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Abstract. Positional Games is a branch of Combinatorics which focuses
on a variety of two player games, ranging from well-known games such as
Tic-Tac-Toe and Hex, to purely abstract games played on graphs. The
field has experienced quite a growth in recent years, with more than a
few applications in related areas.
We aim to introduce the basic notions, approaches and tools, as well as to
survey the recent developments, open problems and promising research
directions, keeping the main focus on the games played on graphs.
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1 Introduction

Positional games are a class of combinatorial two-player games of perfect in-
formation, with no chance moves and with players moving sequentially. These
properties already distinguish this area of research from its popular relative,
Game Theory, which has its roots in Economics. Some of the more prominent
positional games include Tic-Tac-Toe, Hex, Bridg-It and the Shannon’s switch-
ing game.

The basic structure of a positional game is fairly simple. Let X be a finite
set and let F ⊆ 2X be a family of subsets of X. The set X is called the “board”,
and the members of F are referred to as the “winning sets”. In the positional
game (X,F), two players take turns in claiming previously unclaimed elements
of X, until all the elements are claimed. In a more general setting, given positive
integers a and b, in the biased (a : b) game the first player claims a elements per
move and the second player claims b elements per move. If a = b = 1, the game
is called unbiased.

As for determining the winner, there are several standard sets of rules, and
here we mention three.

– In a strong game, the player who is first to claim all elements of a winning
set is the winner, and if all elements of the board are claimed and no player
has won, the game is a draw. A strategy stealing argument ensures that the
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first player can achieve at least a draw, so the two possible outcomes of a
game (if played by two perfect players) are: a first player’s win, and a draw.
Tic-Tac-Toe (a.k.a. Noughts and Crosses, or Xs and Os) is an example of a
strong game – the board consists of nine elements (usually drawn as a 3-by-3
grid), with eight winning sets. As most kids would readily tell you, this game
is a draw.

Even though these games are quite easy to introduce, they turn out to be
notoriously hard to analyze, and hence there are very few results in that
area.

– A Maker-Breaker game features two players, Maker and Breaker. Maker wins
if he claims all elements of a winning set (not necessarily first). Breaker wins
otherwise, i.e., if all the elements of the board are claimed and Maker has
not won. Hence, one of the players always wins – a draw is not possible. As
it turns out, the widely popular game Hex is a Maker-Breaker game, a fact
that requires a proof, see [5].

– Finally, in an Avoider-Enforcer game players are called Avoider and En-
forcer. Here, Enforcer wins if at any point of the game Avoider claims all
elements of a winning set. Avoider wins otherwise, i.e., if he manages to
avoid claiming a whole winning set to the end of the game. Due to the na-
ture of the game, the winning sets in Avoider-Enforcer games are sometimes
referred to as the losing sets.

In what follows we deal with the positional games played on graphs. That
means that the board of the game is the edge set of a graph, usually the com-
plete graph on n vertices. The winning sets typically are all representatives of
a standard graph-theoretic structure. We introduce a few games that stand out
when it comes to importance and attention received in the recent years.

The research in this area was initiated by Lehman [13], who studied the
connectivity game, a generalization of the well-known Shannon switching game,
where the winning sets are the edge sets of all spanning trees of the base graph.
We denote the connectivity game played on the complete graph by (E(Kn), C).
Another important game is the Hamiltonicity game (E(Kn),H), where H con-
sists of the edge sets of all Hamiltonian cycles of Kn. In the clique game the
winning sets are the edge sets of all the k-cliques, for a fixed integer k ≥ 3.
We denote this game with (E(Kn),Kk). Note that in this game the size of the
winning sets is fixed and does not depend on n, which distinguishes it from
the connectivity game and the Hamiltonicity game. A simple Ramsey argument
coupled with the strategy stealing argument (see [1] for details) ensures Maker’s
win if n is large.

Numerous topics on positional games are covered in the monograph of Beck [1].
The new book [10] gives a gentle introduction to the subject, along with a view
to the recent developments.
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2 Maker-Breaker games

It is not hard to verify that the connectivity game and the k-clique game are
Maker’s wins when n is large enough. Showing the same for the Hamiltonicity
game requires a one-page argument [4]. This, however, is not the end of the story.
A standard approach to even out the odds is introduced by Chvátal and Erdős
in [4], giving Breaker more power with the help of a bias.

If an unbiased game (X,F) is a Maker’s win, we choose to play the same
game with (1 : b) bias, increasing b until Breaker starts winning. Formally, we
want to answer the following question: What is the largest integer bF for which
Maker can win the biased (1 : bF ) game? This value is called the threshold bias
of F . The existence of the threshold bias for every game is guaranteed by the
so-called bias monotonicity of Maker-Breaker games, the fact that a player can
only benefit from claiming additional elements at any point of the game.

For the connectivity game, it was shown by Chvátal and Erdős [4] and
Gebauer and Szabó [6] that the threshold bias is bC = (1 + o(1)) n

logn . The

result of Krivelevich [11] gives the leading term of the threshold bias for the
Hamiltonicity game, bH = (1 + o(1)) n

logn . In the k-clique game, Bednarska and

 Luczak [2] found the order of the threshold bias, bKk
= Θ(n

2
k+1 ). Determining

the leading constant inside the Θ(.) remains an open problem that appears to
be very challenging.

3 Avoider-Enforcer games

Combinatorial game theory devotes a lot of attention to pairs of two-player
games where the way for a player to win in one game becomes the way for him
to lose in the other game – while the playing rules in both games are identical,
the rule for deciding if the first player won one game is exactly the negation
of the same rule for the first player in the other game. We have that setup
in corresponding Maker-Breaker and Avoider-Enforcer variants of a positional
game. In light of that, an Avoider-Enforcer game is said to be the misére version
of its Maker-Breaker counterpart.

We already mentioned that in Maker-Breaker games bonus moves do not
harm players, if a player is given one or more elements of the board at any point
of the game he can only profit from it. Naturally, one wonders if an analogous
statement holds for Avoider-Enforcer games. At first sight, it makes sense that a
player trying to avoid something cannot be harmed when some of the elements
he claimed are “unclaimed”. But this turns out not to be true, as the following
example shows.

Consider the Avoider-Enforcer (a : b) game played on the board with four
elements, and two disjoint winning sets of size two. It is easy to see that for
a = b = 2 Avoider wins, for a = 1, b = 2 the win is Enforcer’s, and finally for
a = b = 1 Avoider is the winner again.

This feature is somewhat disturbing as, to start with, the existence of the
threshold bias is not guaranteed. This prompted the authors of [9] to adjust,
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in a rather natural way, the game rules to ensure bias monotonicity. Under the
so-called monotone rules, for given bias parameters a and b and a positional
game F , in a monotone (a : b) Avoider-Enforcer game F in each turn Avoider
claims at least a elements of the board, where Enforcer claims at least b elements
of the board. These rules can be easily argued to be bias monotone, and thus
the threshold bias becomes a well defined notion. We will refer to the original
rules, where each player claims exactly as many elements as the respective bias
suggests, as the strict rules. Perhaps somewhat surprisingly, monotone Avoider-
Enforces games turn out to be rather different from those played under strict
rules, and in quite a few cases known results about strict rules provide a rather
misleading clue about the location of the threshold bias for the monotone version.

From now on, each game can be viewed under two different sets of rules – the
strict game and the monotone game. Given a positional game F , for its strict
version we define the lower threshold bias f−F to be the largest integer such that
Enforcer can win the (1 : b) game F for every b ≤ f−F , and the upper threshold
bias f+F to be the smallest non-negative integer such that Avoider can win the
(1 : b) game F for every b > f+F .

If we play the game F under monotone rules, the bias monotonicity implies
the existence of the unique threshold bias fmon

F as the non-negative integer for
which Enforcer has a winning strategy in the (1 : b) game if and only if b ≤ fmon

F .

The leading term of the threshold bias for the monotone version of several
well-studied positional games with spanning winning sets is given by the follow-
ing two results. In [9], it was shown that for b ≥ (1 + o(1)) n

lnn Avoider has a
winning strategy in the monotone (1 : b) min-degree-1 game, the game in which
his goal is to avoid touching all vertices. On the other hand, we have that for
b ≤ (1−o(1)) n

lnn Enforcer has a winning strategy in the monotone (1 : b) Hamil-
tonicity game, and also in the k-connectivity game, for any fixed k, see [12].

These results give that the leading term of the threshold biases for the mono-
tone versions of the connectivity game and the Hamiltonicity game (as well as for
some other important games, like the perfect matching game, the min-degree-k
game, for k ≥ 1, the k-edge-connectivity game, for k ≥ 1, and the k-connectivity
game, for k ≥ 1) is (1 + o(1)) n

lnn . Indeed, each of these graph properties im-
plies min-degree-1, and each of them is implied either by Hamiltonicity or k-
connectivity. Note that for all these games we have the same threshold bias in
the Maker-Breaker version of the game.

Now we switch our attention to the games played under strict rules. For the
connectivity game under strict rules we know the exact value of the lower and
upper threshold bias, and they are the same, f−C = f+C =

⌊
n−1
2

⌋
, see [7]. This

is one of very few games on graphs for which we have completely tight bounds
for the threshold bias, with equal upper and lower threshold biases. Note the
substantial difference between these threshold biases and the monotone thresh-
old bias for the connectivity game. Much less is known for the Hamiltonicity
game, where we just have the lower bound (1− o(1)) n

lnn for the lower threshold
bias [12]. As for the bounds from above, we have only the obvious. We say that
Avoider has a trivial strategy when Enforcer’s bias is that large that the total
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number of edges Avoider will claim in the whole game is less than the size of the
smallest losing set, so he can win no matter how he plays. It is not clear how far
can we expect to get, as for example in the connectivity game a trivial Avoider’s
strategy turns out to be the optimal one.

As for the k-clique game, as well as for most of the other games in which the
winning sets are of constant size, we are quite far from determining the leading
term for any of the threshold biases, with only few non-trivial bounds currently
available. This gives a whole range of very important open problems.

4 Games on the random board

As we have already mentioned, for many standard positional games the outcome
of the unbiased Maker-Breaker game played on a (large) complete graph is an
obvious Maker’s win, and one way to help Breaker gain power is by increasing his
bias. An alternative way is the so-called game on the random board, introduced
in [16]. Informally speaking, we randomly thin out the board before the game
starts, some of the winning sets disappear in that process, Maker’s chances drop
and Breaker gains momentum.

For a positional game (X,F) and probability p, the game on the random
board (Xp,Fp) is a probability space of games, where each x ∈ X is included in
Xp with probability p (independently), and Fp = {W ∈ F| W ⊆ Xp}.

Now even if an unbiased game is an easy Maker’s win, as we decrease p the
game gets harder for Maker and at some point he is not expected to be able
to win anymore. To formalize that, we observe that “being a Maker’s win in
F” is an increasing graph property. Indeed, no matter what positional game F
we take, addition of board elements does not hurt Maker. Hence, there has to
exist a threshold probability pF for this property, and we are searching for pF
such that in the (1 : 1) game Pr[Breaker wins (Xp,Fp)] → 1 for p � pF , and
Pr[Maker wins (Xp,Fp)]→ 1 for p� pF .

For games played on the edge set of the complete graph Kn, note that the
board in now the edge set of the Erdős-Rényi random graph, G(n, p).

The threshold probability for the connectivity game was determined to be
logn
n in [16], and shown to be sharp. As for the Hamiltonicity game, the order of

magnitude of the threshold was given in [15]. Using a different approach, it was
proven in [8] that the threshold is logn

n and it is sharp. Finally, as a consequence
of a hitting time result, Ben-Shimon et al. [3] closed this question by giving a
very precise description of the low order terms of the limiting probability.

The threshold for the triangle game was determined in [16], pK3 = n−
5
9 . The

leading term for the threshold probability in the k-clique game for k ≥ 4 was

shown to be n−
2

k+1 in [14].

Probabilistic intuition. As it turns out for many standard games on graphs F ,
the outcome of the game played by “perfect” players is often similar to the game
played by “random” players. In other words, the inverse of the threshold bias bF
in the Maker-Breaker game played on the complete graph is “closely related” to
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the probability threshold for the appearance of a member of F in G(n, p). Now
we add another related parameter to the picture – the threshold probability pF
for Maker’s win when the game is played on the edge set of G(n, p). As we have
seen in case of the connectivity game and the Hamilton cycle game, for both of
those games all three mentioned parameters are exactly equal to lnn

n .

In the k-clique game, for k ≥ 4, the threshold bias is Θ(n
2

k+1 ) and the
threshold probability for Maker’s win is the inverse (up to the leading constant),

n−
2

k+1 , supporting the random graph intuition. But, the threshold probability for

the appearance of a k-clique in G(n, p) is not at the same place, it is n−
2

k−1 . And
in the triangle game there is even more disagreement, as all three parameters
are different – they are, respectively, n

1
2 , n−

5
9 and n−1.
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of the Game, Journal of Combinatorial Theory Series A 117 (2010), 152–163.

10. D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Positional Games, Ober-
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