A Nonfinitely Based Finite Semiring

Igor Dolinka

The finite basis problem

A – a finite algebra
Eq(A) – the set of all identities true in A

Is Eq(**A**) finitely axiomatizable (finitely based)?

McKenzie (1996): in general, undecidable

Finitely based finite algebras

- groups: Oates & Powell (1966)
- commutative semigroups: Perkins (1968)
- lattices (& other lattice-based algebras): McKenzie (1970)
- rings: Львов, Kruse (1973)

Some NFB finite algebras

- Мурский (1965): a 3-element groupoid
 - this is a special case of NFB graph algebras Baker, McNulty, Werner (1987)
- Perkins (1968): a 6-element semigroup = the Brandt monoid B_2^1 of order 2

 $\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$

the Perkins' semigroup is INFB = each l.f. variety containing it is NFB (Sapir, 1987)

Semirings

- **<u>Semiring</u>** = an algebra (Σ ,+,',0) such that
- $(\Sigma, +, 0)$ is a commutative monoid,
- (Σ, \cdot) is a semigroup,
- the multiplication distributes over addition.

If + is an idempotent operation (*x*+*x*=*x*), then we have <u>ai-semirings</u>.

Σ7

- a subsemiring of Rel(2), the semiring of binary relations on a two element set, formed by:
 - the four relations with 3 pairs,
 - the empty, the diagonal, and the full relation
- alternatively, the ai-semiring formed by 7 Boolean matrices

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

(remember that we have 1+1=1 in the 2-element Boolean semiring)

Σ_7 (continued)

equations of B_2^{1} = semigroup equations of Σ_7

Is there such a thing as a NFB finite semiring?

Theorem A. Σ_7 is NFB.

According to *MathSciNet*, this is a first example of such kind.

What follows is a (hopefully) **VERY** short outline of the proof idea.

IMAGIGAM words

a word of the form

yLyL^R

where L is a linear word not containing y, and L^R is the reverse of L

 for all *n*, B₂¹ (and so Σ₇) satisfies the imagigam equations

 $\mathbf{y}\mathbf{x}_1\mathbf{x}_2\ldots\mathbf{x}_n\mathbf{y}\mathbf{x}_n\ldots\mathbf{x}_2\mathbf{x}_1=\mathbf{y}\mathbf{x}_n\ldots\mathbf{x}_2\mathbf{x}_1\mathbf{y}\mathbf{x}_1\mathbf{x}_2\ldots\mathbf{x}_n$

Isoterms #1

A word *u* is an <u>isoterm</u> for an ai-semiring identity

$$\sum_{i} u_{i} = \sum_{j} v_{j}$$

if for each semigroup substitution φ such that $\varphi(u_i)$ is (for some *i*) a subword of *u* we have that

- either not all φ -values of u'_i s are equal, or
- all φ -values of both u'_i s and v'_i s are equal

Isoterms #2

- for a fixed ai-semiring ∑ and words U, V we write U≤V if ∑ satisfies U+V=V
- a word *w* is <u>minimal</u> if *u*≤*w* implies that *u* is either 0, or *w*
- a minimal word = an isoterm for <u>all</u> identities of Z(an <u>isoterm</u> of Z)

Isoterms #3

Let *n* be a natural number and *Z* an ai-semiring.

A word *u* in at least *n* letters is an <u>*n*-isoterm</u> of *∑* if it is an isoterm for all equations of *∑* in <u>less</u> than *n* letters.

Why isoterms?

An easy proposition. Let Σ be an ai-semiring. Suppose that for arbitrary large *n* we manage to find a word w_n which <u>is</u> an *n*-isoterm, but <u>not</u> an isoterm of Σ . Then Σ is NFB.

Why isoterms?

If one translates all notions to <u>semigroups</u> this is <u>exactly</u> the tool used by Perkins!

Namely, the **imagigam words** turn out to be suitable: Perkins proves that

 $\mathbf{y}\mathbf{X}_1\mathbf{X}_2\ldots\mathbf{X}_n\mathbf{y}\mathbf{X}_n\ldots\mathbf{X}_2\mathbf{X}_1$

is always a (semigroup) *n*-isoterm, while the imagigam equations show that it is <u>not</u> an isoterm of the Perkins' monoid.

René, I've got a plan...

Can we do the same for Σ_{7} ?

I.e., is the *n*th imagigam word an *n*isoterm (in the ai-semiring sense) of Σ_7 ? (It is obviously not an isoterm of Σ_7 .)

How to find *n*-isoterms at all?

A good lemma always saves the day!

Lemma. Let w be a word, with precisely nletters occurring in it, let Σ be an ai-semiring, and let k < n be such that

- each word *u* in less than *n* letters, such that *w* contains a value of *u* (under some substitution), is minimal with respect to Σ,
- (2) w satisfies a certain combinatorial (and technical – but not too much) condition called the <u>k-joint substitution property</u>.

Then *w* is a (k+1)-isoterm of Σ .

In Σ_7 , the imagigam words satisfy both conditions!

- 1) Each word in at most *n* variables that has a value in the *n*th imagigam word is minimal in Σ_7 .
- Each imagigam word containing at least 4k+2 letters has the k-joint substitution property.

1) is a classical **combinatorics-on-words** issue; for the proof of 2) the key thing is to use a fact from **elementary geometry** (!)

1) + 2) + Easy Prop. => Theorem A.

To tell the truth, we do not need the `full strength' of $Eq(\Sigma_7)$, only 7 its particular features so that we obtain a slightly more general result...

Theorem B.

Theorem B. Let Σ be an ai-semiring. Call Σ special if it satisfies the following conditions:

- (a) the inequalities of Σ are closed under deletion, i.e. for any words u, v such that u ≤ v we have c(u) = c(v), and if u', v' are obtained respectively from u, v by deleting all occurrences of a given variable (provided u, v contain at least two variables), then u' ≤ v',
- (b) $yx \not\preceq xy$,
- (c) x and xyx are minimal with respect to Σ ,
- (d) x^2y, xyx, yx^2 are mutually \leq -incomparable,
- (e) $w \not\preceq (xy)^2$ whenever $w \in \{xyx, yxyxy\}$ or w contains one of x^2, y^2 as a subword,
- (f) $xyzxy \not\preceq xyzyx$, $yxzyx \not\preceq xyzyx$ and $xzyxy \not\preceq xzy^2x$,
- (g) $w \not\preceq xyztxtz$ for $w \in \{xytzxtz, xyztxzt, xytzxzt\}$.

If Σ is special and satisfies all the imagigam identities, then it is nonfinitely based.

Open questions

- Q1: Are the semirings *Rel(n)* of binary relations on an *n*-element set, *n*>1, finitely based or not?
- Q2: Is Σ₇ INFB?
- Clearly enough, A2:**Yes**=>A1:**They're not**.
- Q3: If A2 is Yes, is the same conclusion true for each finite ai-semiring in which all <u>Zimin words</u> are minimal (a feature easily proved in Σ₇ by induction)?

Thank you!