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Abstract—In this paper, we address the problem of distributed
Raptor code design over information packets located across the
network nodes. We propose a novel approach to this problem that
consists of generating, encoding and dispersingRaptor packets
across the network. Unlike recent node-centric proposals, where
network nodes are responsible for collecting information packets
and performing Raptor encoding, in the proposed packet-centric
approach this task is assigned to Raptor packets. In a two-step
encoding procedure that corresponds to precoding and LT-coding
step of standard Raptor encoding, Raptor packets randomly
traverse the network, collect and encode sufficient number of
information packets following exactly a given degree distribution,
and finish their paths in a random network node. The efficiency of
the distributed Raptor coding scheme is confirmed by simulation
results, where their performance is demonstrated to approach
closely the performance of standard (centralized) Raptor codes.

I. I NTRODUCTION

Rateless (or fountain) codes, such as LT codes [1] or
Raptor codes [2], are recently proposed capacity-approaching
sparse-graph codes universally efficient over erasure channels
regardless of their erasure statistics. As opposed to standard
fixed-rate block codes, rateless codes do not have specified
rate prior to transmission. In other words, at the transmitter
side, rateless codes are able to encode a message containing
N information packets into a stream of potentially infinite
number of encoded packets. At the receiver side, collecting
any slightly more thanN encoded packets should be sufficient
for recovering the original message with high probability
using the simple iterative Belief-Propagation (BP) decoding
algorithm. Due to their rateless property, efficiency and linear
encoding/decoding complexity, state-of-the-art Raptor codes
are recently recognized as an attractive solution and proposed
in several large-scale content distribution systems.

Rateless codes are usually explored in the context of multi-
casting a message from a source node to a number of receiving
nodes in the network. In such scenario, rateless encoding is
centralized process implemented at the source node where the
message to be transmitted is completely available. However, in
some networking scenarios such as ad-hoc wireless networks
or wireless sensor networks (WSN), the message of interest
could be distributed across the network nodes. Due to attractive
properties of centralized rateless codes, a simple and efficient

rateless coding over the data content distributed across the
network nodes became of research interest lately [3]-[7].

In this paper, we propose a simple and efficient solution for
distributed Raptor code design. The main idea of the proposed
approach is to generate, encode in a distributed fashion and
disperse uniformly across the network a sufficient number of
encoded packets calledRaptor packets. Each Raptor packet
should share the same properties as if it was generated by the
centralized Raptor encoder. Collecting any subset of Raptor
packets slightly larger than the size of the distributed network
data content is sufficient for successful data recovery with
high probability. As opposed to recently proposed node-centric
distributed rateless coding schemes, where network nodes are
responsible for collecting information packets and performing
rateless encoding [5]-[7], the proposed approach is packet-
centric as the encoding task is controlled by the Raptor packets
themselves. Creating Raptor packets is a two-step procedure
that corresponds to precoding and LT-coding step in standard
Raptor codes. Both steps apply the same idea, where parity
packets (in the first step) or Raptor packets (in the second
step), initially assigned with a randomly selected degree from
a given degree distribution, randomly traverse the network
collecting and encoding into their content a desired number
of uniformly selected information packets. Once the chosen
degree is encoded, the packet terminates its random walk in a
randomly selected node.

The packet-centric concept provides clear advantages: it is
simple and easy to implement, and it provides encoding with
exactdegree distributions unlike node-centric methods which
approximate the desired degree distributions. It is applicable
in many networking scenarios such as data gathering [5],
data persistence [4] or distributed network storage [3][6][7].
The efficiency of the proposed scheme is shown to approach
closely the performance of centralized Raptor codes.

II. BACKGROUND

A. Raptor Codes

LT codes [1] are the first practical capacity-approaching
rateless codes. LT encoding is simple process where, for
each encoded packet, a degreed is sampled from a degree
distributionΩ(d), andd out of N information packets of the
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Fig. 1. Raptor code graph consisting of LDPC precode and LT code graph.

source message are uniformly selected and XOR-ed to produce
the encoded packet. In [1], Robust Soliton degree distribution
ΩRS(d) is designed, which enables capacity-achieving per-
formance of LT codes with the iterative BP decoder. Using
LT codes, the receiver is able to decode the source message
with anyN+O(

√
N ln2(N/δ)) received encoded packets with

probability 1 − δ. However, as the average degree ofΩRS(d)
scales asO(ln(N/δ)), the average LT encoding/decoding
complexity grows asO(N ln(N/δ)).

Raptor codes [2] are capacity-approaching rateless codes
with linear encoding/decoding complexity. They consist ofthe
high-rate LDPC (Low Density Parity Check) precode con-
catenated with the LT code defined by a weakened, constant
average degree distributionΩR(d). The idea is first to recover
a constant, close to one fraction of intermediate packets (i.e,
the precode LDPC codeword) from received encoded packets
using the weakened linear encoding/decoding complexity LT
code, and then to recover all of the information packets by
exploiting the high-rate linear encoding/decoding complexity
LDPC precode. As the precode, one can apply any LDPC
code design method providing good high-rate LDPC codes.
Examples are left-regular right-Poisson LDPC codes proposed
in [2] or irregular repeat-accumulate (IRA) LDPC codes [8].
In the LT coding phase, different options for the degree
distribution ΩR(d) are discussed in [2], both for asymptotic
and finite-length Raptor code design. The structure of Raptor
codes that consist of the LDPC precode and the LT code graph
is illustrated in Fig. 1. We assume the iterative BP decoding
of Raptor codes that first operates on the LT part, and then on
the LDPC precode part of the code graph.

B. Random Walks on Graphs and Uniform Node Sampling

Uniform sampling of network nodes can be simply and
efficiently performed using random walks on graphs. We
provide a short background on the topic, as it is important part
of distributed Raptor coding scheme using Raptor packets.

Let G(V,E) be a connected undirected graph with the vertex
setV , |V | = N , and the edge setE ⊆ V 2, |E| = m. The node
i in the graph is connected with the nodej iff (i, j) ∈ E. The
setN (i) of all neighbors of nodei is the set of all nodes in
V connected withi, where|N (i)| = d(i) is called the degree

of the nodei. Random walk onG(V,E) is a sequence of
nodes starting from any node, such that the next nodej in the
sequence is selected fromN (i) with probabilitypij , wherei is
the previous node in the sequence. Random walk on graph can
be modeled as a Markov Chain (MC), where the states of MC
correspond to the graph vertices, and the transition probability
matrix of MC, P = [pij ], is defined by next-hop probabilities
pij . From the theory of MC, it is well-known that ifG(V,E)
is undirected, aperiodic and connected, the correspondingMC
is irreducible, homogeneous and aperiodic and converges to
the stationary set of state probabilitiesπ = (π1, π2, . . . , πN )
that satisfyπ = πP. If a random walk selects any neighbor
j from the setN (i) of the nodei equally likely, i.e., with
probability pij = 1/d(i), it is called normal random walk
(NRW). Although easy to implement, NRW will converge to
the stationary distributionπ whereπi = d(i)/2m, which is
uniform only for regular graphs.

For the problem of uniform node sampling in any (irregular)
graphs, the transition matrixP has to be designed to provide
uniform stationary distributionπU , where πi = 1/N, 1 ≤
i ≤ N . It is easy to show that the matrixP provides
the stationary distributionπU iff it has non-negative entries
(P > 0), is symmetric (P = P

T ) and doubly-stochastic (any
row/column sum up to one). Two simple and popular heuristic
methods for designingP that satisfy the above conditions
are maximum-degree (MD) and Metropolis-Hastings (MH)
algorithm [9][10].

The length of the random walk needed to approximately
reach the stationary distribution is called the mixing time
of the corresponding MC [11][12]. Informally, mixing time
τ = τ(ε) is the number of steps of the random walk required
for the probability of visiting any nodei after τ(ε) steps,
π

τ(ε)
i , is ε-close to the stationary probabilityπi. Mixing time

of MC is related to the second largest eigenvalue|λ2| of the
corresponding probability transition matrixP and scales as
τ = O(log N/(1 − |λ2|)).

C. Virtual Graph Approach to Uniform Packet Sampling

If each network node contains exactly one data packet,
uniform sampling of data packets and network nodes are
equivalent tasks. However, the number of data packets per
network node need not be one, or equal for each node. Uniform
sampling of data packets in such a scenario is recently ad-
dressed in [13] using the concept of virtual graphs, where the
main idea is to apply random walk on the virtual graph derived
from the original network graph. Virtual nodes of the virtual
graph correspond to data packets, and the connectivity between
the virtual nodes is derived locally, using simple information
exchange among neighboring network nodes. After establish-
ing the virtual graph, uniform data packet sampling proceeds
as the previously described uniform node sampling: using
random walks on the virtual graph. Due to space constraints,
we skip the details on the virtual graph approach and refer the
interested reader to [13]. However, to complement this short
introduction, we provide additional implementation details on
virtual graph design in the following section.



III. D ISTRIBUTED RAPTOR CODING USING RAPTOR

PACKETS

We represent a network containingN network nodes by
an undirected connected graphG(V,E). A network message
containingN equal-length information packets is distributed
across all network nodes so that each node possess exactly
one information packet. Our goal is to design a distributed
Raptor coding scheme that produces desired numberNR of
encoded packets, called Raptor packets, distributed across the
network. Each Raptor packet should share the same properties
as if it was generated by the centralized Raptor encoder. Raptor
packets are generated from the network message in two phases:
the precoding and the LT coding phase, where both phases
apply the same packet-centric approach to packet encoding.
In other words, each Raptor packet is initially associated with
a randomly selected degree from a given degree distribution
and randomly traverses the network collecting information
packets. When a given degree is reached, the Raptor packet is
stored in a random network node. After the distributed Raptor
packet encoding is finished, retrieving any slightly more than
N Raptor packets (asN → ∞) from any set of network
nodes should be sufficient for the network message recovery
with high probability. In the following, we provide a detailed
description of the Raptor packet approach.

A. Precoding Phase

The goal of the precoding phase is to create and distribute
across the networkNP parity packetscorresponding to re-
dundant packets of a high-rate LDPC precode. The parity
packets are created fromN information packets of the network
message, and both information and parity packets represent
a codeword of the LDPC precode. Hence the first problem
we need to solve is the design of distributed systematic
rate R LDPC precode that outputsNP = ((1 − R)/R)N
parity packets. After the precoding phase is finished andNP

parity packets are dispersed across the network, a total of
N information packets andNP parity packets are equally
treated as a new, precoded network message to be encoded in
the second, LT coding phase. The precoded network message
containsNI = N + NP = N/R intermediate packets.

In this paper, we apply a simple class of distributed precodes
called Low-Density Generator Matrix (LDGM) codes, where
LDGM parity packets are created by combining subsets of
information packets. Information and parity packet degrees are
described by node-oriented left and right degree distributions
Λ(x) and P (x) respectively1. Parity packets of distributed
LDGM codes are created using the same simple packet-centric
approach, reused later in creating Raptor packets in the LT
coding phase. With this approach, we obtainP (x) exactly,
whereasΛ(x) can be designed sufficiently close to the desired
distribution.

Creating parity packets proceeds in two steps: initialization
and encoding step.

1In Fig. 1, Λ(x) and P (x) describe the subgraph between information
packets{s1, s2, . . . , sN} and parity packets{iN+1, iN+2, . . . , iN+NP

}.
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Fig. 2. Parity/Raptor packet header fields.

Initializing Parity Packets:In this step, each network node
creates a parity packet with probability(1−R)/R. This way,
approximatelyNP = ((1−R)/R)N parity packets are created
in NP network nodes. Each parity packet is initialized as a
copy of the information packet from the same node and its
header fields (Fig. 2) are initialized as follows. To each parity
packet, a random degreedr from P (x) is assigned. As one
information packet is already included in the parity packetby
initialization, the degree counter header field, representing the
remaining degree to be collected, is set todr − 1. Mixing
time counter field is initialized with the selected valueτ ,
which is a global constant. Finally, the ID of the information
packet used to initialize the parity packet is placed in the
header field containing IDs of all information packets that are
combined into the parity packet. Additionally, each network
node randomly selects and stores its own node degree counter
value dl drawn fromΛ(x). The node degree counter will be
used to enforce a givenΛ(x) during the precoding phase.

Encoding Parity Packets:Upon initialization, NP parity
packets independently perform the encoding step. The goal of
each parity packet is to add to its content the remainingdr−1
information packets selected uniformly at random. Selecting
an information packet uniformly at random is equivalent to
selecting a network node uniformly at random. Parity packets
achieve this task by performing random walks on network
graph as described in Section IIB. This means that, after
visiting one node, the parity packet randomly selects the next
node to visit from the set of the previous node neighbors. The
probability pij of selecting the nodej from N (i) for each
nodei are obtained locally by each network node.

Along their random walk, parity packets are processed by
each network node. The network node processing of the parity
packet is simple and is described as follows. If the mixing
time counterτ > 0, it is decremented by one and the parity
packet is forwarded to the next random hop. Ifτ = 0 and
the node degree counterdl > 0, the node XOR-s its own
information packet to the content of the parity packet, updates
the parity packet header fields: decreases the degree counter,
adds information packet ID and resets the mixing time counter
to its initial value, and decreases the node degree counter by
one2. If the mixing time counter is equal to zero anddl = 0,
the parity packet continues its random walk searching for
the neighboring node withdl > 0. If such a node is not
found within limited number of hops, the information packet
of the last visited node is encoded into the parity packet
content. With this rule, the left degree distributionΛ(x) is
closely approximated. Afterdr uniformly selected information

2An exception to the rule occurs only if the parity packet already contains
the information packet in its XOR-sum. In that case, the paritypacket
continues its random walk until it reaches the first network node containing
information packet which has not yet contributed to its encoded content.
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packets are encoded into the parity packet, its encoding phase
is completed.

For simplicity of the following LT coding phase, we limit
the number of parity packets per network node to be equal to
one. Therefore, if parity packet ends the encoding phase in the
network node containing another parity packet, it continues its
random walk until the first node that has no parity packets.
With this constraint, after the precoding phase, there areNP

network nodes, each containing one information and one parity
packet, andN − NP network nodes, each containing one
information packet only.

B. LT Coding Phase

In the LT coding phase,NR = bNI Raptor packets are
created from the set ofNI = N + NP intermediate packets.
The number of Raptor packetsb created per intermediate
packet is used to control the total number of Raptor packets
available in the network. Creating Raptor packets proceedsin
three steps: initialization, encoding and dispersing step.

Initializing Raptor Packets:Each network node creates ini-
tial Raptor packets asb copies of each of its own intermediate
packet. In other words, if a node contains one information
packet, it will initialize b Raptor packets; if it contains one
information and one parity packet, it will initialize2b Raptor
packets. The degreed from a selected degree distribution
ΩR(d) is assigned independently and randomly to each Raptor
packet. The degree counter of valued − 1, representing the
remaining degree to be collected, is placed in the Raptor packet
header. Additionally, Raptor packet header fields are initialized
with the mixing time counter and the ID of the intermediate
packet used to initialize the Raptor packet (Fig. 2).

Encoding Raptor Packets:After initialization, bNI Raptor
packets start their encoding step, where each Raptor packet
adds to its content the remainingd − 1 intermediate packets
selected uniformly at random. As intermediate packets are
not in one-to-one correspondence with network nodes, Raptor
packets perform random walk across the virtual graph created
on intermediate packets, as described in Section IIC. The

construction of the virtual graph is simplified as each network
node contains either one or two intermediate packets. The rule
for establishing edges in the virtual graph is that each virtual
node connects to all the virtual nodes in its network node and
in the neighboring network nodes, as illustrated in Fig. 3.

The processing of Raptor packets in virtual nodes is the
same as processing parity packets in the precoding phase. If
the mixing time counterτ > 0, the virtual node decreases the
mixing time counter by one and forwards the Raptor packet to
the next random virtual node. Otherwise, ifτ = 0, the virtual
node XOR-s its intermediate packet to the Raptor packet
content and updates the Raptor packet header (decreases the
degree counter, adds the intermediate packet ID and resets
the mixing time counter to the initial value). Random Raptor
packet forwarding across the virtual graph is determined bythe
probability transitions generated locally by each node. After d
uniformly selected intermediate packets are encoded into the
Raptor packet, the encoding phase is completed.

Dispersing Raptor Packets:After the encoding step, the
Raptor packet should be placed in a random network node.
This is achieved by forwarding the Raptor packet for another
τ hops across the network graph until it finds its final random
position in the network. After dispersing, expected numberof
Raptor packets per network node is equal tobNI/N .

IV. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
scheme and compare it with the centralized Raptor codes. For
the network model, we assume a random geometric graph
G(N, r) model typical for wireless ad-hoc or sensor networks,
whereN nodes are uniformly distributed over the unit square
area and a node can reliably communicate only with the
nodes in its transmission ranger. In each simulation run,
NP parity packets are created in the precoding phase, after
which b(N + NP ) = bNI Raptor packets are produced and
dispersed across the network during the LT coding phase.
In the precoding phase, we apply a distributed version of
R = 0.95 regular(4, 76) LDGM precode with the left degree
dl = 4 and the right degreedr = 76 [14]. In the LT coding
phase, weakened LT code degree distribution of maximum
degreedmax = 66 proposed for finite-length Raptor code
design is used [2]. The random walk transition probability
matrix P is designed using NRW and MH algorithms. Apart
from N andr, the major simulation parameters are the number
of Raptor packetsb created per intermediate packet, and the
mixing time constantC such thatτ = dC log Ne. Finally, after
Raptor packet dispersion, we assume existence of the mobile
collector that collects Raptor packets by performing random
walk across the network starting from a randomly selected
node. At each node, the collector queries all Raptor packets,
and once it collectsNC packets, the iterative BP decoding
implemented at the collector is activated.

In Figs. 4 and 5, we present the system performance
measured by the probability of decoding successPS as a
function of the number of collected Raptor packetsNC for
N = 500 and N = 1000, respectively. Figs. 4(a) and 5(a)
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demonstrate that the Raptor packet scheme converges to the
centralized Raptor code performance withC for a fixed value
b = 3, and performs better if MH algorithm is applied. Note
that by keeping bothb andC small, the total network energy
consumption measured by the average number of hops of
Raptor packets is kept low. Figs. 4(b) and 5(b) track the system
performance for variableb while C = 3. Increasingb deteri-
orates the system performance due to the correlation between
the content of Raptor packets collected in the same node or the
same part of the network, which increases for smallerC. Figs.
4(c) and 5(c) illustrate the system performance dependenceon
the node ranger. By increasingr, the network connectivity
increases and random walk sampling approaches the uniform
distribution for the fixed mixing time constantC. However, as
r becomes large, the system performance saturates. In order
to obtain the desirable system performance, one can balance
the choice of parametersr andC, where the optimal trade-off
is application specific.

V. CONCLUSION

A novel distributed Raptor coding scheme based on cre-
ating and distributing Raptor packets across the network
is introduced. The proposed approach is simple, results in
exact Raptor degree distributions, and performs closely tothe
performance of centralized Raptor codes.
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