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A fundamental property that a (finite) algebra A may
have is that of being

NFB (NonFinitely Based) = the equational theory of A

is not finitely axiomatizable

An even stronger property (and a method to prove that
A is NFB) is

INFB (Inherently NFB) = V(A) is locally finite + any l.f.
variety that contains A is NFB
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M. V. Volkov: The finite basis problem for finite semi-
groups, Sci. Math. Jpn. 53 (2001), 171–199.

The ultimate goal:

Characterize the NFB finite semigroups.

But: Is an algorithmic description possible in the first
place? (The Tarski-Sapir Problem)
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Fully described by M. V. Sapir (1987).

Zimin words: Z1 ≡ x1, and Zn+1 ≡ Znxn+1Zn for n > 1

Let S be a finite semigroup.

S is INFB ⇐⇒ S 6|= Zn = W

for all n and any word W 6≡ Zn.
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Consequence: Every matrix semigroup Mn(R), n > 2,
over a finite (semi)ring R with 1 is (I)NFB.
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Unary semigroups

Unary semigroup: a structure S = (S, ·, ∗) such that (S, ·)
is a semigroup and ∗ is a unary operation on S.

Involution semigroup: a unary semigroup satisfying the
identities (xy)∗ = y∗x∗ and (x∗)∗ = x.

Examples: groups, inverse semigroups, regular ∗-semi-
groups (x = xx∗x),...
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Does ∗ make any difference?

At the first glance, it may seem that the unary operation
∗ cannot spoil the picture, in the sense of the expec-
tation that the vast majority of (I)NFB results for finite
semigroups can be easily “translated” into the realm of
finite unary/involution semigroups.

Fortunately – and somewhat surprisingly – this is quite
far from the truth.
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Someone said no ? Think again.

Of course, B1
2 is an inverse semigroup as soon as we

define a∗ = b (which forces b∗ = a, while the remaining
4 elements (the idempotents: 0,1,ab,ba) are fixed).

However, B1
2 is not INFB as an inverse semigroup.

Namely, M. V. Sapir proved (around 1992) that there is
no INFB finite inverse semigroup at all!

Moreover, by using the techniques developed a year later by Mar-
golis and Sapir for finitely generated quasivarieties, it follows that
the same holds for all finite regular ∗-semigroups as well.
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Around the same time (1992/93), K. Auinger and M. V.
Volkov obtained a unary counterpart of Volkov’s well-
known NFB criterion. Let’s recall what is this all about.

• For a unary semigroup S, let He(S) be its Hermitian
subsemigroup, the one generated by all elements
xx∗, x∈ S.

• For a unary semigroup variety V, let He(V) be the
variety generated by all He(S), S ∈ V.
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• Let K3 be the combinatorial unary Rees matrix se-
migroup with the sandwich matrix
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and 0∗ = 0.



On the other hand... (continued)

• Let K3 be the combinatorial unary Rees matrix se-
migroup with the sandwich matrix

P =

 e e e
e e 0
e 0 e

 ,

the unary operation being defined by (i, j)∗ = ( j, i)
and 0∗ = 0.

Theorem. Let V be a unary semigroup variety contain-
ing K3. If there exists a group G ∈ V\He(V), then V is
NFB.
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Applications of the Auinger-Volkov Theorem

The following are NFB:

• for each finite n> 1, the involution semigroup Rè (n)
of all binary relations on an n-element set, endowed
with relational converse;

•matrix involution semigroups (M2(K), ·,T), where K

is a finite field with more than 2 elements;
• unary matrix semigroups (M2(K), ·,†), where K is

either a finite field such that |K| ≡ 3(mod 4) or a sub-
field of C closed under complex conjugation, and
† is the operation of taking the Moore-Penrose in-
verse.
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However, some nagging questions remained...

(1) Do finite INFB involution semigroups exist at all?
(2) In particular, what about Rè (n) ?
(3) Exactly which of the (Mn(K), ·,T) are NFB? (K finite

and either n > 3, or n = 2 and |K|= 2)

These questions had to wait some 15 years to be an-
swered. The answers turned out to be:

(1) Yes.
(2) They are all INFB whenever n > 1.
(3) All of them. They also allow an exact characteriza-

tion of the INFB property.
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any nontrivial identity of the form

Zn = W,

where W is an involutorial word (a word over a ‘dou-
bled’ alphabet X∪X∗). Then S is INFB.

The proof, of course, relies in part on the ordinary semigroup case,
but requires extra ingredients. The same ingredients are integral
parts of Sapir’s own proof of the BEM-Zimin Theorem developed
for his Combinatorics on Words with Applications course.

However, is there such a finite involutorial semigroup? As we saw,
B1

2 won’t do, since it satisfies x = xx∗x.
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Theorem 1: an example

It is often forgotten that the semigroup B1
2 admits one

more involution aside from the ‘inverse’ one: define the
nilpotents a,b (and, of course, 0,1) to be fixed by ∗,
which results in (ab)∗ = ba and (ba)∗ = ab. In this way
we obtain the twisted Brandt monoid TB1

2.

It is not difficult to establish that TB1
2 meets the condi-

tions of Theorem 1 =⇒ TB1
2 is INFB.

Similarly to B1
2, this little guy is quite powerful.
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TB1
2 embeds into Rè (2) =⇒ Rè (n) is INFB for all n> 2.

TB1
2 embeds into (M2(K), ·,T) whenever |K| 6≡ 3(mod 4)

(for this is exactly the case when −1 has a square root
in K).

TB1
2 embeds into (Mn(K), ·,T) for all n > 3 and all finite

K, as a consequence of the Chevalley-Warning Theo-
rem (!!!) from algebraic number theory (argument cour-
tesy & ingenuity of K. Auinger).

Other applications as well...
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Theorem 2

Let S be a finite involution semigroup satisfying an iden-
tity of the form

Zn = ZnW

for some n > 1 and an involutorial word W. Then S is
not INFB.

The proof uses the ideas from the Margolis-Sapir ap-
proach to finitely generated quasivarieties of semigro-
ups, and the result seems to be the final ‘stretching’ of
that method to involution semigroups.
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Theorem 2: applications

By an old result of S. Crvenković (1982), if a finite in-
volution semigroup admits a Moore-Penrose inverse,
then the inverse is term-definable. Consequently, any
such involution semigroup will satisfy an identity of the
form x = xw(x,x∗)x =⇒ it is not INFB.

This settles the case of 2× 2 matrix semigroups with
transposition as they admit a Moore-Penrose inverse
iff |K| ≡ 3(mod 4).

So, one cannot hope for INFB results whenever the
MP-inverse is around...
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Theorem 3

Let S be a finite involution semigroup satisfying a non-
trivial identity of the form Zn = W such that the variety
V(S) omits the inverse semigroup B1

2. Then S is not
INFB.

Key argument: Under the given conditions, W is either
an ordinary word (when everything goes smoothly), or
for an arbitrary ∗-fixed idempotent e, V(eSe) consists
entirely of involution semilattices of Archimedean semi-
groups (by a result of I.D. from 2005).
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So, what remains...?

S – a finite involution semigroup such that:

(1) B1
2 ∈ V(S),

(2) S satisfies a nontrivial identity of the form Zn = W,
(3) S fails to satisfy a nontrivial identity of the form Zk = ZkU .

A tantalizing question: is there such S in the first place?

In the ordinary semigroup case the answer is no, as (2) makes
(1) impossible (while in the involutorial case these two are not
automatically incompatible).

If the answer is yes, then there is still work to do. Some identities
can be taken care of by combining all the previous approaches.

Test-example: Is xyxzxyx= xyxx∗xzxyximplying the non-INFB prop-
erty?



THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Preprints may be found at:
http://sites.dmi.rs/personal/dolinkai


