Raptor Packets: A Packet-Centric Approach to
Distributed Raptor Code Design

Dejan Vukobratové, Cedomir Stefanow Milo§ Stojakovt Vladimir Stankove
Department of Power, Electronics Department of Mathematics Department of Electronic
and Communication Engineering, and Informatics, and Electrical Engineering,
University of Novi Sad, University of Novi Sad, University of Strathclyde,
Novi Sad, Serbia. Novi Sad, Serbia. Glasgow, UK.
Email: {dejanv, cex@uns.ac.rs Email: smilos@inf.ethz.ch Email: vladimir.stankovic@eee.strath.ac.uk

Abstract—In this paper, we address the problem of distributed rateless coding over the data content distributed acrass th
Raptor code design over information packets located across the network nodes became of research interest lately [3]-[7].
network nodes. We propose a novel approach to this problem that In this paper, we propose a simple and efficient solution for

consists of generating, encoding and dispersinfRaptor packets o . L
across the network. Unlike recent node-centric proposals, wher distributed Raptor code design. The main idea of the prapose

network nodes are responsible for collecting information packets @pproach is to generate, encode in a distributed fashion and
and performing Raptor encoding, in the proposed packet-centric disperse uniformly across the network a sufficient number of

approach this task is assigned to Raptor packets. In a two-step encoded packets calle@aptor packetsEach Raptor packet
encoding procedure that corresponds to precoding and LT-codig  gjy61d share the same properties as if it was generated by the

step of standard Raptor encoding, Raptor packets randoml . .
tra\ferse the network,pcollect and gencoc?e sugficient number c))/f centralized Raptor encoder. Collecting any subset of Rapto

information packets following exactly a given degree distribution, Packets slightly larger than the size of the distributedvoek
and finish their paths in a random network node. The efficiency of data content is sufficient for successful data recovery with

the distributed Raptor coding scheme is confirmed by simulation high probability. As opposed to recently proposed noderizen
results, where their performance is demonstrated to approach jistributed rateless coding schemes, where network nages a
closely the performance of standard (centralized) Raptor codes . S .
responsible for collecting information packets and pernfiog
rateless encoding [5]-[7], the proposed approach is packet
centric as the encoding task is controlled by the Raptorgtack
Rateless (or fountain) codes, such as LT codes [1] titemselves. Creating Raptor packets is a two-step proeedur
Raptor codes [2], are recently proposed capacity-appio@chthat corresponds to precoding and LT-coding step in stahdar
sparse-graph codes universally efficient over erasurengtan Raptor codes. Both steps apply the same idea, where parity
regardless of their erasure statistics. As opposed to atdndpackets (in the first step) or Raptor packets (in the second
fixed-rate block codes, rateless codes do not have specifiegp), initially assigned with a randomly selected degremf
rate prior to transmission. In other words, at the trangmitta given degree distribution, randomly traverse the network
side, rateless codes are able to encode a message containitigcting and encoding into their content a desired number
N information packets into a stream of potentially infinitef uniformly selected information packets. Once the chosen
number of encoded packets. At the receiver side, collectidggree is encoded, the packet terminates its random walk in a
any slightly more tharV encoded packets should be sufficientandomly selected node.
for recovering the original message with high probability The packet-centric concept provides clear advantages: it i
using the simple iterative Belief-Propagation (BP) dengdi simple and easy to implement, and it provides encoding with
algorithm. Due to their rateless property, efficiency ameédir exactdegree distributions unlike node-centric methods which
encoding/decoding complexity, state-of-the-art Raptodes approximate the desired degree distributions. It is applie
are recently recognized as an attractive solution and gexpoin many networking scenarios such as data gathering [5],
in several large-scale content distribution systems. data persistence [4] or distributed network storage [B][6]
Rateless codes are usually explored in the context of mufiihe efficiency of the proposed scheme is shown to approach
casting a message from a source node to a number of receiviiagely the performance of centralized Raptor codes.
nodes in the network. In such scenario, rateless encoding is
centralized process implemented at the source node where th
message to be transmitted is completely available. HoweverA. Raptor Codes
some networking scenarios such as ad-hoc wireless networkET codes [1] are the first practical capacity-approaching
or wireless sensor networks (WSN), the message of interesteless codes. LT encoding is simple process where, for
could be distributed across the network nodes. Due to &tteac each encoded packet, a degréés sampled from a degree
properties of centralized rateless codes, a simple andeeffic distribution2(d), andd out of N information packets of the
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information intermediate encoded

packets packets packets of the node:. Random walk OnQ(V, E) is a sequence of

S \4e nodes starting from any node, such that the next noitethe
: sequence is selected froli(i) with probability p;;, wherei is
s w1\ e q is selected froNi(i) with probabilityp;;, wherei i
: ' the previous node in the sequence. Random walk on graph can
Ss I ‘ be modeled as a Markov Chain (MC), where the states of MC
: : correspond to the graph vertices, and the transition pitityab
Sy in : matrix of MC, P = [p,;], is defined by next-hop probabilities
| pi;. From the theory of MC, it is well-known that §(V, E)
: is undirected, aperiodic and connected, the corresporiditg
: is irreducible, homogeneous and aperiodic and converges to
- the stationary set of state probabilities= (m1,m2,...,7N)

that satisfyr = «wP. If a random walk selects any neighbor
Fig. 1. Raptor code graph consisting of LDPC precode and ldearaph, J from the set\ (i) of the nodei equally likely, i.e., with
probability p;; = 1/d(4), it is called normal random walk
(NRW). Although easy to implement, NRW will converge to
source message are uniformly selected and XOR-ed to prodifee stationary distributionr wherer; = d(z)/2m, which is
the encoded packet. In [1], Robust Soliton degree disichut uniform only for regular graphs.
Qrs(d) is designed, which enables capacity-achieving per- For the problem of uniform node sampling in any (irregular)
formance of LT codes with the iterative BP decoder. Usingraphs, the transition matri® has to be designed to provide
LT codes, the receiver is able to decode the source messeg#orm stationary distributionr;;, wherer; = 1/N,1 <
with any N+O(v/N In?(N/§)) received encoded packets withi < N. It is easy to show that the matri¥ provides
probability 1 — 6. However, as the average degreefs(d) the stationary distributionry; iff it has non-negative entries
scales asO(In(N/6)), the average LT encoding/decodindP > 0), is symmetric P = P”) and doubly-stochastic (any
complexity grows a®)(N In(N/J)). row/column sum up to one). Two simple and popular heuristic
Raptor codes [2] are capacity-approaching rateless codmethods for designing that satisfy the above conditions
with linear encoding/decoding complexity. They consisttef are maximum-degree (MD) and Metropolis-Hastings (MH)
high-rate LDPC (Low Density Parity Check) precode corglgorithm [9][10].
catenated with the LT code defined by a weakened, constanThe length of the random walk needed to approximately
average degree distributiddz (d). The idea is first to recover reach the stationary distribution is called the mixing time
a constant, close to one fraction of intermediate packeds (iof the corresponding MC [11][12]. Informally, mixing time
the precode LDPC codeword) from received encoded packets= 7(¢) is the number of steps of the random walk required
using the weakened linear encoding/decoding complexity [f®r the probability of visiting any node after 7(¢) steps,
code, and then to recover all of the information packets br;{(s), is e-close to the stationary probability;. Mixing time
exploiting the high-rate linear encoding/decoding comitye of MC is related to the second largest eigenvalug of the
LDPC precode. As the precode, one can apply any LDR®@rresponding probability transition matri® and scales as
code design method providing good high-rate LDPC codes= O(log N/(1 — |Az|)).
Examples are left-regular right-Poisson LDPC codes pregos ) .
in [2] or irregular repeat-accumulate (IRA) LDPC codes [g°- Virtual Graph Approach to Uniform Packet Sampling
In the LT coding phase, different options for the degree If each network node contains exactly one data packet,
distribution Q2 (d) are discussed in [2], both for asymptotiduniform sampling of data packets and network nodes are
and finite-length Raptor code design. The structure of Rapgruivalent tasks. However, the number of data packets per
codes that consist of the LDPC precode and the LT code grapgfwork node need not be one, or equal for each node. Uniform
is illustrated in Fig. 1. We assume the iterative BP decodirggmpling of data packets in such a scenario is recently ad-
of Raptor codes that first operates on the LT part, and then @essed in [13] using the concept of virtual graphs, wheee th
the LDPC precode part of the code graph. main idea is to apply random walk on the virtual graph derived
) _ from the original network graph. Virtual nodes of the viftua
B. Random Walks on Graphs and Uniform Node Samplinggraph correspond to data packets, and the connectivityestw
Uniform sampling of network nodes can be simply anthe virtual nodes is derived locally, using simple inforioat
efficiently performed using random walks on graphs. Wexchange among neighboring network nodes. After establish
provide a short background on the topic, as it is important pang the virtual graph, uniform data packet sampling proseed
of distributed Raptor coding scheme using Raptor packets.as the previously described uniform node sampling: using
LetG(V, E) be a connected undirected graph with the verteandom walks on the virtual graph. Due to space constraints,
setV, |[V| = N, and the edge sdf C V2, |E| = m. The node we skip the details on the virtual graph approach and refer th
i in the graph is connected with the nodéf (i,j) € E. The interested reader to [13]. However, to complement this tshor
set N (i) of all neighbors of nodé is the set of all nodes in introduction, we provide additional implementation dkstain
V' connected with,, where| N ()| = d(:) is called the degree virtual graph design in the following section.
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Parity/Raptor Packet Data

We represent a network containing network nodes by Fig. 2. Parity/Raptor packet header fields.
an undirected connected graghfV, E). A network message
containing N equal-length information packets is distributed = _ )
across all network nodes so that each node possess exactljfitializing Parity Packetsin this step, each network node
one information packet. Our goal is to design a distributéi€ates a parity packet with probability — )/ R. This way,
Raptor coding scheme that produces desired numberof ~aPProximatelyNp = ((1—R)/R)N parity packets are created
encoded packets, called Raptor packets, distributed sthes " Np network nodes. Each parity packet is initialized as a

network. Each Raptor packet should share the same praperi@Py of the information packet from the same node and its

as if it was generated by the centralized Raptor encodetoRaﬂ“eader fields (Fig. 2) are initialized as _follow_s. To eachitpar
packets are generated from the network message in two phaB@§ket, @ random degreg. from P(z) is assigned. As one
the precoding and the LT coding phase, where both phadd@rmation packet is already included in the parity padket
apply the same packet-centric approach to packet encoditjfialization, the degree counter header field, represgrihe

In other words, each Raptor packet is initially associatét w '€Maining degree to be collected, is setdo— 1. Mixing

a randomly selected degree from a given degree distributiBfie counter field is initialized with the selected value
and randomly traverses the network collecting informatioffhich is a global constant. Finally, the ID of the informatio
packets. When a given degree is reached, the Raptor packdtdgket used to initialize the parity packet is placed in the
stored in a random network node. After the distributed RaptBeader field containing IDs of all information packets that a
packet encoding is finished, retrieving any slightly moranth COmbined into the parity packet. Additionally, each netaor
N Raptor packets (asV — oo) from any set of network node randomly selects and stores its own node degree counter
nodes should be sufficient for the network message recovd@jue di drawn from A(z). The node degree counter will be
with high probability. In the following, we provide a detil USed to enforce a giveA(z) during the precoding phase.

description of the Raptor packet approach. Encoding Parity PacketslUpon initialization, Np parity
packets independently perform the encoding step. The doal o
A. Precoding Phase each parity packet is to add to its content the remaining 1

The goal of the precoding phase is to create and distribjiormation packets selected uniformly at random. Setecti
across the networkVp parity packetscorresponding to re- an mfprmatlon packet unlfor_mly at random is equwalent to
dundant packets of a high-rate LDPC precode. The parﬁﬁle.ctmg a network node unlfgrmly at random. Parity packet
packets are created fron information packets of the network &chieve this tas_k by .perforn'ung random walks on network
message, and both information and parity packets represg_lfﬁp_h as described in Sectlon lIB. This means that, after
a codeword of the LDPC precode. Hence the first problefiSiting one node, the parity packet randomly selects the ne
we need to solve is the design of distributed systemafi®de t0 visit from the set of the previous node neighbors. The
rate R LDPC precode that outputds — ((1 — R)/R)N proba@hty Dij qf selecting the nodg from A/ (i) for each
parity packets. After the precoding phase is finished anrd node: are optalned locally by e"_"Ch network node.
parity packets are dispersed across the network, a total oflong their random walk, parity packets are processed t?y
N information packets andVp parity packets are equally each ngtwork node. Th'e network node processing of the'pgrlty
treated as a new, precoded network message to be encodetffket is simple and is described as follows. If the mixing
the second, LT coding phase. The precoded network messgg@ COP”“*” > 0, it is decremented by one and the parity
containsN; = N + Np = N/R intermediate packets packet is forwarded to the next random hop.rlf= 0 and

In this paper, we apply a simple class of distributed presod',@;e nodg degreke cour;‘telrz > 0, thf hnode ,XOR'Sk Its own
called Low-Density Generator Matrix (LDGM) codes, wherd! ormapon packet to the c.onteht of the parity packet, tesla
LDGM parity packets are created by combining subsets pz_mty pac_ket header fields: decreases t_h_e degree gounte
information packets. Information and parity packet degae ad(_js |_nf_0_rmat|on packet ID and resets the mixing time caunte
described by node-oriented left and right degree disiiobgt to its iniial ve_llge, apd decrease§ the node degree cougter b
A(z) and P(z) respectively. Parity packets of distributed oné. If j[he m|x||(ng time counter is e%ual to z?akro add?_o, f
LDGM codes are created using the same simple packet-cen{ g pa.rltsza}c et cgntlny%s Its ranf om %Na szarg ing for
approach, reused later in creating Raptor packets in thel_ neighboring node withi; > 0. 1 Such a noge s not
coding phase. With this approach, we obtdffz) exactly, ound within limited number of hops, the information packet

whereas\ (z) can be designed sufficiently close to the desire‘?:]c the Iast. ViSitF_"d node is encoded into. th.e parity packet
distribution. content. With this rule, the left degree distributid(z) is

Creating parity packets proceeds in two steps: inititizat closely approximated. Aftet,. uniformly selected information
and encoding step. 2An exception to the rule occurs only if the parity packet athg contains
the information packet in its XOR-sum. In that case, the paptcket

lin Fig. 1, A(z) and P(x) describe the subgraph between informatiorcontinues its random walk until it reaches the first netwooklen containing
packets{s1, s2,...,sn} and parity packet§in1,iN42,.- - INFNp }- information packet which has not yet contributed to its emecbdontent.



construction of the virtual graph is simplified as each nekwo
node contains either one or two intermediate packets. Tlee ru
for establishing edges in the virtual graph is that eactuairt
node connects to all the virtual nodes in its network node and
in the neighboring network nodes, as illustrated in Fig. 3.
The processing of Raptor packets in virtual nodes is the
same as processing parity packets in the precoding phase. If
the mixing time countet > 0, the virtual node decreases the
mixing time counter by one and forwards the Raptor packet to
the next random virtual node. Otherwiserit= 0, the virtual
node XOR-s its intermediate packet to the Raptor packet

77777 Virtual graph {1} Virtual node (inform. packet) content and updates the Raptor packet header (decreases the
—— Network graph (P} Virtual node (parity packet) degree counter, adds the intermediate packet ID and resets
Q Network node the mixing time counter to the initial value). Random Raptor
packet forwarding across the virtual graph is determinethby
Fig. 3. Network graph and Virtual graph. probability transitions generated locally by each nodeaeAd

uniformly selected intermediate packets are encoded hwo t
_ ) ) ] Raptor packet, the encoding phase is completed.
packets are encoded into the parity packet, its encodingepha Dispersing Raptor PacketsAfter the encoding step, the
is completed. _ _ ~ Raptor packet should be placed in a random network node.
For simplicity of the following LT coding phase, we limit Tpjs is achieved by forwarding the Raptor packet for another
the number of parity packets per network node to be equal fgops across the network graph until it finds its final random
one. Therefore, if parity packet ends the encoding phaseein {osition in the network. After dispersing, expected numifer

network node containing another parity packet, it CONtiii® Rantor packets per network node is equabié; /N.
random walk until the first node that has no parity packets.

With this constraint, after the precoding phase, thereMge IV. SIMULATION RESULTS

network nodes, each containing one information and onéypari | this section, we analyze the performance of the proposed
packet, andN — Np network nodes, each containing on&cheme and compare it with the centralized Raptor codes. For
information packet only. the network model, we assume a random geometric graph
. G(N,r) model typical for wireless ad-hoc or sensor networks,
B. LT Coding Phase where N nodes are uniformly distributed over the unit square
In the LT coding phaseNp = bN; Raptor packets are area and a node can reliably communicate only with the
created from the set aV; = N + Np intermediate packets. nodes in its transmission range In each simulation run,
The number of Raptor packets created per intermediate Np parity packets are created in the precoding phase, after
packet is used to control the total number of Raptor packetéich 6(NV + Np) = bN; Raptor packets are produced and
available in the network. Creating Raptor packets procéedsdispersed across the network during the LT coding phase.
three steps: initialization, encoding and dispersing.step  In the precoding phase, we apply a distributed version of
Initializing Raptor PacketsEach network node creates ini-R = 0.95 regular(4,76) LDGM precode with the left degree
tial Raptor packets ascopies of each of its own intermediated, = 4 and the right degred,, = 76 [14]. In the LT coding
packet. In other words, if a node contains one informatiqgvhase, weakened LT code degree distribution of maximum
packet, it will initialize b Raptor packets; if it contains onedegreed,,,.. = 66 proposed for finite-length Raptor code
information and one parity packet, it will initializb Raptor design is used [2]. The random walk transition probability
packets. The degre€ from a selected degree distributionrmatrix P is designed using NRW and MH algorithms. Apart
Qr(d) is assigned independently and randomly to each Rapfosm N andr, the major simulation parameters are the number
packet. The degree counter of valde- 1, representing the of Raptor packet$ created per intermediate packet, and the
remaining degree to be collected, is placed in the Raptdtgtacmixing time constant” such that- = [C'log N. Finally, after
header. Additionally, Raptor packet header fields arediited Raptor packet dispersion, we assume existence of the mobile
with the mixing time counter and the ID of the intermediateollector that collects Raptor packets by performing rando
packet used to initialize the Raptor packet (Fig. 2). walk across the network starting from a randomly selected
Encoding Raptor Packetsfter initialization, bN; Raptor node. At each node, the collector queries all Raptor packets
packets start their encoding step, where each Raptor packed once it collectsVe packets, the iterative BP decoding
adds to its content the remaininb— 1 intermediate packets implemented at the collector is activated.
selected uniformly at random. As intermediate packets areln Figs. 4 and 5, we present the system performance
not in one-to-one correspondence with network nodes, Raptoeasured by the probability of decoding succéss as a
packets perform random walk across the virtual graph atleatieinction of the number of collected Raptor packéfs for
on intermediate packets, as described in Section IIC. Thé = 500 and N = 1000, respectively. Figs. 4(a) and 5(a)
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