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Abstract

Constraint satisfaction problems form a very interesting and much
studied class of decision problems. Feder and Vardi realized their relation
to general coloring problems of relational structure. This enabled the use
of algebraic, combinatorial, and model theoretic methods for studying the
complexity of such decision problems.

In this paper we are interested in constraint satisfaction problems
with countable homomorphism homogeneous template and, more gener-
ally, with weakly oligomorphic templates.

A first result is a Fräıssé-type theorem for homomorphism homoge-
neous relational structures.

Further we show the existence and uniqueness of homogeneous, ho-
momorphism-homogeneous cores in weakly oligomorphic homomorphism
homogeneous structures. A consequence of this result is that every con-
straint satisfaction problem with weakly oligomorphic template is equiv-
alent to a problem with finite or ω-categorical template.

Another result is the characterization of positive existential theories
of weakly oligomorphic structures as the positive existential parts of ω-
categorical theories — akin to the Engeler-Ryll-Nardzewski-characteriza-
tion of the theories of oligomorphic structures.

1 Introduction

Constraint satisfaction problems (CSPs, for short) cover a wide range of deci-
sion problems that arise in artificial intelligence, operations research, and com-
binatorics. Standard examples include boolean k-SAT, or the decision problem
whether a graph is k-colorable.
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While it is difficult, to give a general precise mathematical definition of what
is a constraint satisfaction problem, many of the considered CSPs fit into the
following framework (introduced by Feder and Vardi in [13]):

Let T be a relational structure (over a given relational signature Σ).
Then the constraint satisfaction problem for the template T is the
following computational problem:

CSP(T)

Instance: A finite relational structure A over the signature Σ.

Problem: Is there a homomorphism from A to T?

If T is finite over a finite signature, then CSP(T) is called a finite constraint
satisfaction problem. Clearly, finite CSPs are in NP. It is conjectured that
every finite constraint satisfaction problem is either in P or it is NP-complete.
This dychotomy-conjecture (originally stated by Feder and Vardi in [13]) is very
intensively studied in theoretical computer science and in universal algebra. It
is impossible to give a reasonable bibliographic overview of this topic but a few
important step-stones are [21, 15, 9, 10, 8, 2, 1, 4].

On the other hand, there are a number of constraint satisfaction problems
arising in literature that can not be modeled using a finite template. Very
natural examples were uncovered in [5, 7, 6]. They include, e.g., graph acyclicity,
Allen’s interval algebra, and tree-description languages arising in computational
linguistics. It turns out that many of these problems can be formalized as
constraint satisfaction problems with a countable, ω-categorical template, or
even with homogeneous, ω-categorical template. For this reason, it seems to
be quite natural to study CSPs with ω-categorical templates (of all countable
templates). Another benefit of such an approach is that ω-categorical structures
have a well developed and strong structural theory rooting deeply in model
theory and group theory (cf. [11, 16]).

In this paper we widen the class of allowed templates to the class of weakly
oligomorphic relational structure. The notion of weak oligomorphy was intro-
duced in [18] for studying the unary parts of local clones. It soon turned out that
this notion is intimately related to the notion of homomorphism homogeneity
(in the sense of [12]) and quantifier elimination of positive existential formulæ,
much similar, like ω-categoricity is related to homogeneity and to quantifier-
elimination (cf. [17],[19]). At the same time, weak oligomorphy is a much
weaker notion than ω-categoricity. E.g., any reduct of a homomorphism homo-
geneous structure over a finite signature will be weakly oligomorphic, and there
exist homomorphism-homogeneous graphs that have a trivial automorphism
group (cf. [12, Cor. 2.2]). Therefore allowing weakly oligomorphic templates
gives allot more freedom for the formalization of concrete constraint satisfaction
problems.

One of the main results of this paper is to show that on the other hand
every constraint satisfaction problem that can be formalized using a weakly
oligomorphic template, in fact can also be formalized using an ω-categorical
template. This strengthens the feeling that the (at the first sight arbitrary)
restriction to ω-categorical templates is indeed very natural.

In order to be able to prove the above mentioned reduction result, we develop
to a certain point the basic model theory of weakly oligomorphic relational
structures.
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In Section 3, we introduce the notion of weak oligomorphy and we show that
from an algebraic point of view, this is the weakest reasonable relaxation of the
notion of ω-categoricity.

In Section 4 we give a characterization of the ages of homomorphism homo-
geneous structures in the vein of Fräıssé’s Theorem by showing that a class of
finite structures is the age of a homomorphism homogeneous structure if and
only if it is a hom-amalgamation class.

In Section 5 we study, when there exist homomorphisms between weakly
oligomorphic structures. In particular, we show that the existence of a homo-
morphism between countable weakly oligomorphic structures depends only of a
relation between their ages.

In Section 6 we show that every countable weakly oligomorphic homomor-
phism homogeneous structure has a unique (up to isomorphism) hom-equivalent
substructure that is oligomorphic, homogeneous, and a core. A consequence is
that every CSP with weakly oligomorphic, homomorphism homogeneous tem-
plate is equivalent to a CSP with oligomorphic, homogeneous template.

In Section 7 we show that every countable weakly oligomorphic structure
is homomorphism-equivalent to a finite or ω-categorical structure. From this
result it follows at once that every CSP with weakly oligomorphic template is
equivalent to a CSP with finite or with ω-categorical template.

In Section 8, as a model theoretic result, the positive existential theories
of countable weakly oligomorphic structures are characterized as the positive
existential parts of ω-categorical theories. This result has the flavor of the
Engeler-Ryll-Nardzewski-Svenonius Theorem that characterizes the theories of
countable oligomorphic structures as precisely the ω-categorical theories.

2 Preliminaries

The object of study in this paper are relational structures. As a basis for our
notions and notations we use the model theoretic book [16] (which is a standard
in this field). A relational signature is a model-theoretic signature without
constant- and function symbols. A model over a relational signature will be
called a relational structure. Note, that throughout this paper we make no
other assumptions about the signatures. In particular, if not stated otherwise,
we allow signatures of any cardinality. Relational structures will be denoted
by bold capital letters A, B, etc., while their carriers will be denoted by usual
capital letters A, B, etc., respectively.

As usual, a homomorphism between two relational structures is a function
between the carriers that preserves all relations. We will use the notation
A → B as a way to say that there exists a homomorphism from A to B.
If A → B and B → A, then we call A and B hom-equivalent. It is easy to see,
that hom-equivalent relational structures define equivalent constraint satisfac-
tion problems.

If f : A → B, then we call A the domain of f (denoted by dom(f), and B,
the codomain (denoted by cdom(f). Moreover, the structure induced by f(A)
is called the image of f (denoted by img(f)).

Epimorphisms are surjective homomorphisms andmonomorphisms are injec-
tive homomorphisms. Isomorphisms are bijective homomorphisms whose inverse
is a homomorphism, too. Embeddings are monomorphisms that not only pre-
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serve relations but also reflect them. That is, a monomorphism is an embedding
if and only if it is an isomorphism to its image.

As a final note, in this paper under a countable set we understand a finite
or countably infinite set.

3 Weakly oligomorphic structures

In [11], Peter Cameron introduced the notion of oligomorphic permutation
groups. Recall that a permutation group is called oligomorphic if it has just
finitely many orbits in its action on n-tuples for any n. A structure A is called
oligomorphic if its automorphism group is oligomorphic.

Before coming to the definition of weakly oligomorphic structures, we have
to recall some model theoretic notions: Let Σ be a relational signature, and
let L(Σ) be the language of first order logics with respect to Σ. Let A be a
Σ-structure. For a formula φ(x̄) (where x̄ = (x1, . . . , xn)), we define φA ⊆ An

as the set of all n-tuples ā over A such that A |= φ(ā). More generally, for a
set Φ of formulæ from L with free variables from {x1, . . . , xn}, we define ΦA as
the intersection of all relations φA where φ ranges through Φ. We call Φ a type,
and ΦA the relation defined by Φ in A.

If ΦA ̸= ∅, then we say that A realizes Φ. We call Φ positive existential, or
positive primitive, if it consists just of positive existential, or positive primitive
formulæ, respectively.

For a relation ϱ ⊆ An by TpA(ϱ) we denote the set of all formulæ φ(x̄) such
that ϱ ⊆ φA. This is the type defined by ϱ with respect to A. Analogously,
the positive existential type pTpA(ϱ) and the positive primitive type ppTpA(ϱ)

are defined. With Tp
(0)
A (ϱ), pTp

(0)
A (ϱ), and ppTp

(0)
A (ϱ) the respective quantifier

free parts of TpA(ϱ), pTpA(ϱ), and ppTpA(ϱ) are denoted.
Let us come now to the definition of the structures under consideration in

this paper.

Definition ([18, 19]). A relational structure A is called weakly oligomorphic
if for every arity there are just finitely many relations that can be defined by
positive existential types.

One can argue that it would be more appropriate to define a structure A to
be weakly oligomorphic if its endomorphism monoid is oligomorphic (i.e. there
are just finitely many invariant relations of End(A) of any arity). However,
there is no need to worry, since, at least for countable structures, these two
definitions are equivalent:

Proposition 3.1 ([19, Thm. 6.3.4],cf. [18, Prop. 2.2.5.1]). A countable struc-
ture A is weakly oligomorphic if and only if End(A) is oligomorphic.

Clearly, if a structure is oligomorphic, then it is also weakly oligomorphic.
In principle, it is possible to introduce an even weaker notion of weak oligo-

morphy. Recall that an n-ary polymorphism of a structure A is a homomor-
phism from An to A. The collection of all polymorphisms of A forms a clone
(cf. [20, 22]) and is denoted by Pol(A). We could call Pol(A) oligomorphic if it
has of every arity just finitely many invariant relations. However, the following
Proposition will show that (at least in the countable case) this does not lead to
a strictly weaker notion.
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Proposition 3.2. Let A be a countable relational structure. Then the following
are equivalent:

(a) Pol(A) has of every arity just finitely many invariant relations,

(b) for every arity there are just finitely many relations that can be defined by
positive primitive types,

(c) A is weakly oligomorphic.

Proof. ((a)⇒(b)) Every relation definable by a set of positive primitive formulæ
is invariant under Pol(A). Hence, the set of definable relations of a given arity
is a subset of the set of invariant relations of this arity.

((b)⇒(c) Every positive existential formula is equivalent to a finite disjunc-
tion of positive primitive formulæ. Thus, the set of relations of arity n definable
by positive existential formulæ is obtained from the set of relations definable by
positive primitive formulæ by closing the latter one with respect to finite unions.
If there are just finitely many relations definable by sets of positive primitive for-
mulæ, then the closure with respect to finite unions will not produce an infinite
set of relations.

((c)⇒(a)) From Proposition 3.1, it follows that End(A) is oligomorphic.
However, End(A) ⊂ Pol(A). Hence the set of invariant relations of Pol(A) is
contained in the set of invariant relations of End(A). This finishes the proof.

4 Homomorphism-homogeneity and amalgama-
tion

Recall that the age of a structure is the class of finite structures embeddable
into it.

Definition. Let C be a class of finite relational structures over the same signa-
ture. We say that C has the

Joint embedding property (JEP) if A,B ∈ C, then there exists a C ∈ C
such that both A and B are embeddable in C:

A

C

B

Hereditary property (HP) if A ∈ C, and B < A, then B is isomorphic to
some C ∈ C,

Amalgamation property (AP) If A,B1,B2 ∈ C, and f1 : A → B1 and
f2 : A → B2 are embeddings, then there are C ∈ C, and embeddings
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g1 : B1 → C and g2 : B2 → C such that the following diagram commutes:

A B1

B2 C

f1

f2

g2

g1

i.e. g1 ◦ f1 = g2 ◦ f2.

Homo-amalgamation property (HAP) If A,B1,B2 ∈ C, f1 : A → B1 is a
homomorphism, and f2 : A → B2 is an embedding, then there are C ∈ C,
an embedding g1 : B1 → C , and a homomorphism g2 : B2 → C such that
the following diagram commutes:

A B1

B2 C

f1

f2

g2

g1

i.e. g1 ◦ f1 = g2 ◦ f2.

A basic theorem by Roland Fräıssé states that a class of finite structures of
the same type is the age of a countable structure if and only if

1. it has only countably many isomorphism types,

2. it is isomorphism-closed,

3. it has properties HP and JEP.

Another central result of Fräıssé is the characterization of the ages of ho-
mogeneous structures. We quote the formulation due to Cameron (cf. [11,
(2.12-13)]):

Theorem 4.1 (Fräıssé ([14])). A class C of finite relational structures is the
age of some countable homogeneous relational structure if and only if

(i) it is closed under isomorphism,

(ii) it has only countably many non-isomorphic members,

(iii) it has properties HP and AP.

Moreover, any two countable homogeneous relational structures with the same
age are isomorphic.

A class of finite structures over the same signature, that is isomorphism-
closed and that has properties HP, and AP, is called Fräıssé-class.

In [12], Peter Cameron and Jaroslav Nešetřil introduced the notion of homomorphism-
homogeneous structure. A local homomorphism of a structure A is a homomor-
phism from a finite substructure of A to A.

Definition (Cameron, Nešetřil). A structureA is called homomorphism-homogeneous
if every local homomorphism of A can be extended to an endomorphism of A.
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As a straight forward adaptation of the notion of weakly homogeneous struc-
ture, it will be useful to introduce the notion of a weakly homomorphism-
homogeneous structure:

Definition. A structure A is called weakly homomorphism-homogeneous if
whenever B < C are finite substructures of A, then every homomorphism
f : B → A extends to C.

Clearly, a countable structure is weakly homomorphism-homogeneous if and
only if it is homomorphism-homogeneous.

The concept of weak homomorphism homogeneity is closely related to other
model theoretic notions, via the notion of weak oligomorphy.

Definition. A structure A is called endolocal if for any relation ϱ ⊆ An we
have that ϱ is definable by a positive existential type if and only if for all ā ∈ ϱ,

b̄ ∈ An holds that if pTp
(0)
A (ā) ⊆ pTp

(0)
A (b̄), then b̄ ∈ ϱ.

Another, perhaps more transparent definition of endolocality is the following:

Lemma 4.2. A structure A is endolocal if and only if the set of relations
definable by positive existential types in A coincides with the set of relations
that are invariant under local homomorphisms of A.

The following characterization of weak homomorphism homogeneity for weakly
oligomorphic structures will be of good help in later proofs. It first appeared in
[18].

Proposition 4.3 ([19, Main Thm.]). Let A be a weakly oligomorphic structure.
Then the following are equivalent:

(a) A is homomorphism homogeneous,

(b) A is endolocal,

(c) every positive existential formula in the language of A is equivalent in A to
a quantifier free positive formula.

We continue with an analogue of Fräıssé’s Theorem for homomorphism-
homogeneous structures:

Theorem 4.4. (a) The age of any homomorphism-homogeneous structure has
property HAP.

(b) If a class C of finite relational structures is isomorphism-closed, has only
a countable number of isomorphism classes, and has properties HP, JEP,
and HAP, then there is a countable homomorphism-homogeneous structure
H whose age is equal to C.

Proof. About (a) Let H be a homomorphism-homogeneous relational struc-
ture and let C be its age. Let A,B1,B2 ∈ C, and let f1 : A → B1 be
a homomorphism and f2 : A → B2 an embedding. Without loss of gen-
erality, we can assume that A ≤ B2, f2 is the identical embedding, and
B1,B2 ≤ H.

Since f1 is also a homomorphism from A to H, and H is homomorphism-
homogeneous, it follows that f1 can be extended to a g ∈ End(H).

Further, we define
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• g2 := g↾B2
,

• C := img(g2) ∪B1, and

• g1 to be the identical embedding from B1 to C.

Then we obtain the following commuting diagram

A B1

B2 C

f1

≤ f2

g2

≤ g1

Indeed, for a ∈ A we have

g1(f1(a)) = f1(a) = g(a) = g2(a) = g2(f2(a)),

so this diagram commutes, and hence the age of H has property HAP.

about (b) Our goal is to effectively construct a countable homomorphism-
homogeneous structure H whose age is equal to C.
Since C has a countable number of isomorphism classes, we can choose a
representative from each class thus obtaining a countable set of structures.
Denote this set by R and well-order R like ω.

We aim to construct a chain Hi, i ∈ N, of structures from C such that the
following holds:

(I) IfA,B ∈ C, whereA < B, then for each homomorphism f : A → Hi,
for some i ∈ N, there are j > i and a homomorphism g : B → Hj

which extends f .

(II) For every A ∈ C there exists an i ∈ N such that A is embeddable in
Hi.

We claim that the union H = ∪i∈NHi of such a chain of structures is going
to be a countable homomorphism-homogeneous structure with age C.
First of all, note that if for each i ∈ N, the age of Hi is included in C, then
the age of H = ∪i∈NHi is also included in C.
On the other hand, take some A ∈ C. Then from (II) it follows that A is
embeddable into some Hi, and, therefore, also into H, showing that it is
in the age of H.

It is left to show, that H is weakly homomorphism-homogeneous. Let
A < B be a two finite substructures of H, and let f : A → H be a
local homomorphism. Then by (II) there exists some i ∈ N such that
f(A) < Hi. Thus, by (I) there is a j > i and a homomorphism g : B → Hj

that extends f , i.e. the following diagram commutes:

B Hj H

A Hi

g ≤

≤ ≤

f

≤
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This implies that H is weakly homomorphism-homogeneous.

To conclude, the structure H, which is the union of the chain of structures
fulfilling conditions (I) and (II), is weakly homomorphism-homogeneous
(and thus, since it is countable, also homomorphism-homogeneous), and
it has C as its age.

It remains to construct the chain. In addition to the above defined set
R, we define set P of pairs of structures (A,B) such that A,B ∈ C,
and A ≤ B. We choose P so that it contains representatives from each
isomorphism class of such pairs. Hence, P is a countable set. Now choose
a bijection π : 2N × N → N such that for every i ∈ 2N, j ∈ N holds
π(i, j) ≥ i. Then the construction goes by induction as follows:

Take the first structure from R and denote it by H0.

Step 1 Suppose that we have constructed Hk, for k even. We proceed as
follows: For given Hk we list all the triples (Akl,Bkl, fkl), where
(Akl,Bkl) ∈ P and fkl : Akl → Hk is a homomorphism (there are
just countably many such triples).

In the next step, we find i and j such that π(i, j) = k. Since
i ≤ π(i, j) = k, it follows that the triple (Aij ,Bij , fij) was already
determined as a member of the list for Hi in one of the previous
iterations of Step 1. We apply now to this triple HAP:

Aij Hi Hk

Bij Hk+1

fij

≤

≤

≤

gij

with gij↾Aij
= fij , and obtain the structure Hk+1. (Note that Hk+1

can be always chosen in such a way that Hk ≤ Hk+1 by taking for
Hk+1 the appropriate structure from the isomorphism class, i.e. by
changing the representative of the class.)

Step 2 Suppose that we have constructed Hk, for k odd. Take the next
structure A ∈ R. By JEP, there exists Hk+1 such that both Hk and
A are embeddable into it:

A

Hk+1

Hk

Together, Step 1 and Step 2 form the induction step.

This completes the description of the construction. It is left to prove that
the constructed chain fulfils conditions (I) and (II):
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About (I) We identify a given triple (A,B, f) in the list for Hi in the construc-
tion. Let it be (Ail,Bil, fil). Compute j := π(i, l). The requested g
and Hj are those that appear on the diagram for the construction of
Hj+1:

A

Ail Hi Hj−1

Bil Hj

B

fil

≤

≤

≤

gil

≤

∼=
f

∼= g

About (II) Follows immediately from Step 2 in the construction.

A class of finite relational structures over the same signature, that is closed
under isomorphism and that has properties HP, JEP, and HAP will be called
hom-amalgamation class.

Note that, in contrast to Fräıssé’s construction, the construction of a homomorphism-
homogeneous structure from an age does not guaranty the uniqueness of the re-
sult up to isomorphism. Indeed, all countably infinit linear orders are homomorphism-
homogeneous and have as the age the class of all finite linear orders. Let us
therefore have a look, how the different homomorphism-homogeneous structures
with the same age are interrelated.

Definition. Let H and H′ be two relational structures. We write H ⪯h H′ if

• Age(H) ⊇ Age(H′), and

• for all finite A ≤ B ≤ H we have that every homomorphism from A to
H′ extends to a homomorphism from B to H′.

Proposition 4.5. Let H and H′ be two relational structures.

(a) If H ⪯h H′, and H is weakly homomorphism-homogeneous, then H′ is
weakly homomorphism-homogeneous, too.

(b) If H′ is weakly homomorphism-homogeneous, and Age(H) = Age(H′), then
H ⪯h H′.

Proof. About (a) Let A′, B′ be finite substructures of H′, such that A′ ≤ B′,
and let f ′ : A′ → H′ be a local homomorphism: Since Age(H) ⊇ Age(H′),
and A′,B′ ∈ Age(H′), it follows that there is a B ≤ H, such that B ∼= B′.
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Further, since A′ ≤ B′, it follows that there is an A ≤ B, such that
A ∼= A′, and that the following diagram commutes:

A A′

B B′

≤ ≤

φ
∼=

ψ
∼=

where ψ is any isomorphism, φ is obtained by restricting ψ. Since H ⪯h
H′, the homomorphism f ′ ◦ φ : A → H′ has an extension g to B, as
depicted in the following commuting diagram:

A A′

B B′

H′

≤ ≤

φ

ψ
f ′

g

(1)

Now we define g′ := g ◦ ψ−1. Using diagram (1), it can easily be checked
that this is an extension of f ′ to B′. This shows that H′ is weakly
homomorphism-homogeneous.

About (b) It suffices to show that for given finite structure A with A ≤ B ≤
H, and a homomorphism f : A → H′, we can always extend f to a
homomorphism from B to H′.

Note that A,B ∈ Age(H) = Age(H′). Then there exists a B′ ≤ H′, such

that B ∼= B′. Let Â ≤ B̂ such that Â ∼= A, and let φ : A → A′, ψ : B →
B′ be isomorphisms that make the following diagram commutative:

A A′

B B′

φ
∼=

ψ
∼=

≤ ≤

Let f ′ := f ◦ φ−1, Then f ′ is a homomorphism from A′ to H′. Since
H′ is weakly homomorphism-homogeneous, there exists a homomorphism
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g′ : B′ → H′ that extends f ′:

H′

A A′

B B′

φ

ψ

≤ ≤

f

f ′

g′

We define g := g′ ◦ψ. It is easily checked that g extends f to a homomor-
phism from B to H′. Thus H ⪯h H′.

The second part of the previous Proposition gives the interrelation of any
two homomorphism-homogeneous countable structures with the same age:

Corollary 4.6. Let A, and B be two weakly homomorphism-homogeneous struc-
tures with the same age. Then A ⪯h B and B ⪯h A. In particular, any two
countable homomorphism-homogeneous relational structures with the same age
are homomorphism-equivalent.

Remark. A binary relation similar to ⪯h appeared in [12] in the context of a
Fräıssé-type theorem for monomorphism homogeneous structures.

5 Homomorphisms between weakly oligomorphic
structures

In this section we collect some auxiliary results about homomorphisms between
weakly oligomorphic structures.

Definition. Let A, B be two classes of relational structures over a common
signature. We say, that A projects onto B (written A → B) if for every A ∈ A
there exists a B ∈ B, such that A → B.

Clearly, for two relational structures A and B, the condition Age(A) →
Age(B) is necessary for A → B. In the following we will prove that if A, is
countable, and B is weakly oligomorphic, then this condition is also sufficient.
Before coming to the prove of this claim, let us prove a more specific result
about weakly homomorphism homogeneous relational structures. The proof
uses Kőnig’s tree-lemma — a typical technique from the theory of ω-categorical
structures.

Proposition 5.1. Let A, B be a relational structures over the same signature
such that Age(A) → Age(B), and suppose that A is countable, and that B is
weakly oligomorphic and weakly homomorphism homogeneous. Then A → B.
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Proof. If A is finite, then nothing needs to be proved. So we assume that
A is countably infinite. In that case we can write the carrier A as A =
{a0, a1, a2, . . . }. Define An := {a0, . . . , an−1}, and let An be the substructure
of A that is induced by An.

Let us define an equivalence relation on the homomorphisms from An to
B: Let h1, h2 : An → B. Then the two homomorphisms induce tuples h̄1 =
(h1(a0), . . . , h1(an−1)) and h̄2 = (h2(a0), . . . , h2(an−1)). We call h1 and h2
equivalent (written h1 ∼= h2) if there exists a local isomorphism that maps h̄1
to h̄2.

We claim that there are just finitely many equivalence classes of homomor-
phisms from An to B. Since B is weakly oligomorphic, and weakly homomor-
phism homogeneous, by Proposition 4.3 it follows that B is endolocal. In other
words, the n-ary relations that are definable by positive-existential formulæ co-
incide with the relations that are closed with respect to local homomorphisms.
Note that if there is a local homomorphism that maps a tuple ā to a tuple b̄,
and if there is a local homomorphism that maps b̄ to ā, then ā ∼= b̄. In other
words, two tuples ā and b̄ are equivalent if and only if the respective closure of
{ā} and {b̄} under local homomorphisms coincide. Hence there are just finitely
many equivalence classes of tuples.

Next we claim, that if h1, h2 : An+1 → B with h1 ∼= h2, then h1↾An
∼= h2↾An

.

Indeed, the same local isomorphism that maps h̄1 to h̄2 will also map h1↾An
to

h2↾An
.

Next, we define a tree, whose nodes on level n are all equivalence classes of
homomorphisms from An to B. For the equivalence class [h]∼= that is generated
by h : An+1 → B, the unique lower neighbor is [h↾An

]∼=.
By the above proved claims, this tree is well-defined and finitely branching.

Moreover, the tree has nodes on every level, since Age(A) → Age(B). Hence,
by Kőnig’s tree-lemma, the tree has an infinite branch ([hi]∼=)i∈N.

It remains, to construct the homomorphism from A to B. We proceed by
induction. Our goal is to construct a tower (ĥi)i∈N of homomorphisms ĥi from
Ai to B. Such that for every i, there exists a local homomorphism gi such that
g ◦ hi = ĥi.

Define ĥ0 := h0. Suppose that ĥi is already defined. Then hi+1↾Ai
∼= hi.

Let us denote hi+1↾Ai
by h̃i. Then there exists a local isomorphism ι such that

ι◦h̃i = hi. without loss of generality, dom(ι) = img(h̃i), dom(gi) = img(hi), and

img(gi) = img(ĥi). Then gi ◦ ι : img(h̃i) → img(ĥi) is a local homomorphism,
and img(hi+1) ⊇ img(h̃i). Since B is weakly homomorphism homogeneous, gi◦ι
extends to img(hi+1) (cf. the following diagram).

img(h̃i) img(hi) img(ĥi)

img(hi+1) B

≤ ≤

ι
∼=

gi

gi+1

Now we define ĥi+1(x) := gi+1(hi+1(x)). Then for any x ≤ i, we calculate

gi+1(hi+1(x)) = gi+1(h̃i(x)) = gi(ι(h̃i(x))) = gi(hi(x)) = ĥi(x).

Thus, ĥi+1 is indeed an extension of ĥi, and gi+1 ◦ hi+1 = ĥi+1.
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It remains to note that the union over all ĥi is a homomorphism from A to
B.

Proposition 5.2. Let A, B be a relational structures over the same signature
such that Age(A) → Age(B), and suppose that A is countable, and that B is
weakly oligomorphic. Then A → B.

Proof. First we expand the signature by all positive existential formulæ. B̂
shall be the structure obtained from B by expansion by all positive existential
definitions.

We also expand A to a new structure Â over the new signature. However,
we interprete each additional relational symbol as the empty relation in Â.

With this setting it is clear, that Age(Â) → Age(B̂). Moreover, in B̂, every
positive existential formula is equivalent to a quantifier-free positive formula.
Hence, observing that B̂ is weakly oligomorphic, and using Proposition 4.3, we
conclude that B̂ is weakly homomorphism homogeneous.

By Proposition 5.1, it follows that there is a homomorphism from h : Â → B̂.
Clearly, h is also a homomorphism from A to B.

6 Cores of homomorphism homogeneous struc-
tures

A finite relational structure is called a core if every of its endomorphisms is
an automorphism. There are many ways to generalize the definition of a core
to infinite structures. Several possibilities were explored in [3]. For us, the
following definition seems most reasonable:

Definition. A relational structure C is called a core if every endomorphism of
C is an embedding.

We say that C is a core of A, if C is a core, C ≤ A, and there is an
endomorphism f of A such that img(f) = C.

Cores of relational structures play an important role in the theory of CSPs.
If a template T has a core C, then that means that T and C define the same
CSP. Moreover, C defines the CSP in “the most efficient way”.

For finite relational structures, the core always exist and is unique, up to iso-
morphism. For infinite structures a core may exist or may not exist. Moreover,
if it exists, it may not be unique up to isomorphism.

In this section we will employ the machinery, that was developed in the pre-
vious section in order to study cores of homomorphism-homogeneous structures.
The crucial definition in this section is that of a hom-irreducible element in some
class of structures:

Definition. Let C be a class of relational structures over the same signature
and let A ∈ C. We say that A is hom-irreducible in C if for every B ∈ C and
every homomorphism f : A → B holds that f is an embedding.

For a relational structure A, by CA we denote the class of all finite structures
of the same type like A that are hom-irreducible in the age of A.
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Lemma 6.1. Let C be a hom-amalgamation class, let D be the class of all
structures from C that are hom-irreducible in C. If C → D, then D is a Fräıssé
class, i.e. it has HP, and AP.

Proof. (HP) LetA ∈ D, and letB be a substructure ofA (in particular, B ∈ C).
Let C ∈ C, and let f : B → C be any homomorphism. Then by HAP we
have that there exist a D ∈ C, and a homomorphism g : A → D such that
the following diagram commutes:

B A

C D

≤

≤

f g

Since A is hom-irreducible in C, it follows that g is an embedding, and
that f , being a restriction of g to B, is an embedding, too. We conclude
now that B is hom-irreducible in C, and, hence, D has HP.

(AP) Let A,B,C ∈ D ⊆ C and let f1 : A → C and f2 : A → B be embeddings.
Then, by HAP of C, there exist a D ∈ C, an embedding g1 : B → D and
a homomorphism g2 : C → D:

A C

B D

f1

g1

f2 g2

Since C ∈ D, it follows that g2 is an embedding, too. Using that C → D,
we obtain that there exist a structure D̂ ∈ D with a homomorphism
h : D → D̂. Then D̂ will be the amalgam, with h ◦ g1 and h ◦ g2 as
embeddings.

Lemma 6.2. Let A be a weakly oligomorphic, weakly homomorphism homoge-
neous relational structure. Then Age(A) → CA.

Proof. Consider An and note that all tuples from An can be quasiordered by
ā ≤n b̄ if and only if there is a local homomorphism of A that maps ā to b̄.
Since A is weakly oligomorphic, by Proposition 4.3, A is endolocal. Hence

the set of n-ary relations on A, definable by positive existential types, coincides
with the filters of (An,≤n). Hence the equivalence relation ≤n ∩ ≥n has finitely
many equivalence classes. In particular, every properly ascending chain is finite
and every tuple ā lies below a maximal tuple ā♯.

Let B be a finite substructure of A with B = {b1, . . . , bn}. Define b̄ :=

(b1, . . . , bn) and let b̄♯ be a maximal tuple above b̄, say b̄♯ = (b♯1, . . . , b
♯
n). Let,

further, D be a substructure of A induced by {b♯1, . . . , b♯n}. We define f : B →
D : bi 7→ b♯i , for i = 1, . . . , n. Then f is an epimorphism andD is hom-irreducible
in Age(A).

Proposition 6.3. Let A be a countable homomorphism-homogeneous relational
structure, such that Age(A) → CA then A has a core C with age CA.
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Before coming to the proof of Proposition 6.3, we need to prove a technical
lemma:

Lemma 6.4. Let A be a weakly homomorphism-homogeneous relational struc-
ture, and let D ≤ A be hom-irreducible in Age(A). Further let D̃ be a finite

superstructure of D in A. Finally, let D̂ ≤ A be hom-irreducible in Age(A),

and let f : D̃ ↠ D̂. Then there exists a finite substructure F ≤ A, and an
isomorphism g : D̂ → F such that D ≤ F and the following diagram commutes:

D̃ D̂

D F

f

≤

≤ g ∼=

(2)

Proof. Consider the mapping f̄ given by the following diagram:

f(D)

D D̂

f̄ ≤

f↾D

and note that f̄ is an isomorphism because D is hom-irreducible in Age(A).
Since A is weakly homomorphism-homogeneous, it follows that f̄−1 extends

to a homomorphism g : D̂ → F. F can be chosen in such a way that g is
surjective. Note that since D̂ is hom-irreducible in Age(A), it follows that g is
an isomorphism.

D F

f(D) D̂

≤

≤

f̄−1 g

Let d ∈ D. Then g(f(d)) = g(f̄(d)) = d, since f̄(d) ∈ f(D) and g↾f(D) = f̄−1.
Hence, the diagram (2) commutes.

Proof of Proposition 6.3. Take all finite substructures of A, and denote them
by E0,E1,E2, . . .

We will show that a core exists by constructing an endomorphism whose
image has an age contained in CA. This endomorphism will be obtained as the
union of a tower of local homomorphisms ε : Ai ↠ Ci, where Ci ∈ CA:

Induction basis. Define A0 := E0. Then, by assumptions, there exist a C0 ∈
CA and an epimorphism ε0 : A0 ↠ C0.

Induction step. Suppose that we have constructed εi : Ai ↠ Ci. Define
Ai+1 := Ai ∪ Ei+1. Since A is weakly homomorphism-homogeneous,
there exist a D ≥ Ci and an epimorphism e : Ai+1 ↠ D such that the
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following diagram commutes:

Ai+1 D

Ai Ci

e

εi

≤ ≤

Further, there exists an epimorphism fromD to a substructure ofA that is
hom-irreducible in Age(A). By Lemma 6.4, there exist a structure Ci+1 ≥
Ci that is hom-irreducible in Age(A) and there exists an epimorphism
f : D ↠ Ci+1 such that the following diagram commutes:

D Ci+1

Ci

f

≤ ≤

Define εi+1 := f ◦ e and observe that εi+1 is an extension of εi. Note,
further, that A = ∪i∈NAi.

Let C := ∪i∈NCi and let C ≤ A be a structure induced by C. Further, let
ε := ∪i∈Nεi. Then ε : A ↠ C.

Instead of directly showing that C is a core, we prove the stronger claim,
that every homomorphism f : C → A is an embedding.

Suppose to the contrary that there exists f : C → A that is not an embed-
ding. Then either f is not injective or f is injective, but not strong.

Case 1. If f is not injective, then there are c, d ∈ C such that f(c) = f(d).

On the other hand, there exists an i ∈ N such that {c, d} ⊆ Ci. Since
f↾Ci

is a homomorphism and Ci is hom-irreducible in Age(A), it follows
that f↾Ci

is an embedding, and we arrive at a contradiction.

Case 2. If f is injective, but not strong (i.e. if f is a monomorphism, but
not an embedding), then there exist a basic n-ary relation ϱ of A and a
tuple ā = (a1, a2, . . . , an) ∈ An \ ϱ such that (f(a1), f(a2), . . . , f(an)) ∈ ϱ.
However, then there is an i ∈ N such that {a1, a2, . . . , an} ⊆ Ci, and f↾Ci

is an embedding, which is a contradiction.

Summing up, we conclude f must be an embedding.
Let us finally show that Age(C) = CA: By construction, Age(C) ⊆ CA.

On the other hand, as a core of A, every finite substructure of A that is hom-
irreducible in Age(A) embedds into C. Hence CA ⊆ Age(C).

Corollary 6.5. Every countable weakly oligomorphic homomorphism-homogeneous
structure A has a core C of age CA.

Before coming to the main result of this section, we need to prove a few
auxiliary results:

Lemma 6.6. Let A be a relational structure, then the following are true:
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(a) If A is weakly oligomorphic, then for every n ∈ N, the class Age(A) contains
up to isomorphism only finitely many structures of cardinality n.

(b) If for every n ∈ N, the class Age(A) contains up to isomorphism only finitely
many structures of cardinality n, and A is homomorphism homogeneous,
then A is weakly oligomorphic.

Proof. About (a) Suppose, there are infinitely many isomorphism classes of
substructures of cardinality k. Let (Bi)i∈N be a sequence of distinct rep-
resentatives of isomorphism classes of substructures of A of cardinality k.
Let us enumerate the elements of Bi like Bi = {bi,1, . . . , bi,k}. Consider
the tuples b̄i = (bi,1, . . . , bi,k), and the relations ϱi := {c̄ | pTpA(b̄j) ⊆ c̄}.
Then for any two distinct i, j from N we have that pTpA(b̄i) ̸= pTpA(b̄j),
and hence ϱi ̸= ϱj . This way we have infinitely many distinct k-ary
relations on A that can be defined by sets of positive existential formulæ
over A — contradiction.

About (b) Equip the n-tuples over A with the following quasiorder: ā ≤ b̄ if
there is a local homomorphism that maps ā to b̄. Since A is homomor-
phism homogeneous, this is the case if and only if b̄ is in the invariant
relation of End(A) generated by ā.

We will show, that End(A) is oligomorphic. Suppose, it is not. Then there
is a k and a sequence of tuples (b̄i)i∈N of k-tuples over A, such that for all
distinct natural numbers i and j we have that b̄i and b̄j generate different
invariant relations of End(A). If this is so, then by the infinite pigeon
hole principle, there exists an n ≤ k and a sequence (c̄i)i∈N of irreflexive n-
tuples overA such that any two tuples generate different invariant relations
of End(A). Let M be the number of isomorphism classes of substructures
of cardinality n in A. Then the number of invariant n-ary relations of
generated by n-ary irreflexive tuples is bounded from above by M · n! —
contradiction. Hence End(A) is oligomorphic.

Since all relations definable by sets of positive existential formulæ over A
are invariant under End(A), it follows that A is weakly oligomorphic.

An immediate consequence of the previous lemma is:

Corollary 6.7. If A is a homomorphism homogeneous relational structure over
a finite signature, then A is weakly oligomorphic.

This, together with the characterization of the ages of countable homomor-
phism homogeneous structures, gives a rich source of weakly oligomorphic struc-
tures, since any reduct of a countable weakly oligomorphic structure will again
be weakly oligomorphic.

Lemma 6.8. Let C be a homogeneous core. Then C is weakly oligomorphic if
and only if it is oligomorphic.

Proof. Obviously, if a structure is oligomorphic, then it is weakly oligomorphic,
too.

Suppose now that C is weakly oligomorphic, and let M := End(C) and
G := Aut(C). Take ā = (a1, . . . , an) ∈ Cn and b̄ = (b1 . . . , bn) ∈ āM. Then
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there exists an f ∈ M, such that f(ā) = b̄. Since C is a core, we conclude that f
is an embedding, and, therefore, ai 7→ bi, for i = 1, . . . , n is a local isomorphism.
Since C is homogeneous, it follows that there is a g ∈ G such that g(ā) = b̄, so
b̄ ∈ āG implying that C is oligomorphic.

The following result links homomorphism homogeneous structures to homo-
geneous structures.

Theorem 6.9. Let A be a weakly oligomorphic countable homomorphism ho-
mogeneous structure. Then A contains a substructure F that is isomorphic
to the Fräıssé-limit of CA. Moreover, F and A are hom-equivalent, and F is
oligomorphic.

Proof. Let F be the Fräıssé-limit of CA.
Since A is weakly oligomorphic and CA → Age(A), we conclude from Propo-

sition 5.2, that F → A. Since Age(F) = CA, every homomorphism from F to
A is an embedding. So we can assume without loss of generality that F ≤ A.

Every local homomorphism of F is an embedding. Hence F is homomorphism
homogeneous. Since CA ⊆ Age(A), and since A is weakly oligomorphic, from
Lemma 6.6, it follows that F is weakly oligomorphic. Since F is a homogeneous
core, from Lemma 6.8, it follows that F is oligomorphic.

It remains to show that A → F. By Corolary 6.5, A has a core C such that
Age(C) = CA. Hence, by Proposition 5.2, it follows that C → F.

The following corollary is of independent interest in the theory of homomor-
phism homogeneous structures

Corollary 6.10. Every countable, weakly oligomorphic, homomorphism homo-
geneous structure A contains, up to isomorphism, a unique hom-equivalent ho-
momorphism homogeneous core F. Moreover, F is oligomorphic and homoge-
neous.

Proof. Theorem 6.9 guaranties the existence of F. Indeed, F is homomorphism
homogeneous, because every local homomorphism of F is an embedding.

Suppose that F′ is another such core. Then CA ⊆ Age(F′). On the other
hand, Age(A) → CA, hence Age(F′) → CA. Hence any substructure of F that
is not hom-irreducible in Age(A), homomorphically maps to a hom-irreducible
element. This defines a local homomorphism that is not an embedding. By the
homomorphism-homogeneity of F′, this extends to an endomorphism, that is
not an embedding — contradiction. Thus Age(F′) = CA, and every local homo-
morphism is an embedding. From this follows that F′ is weakly homogeneous,
and hence homogeneous. From Fräıssé’s theorem it follows that F ∼= F′.

Remark. The previous Theorem shows, that whenever a CSP can be formalized
using a weakly oligomorphic homomorphism homogeneous template, then it can
also be formalized by an oligomorphic homogeneous core.

7 Weak oligomorphy and ω-categoricity

In this section we will create a link from weakly oligomorphic structures to
ω-categorical structures. Let us start by recalling some classical notions and
results from model theory, and by proving some additional auxiliary results:
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Definition. A first order theory is called ω-categorical if it has up to isomor-
phism exactly one countably infinite model. A countably infinite structure A is
called ω-categorical if Th(A) is ω-categorical.

The following classical result links ω-categoricity with oligomorphy (cf. [11,
(2.10)]):

Theorem 7.1 (Engeler, Ryll-Nardzewski, Svenonius). Let A be a countably
infinite structure. Then A is ω-categorical if and only if it is oligomorphic.

In the previous section we linked weakly oligomorphic homomorphism homo-
geneous structures with oligomorphic homogeneous structures. The following
Theorem makes a similar link between weakly oligomorphic structures and ω-
categorical structures.

Theorem 7.2. Let A be a countable weakly oligomorphic relational structure.
Then A, is hom-equivalent to a finite or ω-categorical structure F. Moreover,
F embedds into A.

Proof. Let Â be the structure that is obtained by expanding A by all positive
existential defininable relations over A.

In Â every positive existential formula is equivalent to a positive quantifier-
free formula. Hence, by Proposition 4.3, Â is homomorphism homogeneous.
Clearly, Â is weakly oligomorphic, too. Hence, by Theorem 6.9, Â has a sub-
structure F̂ that is oligomorphic, homogeneous, and homomorphism equivalent
to Â.

Let F be the reduct of F̂ to the signature of A. Then still F is oligomorphic,
and since Â and A have the same endomorphisms, F still is homomorphism-
equivalent to A.

If F is countably infinite, then, by Theorem 7.1, it is ω-categorical.

8 Positive existential theories of weakly oligo-
morphic structures

The Engeler, Ryll-Nardzewski, Svenonius Theorem (cf. Theorem 7.1) can be
understood as a characterization of the first order theories of countable oligo-
morphic structures. Using Theorem 7.2, we can give a similar characterization
of the positive existential theories of weakly oligomorphic structures.

Theorem 8.1. Let T be a set of positive existential propositions. Then the
following are equivalent:

1. T is the positive existential theory of a countable weakly oligomorphic
structure.

2. T is the positive existential part of an ω-categorical theory.

3. T is the positive existential theory of a countable oligomorphic structure.

Proof. From Theorem 7.1, it follows that statements 2 and 3 are equivalent.
Obviously, from 3 follows 1, so, to complete the proof, it is left to show that
from 1 follows 3:
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Let T be the positive existential theory of a countable weakly oligomor-
phic structure A. Then, by Theorem 7.2, A is hom-equivalent to a finite or
ω-categorical structure F. If F is finite, then it is hom-equivalent to an ω-
categorical structure F̂ (take ω disjoint copies of F; this structure surely is

oligomorphic and hence ω-categorical; moreover, F is a retract of F̂).
Clearly, two homomorphism-equivalent structures have the same positive

existential theories.
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