, jm))

returns a positive answer on input g, h € Gk, 1 < k < m.
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Special cases

(i) m=1: We have (i,g,A) = (j, h, ) if and only if i = j,
A=pu, and g = h.
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Special cases

(i) m=1: We have (i,g,\) = (j, h, ) if and only if i =,
A= pu, and g = h. So, the word problem for the regular part
of IG(€) is indeed equivalent to the word problems of the

maximal subgroups.

SandGAL, Cremona, 10-13 June 2019 27 Igor Dolinka



Special cases

(i) m=1: We have (i,g,\) = (j, h, ) if and only if i =,
A= pu, and g = h. So, the word problem for the regular part
of IG(€) is indeed equivalent to the word problems of the
maximal subgroups.

(i) m=2: P(G, Gy, p) is essentially the membership problem for
pC G x GY.
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Special cases

(i) m=1: We have (i,g,\) = (j, h, ) if and only if i =,
A= pu, and g = h. So, the word problem for the regular part
of IG(€) is indeed equivalent to the word problems of the
maximal subgroups.

(i) m=2: P(G, Gy, p) is essentially the membership problem for
p € Gy x GY. The construction in [DGR17] was set up so
that a certain segment of the word problem is equivalent to
P(G, G, py) where

pr={(hh): heH),

which is just the membership problem for H in G.
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The principal applied result

Theorem (DGY, 2019)

Let £ be a finite biordered set with the property that the maximal
subgroups in all non-maximal* 9 -classes of |G(E) are finite. Then
IG(E) has decidable word problem.

* - the identity element is discarded if £ comes from a monoid
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Theorem (DGY, 2019)

Let £ be a finite biordered set with the property that the maximal
subgroups in all non-maximal* 9 -classes of |G(E) are finite. Then
IG(E) has decidable word problem.

* - the identity element is discarded if £ comes from a monoid

Remark
The maximal Z-classes necessarily yield free maximal subgroups, as there
are no singular squares.
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The maximal Z-classes necessarily yield free maximal subgroups, as there
are no singular squares.
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» finite groups allow for an exhaustive search;

SandGAL, Cremona, 10-13 June 2019 28 Igor Dolinka



The principal applied result

Theorem (DGY, 2019)

Let £ be a finite biordered set with the property that the maximal
subgroups in all non-maximal* 9 -classes of |G(E) are finite. Then
IG(E) has decidable word problem.

* - the identity element is discarded if £ comes from a monoid

Remark
The maximal Z-classes necessarily yield free maximal subgroups, as there
are no singular squares.
Ingredients:
» finite groups allow for an exhaustive search;
» Benois' Theorem (aka free groups have decidable RSMP);
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Theorem (DGY, 2019)

Let £ be a finite biordered set with the property that the maximal
subgroups in all non-maximal* 9 -classes of |G(E) are finite. Then
IG(E) has decidable word problem.

* - the identity element is discarded if £ comes from a monoid

Remark
The maximal Z-classes necessarily yield free maximal subgroups, as there
are no singular squares.
Ingredients:
» finite groups allow for an exhaustive search;
» Benois' Theorem (aka free groups have decidable RSMP);
» Grunschlag (1999): rational subsets of virtually free groups;
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The principal applied result

Theorem (DGY, 2019)

Let £ be a finite biordered set with the property that the maximal
subgroups in all non-maximal* 9 -classes of |G(E) are finite. Then
IG(E) has decidable word problem.

* - the identity element is discarded if £ comes from a monoid

Remark
The maximal Z-classes necessarily yield free maximal subgroups, as there
are no singular squares.
Ingredients:
» finite groups allow for an exhaustive search;
» Benois' Theorem (aka free groups have decidable RSMP);
» Grunschlag (1999): rational subsets of virtually free groups;
» P.Silva (2002) = effective version of Grunschlag's result
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Applications

Corollary

For any n > 1, the free idempotent generated semigroups |G(E7;)
and |G(Ep7,) have decidable word problems.
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Applications

Corollary

For any n > 1, the free idempotent generated semigroups |G(E7;)
and |G(Ep7,) have decidable word problems.

Question

Let @ be a finite field. Is the maximal subgroup of 1G(Ep,(@))
contained in its Z-class D, (corresponding to matrices of rank r)
finite whenever r < n—27
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Applications

Corollary

For any n > 1, the free idempotent generated semigroups |G(E7;)
and |G(Ep7,) have decidable word problems.

Question

Let @ be a finite field. Is the maximal subgroup of 1G(Ep,(@))
contained in its Z-class D, (corresponding to matrices of rank r)
finite whenever r < n-—-27

Theorem
If € is finite, then |G(&) is always a Fountain (aka weakly
abundant) semigroup satisfying the congruence condition.
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“The set of idempotents of any semigroup carries the structure
of a biordered set, which contains a great deal of information
concerning the idempotent generated subsemigroup of the
semigroup in question. This leads to the construction of
a free idempotent generated semigroup IG(€) — the ‘“frec-est’
semigroup with a given biordered set £ of idempotents. We
show that when & is finite, the word problem for IG(£) is
cquivalent to a family of constraint satisfaction problems
involving rational subsets of direct products of pairs of
maximal subgroups of IG(£). As an application, we obtain
decidability of the word problem for an important class of
examples. Also, we prove that for finite £, IG(£) is always
a weakly abundant semigroup satisfying the congruence
condition.
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GRAZIE MILLE! THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie
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