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Well, it depends on your personal view of ordinary (string) lan-

guages...

Version A. (Combinatorial)

WORD = a finite sequence of letters

Version B. (Algebraic)

WORD = an element of a free monoid



What is a two-dimensional language?

A

A two-dimensional word is a matrix of letters – a picture:

P =




a11 · · · a1n
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am1 · · · amn


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where aij ∈ Σ for some alphabet Σ.
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P =


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a11 · · · a1n
... . . . ...

am1 · · · amn


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where aij ∈ Σ for some alphabet Σ.

A picture language is a set of pictures.
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Let P = [aij]m×n and Q = [bij]k×` be pictures.

The column product

P → Q is defined only if

m = k, and its result is




a11 · · · a1n b11 . . . b1`
... . . . ... ... . . . ...

am1 · · · amn bm1 · · · bm`


 .

The row product P ↓ Q is

defined only if n = `, and its

result is



a11 · · · a1n
... . . . ...

am1 · · · amn

b11 · · · b1n
... . . . ...

bk1 · · · bkn




.
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Operations on pictures and picture languages

Let L1, L2, L be picture languages.

Products

L1 → L2 = {P1 → P2 : Pi ∈ Li, i = 1, 2, P1 → P2 exists},
L1 ↓ L2 = {P1 ↓ P2 : Pi ∈ Li, i = 1, 2, P1 ↓ P2 exists}.

Iterations

L> =
⋃

n>0

L
n→, L∨ =

⋃

n>0

L↓n,

where L
0→ = L↓0 = {ε}.
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B

A two-dimensional word is an element of a free binoid over

Σ.

Free binoid = the free object in the variety of all algebras

with two binary associative operations and a common 1 (to be

denoted by ε).

A binoid language (or bi-language) is a subset of a free

binoid.
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Z.Ésik (2000): sp-biposets



How to represent elements of a free binoid? Take 1.
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Z.Ésik (2000): sp-biposets

Σ-labelled biposets: a set with two strict ordersA = (A,<1, <2)

and a labelling function λA : A → Σ.

x ∈ Σ is identified with the singleton poset Sx, labelled by x.
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How to represent elements of a free binoid? Take 1.

New biposets are obtained by two binary operations ◦1, ◦2, where

A ◦i B (i = 1, 2) is defined on A ∪B by

<
A◦iB
j =





<Aj ∪ <Bj if j 6= i,

<Aj ∪ <Bj ∪(A×B) if j = i.

A biposet is series-parallel (sp for short) if it is generated from

the singletons by the two product operations.
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How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid

as trees labelled by Σ ∪ {→, ↓}, called bi-words.

(1) the leaves are labelled by the letters from Σ,

(2) the labels →, ↓ of the non-leaves alternate, depending on the

parity of the distance from the root,

(3) each non-leaf has > 2 successors.

The set of all bi-words over Σ: BWΣ



How to represent elements of a free binoid? Take 2.

Example. b(x, y, z) = ((x → y) ↓ (z → x)) → y

x y z x

→ →

↓ y

→
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How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:

(1) horizontal = the root is labelled by →,

(2) vertical = the root is labelled by ↓,
(3) neutral = singletons + ε.

As an example, we show how the horizontal product works. We

have three cases.



How to represent elements of a free binoid? Take 2.

Case 1: b1, b2 are vertical/neutral

→

b1 b2



How to represent elements of a free binoid? Take 2.

Case 2: b1 is vertical/neutral, b2 is horizontal

→

b1

b2



How to represent elements of a free binoid? Take 2.

Case 3: b1, b2 are horizontal

→

b2b1
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0→ = L↓0 = {ε}.
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Algebras

Algebra of bi-languages over Σ:

BiLangΣ = (P(BWΣ), +,→, ↓, >,∨,∅, {ε})

Algebra of picture languages over Σ:

PictΣ = (P(Σ∗∗),∪,→, ↓, >,∨,∅, {ε})

A word of caution: Recognizable picture languages (REC) re-

quire, besides the above operations, the intersection and the

so-called alphabetic projection.



A result (∼, 2005)

Theorem. Identities satisfied by all algebras BiLangΣ = iden-

tities satisfied by all algebras PictΣ.

I.Dolinka, A note on identities of two-dimensional languages,

Discrete Applied Mathematics 146 (2005), 43–50.



A result (∼, 2005)

Theorem. Identities satisfied by all algebras BiLangΣ = iden-

tities satisfied by all algebras PictΣ.

I.Dolinka, A note on identities of two-dimensional languages,

Discrete Applied Mathematics 146 (2005), 43–50.

In the sequel, we denote the above equational theory by Θ.
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A result (∼, 2005)

Idea:

Proposition. For each bi-word b = b(x1, . . . , xn) there are:

• an alphabet Γ,

• a picture Pb ∈ Γ∗∗ (the “witness” picture), and

• finite picture languages L1, . . . , Ln ⊆ Γ∗∗
(consisting of homogeneous pictures = rectangles filled with

a single kind of letter)

such that for any bi-word b′ = b′(x1, . . . , xn) we have

Pb ∈ b′(L1, . . . , Ln) ⇐⇒ b′ ≡ b.
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A result (∼, 2005)

Idea: Suppose we have witness pictures Pbi for bi, 1 6 i 6 k.

The witness for b1 → b2 → . . . → bk is:

. . .

Pb1

Pb2

Pbk

m1

m2

mk

Ext↓(Pb1 , 0, q1) Ext↓(Pb2 , p2, q2) Ext↓(Pbk
, pk, 0)
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A result (∼, 2005)

Example: b(x, y, z) = ((x → y) ↓ (z → x)) → y

The algorithm from the proof of Proposition gives

Γ = {1, 2, 3, 4, 5}.

The witness picture is:

Pb =




1 2 2 2 5

1 2 2 2 5

3 3 3 4 5

3 3 3 4 5

3 3 3 4 5




.
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A problem

What are the axioms for the equational theory Θ ?

Conjecture. The identities of ordinary string languages in the

‘horizontal’ signature {+,→, >,∅, ε} & the same identities in

the ‘vertical’ signature {+, ↓,∨,∅, ε} will do.

Recently, I succeeded in proving that this conjecture is true.

A short summary of the proof follows.



Definitions #1

Birational expression = term in the signature {+,→, ↓, >,∨,∅, ε}.



Definitions #1

Birational expression = term in the signature {+,→, ↓, >,∨,∅, ε}.

→-rational (↓-rational) expression = birational expression which

contains only +, the constants, and the horizontal (vertical) op-

eration symbols.



Definitions #1

Birational expression = term in the signature {+,→, ↓, >,∨,∅, ε}.

→-rational (↓-rational) expression = birational expression which

contains only +, the constants, and the horizontal (vertical) op-

eration symbols.

Value of a birational expression α, B(α) = value of the term α

under x 7→ {x}, x ∈ Σ.



Definitions #1

Birational expression = term in the signature {+,→, ↓, >,∨,∅, ε}.

→-rational (↓-rational) expression = birational expression which

contains only +, the constants, and the horizontal (vertical) op-

eration symbols.

Value of a birational expression α, B(α) = value of the term α

under x 7→ {x}, x ∈ Σ.

Birational bi-language = bi-language of the form B(α)
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Definitions #1

Z.Ésik & Z.L.Németh (2004): every birational bi-language con-

sists of bi-words of bounded depth (⊆ BW6d
Σ ). The least such

d is the depth δ(α) of the corresponding expression α.

Horizontal (vertical) birational expression α = B(α) consists en-

tirely of horizontal (vertical) and neutral bi-words.

Γ1 (Γ2) = all identities of string languages in the horizontal

(vertical) signature.



Decomposition Lemma

For any birational expression α, there are birational expressions

αh and αv such that

• α = αh + αv follows from Γ1 ∪ Γ2,

• B(αh) (B(αv)) consists precisely of all horizontal (vertical)

and neutral bi-words from B(α).



Decomposition Lemma

For any birational expression α, there are birational expressions

αh and αv such that

• α = αh + αv follows from Γ1 ∪ Γ2,

• B(αh) (B(αv)) consists precisely of all horizontal (vertical)

and neutral bi-words from B(α).

Lemma. Let α1, α2 be birational expressions, and let αh
i , αv

i
(i = 1, 2) have the same meaning as above. Then α1 = α2

belongs to Θ if and only if both αh
1 = αh

2 and αv
1 = αv

2 belong

to Θ.
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• graphically equal to ∅, or

• has no subterm equivalent to ∅ or ε, except

– a possible single summand graphically equal to ε



Definitions #2 & a lemma

A possible problem: α is a horizontal expression ⇒ α ↓ ε is

horizontal (in spite of being of the form ↓ )

An expression α is trimmed if it is either

• graphically equal to ∅, or

• has no subterm equivalent to ∅ or ε, except

– a possible single summand graphically equal to ε

Lemma. For each α there is a trimmed expression α0 such that

Γ1 ∪ Γ2 ` α = α0.
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Let α be a horizontal birational expression.

(i) There exist a linear (= each variable occurs exactly once) →-rational

expression α′(x1, . . . , xn) and vertical expressions β1, . . . , βn such that

α ≡ α′(β1, . . . , βn).

In such a case, if δ(α) > 1, we have δ(α) = max(δ(β1), . . . , δ(βn)) + 1.



Linearization Lemma

Let α be a horizontal birational expression.

(i) There exist a linear (= each variable occurs exactly once) →-rational

expression α′(x1, . . . , xn) and vertical expressions β1, . . . , βn such that

α ≡ α′(β1, . . . , βn).

In such a case, if δ(α) > 1, we have δ(α) = max(δ(β1), . . . , δ(βn)) + 1.

(ii) There exist a horizontal birational expression α̂, a linear →-rational ex-

pression α′′(x1, . . . , xk) and vertical expressions β′1, . . . , β
′
k such that

(a) the identity α = α̂ follows from Γ1 ∪ Γ2,

(b) α̂ ≡ α′′(β′1, . . . , β
′
k), and

(c) ε 6∈ B(β′i) and B(β′i) 6= ∅ for all 1 6 i 6 k.
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Definition: Doppelgänger (as in “Twin Peaks”)

Let α1, α2 be two horizontal birational expressions (of depth d >
1). Linearization Lemma ⇒

α1 = α′′1(β1, . . . , βn),

α2 = α′′2(βn+1, . . . , βm),

where α′′i are linear, and ε 6∈ B(βi) 6= ∅.

Let Yi = B(βi) (1 6 i 6 m).

All there languages are (nonempty) subsets of E – the set of all

neutral and vertical bi-words of depth 6 d− 1.
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Definition: Doppelgänger (as in “Twin Peaks”)

For convenience, let Y 0
i = Yi and Y 1

i = E \ Yi.

For a binary sequence σ ∈ {0, 1}m, let

Xσ =

m⋂

i=1

Y
σ(i)
i .

What the heck is this?

E

X000

X001

X010 X100

X011 X101

X110X111

Y1 Y2

Y3



Definition: Doppelgänger (as in “Twin Peaks”)

For 1 6 i 6 m, define the sets Λi ⊆ {0, 1}m by

σ ∈ Λi if and only if σ(i) = 0 and Xσ 6= ∅.
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For 1 6 i 6 m, define the sets Λi ⊆ {0, 1}m by

σ ∈ Λi if and only if σ(i) = 0 and Xσ 6= ∅.

The ‘horizontal’ identity

α′′1


 ∑

σ∈Λ1

xσ, . . . ,
∑

σ∈Λn

xσ


 = α′′2


 ∑

σ∈Λn+1

xσ, . . . ,
∑

σ∈Λm

xσ




is an adjoined string identity (or doppelgänger) for α1 = α2.



Definition: Doppelgänger (as in “Twin Peaks”)

For 1 6 i 6 m, define the sets Λi ⊆ {0, 1}m by

σ ∈ Λi if and only if σ(i) = 0 and Xσ 6= ∅.

The ‘horizontal’ identity

α′′1


 ∑

σ∈Λ1

xσ, . . . ,
∑

σ∈Λn

xσ


 = α′′2


 ∑

σ∈Λn+1

xσ, . . . ,
∑

σ∈Λm

xσ




is an adjoined string identity (or doppelgänger) for α1 = α2.

The idea behind this identity is that the above sums of letters

(from Ξm = {xσ : σ ∈ {0, 1}m}) indexed by Λi’s record the

set-theoretical configuration of the bi-languages Yi.
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Example

x> + (x∨)> = (x∨)>

Linearization yields β>
1 + β>

2 = β>
3 , where

β1 ≡ x

β2 ≡ β3 ≡ x∨.

To get rid of ε from B(β2) = B(β3), we make use of

x∨ = ε + x ↓ x∨

and proceed with x ↓ x∨ instead of x∨.
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{000, 100}.



Example

Now we have Y1 ⊂ Y2 = Y3, thus Λ1 = {000} and Λ2 = Λ3 =

{000, 100}.

For simplicity, write x for x000 and y for x100. So, our dop-

pelgänger is just

x> + (x + y)> = (x + y)>,

a familiar law telling that the Kleene star is monotone.



Doppelgänger Lemma

Assume α1 = α2 belongs to Θ (i.e. it is a valid bi-langauge

identity). Then its doppelgänger is a valid string identity.
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Goal: to prove that a valid identity α1 = α2 is a consequence

of Γ1 ∪ Γ2.

Plan: induction on δ(α1) = δ(α2) = d (case d 6 1 is trivial...).

Decomposition Lemma ⇒ αi = αh
i + αv

i (i = 1, 2) follows

from Γ1 ∪ Γ2.

α1 = α2 holds if and only if both αh
1 = αh

2 and αv
1 = αv

2 are

valid.

So, we may assume that both α1 and α2 are e.g. horizontal.
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Linearization Lemma ⇒ there are horizontal birational ex-

pressions α̂1, α̂2 such that

Γ1 ∪ Γ2 ` α1 = α̂1, α2 = α̂2,

while the identity α̂1 = α̂2 has the form

α′′1(β′1, . . . , β′k) = α′′2(β′k+1, . . . , β
′
m),

where α′′1 , α′′2 are linear →-rational expressions (involved later in

the course of forming a doppelgänger identity), and β′1, . . . , β′m
are vertical expressions, all of them having depth at most d− 1,

whose values Y1, . . . , Ym satisfy ε 6∈ Yi 6= ∅, 1 6 i 6 m.
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Yi =
⋃

σ∈Λi

Xσ

holds for all 1 6 i 6 m.

Ésik–Németh (2004) ⇒ birational bi-languages closed for inter-

sections and set differences, so all Xσ’s are birational,

Xσ = B(ξσ).
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The main proof (outlined)

Therefore, the following identities are valid:

β′i =
∑

σ∈Λi

ξσ, (∗)

for all 1 6 i 6 m.

This is an identity of depth 6 d− 1, so it follows from Γ1 ∪ Γ2

by induction hypothesis.
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Doppelgänger Lemma ⇒ the adjoined string identity

α′′1


 ∑

σ∈Λ1

xσ, . . . ,
∑

σ∈Λn

xσ


 = α′′2


 ∑

σ∈Λn+1

xσ, . . . ,
∑

σ∈Λm

xσ




is a valid one, thus it belongs to Γ1.

Apply the substitution xσ 7→ ξσ.

By combining (∗) and the above doppelgänger, we obtain the

required formal proof for α1 = α2.
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Example (continued)

x> + (x∨)> = (x∨)>

This is first transformed into

x> + (x ↓ x∨)> = (x ↓ x∨)>.

As we have argued, a doppelgänger is

x> + (x + y)> = (x + y)>.

So, the nonempty Xσ’s are X000 = {x} and

X100 = {x ↓ x, x ↓ x ↓ x, . . . }.
Thus, we have ξ000 ≡ x and ξ100 = x ↓ x ↓ x∨.

Now, our identity follows from the above doppelgänger and

x + x ↓ x ↓ x∨ = x ↓ x∨.



THANK YOU!

All questions and comments to:

dockie@im.ns.ac.yu

A preprint may be found at:

www.im.ns.ac.yu/personal/dolinkai


