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The finite basis problem

9

A — a finite algebra
Eq(A) — the set of all identities true in 4

Is Eq(A) finitely axiomatizable
(finitely based)?

McKenzie (1996): in general, undecidable



! Finitely based finite algebras

= groups: Oates & Powell (1966)

= commutative semigroups: Perkins
(1968)

= lattices (& other lattice-based algebras):
McKenzie (1970)

= rings: J1bBoB, Kruse (1973)




! Some NFB finite algebras
= Mypckunm (1965): a 3-element groupoid

» this is a special case of NFB graph algebras —
Baker, McNulty, Werner (1987)

= Perkins (1968): a 6-element semigroup =
the Brandt monoid 5,! of order 2

Lo bl e bl owd (o by d )obo )
= the Perkins’ semigroup is INFB = each |.f.
variety containing it is NFB (Sapir, 1987)



Semirings

Semiring = an algebra (2,+,,0) such that
= (2,+,0) is a commutative monoid,
= (2, ') is a semigroup,

= the multiplication distributes over
addition.

If + is an idempotent operation (x4+x=x),
then we have ai-semirings.
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= a subsemiring of Rel(2), the semiring of binary
relations on a two element set, formed by:
» the four relations with 3 pairs,
« the empty, the diagonal, and the full relation

= alternatively, the ai-semiring formed by 7
Boolean matrices

0 0 1 0 11
00/)'\1 1) \o0o 1)

(Y1) (o) (o) (1)

(remember that we have 1+1=1 in the 2-element Boolean semiring)




2 »(continued)
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equations of B = semigroup equations of 2,




Is there such a thing as a NFB
finite semiring?

Theorem A. J,is NFB.

According to MathScilNet, this is a first
example of such kind.

What follows is a (hopefully) VERY short
outline of the proof idea.



IMAGIGAM words

= a word of the form

yLyL®
where L is a linear word not containing
¥, and LRis the reverse of L

k!

= for all n, B! (and so 2)) satisfies the
imagigam equations

VXX o X YKo oo XoX 1= VX oo XX (Y XX oo X,



Isoterms #1
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A word vis an jsoterm for an ai-semiring
identity
2, U;=2;V
if for each semigroup substitution ¢ such
that ¢(v) is (for some /) a subword of v
we have that
= either not all ¢-values of v/s are equal, or

= all g-values of both u;s and v/'s are equal



Isoterms #2

= for a fixed ai-semiring Z2'and words
u,vwe write uvif 2 satisfies
ut+v=vy

= a word wis minimal if «<wimplies
that v is either O, or w

= a minimal word = an isoterm for all
identities of 2 (an isoterm of 2°)
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Isoterms #3

Let nbe a natural number and 2
an ai-semiring.

A word ¢ in at least n letters is an
n-isoterm of Z2'if it is an isoterm

for all equations of £'in less than
n letters.
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Why isoterms?

An easy proposition. Let 2'be an
ai-semiring. Suppose that for arbit-
rary large nwe manage to find a
word w,, which is an rrisoterm, but
not an isoterm of 2.

Then 2'is NFB.



Why isoterms?

g

If one translates all notions to semigroups
this is exactly the tool used by Perkins!

Namely, the imagigam words turn out to
be suitable: Perkins proves that

YXiXo oo X VX oo XX
is always a (semigroup) n-4soterm, while
the imagigam equations show that it is not
an isoterm of the Perkins’ monoid.



Rene, I've got a plan...

Can we do the same for 27

I.e., is the th imagigam word an 7*
isoterm (in the ai-semiring sense) of 27
(It is obviously not an isoterm of 2..)

How to find risoterms at all?



A good lemma always
saves the day!

g

Lemma. Let wbe a word, with precisely n

letters occurring in it, let 2'be an ai-semiring,
and let k<n be such that

(1) each word win less than n letters, such
that wcontains a value of v (under some
substitution), is minimal with respect to 2,

(2) wsatisfies a certain combinatorial (and
technical — but not too much) condition

called the k<joint substitution property.

Then wis a (k+1)-isoterm of 2.




In 2, the imagigam words satisfy
both conditions!

g

1) Each word in at most n variables that
has a value in the ith imagigam word
IS minimal in 2.

2) Each imagigam word containing at

least 4k+2 letters has the 4-joint
substitution property.

1) is a classical combinatorics-on-words issue;
for the proof of 2) the key thing is to use a fact

from elementary geometry (!)



! 1) + 2) + Easy Prop. => Theorem A.

To tell the truth, we do not need the
“full strength’ of Eq(2;), only 7 its
particular features so that we obtain a
slightly more general result...



Theorem B.

Theorem B. Let X be an ai-semiring. Call X special if it satisfies the
following conditions:

(a) the inequalities of ¥ are closed under deletion, i.e. for any words
u,v such that u < v we have c(u) = c(v), and if u',v" are obtained
respectively from u,v by deleting all occurrences of a given variable
(provided u,v contain at least two variables), then u' < v’

i A 2.

r and zyx are minimal with respect to X,

2y, zyx, yr® are mutually <-incomparable,

w 2 (zy)? whenever w € {zyz,yryry} or w contains one of 2, y*
as a subword,

(f) zyzzy A zyzyzx, yrzyzr £ xyzyr and Tzyry 2 rzy’T,

(g) w A zyztxtz forw € {:L'ytz:ctz,myztmzt.,:r:ytz.rzt}.

b

(

(c
(d
(

(4]

If ¥ is special and satisfies all the imagigam identities, then it is nonfinitely
based.
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Open questions

= Q1: Are the semirings Re/(n) of binary
relations on an n-element set, 7>1,
finitely based or not?

= Q2: Is 5, INFB?
Clearly enough, A2:Yes=>A1:They're not.

= Q3: If A2 is Yes, is the same conclusion
true for each finite ai-semiring in which
all Zimin words are minimal (a feature
easily proved in 2, by induction)?



! Thank you!




