The word problem for free idempotent-generated semigroups: an overview and elaboration for \mathcal{T}_{n}

Igor Dolinka

Department of Mathematics and Informatics, University of Novi Sad [198) Serbian Academy of Sciences \& Arts
dockie@dmi.uns.ac.rs
York Semigroup Seminar
York (aka Eboraceum), UK, 25 May 2022

Idempotents in a semigroup

Question
How to record (without dealing with the entire semigroup) sufficient information about the structure of idempotents in a semigroup?

Idempotents in a semigroup

Question
How to record (without dealing with the entire semigroup) sufficient information about the structure of idempotents in a semigroup?

Answer (Nambooripad, 1980s): Biordered sets!

Idempotents in a semigroup

Question

How to record (without dealing with the entire semigroup)
sufficient information about the structure of idempotents
in a semigroup?
Answer (Nambooripad, 1980s): Biordered sets!
Biordered set $($ of $S)=$ partial algebra $\mathcal{E}_{S}=(E(S), \cdot)$ obtained by retaining products of basic pairs (e, f) :

$$
\{e f, f e\} \cap\{e, f\} \neq \varnothing
$$

Idempotents in a semigroup

Question

How to record (without dealing with the entire semigroup)
sufficient information about the structure of idempotents
in a semigroup?
Answer (Nambooripad, 1980s): Biordered sets!
Biordered set $($ of $S)=$ partial algebra $\mathcal{E}_{S}=(E(S), \cdot)$ obtained by retaining products of basic pairs (e, f) :

$$
\{e f, f e\} \cap\{e, f\} \neq \varnothing .
$$

Induced quasi-orders:

$$
\begin{gathered}
e \leq_{\ell} f \text { if and only if } e f=e, \quad e \leq_{r} f \text { if and only if } e f=f, \\
\leq=\leq_{\ell} \cap \leq_{r} \text { - this is the usual Rees order. }
\end{gathered}
$$

$\operatorname{IG}(\mathcal{E})$

Nambooripad, Easdown (1980s): Biordered sets of semigroups have a finite axiomatisation.

$\operatorname{IG}(\mathcal{E})$

Nambooripad, Easdown (1980s): Biordered sets of semigroups have a finite axiomatisation. Thus we can speak about abstract biordered sets.

$\operatorname{IG}(\mathcal{E})$

Nambooripad, Easdown (1980s): Biordered sets of semigroups have a finite axiomatisation. Thus we can speak about abstract biordered sets.

Also: There is a largest / free-est / most general idempotent-generated semigroup with a prescribed biordered set \mathcal{E}.

Nambooripad, Easdown (1980s): Biordered sets of semigroups have a finite axiomatisation. Thus we can speak about abstract biordered sets.

Also: There is a largest / free-est / most general idempotent-generated semigroup with a prescribed biordered set \mathcal{E}.

This is the free idempotent-generated semigroup over \mathcal{E} :

$$
\operatorname{IG}(\mathcal{E})=\langle\bar{E}| \bar{e} \bar{f}=\overline{e \cdot f} \text { whenever }\{e, f\} \text { is a basic pair in } \mathcal{E}\rangle .
$$

Nambooripad, Easdown (1980s): Biordered sets of semigroups have a finite axiomatisation. Thus we can speak about abstract biordered sets.
Also: There is a largest / free-est / most general idempotent-generated semigroup with a prescribed biordered set \mathcal{E}.

This is the free idempotent-generated semigroup over \mathcal{E} :

$$
\operatorname{IG}(\mathcal{E})=\langle\bar{E}| \bar{e} \bar{f}=\overline{e \cdot f} \text { whenever }\{e, f\} \text { is a basic pair in } \mathcal{E}\rangle .
$$

Basic properties of $\operatorname{IG}(\mathcal{E})$

Assume we have fixed a homomorphism $\Psi: \operatorname{IG}(\mathcal{E}) \rightarrow S$ extending the map $\bar{e} \mapsto e, e \in E(S)$.

Basic properties of $\operatorname{IG}(\mathcal{E})$

Assume we have fixed a homomorphism $\Psi: \operatorname{IG}(\mathcal{E}) \rightarrow S$ extending the map $\bar{e} \mapsto e, e \in E(S)$.
(IG1) For any $e \in E, \Psi$ maps the \mathscr{D}-class of \bar{e} in $\operatorname{IG}(\mathcal{E})$ precisely onto the \mathscr{D}-class of e in $S^{\prime}=\langle E(S)\rangle$.

Basic properties of $\operatorname{IG}(\mathcal{E})$

Assume we have fixed a homomorphism $\Psi: \operatorname{IG}(\mathcal{E}) \rightarrow S$ extending the map $\bar{e} \mapsto e, e \in E(S)$.
(IG1) For any $e \in E, \Psi$ maps the \mathscr{D}-class of \bar{e} in $\operatorname{IG}(\mathcal{E})$ precisely onto the \mathscr{D}-class of e in $S^{\prime}=\langle E(S)\rangle$.
(IG2) In fact, Ψ maps the \mathscr{R}-class of \bar{e} onto the \mathscr{R}-class of e, and the \mathscr{L}-class of \bar{e} onto the \mathscr{L}-class of e.

Basic properties of $\operatorname{IG}(\mathcal{E})$

Assume we have fixed a homomorphism $\Psi: \operatorname{IG}(\mathcal{E}) \rightarrow S$ extending the map $\bar{e} \mapsto e, e \in E(S)$.
(IG1) For any $e \in E, \Psi$ maps the \mathscr{D}-class of \bar{e} in $\operatorname{IG}(\mathcal{E})$ precisely onto the \mathscr{D}-class of e in $S^{\prime}=\langle E(S)\rangle$.
(IG2) In fact, Ψ maps the \mathscr{R}-class of \bar{e} onto the \mathscr{R}-class of e, and the \mathscr{L}-class of \bar{e} onto the \mathscr{L}-class of e.
(IG3) Hence, the restriction of Ψ to $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})$ is a surjective group homomorphism onto H_{e} in S^{\prime}.

Basic properties of $\operatorname{IG}(\mathcal{E})$

Assume we have fixed a homomorphism $\Psi: \operatorname{IG}(\mathcal{E}) \rightarrow S$ extending the map $\bar{e} \mapsto e, e \in E(S)$.
(IG1) For any $e \in E, \Psi$ maps the \mathscr{D}-class of \bar{e} in $\operatorname{IG}(\mathcal{E})$ precisely onto the \mathscr{D}-class of e in $S^{\prime}=\langle E(S)\rangle$.
(IG2) In fact, Ψ maps the \mathscr{R}-class of \bar{e} onto the \mathscr{R}-class of e, and the \mathscr{L}-class of \bar{e} onto the \mathscr{L}-class of e.
(IG3) Hence, the restriction of Ψ to $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})$ is a surjective group homomorphism onto H_{e} in S^{\prime}.

This third property was (partially) responsible for spawning Conjecture (Folklore, 80s)
Maximal subgroups of free idempotent-generated semigroups must always be free.

(Spectacular) failure of the freeness conjecture

Brittenham, Margolis, Meakin (2009): A 73-element semigroup S generated by its 37 idempotents (arising from a combinatorial design) such that $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ contains $\mathbb{Z} \times \mathbb{Z}$ as a subgroup

(Spectacular) failure of the freeness conjecture

Brittenham, Margolis, Meakin (2009): A 73-element semigroup S generated by its 37 idempotents (arising from a combinatorial design) such that $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ contains $\mathbb{Z} \times \mathbb{Z}$ as a subgroup

Gray, Ruškuc (2012): Quite the opposite of the conjecture is true for any group G there is a suitable semigroup S such that G arises as a maximal subgroup in $\operatorname{IG}\left(\mathcal{E}_{S}\right)$

(Spectacular) failure of the freeness conjecture

Brittenham, Margolis, Meakin (2009): A 73-element semigroup S generated by its 37 idempotents (arising from a combinatorial design) such that $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ contains $\mathbb{Z} \times \mathbb{Z}$ as a subgroup

Gray, Ruškuc (2012): Quite the opposite of the conjecture is true for any group G there is a suitable semigroup S such that G arises as a maximal subgroup in $\operatorname{IG}\left(\mathcal{E}_{S}\right)$
$\lg D$, Ruškuc (2013): For finitely presented G, (the biorder of) a finite band S will do

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:
Vertices: The \mathscr{R} - and the \mathscr{L}-classes in D

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:
Vertices: The \mathscr{R} - and the \mathscr{L}-classes in D
Edges: (R, L) such that $R \cap L$ contains an idempotent (so edges correspond to idempotents in D)

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:
Vertices: The \mathscr{R} - and the \mathscr{L}-classes in D
Edges: (R, L) such that $R \cap L$ contains an idempotent (so edges correspond to idempotents in D)
2-cells: singular squares $=4$-cycles e $\mathscr{R} e^{\prime} \mathscr{L} f^{\prime} \mathscr{R} f \mathscr{L}$ e such that $(\exists h \in E)$ with

- either eh = $e^{\prime}, f h=f^{\prime}$, he =e, hf =f ("left-right"), or
- $h e=f, h e^{\prime}=f^{\prime}, e h=e, f h=f$. ("up-down").

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:
Vertices: The \mathscr{R} - and the \mathscr{L}-classes in D
Edges: (R, L) such that $R \cap L$ contains an idempotent (so edges correspond to idempotents in D)
2-cells: singular squares $=4$-cycles e $\mathscr{R} e^{\prime} \mathscr{L} f^{\prime} \mathscr{R} f \mathscr{L}$ e such that $(\exists h \in E)$ with

- either eh = $e^{\prime}, f h=f^{\prime}$, he =e, hf =f ("left-right"), or
- $h e=f, h e^{\prime}=f^{\prime}, e h=e, f h=f$. ("up-down").

Gray, Ruškuc (2012): A presentation for the group $H_{\bar{e}}$ via the Reidemester-Schreier theory for substructures of monoids

Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup $H_{\bar{e}}$ in $\operatorname{IG}(\mathcal{E})=$ the fundamental group of the GH-complex of the \mathscr{D}-class $D=D_{e}$ in $S^{\prime}=\langle E\rangle$:
Vertices: The \mathscr{R} - and the \mathscr{L}-classes in D
Edges: (R, L) such that $R \cap L$ contains an idempotent (so edges correspond to idempotents in D)
2-cells: singular squares $=4$-cycles e $\mathscr{R} e^{\prime} \mathscr{L} f^{\prime} \mathscr{R} f \mathscr{L}$ e such that $(\exists h \in E)$ with

- either eh = $e^{\prime}, f h=f^{\prime}$, he =e, hf =f ("left-right"), or
- $h e=f, h e^{\prime}=f^{\prime}, e h=e, f h=f$. ("up-down").

Gray, Ruškuc (2012): A presentation for the group $H_{\bar{e}}$ via the Reidemester-Schreier theory for substructures of monoids turns out to be a specific instance of the above for a particular spanning tree of the GH-complex

Computing the maximal subgroups (2)

S	max. subgroups	who \& when
\mathbb{T}_{n}	\mathbb{S}_{r}	Gray, Ruškuc
	$r \leq n-2$	(2012, PLMS)
$\mathbb{P T}_{n}$	\mathbb{S}_{r}	IgD
	$r \leq n-2$	(2013, Comm. Alg.)
$\mathcal{M}_{n}(\mathbb{F})$	$\mathrm{GL}_{r}(\mathbb{F})$	IgD, Gray
	$r<n / 3$	(2014, TrAMS)
$\operatorname{End}\left(F_{n}(G)\right)$	$G 2 \mathbb{S}_{r}$	Yang, IgD, Gould
	$r \leq n-2$	(2015, J. Algebra)

A first stab at the WP for $\operatorname{IG}(\mathcal{E})$

IgD, Gray, Ruškuc (2017):

A first stab at the WP for $\operatorname{IG}(\mathcal{E})$

IgD, Gray, Ruškuc (2017):

- There is an algorithm which, given $w \in E^{+}$recognises whether w represents a regular element of $\operatorname{IG}(\mathcal{E})$.

A first stab at the WP for $\operatorname{IG}(\mathcal{E})$

lgD, Gray, Ruškuc (2017):

- There is an algorithm which, given $w \in E^{+}$recognises whether w represents a regular element of $\operatorname{IG}(\mathcal{E})$.
- Given $u, v \in E^{+}$representing regular elements of $\operatorname{IG}(\mathcal{E})$, the question whether $u=v$ entirely boils down to the WP for the maximal subgroups.

A first stab at the WP for $\operatorname{IG}(\mathcal{E})$

lgD, Gray, Ruškuc (2017):

- There is an algorithm which, given $w \in E^{+}$recognises whether w represents a regular element of $\operatorname{IG}(\mathcal{E})$.
- Given $u, v \in E^{+}$representing regular elements of $\operatorname{IG}(\mathcal{E})$, the question whether $u=v$ entirely boils down to the WP for the maximal subgroups.
- There is a finite (20-element) band S such that all max. subgroups of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ are either trivial or products of two free groups (so they have decidable WP), and yet the WP is undecidable (by using the Mikhailova construction).

A first stab at the WP for $\operatorname{IG}(\mathcal{E})$

IgD, Gray, Ruškuc (2017):

- There is an algorithm which, given $w \in E^{+}$recognises whether w represents a regular element of $\operatorname{IG}(\mathcal{E})$.
- Given $u, v \in E^{+}$representing regular elements of $\operatorname{IG}(\mathcal{E})$, the question whether $u=v$ entirely boils down to the WP for the maximal subgroups.
- There is a finite (20-element) band S such that all max. subgroups of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ are either trivial or products of two free groups (so they have decidable WP), and yet the WP is undecidable (by using the Mikhailova construction).

So, what is the WP for $\operatorname{IG}(\mathcal{E})$ really all about?
Yang, IgD, Gould (2019, Adv. Math.)
\& IgD (2021, Israel J. Math.)

Words representing regular elements

Assume that $\mathbf{w} \in E^{+}$represents a regular element $\overline{\mathbf{w}}$ of $\operatorname{IG}(\mathcal{E})$. (By [DGR 17] this can be algorithmically tested.)

Words representing regular elements

Assume that $\mathbf{w} \in E^{+}$represents a regular element $\overline{\mathbf{w}}$ of $\operatorname{IG}(\mathcal{E})$.
(By [DGR 17] this can be algorithmically tested.) Then it can be "coordinatised" within its (regular) \mathscr{D}-class D as

$$
(i, g, \lambda)
$$

where i, λ record the \mathscr{R} - and the \mathscr{L}-class of $\overline{\mathbf{w}}$, and g is a (group) word in the generators of the maximal subgroup in D.

Words representing regular elements

Assume that $\mathbf{w} \in E^{+}$represents a regular element $\overline{\mathbf{w}}$ of $\operatorname{IG}(\mathcal{E})$.
(By [DGR 17] this can be algorithmically tested.) Then it can be "coordinatised" within its (regular) \mathscr{D}-class D as

$$
(i, g, \lambda)
$$

where i, λ record the \mathscr{R} - and the \mathscr{L}-class of $\overline{\mathbf{w}}$, and g is a (group) word in the generators of the maximal subgroup in D.

- [YDG 19]: There is an algorithm for computing $\mathbf{w} \rightarrow(i, g, \lambda)$.

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular.

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular. However, then we can consider the notion of a

- minimal r-factorisation: A coarsest factorisation

$$
\mathbf{w}=\mathbf{w}_{1} \ldots \mathbf{w}_{k}
$$

into pieces representing regular elements

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular. However, then we can consider the notion of a

- minimal r-factorisation: A coarsest factorisation

$$
\mathbf{w}=\mathbf{w}_{1} \ldots \mathbf{w}_{k}
$$

into pieces representing regular elements
Theorem (Yang, IgD, Gould, 2019)
Assume $\overline{\mathbf{u}}=\overline{\mathbf{v}}$ holds in $\operatorname{IG}(\mathcal{E})$, and that $\mathbf{u}=\mathbf{u}_{1} \ldots \mathbf{u}_{k}$ and
$\mathbf{v}=\mathbf{v}_{1} \ldots \mathbf{v}_{r}$ are minimal r-factorisations.

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular. However, then we can consider the notion of a

- minimal r-factorisation: A coarsest factorisation

$$
\mathbf{w}=\mathbf{w}_{1} \ldots \mathbf{w}_{k}
$$

into pieces representing regular elements
Theorem (Yang, IgD, Gould, 2019)
Assume $\overline{\mathbf{u}}=\overline{\mathbf{v}}$ holds in $\operatorname{IG}(\mathcal{E})$, and that $\mathbf{u}=\mathbf{u}_{1} \ldots \mathbf{u}_{k}$ and
$\mathbf{v}=\mathbf{v}_{1} \ldots \mathbf{v}_{r}$ are minimal r-factorisations. Then $k=r$ and we have

- $\overline{\mathbf{u}_{i}} \mathscr{D} \overline{\mathbf{v}_{i}}$ for all $1 \leq i \leq k$,

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular. However, then we can consider the notion of a

- minimal r-factorisation: A coarsest factorisation

$$
\mathbf{w}=\mathbf{w}_{1} \ldots \mathbf{w}_{k}
$$

into pieces representing regular elements
Theorem (Yang, IgD, Gould, 2019)
Assume $\overline{\mathbf{u}}=\overline{\mathbf{v}}$ holds in $\operatorname{IG}(\mathcal{E})$, and that $\mathbf{u}=\mathbf{u}_{1} \ldots \mathbf{u}_{k}$ and
$\mathbf{v}=\mathbf{v}_{1} \ldots \mathbf{v}_{r}$ are minimal r-factorisations. Then $k=r$ and we have

- $\overline{\mathbf{u}_{1}} \mathscr{R} \overline{\mathbf{v}_{1}}$ and $\overline{\mathbf{u}_{k}} \mathscr{L} \overline{\mathbf{v}_{k}}$.

General situation

In general, for $\mathbf{w} \in E^{+}$, the element $\overline{\mathbf{w}} \in \operatorname{IG}(\mathcal{E})$ need to to be regular. However, then we can consider the notion of a

- minimal r-factorisation: A coarsest factorisation

$$
\mathbf{w}=\mathbf{w}_{1} \ldots \mathbf{w}_{k}
$$

into pieces representing regular elements
Theorem (Yang, IgD, Gould, 2019)
Assume $\overline{\mathbf{u}}=\overline{\mathbf{v}}$ holds in $\operatorname{IG}(\mathcal{E})$, and that $\mathbf{u}=\mathbf{u}_{1} \ldots \mathbf{u}_{k}$ and
$\mathbf{v}=\mathbf{v}_{1} \ldots \mathbf{v}_{r}$ are minimal r-factorisations. Then $k=r$ and we have

- $\overline{\mathbf{u}_{1}} \mathscr{R} \overline{\mathbf{v}_{1}}$ and $\overline{\mathbf{u}_{k}} \mathscr{L} \overline{\mathbf{v}_{k}}$.

So, we have an invariant: $\overline{\mathbf{w}} \rightarrow \mathscr{D}$-fingerprint $\left(D_{1}, \ldots, D_{k}\right)$ of $\overline{\mathbf{w}}$

The moral of the story

The WP for $\operatorname{IG}(\mathcal{E})$ (for finite \mathcal{E}) comes down to comparing elements of the form
$\left(i_{1}, g_{1}, \lambda_{1}\right)\left(i_{2}, g_{2}, \lambda_{2}\right) \ldots\left(i_{k}, g_{k}, \lambda_{k}\right)$
of a given \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{k}\right)$.

Aaand... Action!

Let D be a regular \mathscr{D}-class of $\operatorname{IG}(\mathcal{E})$, with index sets I, Λ and maximal subgroup G.

Aaand... Action!

Let D be a regular \mathscr{D}-class of $\operatorname{IG}(\mathcal{E})$, with index sets I, Λ and maximal subgroup G. Then the idempotents from \bar{E} exercise partial left and right actions on I and Λ respectively:

$$
\begin{gathered}
\bar{e} \cdot i=i^{\prime} \quad \text { if and only if } \quad \bar{e}(i, g, \lambda)=\left(i^{\prime}, b_{\bar{e}, i, i^{\prime}} g, \lambda\right) \\
\lambda \cdot \bar{e}=\lambda^{\prime} \quad \text { if and only if }(i, g, \lambda) \bar{e}=\left(i, g a_{\bar{e}, \lambda, \lambda^{\prime}}, \lambda^{\prime}\right)
\end{gathered}
$$

Aaand... Action!

Let D be a regular \mathscr{D}-class of $\operatorname{IG}(\mathcal{E})$, with index sets I, Λ and maximal subgroup G. Then the idempotents from \bar{E} exercise partial left and right actions on I and Λ respectively:

$$
\begin{gathered}
\bar{e} \cdot i=i^{\prime} \quad \text { if and only if } \bar{e}(i, g, \lambda)=\left(i^{\prime}, b_{\bar{e}, i, i^{\prime}} g, \lambda\right) \\
\lambda \cdot \bar{e}=\lambda^{\prime} \quad \text { if and only if }(i, g, \lambda) \bar{e}=\left(i, g a_{\bar{e}, \lambda, \lambda^{\prime}}, \lambda^{\prime}\right)
\end{gathered}
$$

(The coefficients a, b depend solely on the displayed indices, and are easily expressed in terms of the generators of G.)

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.
Vertices: $\Lambda_{1} \times I_{2}$

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.
Vertices: $\Lambda_{1} \times I_{2}$
Edges: $(\lambda, i) \longrightarrow(\mu, j)$ such that $\lambda=\mu \cdot \bar{e}$ and $\bar{e} \cdot i=j$

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.
Vertices: $\Lambda_{1} \times I_{2}$
Edges: $(\lambda, i) \longrightarrow(\mu, j)$ such that $\lambda=\mu \cdot \bar{e}$ and $\bar{e} \cdot i=j$
Group labels: $\left(a, b^{-1}\right) \in G_{1} \times G_{2}$ where $a=a_{\bar{e}, \lambda, \mu}$ and $b=b_{\bar{e}, i, j}$

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.
Vertices: $\Lambda_{1} \times I_{2}$
Edges: $(\lambda, i) \longrightarrow(\mu, j)$ such that $\lambda=\mu \cdot \bar{e}$ and $\bar{e} \cdot i=j$
Group labels: $\left(a, b^{-1}\right) \in G_{1} \times G_{2}$ where $a=a_{\bar{e}, \lambda, \mu}$ and $b=b_{\bar{e}, i, j}$
Label of a walk: the product of edges along the walk (and edges can be travesed backwards, when we take the inverse of the label)

Contact graphs $\mathcal{A}\left(D_{1}, D_{2}\right)$

$D_{p}(p=1,2)$ - regular D-classes with index sets I_{p}, Λ_{p} \& max. subgroups G_{p}.
Vertices: $\Lambda_{1} \times I_{2}$
Edges: $(\lambda, i) \longrightarrow(\mu, j)$ such that $\lambda=\mu \cdot \bar{e}$ and $\bar{e} \cdot i=j$
Group labels: $\left(a, b^{-1}\right) \in G_{1} \times G_{2}$ where $a=a_{\bar{e}, \lambda, \mu}$ and $b=b_{\bar{e}, i, j}$
Label of a walk: the product of edges along the walk (and edges can be travesed backwards, when we take the inverse of the label)

Vertex group $W_{(\lambda, i)}$: the subgroup of $G_{1} \times G_{2}$ consisting of the labels of all closed walks based at (λ, i)

It's all about new relations

Assume we have the following data:

- groups $G_{1}, \ldots, G_{m}(m \geq 2)$,
- relations $\rho_{k} \subseteq G_{k} \times G_{k+1}(\leq k<m)$,
- elements $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.

It's all about new relations

Assume we have the following data:

- groups $G_{1}, \ldots, G_{m}(m \geq 2)$,
- relations $\rho_{k} \subseteq G_{k} \times G_{k+1}(\leq k<m)$,
- elements $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.

From these, we construct a new relation $\rho \subseteq G_{1} \times G_{m}$ by defining:

It's all about new relations

Assume we have the following data:

- groups $G_{1}, \ldots, G_{m}(m \geq 2)$,
- relations $\rho_{k} \subseteq G_{k} \times G_{k+1}(\leq k<m)$,
- elements $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.

From these, we construct a new relation $\rho \subseteq G_{1} \times G_{m}$ by defining: $(g, h) \in \rho$ if and only if $\exists x_{r} \in G_{r}(2 \leq r \leq m)$ such that

$$
\begin{aligned}
&\left(a_{1}^{-1} g b_{1}, x_{2}\right) \in \rho_{1}, \\
&\left(a_{2}^{-1} x_{2} b_{2}, x_{3}\right) \in \rho_{2}, \\
& \vdots \\
&\left(a_{m-1}^{-1} x_{m-1} b_{m-1}, x_{m}\right) \in \rho_{m-1}, \\
& a_{m}^{-1} x_{m} b_{m}=h .
\end{aligned}
$$

It's all about new relations

Assume we have the following data:

- groups $G_{1}, \ldots, G_{m}(m \geq 2)$,
- relations $\rho_{k} \subseteq G_{k} \times G_{k+1}(\leq k<m)$,
- elements $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.

From these, we construct a new relation $\rho \subseteq G_{1} \times G_{m}$ by defining: $(g, h) \in \rho$ if and only if $\exists x_{r} \in G_{r}(2 \leq r \leq m)$ such that

$$
\begin{aligned}
&\left(a_{1}^{-1} g b_{1}, x_{2}\right) \in \rho_{1}, \\
&\left(a_{2}^{-1} x_{2} b_{2}, x_{3}\right) \in \rho_{2}, \\
& \vdots \\
&\left(a_{m-1}^{-1} x_{m-1} b_{m-1}, x_{m}\right) \in \rho_{m-1}, \\
& a_{m}^{-1} x_{m} b_{m}=h .
\end{aligned}
$$

Clearly, ρ induces a map $\varphi_{\rho}: \mathcal{P}\left(G_{1}\right) \rightarrow \mathcal{P}\left(G_{m}\right)$.

The map θ

Now let

$$
\begin{aligned}
& \mathbf{x}=\left(i_{1}, a_{1}, \lambda_{1}\right) \ldots\left(i_{m}, a_{m}, \lambda_{m}\right) \\
& \mathbf{y}=\left(j_{1}, b_{1}, \mu_{1}\right) \ldots\left(j_{m}, b_{m}, \mu_{m}\right)
\end{aligned}
$$

be two elements of $\operatorname{IG}(\mathcal{E})$ of \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{m}\right)$.

The map θ

Now let

$$
\begin{aligned}
& \mathbf{x}=\left(i_{1}, a_{1}, \lambda_{1}\right) \ldots\left(i_{m}, a_{m}, \lambda_{m}\right) \\
& \mathbf{y}=\left(j_{1}, b_{1}, \mu_{1}\right) \ldots\left(j_{m}, b_{m}, \mu_{m}\right)
\end{aligned}
$$

be two elements of $\operatorname{IG}(\mathcal{E})$ of \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{m}\right)$.
Let G_{k} be the max. subgroup in $D_{k}(1 \leq k \leq m)$

The map θ

Now let

$$
\begin{aligned}
& \mathbf{x}=\left(i_{1}, a_{1}, \lambda_{1}\right) \ldots\left(i_{m}, a_{m}, \lambda_{m}\right) \\
& \mathbf{y}=\left(j_{1}, b_{1}, \mu_{1}\right) \ldots\left(j_{m}, b_{m}, \mu_{m}\right)
\end{aligned}
$$

be two elements of $\operatorname{IG}(\mathcal{E})$ of \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{m}\right)$.
Let G_{k} be the max. subgroup in $D_{k}(1 \leq k \leq m)$ and

$$
\rho_{k}= \begin{cases}W_{\left(\lambda_{k}, i_{k+1}\right)}\left(g_{k}, h_{k}\right) & \text { if } \exists \text { a walk }\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right), \\ \text { otherwise. }\end{cases}
$$

where $W_{\left(\lambda_{k}, i_{k+1}\right)}$ is the vertex group of $\mathcal{A}\left(D_{k}, D_{k+1}\right)$ at $\left(\lambda_{k}, i_{k+1}\right)$, and $\left(g_{k}, h_{k}\right)$ is the label of any walk $\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right)$.

The map θ

Now let

$$
\begin{aligned}
& \mathbf{x}=\left(i_{1}, a_{1}, \lambda_{1}\right) \ldots\left(i_{m}, a_{m}, \lambda_{m}\right) \\
& \mathbf{y}=\left(j_{1}, b_{1}, \mu_{1}\right) \ldots\left(j_{m}, b_{m}, \mu_{m}\right)
\end{aligned}
$$

be two elements of $\operatorname{IG}(\mathcal{E})$ of \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{m}\right)$.
Let G_{k} be the max. subgroup in $D_{k}(1 \leq k \leq m)$ and

$$
\rho_{k}= \begin{cases}W_{\left(\lambda_{k}, i_{k+1}\right)}\left(g_{k}, h_{k}\right) & \text { if } \exists \text { a walk }\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right), \\ \text { otherwise. }\end{cases}
$$

where $W_{\left(\lambda_{k}, i_{k+1}\right)}$ is the vertex group of $\mathcal{A}\left(D_{k}, D_{k+1}\right)$ at $\left(\lambda_{k}, i_{k+1}\right)$, and $\left(g_{k}, h_{k}\right)$ is the label of any walk $\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right)$.

Then the associated mapping φ_{ρ} is denoted $(\cdot, \mathbf{x}, \mathbf{y}) \theta$.

The map θ

Now let

$$
\begin{aligned}
& \mathbf{x}=\left(i_{1}, a_{1}, \lambda_{1}\right) \ldots\left(i_{m}, a_{m}, \lambda_{m}\right) \\
& \mathbf{y}=\left(j_{1}, b_{1}, \mu_{1}\right) \ldots\left(j_{m}, b_{m}, \mu_{m}\right)
\end{aligned}
$$

be two elements of $\operatorname{IG}(\mathcal{E})$ of \mathscr{D}-fingerprint $\left(D_{1}, \ldots, D_{m}\right)$.
Let G_{k} be the max. subgroup in $D_{k}(1 \leq k \leq m)$ and

$$
\rho_{k}= \begin{cases}W_{\left(\lambda_{k}, i_{k+1}\right)}\left(g_{k}, h_{k}\right) & \text { if } \exists \text { a walk }\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right), \\ \text { otherwise. }\end{cases}
$$

where $W_{\left(\lambda_{k}, i_{k+1}\right)}$ is the vertex group of $\mathcal{A}\left(D_{k}, D_{k+1}\right)$ at $\left(\lambda_{k}, i_{k+1}\right)$, and $\left(g_{k}, h_{k}\right)$ is the label of any walk $\left(\lambda_{k}, i_{k+1}\right) \rightsquigarrow\left(\mu_{k}, j_{k+1}\right)$.

Then the associated mapping φ_{ρ} is denoted $(\cdot, \mathbf{x}, \mathbf{y}) \theta$.
It can be calculated in terms of standard computational tasks within group theory.

The WP for $\operatorname{IG}(\mathcal{E})(\mathcal{E}$ finite $)$

Theorem (lgD, 2021)
$\mathbf{x}=\mathbf{y}$ holds in $\mathrm{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and

$$
1 \in(\{1\}, \mathbf{x}, \mathbf{y}) \theta .
$$

The WP for $\operatorname{IG}(\mathcal{E})(\mathcal{E}$ finite $)$

Theorem (lgD, 2021)
$\mathbf{x}=\mathbf{y}$ holds in $\mathrm{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and

$$
1 \in(\{1\}, \mathbf{x}, \mathbf{y}) \theta .
$$

($m=2$: the membership problem for a certain subgroup of $G_{1} \times G_{2}$)

The WP for $\operatorname{IG}(\mathcal{E})(\mathcal{E}$ finite $)$

Theorem (IgD, 2021)
$\mathbf{x}=\mathbf{y}$ holds in $\operatorname{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and

$$
1 \in(\{1\}, \mathbf{x}, \mathbf{y}) \theta .
$$

($m=2$: the membership problem for a certain subgroup of $G_{1} \times G_{2}$)
Theorem
Let $\mathbf{x}, \mathbf{y} \in \operatorname{IG}(\mathcal{E})$. If these elements are not of the same \mathscr{D}-fingerprint, they cannot be \mathscr{J}-related. Otherwise, if they are, we have:
(i) $\mathbf{x} \mathscr{R} \mathbf{y}$ if and only if $i_{1}=j_{1}$ and $(\{1\}, \mathbf{x}, \mathbf{y}) \theta \neq \varnothing$;
(ii) $\mathbf{x} \mathscr{L} \mathbf{y}$ if and only if $\lambda_{m}=\mu_{m}$ and $1 \in\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta$;
(iii) $\mathbf{x} \mathscr{D} \mathbf{y}$ if and only if $\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta \neq \varnothing$.

The WP for $\operatorname{IG}(\mathcal{E})(\mathcal{E}$ finite $)$

Theorem (IgD, 2021)
$\mathbf{x}=\mathbf{y}$ holds in $\operatorname{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and

$$
1 \in(\{1\}, \mathbf{x}, \mathbf{y}) \theta .
$$

($m=2$: the membership problem for a certain subgroup of $G_{1} \times G_{2}$)
Theorem
Let $\mathbf{x}, \mathbf{y} \in \operatorname{IG}(\mathcal{E})$. If these elements are not of the same \mathscr{D}-fingerprint, they cannot be \mathscr{J}-related. Otherwise, if they are, we have:
(i) $\mathbf{x} \mathscr{R} \mathbf{y}$ if and only if $i_{1}=j_{1}$ and $(\{1\}, \mathbf{x}, \mathbf{y}) \theta \neq \varnothing$;
(ii) $\mathbf{x} \mathscr{L} \mathbf{y}$ if and only if $\lambda_{m}=\mu_{m}$ and $1 \in\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta$;
(iii) $\mathbf{x} \mathscr{D} \mathbf{y}$ if and only if $\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta \neq \varnothing$.

Also, $\mathscr{D}=\mathscr{J}$

The WP for $\operatorname{IG}(\mathcal{E})(\mathcal{E}$ finite $)$

Theorem ($\lg \mathrm{D}, 2021$)
$\mathbf{x}=\mathbf{y}$ holds in $\operatorname{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and

$$
1 \in(\{1\}, \mathbf{x}, \mathbf{y}) \theta .
$$

($m=2$: the membership problem for a certain subgroup of $G_{1} \times G_{2}$)
Theorem
Let $\mathbf{x}, \mathbf{y} \in \operatorname{IG}(\mathcal{E})$. If these elements are not of the same \mathscr{D}-fingerprint, they cannot be \mathscr{J}-related. Otherwise, if they are, we have:
(i) $\mathbf{x} \mathscr{R} \mathbf{y}$ if and only if $i_{1}=j_{1}$ and $(\{1\}, \mathbf{x}, \mathbf{y}) \theta \neq \varnothing$;
(ii) $\mathbf{x} \mathscr{L} \mathbf{y}$ if and only if $\lambda_{m}=\mu_{m}$ and $1 \in\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta$;
(iii) $\mathbf{x} \mathscr{D} \mathbf{y}$ if and only if $\left(G_{1}, \mathbf{x}, \mathbf{y}\right) \theta \neq \varnothing$.

Also, $\mathscr{D}=\mathscr{J}+$ Sch-group of $\mathbf{x} \cong\left(G_{1}, \mathbf{x}, \mathbf{x}\right) \theta /(\{1\}, \mathbf{x}, \mathbf{x}) \theta$.

$\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ facts

- $\left\langle E\left(\mathcal{T}_{n}\right)\right\rangle=\left(\mathcal{T}_{n} \backslash \mathbb{S}_{n}\right) \cup\left\{\mathrm{id}_{n}\right\}$

$\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ facts

- $\left\langle E\left(\mathcal{T}_{n}\right)\right\rangle=\left(\mathcal{T}_{n} \backslash \mathbb{S}_{n}\right) \cup\left\{\mathrm{id}_{n}\right\}$
- \mathscr{D}-classes form a chain $D_{n}, D_{n-1}, \ldots D_{1}$ (classified by rank)

$\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ facts

- $\left\langle E\left(\mathcal{T}_{n}\right)\right\rangle=\left(\mathcal{T}_{n} \backslash \mathbb{S}_{n}\right) \cup\left\{\mathrm{id}_{n}\right\}$
- \mathscr{D}-classes form a chain $D_{n}, D_{n-1}, \ldots D_{1}$ (classified by rank)
- maximal subgroup in \bar{D}_{m} (in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$) is
- $m=n$: trivial
- $m=n-1$: free of rank $\binom{n}{2}-1$
- $m \leq n-2: \mathbb{S}_{m}$

$\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ facts

- $\left\langle E\left(\mathcal{T}_{n}\right)\right\rangle=\left(\mathcal{T}_{n} \backslash \mathbb{S}_{n}\right) \cup\left\{\mathrm{id}_{n}\right\}$
- \mathscr{D}-classes form a chain $D_{n}, D_{n-1}, \ldots D_{1}$ (classified by rank)
- maximal subgroup in \bar{D}_{m} (in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$) is
- $m=n$: trivial
- $m=n-1$: free of rank $\binom{n}{2}-1$
- $m \leq n-2: \mathbb{S}_{m}$
- a typical element of \bar{D}_{m} is of the form

$$
(P, g, A)
$$

P - a partition of $[1, n]$ into m classes; A - a subset of $[1, n]$ of size $m ; g-$ an element of the max. subgroup (see above)

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$

Vertices: Subset-partition pairs (A, P)

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$

Vertices: Subset-partition pairs (A, P)
Edges: $(A, P) \longrightarrow(B, Q)$ labelled by e exists iff

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$

Vertices: Subset-partition pairs (A, P)
Edges: $(A, P) \longrightarrow(B, Q)$ labelled by e exists iff

- ker e separates B (with $A=B e$), and
- ime saturates P (with the classes of Q being unions of (ker e)-classes mapping into the same P-class)

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$

Vertices: Subset-partition pairs (A, P)
Edges: $(A, P) \longrightarrow(B, Q)$ labelled by e exists iff

- ker e separates B (with $A=B e$), and
- ime saturates P (with the classes of Q being unions of (ker e)-classes mapping into the same P-class)
\mathcal{P} separates $X=$ every \mathcal{P}-class contains max 1 element of X
X saturates $\mathcal{P}=$ every \mathcal{P}-class contains at least 1 element of X

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\tau_{n}}\right)$

Vertices: Subset-partition pairs (A, P)
Edges: $(A, P) \longrightarrow(B, Q)$ labelled by e exists iff

- ker e separates B (with $A=B e$), and
- ime saturates P (with the classes of Q being unions of (ker e)-classes mapping into the same P-class)
\mathcal{P} separates $X=$ every \mathcal{P}-class contains max 1 element of X
X saturates $\mathcal{P}=$ every \mathcal{P}-class contains at least 1 element of X
Lemma
For $(P, g, A) \in \bar{D}_{m}$ and $\left(P^{\prime}, g^{\prime}, A^{\prime}\right) \in \bar{D}_{r}$ the product
$(P, g, A)\left(P^{\prime}, g^{\prime}, A^{\prime}\right)$ is regular if and only if either
(1) $m \geq r$ and A saturates P^{\prime}, or (2) $m \leq r$ and P^{\prime} separates A.

Contact graph $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ in $\operatorname{IG}\left(\mathcal{E}_{\tau_{n}}\right)$

Vertices: Subset-partition pairs (A, P)
Edges: $(A, P) \longrightarrow(B, Q)$ labelled by e exists iff

- ker e separates B (with $A=B e$), and
- ime saturates P (with the classes of Q being unions of (ker e)-classes mapping into the same P-class)
\mathcal{P} separates $X=$ every \mathcal{P}-class contains max 1 element of X
X saturates $\mathcal{P}=$ every \mathcal{P}-class contains at least 1 element of X
Lemma
For $(P, g, A) \in \bar{D}_{m}$ and $\left(P^{\prime}, g^{\prime}, A^{\prime}\right) \in \bar{D}_{r}$ the product
$(P, g, A)\left(P^{\prime}, g^{\prime}, A^{\prime}\right)$ is regular if and only if either
(1) $m \geq r$ and A saturates P^{\prime}, or (2) $m \leq r$ and P^{\prime} separates A.

So, such pairs $\left(A, P^{\prime}\right)$ are regular (= uninteresting).

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$

The type of $(A, P)(|A|=m,|P|=r)$: the sequence

$$
\left|A \cap P_{1}\right|, \ldots,\left|A \cap P_{r}\right|
$$

sorted in a non-increasing order.

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$

The type of $(A, P)(|A|=m,|P|=r)$: the sequence

$$
\left|A \cap P_{1}\right|, \ldots,\left|A \cap P_{r}\right|
$$

sorted in a non-increasing order.
Example
$n=9, A=\{1,3,5,7\}, P=\{\{1,2,6\},\{3,5,7,9\},\{4,8\}\}$. The type of (A, P) is $(3,1,0)$.

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$

The type of $(A, P)(|A|=m,|P|=r)$: the sequence

$$
\left|A \cap P_{1}\right|, \ldots,\left|A \cap P_{r}\right|
$$

sorted in a non-increasing order.
Example
$n=9, A=\{1,3,5,7\}, P=\{\{1,2,6\},\{3,5,7,9\},\{4,8\}\}$.
The type of (A, P) is $(3,1,0)$.
When (A, P) and (B, Q) are of the same type, we say they are homeomorphic.

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$

The type of $(A, P)(|A|=m,|P|=r)$: the sequence

$$
\left|A \cap P_{1}\right|, \ldots,\left|A \cap P_{r}\right|
$$

sorted in a non-increasing order.
Example
$n=9, A=\{1,3,5,7\}, P=\{\{1,2,6\},\{3,5,7,9\},\{4,8\}\}$.
The type of (A, P) is $(3,1,0)$.
When (A, P) and (B, Q) are of the same type, we say they are homeomorphic.

Homeomorphism $(\phi, \psi):(A, P) \sim(B, Q)$ - a pair of bijections $\phi: A \rightarrow B, \psi: P \rightarrow Q$ such that

$$
a_{i} \in P_{j} \quad \text { if and only if } \quad a_{i} \phi \in P_{j} \psi
$$

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ (cont'd)

(A, P) is stationary if all P-classes containing elements from
$[1, n] \backslash A$ are singletons.

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ (cont'd)

(A, P) is stationary if all P-classes containing elements from $[1, n] \backslash A$ are singletons.

Proposition
(A, P) and (B, Q) are connected in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff they are homeomorphic and not stationary.

Connected components in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ (cont'd)

(A, P) is stationary if all P-classes containing elements from $[1, n] \backslash A$ are singletons.

Proposition
(A, P) and (B, Q) are connected in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff they are homeomorphic and not stationary.

Remark
Stationary pairs are always isolated vertices.

The degenerate case

Proposition
If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(D_{m}, D_{r}\right)$ iff it is stationary.

The degenerate case

Proposition
If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff it is stationary. \Longrightarrow The vertex group $W_{(A, P)}$ is trivial.

The degenerate case

Proposition
If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff it is stationary. \Longrightarrow The vertex group $W_{(A, P)}$ is trivial.
Other vertex groups?

The degenerate case

Proposition
If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff it is stationary. \Longrightarrow The vertex group $W_{(A, P)}$ is trivial.
Other vertex groups? We don't know.

The degenerate case

Proposition

If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff it is stationary. \Longrightarrow The vertex group $W_{(A, P)}$ is trivial.
Other vertex groups? We don't know. (But also we don't care.)

The degenerate case

Proposition

If $m=n-1$ or $r=n-1$ then (A, P) is non-regular in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ iff it is stationary. \Longrightarrow The vertex group $W_{(A, P)}$ is trivial.
Other vertex groups? We don't know. (But also we don't care.)
So, in the rest of the talk assume that $m, r \leq n-2$.

Group labels of edges

Proposition

Assume there is an edge $(A, P) \longrightarrow(B, Q)$ in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ induced by $e \in E$.

Group labels of edges

Proposition

Assume there is an edge $(A, P) \longrightarrow(B, Q)$ in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ induced by $e \in E$. Assume, further, that $A=\left\{a_{1}<\cdots<a_{m}\right\}$,
$B=\left\{b_{1}<\cdots<b_{m}\right\}$, and that the classes of P, Q are enumerated such that $\min P_{1}<\cdots<\min P_{r}$ and $\min Q_{1}<\cdots<\min Q_{r}$.

Group labels of edges

Proposition

Assume there is an edge $(A, P) \longrightarrow(B, Q)$ in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ induced by $e \in E$. Assume, further, that $A=\left\{a_{1}<\cdots<a_{m}\right\}$,
$B=\left\{b_{1}<\cdots<b_{m}\right\}$, and that the classes of P, Q are enumerated such that $\min P_{1}<\cdots<\min P_{r}$ and $\min Q_{1}<\cdots<\min Q_{r}$. Then the considered edge is labelled by $\left(\pi, \pi^{\prime}\right) \in \mathbb{S}_{m} \times \mathbb{S}_{r}$ such that

- $b_{i \pi} e=a_{i}$ for all $1 \leq i \leq m$,
- $P_{j} e^{-1}=Q_{j \pi^{\prime}}$ for all $1 \leq j \leq r$.

Group labels of edges

Proposition

Assume there is an edge $(A, P) \longrightarrow(B, Q)$ in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ induced by $e \in E$. Assume, further, that $A=\left\{a_{1}<\cdots<a_{m}\right\}$,
$B=\left\{b_{1}<\cdots<b_{m}\right\}$, and that the classes of P, Q are enumerated such that $\min P_{1}<\cdots<\min P_{r}$ and $\min Q_{1}<\cdots<\min Q_{r}$.
Then the considered edge is labelled by $\left(\pi, \pi^{\prime}\right) \in \mathbb{S}_{m} \times \mathbb{S}_{r}$ such that

- $b_{i \pi} e=a_{i}$ for all $1 \leq i \leq m$,
- $P_{j} e^{-1}=Q_{j \pi^{\prime}}$ for all $1 \leq j \leq r$.

Corollary

The label of every walk $(A, P) \rightsquigarrow(B, Q)$ is a homeomorphism of its endpoints.

Group labels of edges

Proposition

Assume there is an edge $(A, P) \longrightarrow(B, Q)$ in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$ induced by $e \in E$. Assume, further, that $A=\left\{a_{1}<\cdots<a_{m}\right\}$,
$B=\left\{b_{1}<\cdots<b_{m}\right\}$, and that the classes of P, Q are enumerated such that $\min P_{1}<\cdots<\min P_{r}$ and $\min Q_{1}<\cdots<\min Q_{r}$.
Then the considered edge is labelled by $\left(\pi, \pi^{\prime}\right) \in \mathbb{S}_{m} \times \mathbb{S}_{r}$ such that

- $b_{i \pi} e=a_{i}$ for all $1 \leq i \leq m$,
- $P_{j} e^{-1}=Q_{j \pi^{\prime}}$ for all $1 \leq j \leq r$.

Corollary

The label of every walk $(A, P) \rightsquigarrow(B, Q)$ is a homeomorphism of its endpoints. In particular, the label of every loop based at (A, P) is an auto-homeomorphism of (A, P).

The main result

Theorem (IgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

The main result

Theorem (IgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.

The main result

Theorem (IgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

The main result

Theorem (IgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

Remarks

- The first component π of an element of $\operatorname{AHom}(A, P)$ is just any $\left.P\right|_{A^{\prime}}$-preserving permutation of A.

The main result

Theorem (lgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

Remarks

- The first component π of an element of $\operatorname{AHom}(A, P)$ is just any $\left.P\right|_{A^{\prime}}$-preserving permutation of A.
- There is an easy description whether $\left(\pi, \pi^{\prime}\right) \in \operatorname{AHom}(A, P)$.

The main result

Theorem (lgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

Remarks

- The first component π of an element of $\operatorname{AHom}(A, P)$ is just any $\left.P\right|_{A^{-}}$-preserving permutation of A.
- There is an easy description whether $\left(\pi, \pi^{\prime}\right) \in \operatorname{AHom}(A, P)$.
- Each non-empty "vertical slice" of $\mathrm{AHom}(A, P)$ is a coset of a symmetric group (permuting the P-classes not intersecting A).

The main result

Theorem (lgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

Remarks

- The first component π of an element of $\operatorname{AHom}(A, P)$ is just any $\left.P\right|_{A^{-}}$-preserving permutation of A.
- There is an easy description whether $\left(\pi, \pi^{\prime}\right) \in \operatorname{AHom}(A, P)$.
- Each non-empty "vertical slice" of $\mathrm{AHom}(A, P)$ is a coset of a symmetric group (permuting the P-classes not intersecting A).
- This leads to a nice generating set of $\operatorname{AHom}(A, P)$ within $\mathbb{S}_{m} \times \mathbb{S}_{r}$.

The main result

Theorem (lgD, 2022)
Let (A, P) be a vertex in $\mathcal{A}\left(\bar{D}_{m}, \bar{D}_{r}\right)$.

- If it is stationary, $W_{(A, P)}$ is trivial.
- Otherwise, $W_{(A, P)}=\operatorname{AHom}(A, P)$.

Remarks

- The first component π of an element of $\operatorname{AHom}(A, P)$ is just any $\left.P\right|_{A^{-}}$-preserving permutation of A.
- There is an easy description whether $\left(\pi, \pi^{\prime}\right) \in \operatorname{AHom}(A, P)$.
- Each non-empty "vertical slice" of $\mathrm{AHom}(A, P)$ is a coset of a symmetric group (permuting the P-classes not intersecting A).
- This leads to a nice generating set of $\operatorname{AHom}(A, P)$ within $\mathbb{S}_{m} \times \mathbb{S}_{r}$.

Conclusion

Now, all elements are "in place" so that one can, in a more-less straightforward manner, write a GAP code solving the WP for IG $\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$.

Conclusion

Now, all elements are "in place" so that one can, in a more-less straightforward manner, write a GAP code solving the WP for IG $\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$.

Namely, for the "coset representatives" $\left(g_{k}, h_{k}\right)$ in the WP it suffices to take any homeomorphism $\left(A_{k}, P_{k+1}\right) \sim\left(B_{k}, Q_{k+1}\right)$.

Thank you!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie

