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Abstract. The main object of the paper is finding a unique solution to Rie-

mann problem for generalized Chaplygin gas model. That is a model of the
dark energy in Universe introduced in the last decade. It permits an infi-

nite mass concentration so one has to consider solutions containing the Dirac

delta function. Although it was easy to construct solution to any Riemann
problem, the usual admissibility conditions, overcompressiveness, do not ex-

clude unwanted delta-type waves when a classical solution exists. We are using

Shadow Wave approach in order to solve that uniqueness problem since they
are well adopted for using Lax entropy–entropy flux conditions and there is a

rich family of convex entropies.

1. Introduction

A generalized Chaplygin gas appears in a number cosmology theories and it is
a model for a compressible fluid with a pressure inversely proportional to a gas
energy density, p = −C/ρα, C > 0, 0 < α < 1, see [2] for the first model, and [10]
for some more advanced models. It is used as a model for the dark energy in the
Universe. (We will use C = 1 in the rest of the paper for simplicity.) The system
consists from the mass and momentum conservation laws

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 − 1

ρα

)
= 0,

where u denotes a velocity of the gas. In this paper we use the momentum variable
q = ρu:

∂tρ+ ∂xq = 0

∂tq + ∂x

(q2

ρ
− 1

ρα

)
= 0.

(1.1)

The physical region for both systems is ρ > 0 and the sound speed of the system
tends to zero as ρ→∞. Note that we do not have vacuum states due to division by
zero in the flux. That is, we do not loose a solution by rewriting the original system
into evolutionary form (1.1) like in the case of isentropic gas-dynamics model, for
example. That property allows a mass concentration in a finite time and one could
expect some kind of non-classical solutions containing Dirac delta function. (One
of the first definitions up to our knowledge was given in [8].) It was not so difficult to
construct solutions of such type for (1.1). Moreover, using solutions of that kind (let
us call them delta shocks) one can always solve arbitrary Riemann problem for that
system. Let us note that there is a solution to system (1.1) with the Riemann data
containing a delta shock solution constructed in [22] (and the one for the system
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with friction in [20]). But in both cases, the authors just claimed and proved that
there is an overcompressive delta shock solution in a region without classical ones.
They overlooked a fact that there is a region where exists both kinds of solution:
a classical and a delta shock ones. That means that the system may not have a
unique solution. Our aim is to give some progress in solving that problem. In all
systems admitting some kind of the delta function in a solution we have found in
the literature, one could use a fact that non-classical solution containing the delta
function has to be overcompressive. That condition ruled out unwanted solutions of
that kind. In the case of system (1.1), the overcompressibility condition is not good
enough as one can see bellow. There is a region where there are both two-shock
and overcompressive delta shock solutions. Using the shadow wave solutions we
could try with convex entropies and Lax entropy condition. One can look at [15]
about relations between the overcompressibility and Lax entropy condition with
(semi-)convex entropies when delta shocks are represented by shadow waves. In
most of the cases these conditions are equivalent. But, there is at least one case
when overcompressibility is superior to the Lax condition, 2 × 2 pressureless gas
dynamics, as written in [7]. (Interestingly, for the full system, with energy equation
added, these two admissibility conditions are equivalent again.)

Concerning system (1.1), we found few families of convex entropies using stan-
dard procedure (see [6]) that can be used for admissibility check. Note that we were
not able to find all convex entropies to the system. Using the obtained entropies we
got the following results. First, we reduced the area where there are non-uniqueness
problems. That clearly means that we have obtained better admissibility conditions
than overcompressibility. This is the only such result in the literature up to our
knowledge and that is the most interesting result of the paper. We were not able to
prove that these entropy functions suffice for uniqueness proof. One can see some
examples and some numerical illustrations that give us some signs that it could
be possible to prove uniqueness. There are two possible reasons for that failure.
One is that convex entropies involves modified Bessel functions of the second kind
that are quite tough for proper approximation in both directions to zero or infinity.
But maybe we need some wider families of convex entropies in order to prove the
uniqueness. We left these questions open.

Let us note that for the well known Chaplygin model α = 1 there is a unique
solution to a Riemann problem. There is a delta shock solution in some cases (see
[3]). It is interesting that in this case a lot of conditions are good enough to obtain
a unique solution: overcompressibility, and entropy condition with only one convex
entropy functional (mechanical energy, for example). One can look in [16] for that.

Among a numerous number of papers dealing with delta shock waves, we can
mention [21], where authors studied a class of non-strictly hyperbolic systems of
conservation laws where they manage to find a kind of delta shock waves where
both state variables contain the Dirac delta function, unlike most papers where
only one state variable contains the Dirac delta function. Let us also mention [17]
where one can find a definition for more singular non-classical objects – δ′ shock
waves, and [12] describing something that looks like

√
δ (see also [14] that contains

some additional properties of such waves). The papers [5] and [13] contain some
examples of delta shock formation from classical shocks. Note that all these objects
can be substituted by appropriate shadow waves used in this paper.
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The paper is organized as follows. Section 2 contains some basic properties of
the given system. Section 3 contains the existence proof to the Riemann problem
but without uniqueness. In order to gain uniqueness, in Section 4, we use convex
entropy – entropy flux pair. Our intention is to employ entropy conditions in order
to weed out inadmissible solutions. Actually, our aim was to prove that a simple
shadow wave solution (SDW for short) to our problem is admissible for all convex
entropy pairs only at the points that can not be connected by two shock solution.
In general, there are two entropy conditions that SDW solution has to satisfy. The
first one is connected with δ′-part, and the second one with δ-part. We proved
that first entropy condition is true for all convex entropy pairs we have found. But
with the second condition we were only partially successful. In Section 5 we gave
some partial uniqueness results. We also proved local theorem which gave us the
existence of the points that can be connected with the left-hand state by two shock
solution where entropy condition is not satisfied while overcompressibility condition
is. Thus, we have proved that the entropy conditions are better than well-known
overcompressibility condition in that case. That is the first result of that kind up
to our knowledge.

2. Properties of the system

Let us briefly give the properties of the system. One can use a standard textbooks
about conservation law systems, like [4], [6] or [19]. It is strictly hyperbolic system

with the eigenvalues λ1 = q
ρ −
√
αρ−

1+α
2 , λ2 = q

ρ +
√
αρ−

1+α
2 and appropriate

eigenvectors r1 =
(
− 1,− qρ +

√
αρ−

1+α
2

)T
and r2 =

(
1, qρ +

√
αρ−

1+α
2

)T
. Both

fields are genuinely nonlinear.
Using the standard procedures one can find the rarefaction curves:

R1 : q =
ρ

ρ0
q0 +

2
√
α

1 + α
ρ
(
ρ−

1+α
2 − ρ−

1+α
2

0 ), ρ < ρ0

R2 : q =
ρ

ρ0
q0 −

2
√
α

1 + α
ρ
(
ρ−

1+α
2 − ρ−

1+α
2

0 ), ρ > ρ0,

as well as the shock ones:

S1 : q =
ρ

ρ0
q0 −

√
ρ

ρ0
(ρ− ρ0)

( 1

ρα0
− 1

ρα

)
, ρ > ρ0,

S2 : q =
ρ

ρ0
q0 −

√
ρ

ρ0
(ρ− ρ0)

( 1

ρα0
− 1

ρα

)
, ρ < ρ0.

(2.1)

The shock speeds ci of Si, i = 1, 2 are

c1,2 =
q0

ρ0
∓

√
ρ

ρ0

ρα − ρα0
ρ− ρ0

1

ρα0 ρ
α
.

Our aim is to solve Riemann problem, i.e. (1.1) with the initial data

(2.2) (ρ, q) =

{
(ρ0, q0), x < 0

(ρ1, q1), x > 0
.

A solution is given as a combination of the rarefaction waves for the points (ρ, q)
above the curves R1 and R2. In areas between the curves R1 and S2 (S1 and R2,
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R1+R2

S1+R2

R1+S2

S1+S2

No classical solution bellow that line

Figure 1. Classical waves

resp.) one can always find a solution in the form R1 + S2 (S1 +R2, resp.). Bellow
the curves S1 and S2 we have a solution consisting from two shocks. But not in
the complete area (for more details see [22]): Only if (ρ1, q1) is above the curve

Γss = Γss(ρ0, q0) : q =
( q0

ρ0
− ρ−

1+α
2 − ρ−

1+α
2

0

)
ρ.

That curve is obtained as a boundary of all possible S1 + S2 combinations and is
not included in that area - i.e. there are no classical solutions when (ρ, q) ∈ Γss.
(See Figure 1.)

3. Shadow waves

In this section we are looking for non-classical (singular) solution below the curve
Γss. We are using a simple shadow wave type of solution which is defined as robustly
as possible in order to improve chances of obtaining some sort of uniqueness. A big
advantage of this type of solutions is that it also includes delta and singular shocks
as special cases. That was one of the main reasons why we have chosen to look at
solution in the form of the simple shadow wave.

Lemma 3.1. There exists a simple shadow wave (SDW for short) written in the
form

(ρ, q) =


(ρ0, q0), x < (c− ε)t
(ρ0,ε, q0,ε), (c− ε)t < x < ct

(ρ1,ε, q1,ε), ct < x < (c+ ε)t

(ρ1, q1), x > (c+ ε)t,

that solves (1.1,2.2) if and only if

(q0ρ1 − q1ρ0)2 > (ρ0 − ρ1)
( 1

ρα1
− 1

ρα0

)
ρ0ρ1.
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Proof. Using Lemma 1 from [15] one gets the following formulas for its derivatives

∂tρ ≈
(
− c[ρ] + (ερ0,ε + ερ1,ε)

)
δ − c(ερ0,ε + ερ1,ε)tδ

′

∂xq ≈ [q]δ + (εq0,ε + εq1,ε)tδ
′

∂tq ≈
(
− c[q] + (εq0,ε + εq1,ε)

)
δ − c(εq0,ε + εq1,ε)tδ

′

∂x

(q2

ρ
− 1

ρα

)
≈
[q2

ρ
− 1

ρα

]
δ +

(
ε
( q2

0,ε

ρ0,ε
− 1

ρα0,ε

)
+ ε
( q2

1,ε

ρ1,ε
− 1

ρα1,ε

))
tδ′.

Here and bellow the sign “≈” denotes a limit as ε → 0 while [y] := y1 − y0 is the
standard designation of jump in a variable y across a shock front. The support of
delta function δ and its derivative δ′ is the line x = ct. One immediately sees that
the only possibility to avoid a trivial case (when both ρi,ε and qi,ε, i = 0, 1, are
zero) is ρi,ε, qi,ε ∼ ε−1, i = 0, 1. So, let us denote

ξi := lim
ε→0

ερi, χi := lim
ε→0

εqi, i = 0, 1.

Then

ε
( q2

0,ε

ρ0,ε
− 1

ρα0,ε

)
≈ χ2

i

ξi
, i = 0, 1.

and Riemann problem (1.1,2.2) reduces to the system of the following equations

−c[ρ] + (ξ0 + ξ1) + [q] = 0

c(ξ0 + ξ1) = χ0 + χ1

−c[q] + (χ0 + χ1) +
[q2

ρ
− 1

ρα

]
= 0

c(χ0 + χ1) =
χ2

0

ξ0
+
χ2

1

ξ1
.

(3.1)

Denote by κ1 := c[ρ] − [q] and κ2 = c[q] −
[q2

ρ
− 1

ρα

]
so called Rankine-Hugoniot

deficits for the first and second equation of the system, resp. One immediately gets
κ2 = cκ1 from the second equation. The third and fourth equation determines c

(3.2) c =

[q]±
√

[q]2 − [ρ]
[
q2−ρ1−α

ρ

]
[ρ]

.

The only possible relation between unknowns ξi, χi, i = 0, 1, is

ξ0 =
χ0

c
and ξ1 =

χ1

c
,

and it fixes the fourth equation. The first and the third equation in (3.1) uniquely
determines a strength of SDW

ξ := ξ0 + ξ1 = κ1, χ := χ0 + χ1 = κ2 = cκ1.

The variable ρ denotes the density so κ1 > 0 (the case κ1 = 0 corresponds to a
shock). From the first equation in (3.1) we have

c =
q1 − q0 + κ1

ρ1 − ρ0
,
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and the positivity of κ1 implies that one has to take plus sign in (3.2). A simple
computation gives

κ1 =

√
(q0ρ1 − q1ρ0)2

ρ0ρ1
− (ρ0 − ρ1)

( 1

ρα1
− 1

ρα0

)
.

Thus, an SDW solution to (1.1), (2.2) exists if and only if

(3.3) (q0ρ1 − q1ρ0)2 > (ρ0 − ρ1)
( 1

ρα1
− 1

ρα0

)
ρ0ρ1

i.e. a point (ρ1, q1) has to be below the curve

(3.4) q =
ρ

ρ0
q0 −

√
ρ

ρ0
(ρ0 − ρ)

( 1

ρα
− 1

ρα0

)
or above the curve

(3.5) q =
ρ

ρ0
q0 +

√
ρ

ρ0
(ρ0 − ρ)

( 1

ρα
− 1

ρα0

)
.

�

Remark 3.1. Note that in the (simple) SDW given by (3.1) we have only used
constant mean-states (ρ0,ε, q0,ε), (ρ1,ε, q1,ε) and a constant SDW speed curve x = ct.
That is the simplest form of a SDW solution, but in the case of our Riemann problem
that is enough since the initial data does not contain a delta function and initial
states (ρ0, q0), (ρ1, q1) in the Riemann initial data are constant. Otherwise, one
may use a type of SDW called weighted SDW (for more details see [15]).

The curve given by (3.4) coincides with (2.1) and is above Γss. Therefore, the
region of the data (ρ1, q1) situated between this curve and Γss corresponds exactly
to S1 + S2 solution, meaning that a solution to Riemann problem is not unique:
For (ρ1, q1) between these curves both S1+S2 and SDW solution exists. Also, both
solutions exist above the curve (3.5). One has to exclude SDW or S1+S2 solution.
The overcompressibility condition is often used in order to gain a uniqueness of
delta shock – type solutions. It means that λi(ρ0, q0) ≥ c ≥ λi(ρ1, q1) should be
true for i = 1, 2.

That relation for system (1.1) is satisfied if

(3.6)
q0

ρ0
−
√
αρ
− 1+α

2
0 ≥ q1 − q0 + κ1

ρ1 − ρ0
≥ q1

ρ1
+
√
αρ
− 1+α

2
1 .

Let us denote by x := q0ρ1 − q1ρ0 and note that (3.6) implies x > 0. Take ρ1 > ρ0

first. The condition (3.6) is then equivalent to

f1(x) := x−
√
αρ

1−α
2

0 (ρ1 − ρ0)− ρ0κ1

= x−
√
αρ

1−α
2

0 (ρ1 − ρ0)−
√
ρ0

ρ1

√
x2 − x2

∗ ≥ 0

f2(x) := x+
√
αρ

1−α
2

1 (ρ1 − ρ0)− ρ1κ1

= x+
√
αρ

1−α
2

1 (ρ1 − ρ0)−
√
ρ1

ρ0

√
x2 − x2

∗ ≤ 0,

(3.7)
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where x∗ :=
√
ρ0ρ1(ρ1 − ρ0)(ρ−α0 − ρ−α0 ) > 0. Note that the condition for SDW

existence (3.3) means that x > x∗ and we will look only at such x.
If ρ−α1 < (1−α)ρ−α0 then f1 is always greater or equals zero. Otherwise, f1(x) ≥ 0

for x ≤ y1 or x ≥ x1, where x1 :=
√
αρ

1−α
2

0 ρ1 + ρ0ρ
1
2
1

√
ρ−α1 − (1− α)ρ−α0 and

y1 :=
√
αρ

1−α
2

0 ρ1 − ρ0ρ
1
2
1

√
ρ−α1 − (1− α)ρ−α0 .

It holds ρ−α0 ≥ (1−α)ρ−α1 so f2 ≤ 0 if x ≤ y2 or x ≥ x2 where x2 :=
√
αρ0ρ

1−α
2

1 +

ρ
1
2
0 ρ1

√
ρ−α0 − (1− α)ρ−α1 , y2 :=

√
αρ0ρ

1−α
2

1 − ρ
1
2
0 ρ1

√
ρ−α0 − (1− α)ρ−α1 .

In the above analysis we have used that (3.6) implies x ≥
√
α(ρ

1−α
2

0 ρ1+ρ0ρ
1−α
2

1 ) >

ρ
1−α
2

0 (ρ1 − ρ0) in the calculations.

First, let us note that ρ1 > ρ0 implies that y2 <
√
αρ

1−α
2

0 ρ1 − ρ
1
2
0 ρ1

√
αρ−α0 = 0.

Second, we have that x1 < x2, since

x1−x2 = ρ0ρ
1−α
2

1

(√
1− (1− α)

(ρ1

ρ0

)α
−
√
α
)
−ρ

1−α
2

0 ρ1

(√
1− (1− α)

(ρ0

ρ1

)α
−
√
α
)

equals zero when ρ1 = ρ0, and its first derivative with respect to ρ1 in negative for
ρ1 > ρ0.

Therefore, in the case ρ1 > ρ0, both conditions in (3.6) hold if x ≥ x2.

Let ρ1 < ρ0, now. Using the same notation and arguments (with ρ0 and ρ1

interchanged) as above, one could see that both conditions in (3.6) are satisfied if
x ≥ x1.

Therefore, one sees that (ρ1, q1) can be connected by an overcompressive SDW
with (ρ0, q0) if and only if it lies bellow the curve

Γoc : q =


ρ

ρ0
q0 −

1

ρ0

(√
αρ0ρ

1−α
2 + ρ

1
2
0 ρ
√
ρ−α0 − (1− α)ρ−α

)
, if ρ0 ≤ ρ,

ρ

ρ0
q0 −

1

ρ0

(√
αρ

1−α
2

0 ρ+ ρ0ρ
1
2

√
ρ−α − (1− α)ρ−α0

)
, if ρ0 > ρ.

Remark 3.2. As one could see, the curve (3.5) lies above Γoc and SDW solution
above (3.5) is not overcompresive. If (ρ1, q1) lies below Γoc and above Γss a solution
to (1.1), (2.2) is not unique (see Figure 2): One can construct both S1+S2 and the
overcompressive SDW solution to that problem. Our aim is to use a possibility of
using convex entropy – entropy flux pair for SDWs. That possibility was one of the
major reasons of use SDWs to reconstruct non-classical solution to conservation
law systems (see [15] for examples).

The solution concepts used in [20] and [22] share that property. Basically, all
three concepts give solutions with the same distributional limit. The authors of
these papers simply excluded unwanted delta shocks in the above area without an
explanation. We will try to use Lax entropy condition. The first task will be to
find as broad as possible a family of convex entropies for system (1.1).

4. Convex entropies

Suppose that a conservation laws system posses convex entropy – entropy flux
pair (called convex entropy pair bellow) (η,Q). According to the entropy conditions
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Figure 2. Overcompressive SDW vs. S1+S2

from [15], a SDW solution (ρ, q) to (1.1) is admissible if

lim
ε→0
−c(εη(ρ0,ε, q0,ε) + εη(ρ1,ε, q1,ε)) + εQ(ρ0,ε, q0,ε) + εQ(ρ1,ε, q1,ε) = 0

−c(η(ρ1, q1)− η(ρ0, q0)) +Q(ρ1, q1)−Q(ρ0, q0)

+ lim
ε→0

(εη(ρ0,ε, q0,ε) + εη(ρ1,ε, q1,ε)) ≤ 0.

(4.1)

It is not so hard to find one convex entropy pair. Analogously to the known en-
ergy function for other gas dynamic models, we have the following pair of functions

η =
1

2

q2

ρ
+

1

1 + α
ρ−α, Q =

1

2

q3

ρ2
− α

1 + α
qρ−(1+α).

Substitution of these functions in (4.1) gives a different set of admissible points
(ρ1, q1) than the overcompressibility condition. But there is still a non-empty inter-
section of that set with {(ρ1, q1) : there exists a S1+S2 solution connecting (ρ0, q0)
and (ρ1, q1)}. Even more, the overcompressive and entropic sets of admissible states
(ρ1, q1) are not comparable as one could see on the Figure 3. Note that a situation
is different in the case of Chaplygin gas with α = 1 (see [16]), where use only of

the energy η = q2+1
ρ as a convex entropy is enough to single out a unique solution

to Riemann problem, and the overcompressibility condition gives the same one.
Let us now try to find some more convex entropies. Using the standard procedure

(see [6] for example) one can find that an entropy function η satisfies

∂ρρη +
2q

ρ
∂ρqη +

( q2

ρ2
− α

ρ1+α

)
∂qqη = 0.

After a change of variables v = q
ρ+ 2

√
α

1+αρ
− 1+α

2 and w = q
ρ−

2
√
α

1+αρ
− 1+α

2 , the equation

becomes

(v − w)∂vwη =
3 + α

2(1 + α)
(∂vη − ∂wη).
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ss

overcomressive curve

energy curve

Figure 3. Energy entropy condition

If we separate variables by η(v, w) = f(v − w)g(v + w), it reduces to

g′′(v + w)

g(v + w)
=

2B

v − w
f ′(v − w)

f(v − w)
+
f ′′(v − w)

f(v − w)
= l ∈ R,

where B = 3+α
2(1+α) . For l ≤ 0 a function is not convex and consequently, a function

g nor η can not be convex. Fix l > 0. Then g(v + w) = C1e
√
l(v+w) + C1e

−
√
l(v+w),

while f solves f ′′(v − w) + 2B
v−wf

′(v − w)− lf(v − w) = 0. From [18] one gets

f(v − w) = (v − w)−
1

1+α

(
c1I 1

1+α

(
(v − w)

√
l
)

+ c2K 1
1+α

(
(v − w)

√
l
))
,

where Iν(x) denote modified Bessel function of the first kind, while Kν(x) denote
modified Bessel function of the second kind. Using the original variables (ρ, q), we
have

η(ρ, q) = C1η1(ρ, q) + C2η2(ρ, q) + C3η3(ρ, q) + C4η4(ρ, q),

where
(4.2)

η1(ρ, q) := e
2q
ρ λρ

1
2K 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)
, η2(ρ, q) := e−

2q
ρ λρ

1
2K 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)
,

(4.3)

η3(ρ, q) := e
2q
ρ λρ

1
2 I 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)
, η4(ρ, q) := e−

2q
ρ λρ

1
2 I 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)
,

and λ :=
√
l > 0.

Lemma 4.1. Entropy functions η1 and η2 defined by (4.2) are convex, while η3

and η4 defined by (4.3) are non-convex, for each λ > 0 and 0 < α < 1.

Proof. It is known that entropy function is convex if its Hessian matrix is positive
definite. So, in order to prove that η1 and η2 are convex it is enough to prove
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that the principal minors of a Hessian matrix of η1/2 are all positive. We use the
following relations in the proof below:

K ′ν(z) = −1

2

(
Kν−1(z) +Kν+1(z)

)
, − 2ν

z
Kν(z) = Kν−1(z)−Kν+1(z),

Kν(z) < Kµ(z), for ν < µ.

Put x(ρ) = 4
√
α

1+αρ
− 1+α

2 λ for simplicity. We have

∂

∂ρ
K 1

1+α

(
x(ρ)

)
= 2
√
αλρ−

3+α
2 K α

1+α

(
x(ρ)

)
+

1

2
ρ−1K 1

1+α

(
x(ρ)

)
,

∂

∂ρ
K α

1+α

(
x(ρ)

)
= 2
√
αλρ−

3+α
2 K 1

1+α

(
x(ρ)

)
+

1

2
αρ−1K α

1+α

(
x(ρ)

)
.

Then,

∂

∂ρ
η1(ρ, q) = e

2q
ρ ρ−

1
2

(
K 1

1+α

(
x(ρ)

)(
− 2qρ−1 + 1

)
+ 2
√
αλρ−

1+α
2 K α

1+α

(
x(ρ)

))
,

∂2

∂ρ2
η1(ρ, q) = 4e

2q
ρ ρ−

5
2

(
K 1

1+α

(
x(ρ)

)(
q2ρ−1 + αλ2ρ−α

)
− 2
√
αλqρ−

1+α
2 K α

1+α

(
x(ρ)

))
> 4e

2q
ρ ρ−

5
2K α

1+α

(
x(ρ)

)(
qρ−

1
2 −
√
αλρ−

α
2

)2

≥ 0,

∂2

∂q∂ρ
η1(ρ, q) = 4e

2q
ρ ρ−

5
2

(
− qK 1

1+α

(
x(ρ)

)
+
√
αλρ−

1+α
2 K α

1+α

(
x(ρ)

))
and

∂

∂q
η1(ρ, q) = 2e

2q
ρ ρ−

1
2K 1

1+α

(
x(ρ)

)
,

∂2

∂q2
η1(ρ, q) = 4e

2q
ρ ρ−

3
2K 1

1+α

(
x(ρ)

)
.

Determinant of Hessian matrix is given by

D1 :=
∂2

∂ρ2
η1 ·

∂2

∂q2
η1 −

( ∂2

∂q∂ρ
η1

)2

= 16αλ2e
4q
ρ ρ−4−α

((
K 1

1+α

(
x(ρ)

))2

−
(
K α

1+α

(
x(ρ)

))2
)
.

Since 1
1+α >

α
1+α , for α ∈ (0, 1), it is clear that D1 is positive.

On the same way as above one gets

∂2

∂ρ2
η2(ρ, q) = 4e−

2q
ρ ρ−

5
2

(
K 1

1+α

(
x(ρ)

)(
q2ρ−1 + αλ2ρ−α

)
+ 2
√
αλqρ−

1+α
2 K α

1+α

(
x(ρ)

))
> 4e−

2q
ρ ρ−

5
2K α

1+α

(
x(ρ)

)(
qρ−

1
2 +
√
αλρ−

α
2

)2

≥ 0,

D2 := 16αλ2e
−4q
ρ ρ−4−α

((
K 1

1+α

(
x(ρ)

))2

−
(
K α

1+α

(
x(ρ)

))2
)
.

Since, ∂2

∂ρ2 η2(ρ, q) > 0 and D2 > 0, one concludes that η2 is also a convex function.

In the proof of non-convexity of the functions η3, η4 one follows the same arguments
and one also uses the following

I ′ν(z) =
1

2

(
Iν−1(z)− Iν+1(z)

)
,

2ν

z
Iν(z) = Iν−1(z) + Iν+1(z),

Iν(z) > Iµ(z), for ν < µ.
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For example, determinant of the Hessian matrix of the function η3 is

D3 := 16αλ2e
4q
ρ ρ−4−α

((
I 1

1+α

(
x(ρ)

))2

−
(
I α

1+α

(
x(ρ)

))2
)
.

D3 is negative which means that η3 is not a convex function. Same follows for a
function η4. �

Therefore, using the original variables (ρ, q) one can conclude that all convex η
obtained by the separation of variables are linear combination of the functions η1

and η2 from (4.2) for every λ > 0. Appropriate entropy flux functions are given by

Q1(ρ, q) :=
1

2λ
ρ−

1
2 e

2q
ρ λ

(
(2λq − ρ)K 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)

+ 2λ
√
αρ

1−α
2 K 2+α

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
))

,

Q2(ρ, q) :=
1

2λ
ρ−

1
2 e−

2q
ρ λ

(
(2λq + ρ)K 1

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
)

− 2λ
√
αρ

1−α
2 K 2+α

1+α

( 4
√
α

1 + α
ρ−

1+α
2 λ
))

.

Remark 4.1. In order to get more convex entropies one can try to separate variables
on the different way. For example, we can separate variables by η(v, w) = f(v −
w)g(v). As a result we get the following convex entropy function

η(ρ, q) = eλ
q
ρ

( 4
√
α

1 + α

)− 1
1+α

ρ
1
2K 1

1+α

( 2
√
α

1 + α
ρ−

1+α
2 λ
)

and appropriate entropy flux function given by

Q(ρ, q) = eλ
q
ρ

( 4
√
α

1 + α

)− 1
1+α

ρ−
1
2

(
K 1

1+α

( 2
√
α

1 + α
ρ−

1+α
2 λ
)
q

+
√
αρ

1−α
2 K α

1+α

( 2
√
α

1 + α
ρ−

1+α
2 λ
))

.

We choose to represent results obtained by using convex entropy-entropy flux pairs
(η1, Q1), (η2, Q2). We did not make a significant improvement with the above pair
(η,Q) so we omit those results.

Definition 4.1. An SDW solution to (1.1) is said to be entropic if (4.1) holds true
for all entropy pairs (η1, Q1), (η2, Q2), λ > 0.

We have completed the existence proof in Lemma 3.1 above. Only thing we have
to solve is to exclude unwanted SDW solution above the line Γss and the solution
would be unique.

Theorem 4.1. The relation

lim
ε→0
−c(εη(ρ0,ε, q0,ε) + εη(ρ1,ε, q1,ε)) + εQ(ρ0,ε, q0,ε) + εQ(ρ1,ε, q1,ε) = 0

holds true for an SDW solution, entropy pairs (η1, Q1) and (η2, Q2) and any λ.
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Proof. Since ρ
− 1+α

2
i,ε → 0 as ε→ 0, i = 1, 2 and since the modified Bessel functions

of the second kind satisfy

(4.4) Kν(x) ∼ 1

2
Γ(ν)

( 2

x

)ν
, ν > 0 as x→ 0,

we have

K 1
1+α

( 4
√
α

1 + α
λρ
− 1+α

2
i,ε

)
∼ 1

2
Γ
( 1

1 + α

)(2(1 + α)

4
√
αλ

) 1
1+α

ρ
1
2
i,ε, i = 1, 2

and

K α
1+α

( 4
√
α

1 + α
λρ
− 1+α

2
i,ε

)
∼ 1

2
Γ
( α

1 + α

)(2(1 + α)

4
√
αλ

) α
1+α

ρ
α
2
i,ε, i = 1, 2.

By virtue of the above relation, the first relation in (4.1) for the entropy pair (η1, Q1)
becomes

− c

2
e2λcΓ

( 1

1 + α

)( 1 + α

2
√
αλ

) 1
1+α

(ξ0 + ξ1)

+
1

2
Γ
( 1

1 + α

)
e2λc

( 1 + α

2
√
αλ

) 1
1+α

(χ1 + χ2) = 0.

It is now clear that that relation is true for every λ if and only if c(ξ1+ξ2) = χ0+χ1.
But that relation is always true when SDW is a solution to the system as one could
see above. Obviously, the same holds for the second entropy pair (η2, Q2). �

In order to prove uniqueness of solution one needs to prove that the second
relation in (4.1) is always non-positive for (ρ1, q1) lying on Γss(ρ0, q0) and bellow
for every λ > 0, while above it is positive at least for some λ > 0. We were not
able to complete that process, and we will present partial results about that in the
rest of the paper. We left that question open.

5. Partial uniqueness results

In order to prove that the second relation in (4.1) is satisfied in some cases we
will use the following equality for modified Bessel functions of the second kind

K 2+α
1+α

(x) =
2

x(1 + α)
K 1

1+α
(x) +K α

1+α
(x).

Also, the following inequalities hold for every x > 0 and 0 < α < 1 (also see Figure
4)

(5.1) K 1
1+α

(x) >
1

2
Γ
( 1

1 + α

) (x
2

)− 1
1+α

e−x,

(5.2) K α
1+α

(x) <
1

2
Γ
( α

1 + α

) (x
2

)− α
1+α

e−x.

Inequality (5.1) follows from relation

xνKν(x)ex > 2ν−1Γ(ν), x > 0, ν >
1

2
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Figure 4. Inequalities (5.1) and (5.2)

proved in [9], since 1
1+α > 1

2 , 0 < α < 1. Inequality (5.2) follows from paper [1],

where the function x 7→ xνexKν(x) is proved to be monotone decreasing on (0,∞)
for all ν < 1

2 , while

lim
x→0

xνexKν(x) = 2ν−1Γ(ν).

Here, we can use this results since α
1+α <

1
2 , 0 < α < 1 hold. Put A = 2

√
α

1+α in order
to simplify the future notation. Note that 0 < A < 1 for 0 < α < 1.

We start our analysis by looking at the second entropy inequality in (4.1). By a
simple substitution and use of the above relations we get the left-hand side of the
second relation in (4.1) to be in the form

E1
λ = lim

ε→0
ε
(
ρ

1
2
0,εK 1

1+α

(
2Aλρ

− 1+α
2

0,ε

)
+ ρ

1
2
1,εK 1

1+α

(
2Aλρ

− 1+α
2

1,ε

))
e2cλ

−K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
− 1

2
0 (−cρ0 + q0) e2λ

q0
ρ0 −

√
αK α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 e2λ

q0
ρ0

−K 1
1+α

(
2Aλρ

− 1+α
2

1

)
ρ
− 1

2
1 (cρ1 − q1) e2λ

q1
ρ1 +

√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e2λ

q1
ρ1

=
1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+ακ1 e

2cλ −K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
− 1

2
0 (−cρ0 + q0) e2λ

q0
ρ0

−
√
αK α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 e2λ

q0
ρ0 −K 1

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
− 1

2
1 (cρ1 − q1) e2λ

q1
ρ1

+
√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e2λ

q1
ρ1 ,

for the first entropy pair (η1, Q1). There was used that ρ0,ε ∼ ρ1,ε ∼ 1
2εκ1, as ε→ 0

and κ1 = c(ρ1 − ρ0)− (q1 − q0) = c[ρ]− [q].
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For points (ρ1, q1) ∈ Γss(ρ0, q0) we have E1
λ = e2λ

q0
ρ0 Ê1

λ, where

Ê1
λ =

1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α (ρ

1−α
2

0 + ρ
1−α
2

1 )e−2λρ
− 1+α

2
0

−K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 −

√
αK α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0

−K 1
1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 )

+
√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 ).

(5.3)

In the same way as above, one can determine that the left-hand side of the second
relation in (4.1) for the second entropy pair (η2, Q2) equals

E2
λ =

1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+ακ1 e

−2cλ −K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
− 1

2
0 (−cρ0 + q0) e−2λ

q0
ρ0

+
√
αK α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 e−2λ

q0
ρ0 −K 1

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
− 1

2
1 (cρ1 − q1) e−2λ

q1
ρ1

−
√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e−2λ

q1
ρ1 .

For (ρ1, q1) lying on Γss(ρ0, q0) we have

E2
λ = e−2λ

(
q0
ρ0
−
(
ρ
− 1+α

2
0 +ρ

− 1+α
2

1

))
Ê2
λ,

where

Ê2
λ =

1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α (ρ

1−α
2

0 + ρ
1−α
2

1 )e−2λρ
− 1+α

2
1

−K 1
1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 −

√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1

−K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 e−2λ

(
ρ
− 1+α

2
0 +ρ

− 1+α
2

1

)
+
√
αK α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 e−2λ

(
ρ
− 1+α

2
0 +ρ

− 1+α
2

1

)
.

(5.4)

That was the proof of the following technical assertion.

Proposition 5.1. If the second relation in (4.1) holds for (η1, Q1) and (ρ0, ρ1) ∈
Ω0×Ω1, Ω0,Ω1 ⊆ R+, (ρ1, q1) lying on Γss then the second entropy condition holds
for (η2, Q2) and (ρ0, ρ1) ∈ Ω1 × Ω0, (ρ1, q1) lying on Γss.

The following theorem is very important. We claim that there exist points above
a curve Γss that satisfy the overcompressibility condition but not the entropy one.
So we may avoid non-uniqueness at least at these points by using the entropy
admissibility condition with or without overcompressibility. We still do not know
whether there are some points where the overcompressibility is stronger condition
than the entropy condition. Let us add that we did not find any numerical example
for that until now.

Theorem 5.1. For every α ∈ (0, 1) and every point (ρ0, q0) there exists its neigh-
borhood such that there exist points above the curve Γss where overcompressibility
condition is satisfied but entropy conditions is not for λ large enough.
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Proof. Define the curve

(5.5) Γβ : q =

(
q0

ρ0
− (β + (1− β)

√
α)
(
ρ
− 1+α

2
0 + ρ−

1+α
2

))
ρ,

for 0 < β < 1.
Take ρ0 = ρ1. Then c = 1

2

(
q0
ρ0

+ q1
ρ1

)
, and using q1 defined by (5.5) we have

c =
q0

ρ0
− (β + (1− β)

√
α)ρ
− 1+α

2
0 .

The speed given by c is continuous with respect to ρ-variable and that is true for
ρ1 in a neighborhood of ρ0, too.

One can easily check that overcompressibility condition for ρ1 = ρ0 is always
satisfied since the inequality β(1−

√
α) > 0 holds for each β ∈ (0, 1) and α ∈ (0, 1).

A simple computation gives

κ1|ρ0=ρ1 = 2(β + (1− β)
√
α)ρ

1−α
2

0 ,

−cρ0 + q0|ρ0=ρ1 = cρ1 − q1|ρ0=ρ1 = (β + (1− β)
√
α)ρ

1−α
2

0 .

Due to continuity of all functions used in this analysis overcompressibility condition
is satisfied on Γβ in a neighborhood of ρ0, too.

Let as now check the second entropy condition for the first entropy pair (η1, Q1)
using the above data.

We have

E1
λ,β |ρ0=ρ1 = (β + (1− β)

√
α) ρ

−α2
0 e2λ

q0
ρ0 Ẽ1

λ,β |ρ0=ρ1 ,

where

Ẽ1
λ,β |ρ0=ρ1 = Γ

( 1

1 + α

)
(Aλρ

− 1+α
2

0 )−
1

1+α e−2λ(β+(1−β)
√
α)ρ

− 1+α
2

0

−K 1
1+α

(
2Aλρ

− 1+α
2

0

)
(1 + e−4λ(β+(1−β)

√
α)ρ

− 1+α
2

0 )

−K α
1+α

(
2Aλρ

− 1+α
2

0

) √
α

β + (1− β)
√
α

(1− e−4λ(β+(1−β)
√
α)ρ

− 1+α
2

0 ).

Using the relation

(5.6)
Kν(x)

Kν−1(x)
<
ν +
√
ν2 + x2

x
, ν ∈ R,

from [11] and the fact that K−ν = Kν , we get

Ẽ1
λ,β |ρ0=ρ1 >Γ

( 1

1 + α

)
(Aλρ

− 1+α
2

0 )−
1

1+α e−2λ(β+(1−β)
√
α)ρ

− 1+α
2

0

−K α
1+α

(
2Aλρ

− 1+α
2

0

)
(1 + e−4λ(β+(1−β)

√
α)ρ

− 1+α
2

0 )

·

(
1

1+α +

√(
1

1+α

)2
+
(
2Aλρ

− 1+α
2

0

)2
2Aλρ

− 1+α
2

0

)

− K α
1+α

(
2Aλρ

− 1+α
2

0

) √
α

β + (1− β)
√
α

(1− e−4λ(β+(1−β)
√
α)ρ

− 1+α
2

0 )

)
.
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Now, using relation (5.2) and letting λ→∞, we have that E1
λ,β |ρ0=ρ1 > 0 if

Γ
( 1

1 + α

)
A−

1
1+α ρ

1
2
0 λ
− 1

1+α e−2λ(β+(1−β)
√
α)ρ

− 1+α
2

0

− 1

2
Γ
( α

1 + α

)
A−

α
1+α ρ

α
2
0 λ
− α

1+α

(
1 +

√
α

β + (1− β)
√
α

)
e−2Aλρ

− 1+α
2

0 > 0.

Since the exponential function decreases to zero at infinity faster than any power

of λ, the above is true if β + (1− β)
√
α < A = 2

√
α

1+α . The equation hβ(x) = 0, with

hβ(x) = −β + (1 + β)x− βx2 − (1− β)x3

has only one root xβ in the interval (0, 1) given by xβ =
1−
√

1+4(1−β)β

2(β−1) (note that

x = 1 is one root of the equation hβ(x) = 0 for any β ∈ (0, 1)). For each β ∈ (0, 1)
we obtain an interval (αβ , 1), αβ := x2

β such that entropy condition does not hold

i.e. the function hβ is positive for all α in the interval (αβ , 1).
Obviously, αβ1

= x2
β1
< x2

β2
= αβ2

for β1 < β2. With β → 0 we have xβ → 0, so

the function hβ(x) is positive for α ∈ (0, 1) and β small enough.
Since the function h is continuous, one can conclude the following: For any α ∈ (0, 1)
there exist some β ∈ (0, 1) (sufficiently small β if α is sufficiently small) such that
entropy condition, when λ → ∞, is not satisfied in the neighborhood of point ρ0,
on the curve Γβ for the first entropy pair. This completes the proof. �

Remark 5.1. The left-hand side of the entropy condition, for the second entropy
pair (η2, Q2), q1 given by Γβ and ρ1 = ρ0 equals

E2
λ,β |ρ0=ρ1 = e−2λ(

q0
ρ0
−2(β+(1−β)

√
α)ρ

− 1+α
2

0 )(β + (1− β)
√
α)ρ
−α2
0 Ẽ2

λ|ρ0=ρ1 ,

where

Ẽ2
λ,β |ρ0=ρ1 =Γ

( 1

1 + α

)(
Aλρ

− 1+α
2

0

)− 1
1+α

e−2λ(β+(1−β)
√
α)ρ

− 1+α
2

0

−K 1
1+α

(
2Aλρ

− 1+α
2

0

)(
1 + e−4λ(β+(1−β)

√
α)ρ

− 1+α
2

0

)
−K α

1+α

(
2Aλρ

− 1+α
2

0

) √
α

β + (1− β)
√
α

(
1− e−4λ(β+(1−β)

√
α)ρ

− 1+α
2

0

)
.

If we compare the entropy conditions for (η1, Q1) and (η2, Q2), we can see that

Ẽ2
λ,β |ρ0=ρ1 = Ẽ1

λ,β |ρ0=ρ1

holds. So, we can conclude that the second entropy condition for the second entropy
pair, (η2, Q2), ρ1 in the neighborhood of ρ0 and λ sufficiently large is satisfied if
and only if it is satisfied for the first entropy pair.

In order to get a better understanding of the above result one may consider the
curve Γ0.5 (i.e. β = 0.5) to conclude: For every α ∈ (α0, 1), α0 = (

√
2 − 1)2 ≈

0.17157 and every (ρ0, q0) there exists λ > 0 and (ρ1, q1) that lies above the curve
Γss such that overcompressibility condition is satisfied but entropy condition is not.

After proving that there are cases when entropy condition is more restrictive than
the overcompressibility one, we will present some results that illustrates usefulness
of the entropy condition. We start with the one describing asymptotic behavior of
the entropy condition as parameter λ tends to zero or infinity.



ON THE UNIQUENESS OF SOLUTION TO GENERALIZED CHAPLYGIN GAS 17

Proposition 5.2. The relations in (4.1) are satisfied for all entropy pairs (η1, Q1),
(η2, Q2) and points at Γss as λ→ 0 or λ→∞.

Proof. Since we have already proved that the first relation in (4.1) holds true for
any λ > 0, we just need to prove that the second relation in (4.1) holds true for λ
sufficiently small and large. Let as check condition for the first entropy pair (η1, Q1)
and λ→ 0. One could easily check that limλ→0E

i
λ = 0, i = 1, 2 follows from (5.3)

and (5.4). Even more, limλ→0E
i
λ = 0, i = 1, 2 holds for any q, without limiting

analysis to the Γss curve. We want to show that Êiλ are decreasing in λ = 0. Using
the formulas

d

dx
Kν(x) = −Kν−1(x)− ν

x
Kν(x), K−ν(x) = Kν(x)

one gets

d

dλ
Ê1
λ =−

( λ−1

1 + α
+ 2ρ

− 1+α
2

0

)1

2
Γ
( 1

1 + α

)
(Aλ)−

1
1+α

(
ρ

1−α
2

0 + ρ
1−α
2

1

)
e−2λρ

− 1+α
2

0

+
( λ−1

1 + α
+ 4ρ

− 1+α
2

0

α

1 + α

)
K 1

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0

+
√
α
(λ−1α

1 + α
+ 4ρ

− 1+α
2

0

1

1 + α

)
K α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0

+

(( λ−1

1 + α
+ 2ρ

− 1+α
2

0 + 2
1− α
1 + α

ρ
− 1+α

2
1

)
K 1

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1

−
√
α
(λ−1α

1 + α
+ 2ρ

− 1+α
2

0 − 2
1− α
1 + α

ρ
− 1+α

2
1

)
K α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
1

)

· e
−2λ

(
ρ
− 1+α

2
0 +ρ

− 1+α
2

1

)
.

In order to prove that Ê1
λ is decreasing in λ = 0 one may use the following

equalities taken from [23]

Kν(x) =
1

2
π
I−ν(x)− Iν(x)

sin (νπ)
, Iν(x) =

(x
2

)ν ∞∑
k=0

(x
2

)2k

k! Γ(ν + k + 1)
,

where Iν(x) denotes modified Bessel function of the first kind. Using the identity
Γ(ν)Γ(1− ν) = π

sin (πν) one gets

(5.7) Kν(x) =
1

2

∞∑
k=0

(−1)k

k!

(
Γ(ν − k)

(x
2

)2k−ν
+ Γ(−ν − k)

(x
2

)2k+ν)
.

Replacing the identity (5.7) into the first derivative with respect to λ given above
and arranging the terms in ascending powers of λ one gets the following form of
the first derivative

d

dλ
Ê1
λ|λ=0 = λ−1− 1

1+α i1 + λ−1− α
1+α i2 + λ−

1
1+α i3 + λ−

α
1+α i4 + λ

α
1+α i5 +O(λ

1
1+α ).
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By straightforward calculations we get

i1 = i2 = i3 = i4 = 0,

i5 = Γ
( 1

1 + α

)
A−

1
1+α

(
1 + 2α

1 + α

α− 1

1 + α

(
ρ
− 1+3α

2
0 + ρ

− 1+3α
2

1

)
− ρ−

1+α
2

0 ρ−α1

2

1 + α

3 + α

1 + α

)
.

Since i5 < 0, for α ∈ (0, 1), one can conclude that Ê1
λ is decreasing in λ = 0.

The same holds for the second entropy pair (η2, Q2). So, the relation (4.1) holds
true for λ→ 0 and all entropy pairs (η1, Q1) and (η2, Q2).

Take now λ to be large enough. Using the notation from (5.3) and (5.4) one can

easily conclude that Ê1
λ ≤ 0 using the following:

- Each term in (5.3) and (5.4) are close to zero for λ sufficiently large.
- The terms

K 1
1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0 and K α

1+α

(
2Aλρ

− 1+α
2

0

)
ρ
−α2
0

dominate the other three terms in (5.3) for λ large enough. Same holds for
the second entropy pair.

�

Remark 5.2. We have performed a lot of tests in order to check the validity of
the above proposition for each λ > 0. It seems that Γss is always in the entropic
region, but we did not succeed to prove it. One can look at Figures 6 and 7. It
should be noted that lack of precise enough approximations for Bessel function of
the second kind represents a serious setback in this analysis. Even though it looks
like that inequalities (5.1) and (5.2) can be quite helpful, they are not enough to
prove (global) non-positivity of Eiλ, i = 1, 2 (for example see Figure 5). As one
can see below, in some special cases those inequalities were very helpful, but only
locally. Note that inequalities (5.1) and (5.2) give as only one (lower or upper)
bound for Bessel functions. In order to get the other bound one can use inequality
(5.6). Using (5.6) one gets the lower bound for K α

1+α
(x)

K α
1+α

(x) >
xK 1

1+α
(x)

1
1+α +

√
( 1

1+α )2 + x2
, x > 0.

But, one can easily check that not even the inequality given above is enough to prove
non-positivity of Eiλ, i = 1, 2. Numerical experiments we have done1 confirmed our
assertion. So, one has to look for better approximations of the Bessel functions or
to find an alternative way to prove non-positivity of the entropy functions.

If we use the entropy condition as the admissible one that means that we have
to prove that Γss is entropic in order to have a solution. If the curve Γss is optimal,
that would imply prove uniqueness. That would be the second open question we
left open.

In the rest of this section we shall present some special cases when Γss is entropic.

Example 5.1. The relations in (4.1) are satisfied if (ρ1, q1) is lying on Γss and one
of the following conditions is satisfied

1All necessary numerical illustrations and calculations were performed by Matlab.
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Figure 5. Inequalities (5.1) and (5.2) are not enough to prove

non-positivity of Ê1
λ

(i) ρ
− 1+α

2
0 + ρ

− 1+α
2

1 sufficiently small.
(ii) α is close enough to 1.

Proof. Again, it is enough to prove that the second relation in (4.1) holds true.

(i) Note that ρ
− 1+α

2
0 + ρ

− 1+α
2

1 → 0 if and only if ρ
− 1+α

2
0 → 0 and ρ

− 1+α
2

1 → 0.

For the first entropy pair (η1, Q1), (ρ1, q1) lying on Γss and ρ
− 1+α

2
0 +ρ

− 1+α
2

1 close
to zero we have

E1
λ ∼ e

2λ
q0
ρ0

(
1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α (ρ

1−α
2

0 + ρ
1−α
2

1 ) e−2λρ
− 1+α

2
0

− 1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α (ρ

1−α
2

0 + ρ
1−α
2

1 e−2λ(ρ
− 1+α

2
0 +ρ

− 1+α
2

1 ))

−
√
α

1

2
Γ
( α

1 + α

)
A−

α
1+αλ−

α
1+α (1− e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 ))

)
.

Since

e−2λρ
− 1+α

2
0 , e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 ) → 1 as ρ

− 1+α
2

0 + ρ
− 1+α

2
1 → 0,

it is clear that E1
λ ≤ 0 holds. So, the second entropy condition holds for (η1, Q1).

The same holds for the second entropy pair (η2, Q2).
(ii) Let as take α close enough to 1. Then A will be close to 1 and

K 1
1+α

(x) ≈ K α
1+α

(x) ≈ K 1
2
(x), Γ

( 1

1 + α

)
≈ Γ

(1

2

)
=
√
π.
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Figure 6. Entropies at Γss curve – the first entropy pair

So,

Ê1
λ ∼
√
π

2
λ−

1
2 (1 + 1)e−2λρ−1

0 −K 1
2

(
2λρ−1

0

)
ρ
− 1

2
0 (1 +

√
1)

−K 1
2

(
2λρ−1

1

)
ρ
− 1

2
1 (1−

√
1)e−2λ(ρ−1

0 +ρ−1
1 )

≤ 2

√
π

2
λ−

1
2 e−2λρ−1

0 − 2

√
π

2
λ−

1
2 ρ
− 1

2
0 ρ

1
2
0 e
−2λρ−1

0 = 0,

where the relation

K 1
1+α

(
2Aλρ

− 1+α
2

0

)
≥
√
π

2
(Aλρ

− 1+α
2

0 )−
1
2 e−2Aλρ

− 1+α
2

0 , α ∈ (0, 1)

was used.
So, Ê1

λ ≤ 0, for α close enough to 1 and for all ρ0, ρ1 ≥ 0 and so is Ê2
λ ≤ 0. �

Example 5.2. The relations in (4.1) for the first entropy pair (η1, Q1) holds true if
one of the following conditions is true

(i) ρ0 is sufficiently small and (ρ1, q1) is lying on Γss,
(ii) ρ1 is sufficiently small, (ρ1, q1) is lying on Γss,

(iii) ρ
− 1+α

2
0 is sufficiently small, Aλ ≥ 1, ρ1≤α

1
1−α and (ρ1, q1) is lying on Γss.

Proof. It is enough to prove that the second relation in (4.1) is satisfied.
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Ê
2 λ

α = 2
3
, ρ0 = 100

ρ0 = 1, ρ0 = 5

ρ0 = 15, ρ0 = 50

ρ1 = 1, ρ1 = 5

ρ1 = 15, ρ1 = 50

Figure 7. Entropies at Γss curve – the second entropy pair

(i) Since e−2λρ
− 1+α

2
0 → 0 and e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 ) → 0 as ρ0 → 0, one gets Ê1

λ ≤ 0,
for ρ0 sufficiently small, every ρ1 ≥ 0, λ ≥ 0, and α ∈ (0, 1).

(ii) One can conclude that ρ
1−α
2

1 → 0 and ρ
− 1+α

2
1 →∞ as ρ1 → 0. Using inequality

(5.1), one gets

Ê1
λ ≤

1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α ρ

1−α
2

0

(
e−2λρ

− 1+α
2

0 − e−2Aλρ
− 1+α

2
0

)
−
√
αρ
−α2
0 K α

1+α

(
2Aλρ

− 1+α
2

0

)
≤ 0,

since e−2λρ
− 1+α

2
0 ≤ e−2Aλρ

− 1+α
2

0 .
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(iii) Suppose that ρ
− 1+α

2
0 is sufficiently small. Using relations (4.4), (5.1) and (5.2)

one gets

Ê1
λ ∼

1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α (ρ

1−α
2

0 + ρ
1−α
2

1 ) e−2λρ
− 1+α

2
0

− 1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α ρ

1−α
2

0 −
√
α

1

2
Γ
( α

1 + α

)
A−

α
1+αλ−

α
1+α

−K 1
1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 )

+
√
αK α

1+α

(
2Aλρ

− 1+α
2

1

)
ρ
−α2
1 e−2λ(ρ

− 1+α
2

0 +ρ
− 1+α

2
1 )

≤1

2
Γ
( 1

1 + α

)
A−

1
1+αλ−

1
1+α ρ

1−α
2

1 e−2λρ
− 1+α

2
0

(
1− e−2(1+A)λρ

− 1+α
2

1

)
−
√
α

1

2
Γ
( α

1 + α

)
A−

α
1+αλ−

α
1+α e−2λρ

− 1+α
2

0

(
1− e−2(1+A)λρ

− 1+α
2

1

)
.

If Aλ ≥ 1 and ρ1≤α
1

1−α , Ê1
λ ≤ 0 holds. �

Using the Proposition 5.1 and Example 5.2 one gets the following result.

Example 5.3. The relations in (4.1) for the second entropy pair (η2, Q2) holds if
one of the following conditions is true

(i) ρ1 is sufficiently small, (ρ1, q1) is lying on Γss,
(ii) ρ0 is sufficiently small, (ρ1, q1) is lying on Γss,

(iii) ρ
− 1+α

2
1 is sufficiently small, Aλ ≥ 1, ρ0≤α

1
1−α and (ρ1, q1) is lying on Γss.

6. Further research

In this paper we focused our attention on making comparison between two con-
ditions frequently used for admissibility check: convex entropy – entropy flux pair
(called entropy condition further on) and overcompressibility. So far, we were not
able to find the paper dealing with a problem where entropy condition is better
than overcompressibility. So, we have proved that for each α ∈ (0, 1) there exists
a neighborhood of ρ0 on some curve which is not unique and depends of α, where
one can conclude that entropy condition is better than overcompressibility one for
avoiding non-wanted week solutions. But we did not succeed to exclude them all.
We were dealing with modified Bessel function of the second kind, which are not yet
well explored and all suitable estimates we used were not enough to prove unique-
ness (for estimates see (5.1),(5.2),(5.6)). However, through the above analysis we
investigated several cases where solution to Riemann problem is unique i.e. the
curve Γss is entropic.

Next step in our research would be to prove global uniqueness. That investigation
can go in several directions.

The first direction can also be a challenge for our colleagues who work with
Bessel functions. In order to prove non-positivity of the entropy function one has
to look for better approximations of the Bessel functions, since existing ones are not
good enough to prove global non-positivity. Of course, one can find an alternative
way to prove that the curve Γss is entropic.
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It seems (by all numerical experiments we have done) that (entropy) functions

Êiλ, i = 1, 2, with respect to λ always have only one extreme – a minimum, but we
did not succeed to prove it. Using numerical algorithms one may get estimates for
the minimum of the functions Êiλ, i = 1, 2. For example, estimates for the minimum

of Ê1
λ as a function of b = Aλρ−

1+α
2 , for ρ0 = ρ1 and α = 1

10 ,
1
5 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

4
5 are

given by b = 0.2814, 0.3452, 0.4029, 0.4173, 0.4266, 0.4308, 0.4357 respectively.
Naturally, next step would be to prove existence of unique minimum of the

function Êiλ, i = 1, 2. In doing so, one can proceed with the use of the first and the
second derivative of the observed function, as well as with the use of potentially new
and better estimates for the modified Bessel functions of the second kind. Also, one
can try to avoid use of derivatives, because of there complexity and focus attention
on use of some other mathematical tool.
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