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Abstract. We show that any randomized algorithm to approximate
any given ranking of n items within expected Spearman’s footrule dis-
tance n2/ν(n) needs at least n (min{log ν(n), log n} − 6) comparisons.
This bound is tight up to a constant factor since there exists a determin-
istic algorithm that shows that 6n(log ν(n) + 1) comparisons are always
sufficient.
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1 Introduction

Our motivation to study approximate sorting comes from the following mar-
ket research application. We want to find out how a respondent ranks a set of
products. In order to simulate real buying situations the respondent is presented
pairs of products out of which he has to choose one that he prefers, i.e., he has
to perform paired comparisons. The respondent’s ranking is then reconstructed
from the sequence of his choices. That is, a procedure that presents a sequence
of product pairs to the respondent in order to obtain the product ranking is
nothing else than a comparison based sorting algorithm. We can measure the
efficiency of such an algorithm in terms of the number of comparisons needed
in order to obtain the ranking. The information theoretic lower bound on sort-
ing [7] states that there is no procedure that can determine a ranking by posing
less than n log n

e paired comparison questions to the respondent, i.e., in general
Ω(n log n) comparisons are needed. Even for only moderately large n that eas-
ily is too much since respondents often get worn out after a certain number of
questions and do not answer further questions faithfully anymore. On the other
hand, it might be enough to know the respondent’s ranking approximately. In
this paper we pursue the question of how many comparisons are necessary and
sufficient in order to approximately rank n products.

In order to give sense to the term “approximately” we need some metric
to compare rankings. Assume that we are dealing with n products. Since a
ranking is a permutation of the products, this means that we need a metric on
the permutation group Sn. Not all of the metrics, e.g., the Hamming distance
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that counts how many products are ranked differently, are meaningful for our
application. For example, if in the respondent’s ranking one exchanges every
second product with its predecessor, then the resulting ranking has maximal
Hamming distance to the original one. Nevertheless, this ranking still tells a
lot about the respondent’s preferences. In marketing applications Kendall’s tau
metric [4] is frequently used since it seems to capture the intuitive notion of
closeness of two rankings and also arises naturally in the statistics of certain
random rankings [8].

Our results. Instead of working with Kendall’s metric we use Spearman’s footrule
metric [4] which essentially is equivalent to Kendall’s metric, since the two met-
rics are within a constant factor of each other [4]. The maximal distance between
any two rankings of n products in Spearman’s footrule metric is less than n2.
We show that in order to obtain a ranking at distance n2/ν(n) to the respon-
dent’s ranking with any strategy, a respondent has in general to perform at least
n (min{log ν(n), log n} − 6) comparisons. Moreover, if we allow the strategy to
be randomized such that the obtained ranking is at expected distance n2/ν(n)
to the respondent’s ranking, we can show that the same bound on the minimum
number of comparisons holds.

On the other hand, there is a deterministic strategy (algorithm), suggested
in [2], that shows that 6n(log ν(n) + 1) comparisons are always sufficient.

Related work. At first glance our work seems related to work done on pre-sorting.
In pre-sorting the goal is to pre-process the data such that fewer comparisons
are needed afterwards to sort them. For example in [5] it is shown that with
O(1) pre-processing one can save Θ(n) comparisons for Quicksort on average.
Pre-processing can be seen as computing a partial order on the data that helps
for a given sorting algorithm to reduce the number of necessary comparisons.
The structural quantity that determines how many comparisons are needed in
general to find the ranking given a partial order is the number of linear exten-
sions of the partial order, i.e., the number of rankings consistent with the partial
order. Actually, the logarithm of this number is a lower bound on the number
of comparisons needed in general [6]. Here we study another structural measure,
namely, the maximum diameter in the Spearman’s metric of the set of rankings
consistent with a partial order. Our results shows that with o(n log n) compar-
isons one can make this diameter asymptotically smaller than the diameter of
the set of all rankings. That is not the case for the number of linear extensions
which stays in Θ(2n log n).

Notation. The logarithm log in this paper is assumed to be binary, and by id
we denote the identity (increasing) permutation of [n].

2 Algorithm

The idea of the ASort algorithm is to partition the products into a sorted
sequence of equal-sized bins such that the elements in each bin have smaller



rank than any element in subsequent bins. This approach was suggested by
Chazelle [2] for near-sorting. The output of the algorithm is the sequence of
bins. Note that we do not specify the ordering of elements inside each bin, but
consider any ranking consistent with the ordering of the bins. We will show that
any such ranking approximates the actual ranking of the elements in terms of
Spearman’s footrule metric

D(π, id) = D(π) =

n∑

i=1

|i − π(i)|,

where π(i) is the rank of the element of rank i in an approximate ranking, i.e.,
|i − π(i)| measures deviation of the approximated rank from the actual rank.
Note that for any ranking the distance in the Spearman’s footrule metric to id

is at most n2

2 .
Since for every i the value |i − π(i)| is bounded by n divided by the number

of bins, we see that the approximation quality depends on the number of bins.
The algorithm ASort iteratively performs a number of median searches,

each time placing the median into the right position in the ranking. Here the
median of n elements is defined to be the element of rank bn+1

2 c.

ASort (B : set, m : int)
1 B01 := B // Bij is the j’th bin in the i’th round
2 for i := 1 to m do

3 for j := 1 to 2i−1
do

4 compute the median of B(i−1)j

5 Bi(2j−1) := {x ∈ B(i−1)j | x ≤ median}
6 Bi(2j) := {x ∈ B(i−1)j | x > median}
7 end for

8 end for

9 return Bm1, . . . , Bm(2m)

To compute the median in line 4 and to partition the elements in line 5
and 6 we use the deterministic algorithm by Blum et al. [1] that performs at
most 5.73n comparisons in order to compute the median of n elements and to
partition them according to the median. We note that in putting the algorithm
ASort to practice one may want to use a different median algorithm, like, e.g.,
RandomizedSelect [3].

In the following we determine the number of comparisons the algorithm
ASort needs on input B with |B| = n in order to guarantee a prescribed
approximation error of the actual ranking for any ranking consistent with the
ordering of the bins Bm1, . . . , Bm(2m) computed by the algorithm.

Lemma 1. For every x ∈ Bij, where 0 ≤ i ≤ m and 1 ≤ j ≤ 2i, it holds

j−1∑

k=1

|Bik| + 1 ≤ rank(x) ≤

j∑

k=1

|Bik|.



Proof. The lemma can be proven by induction on the number of rounds. By
construction, the elements in B11 have rank at least 1 and at most bn+1

2 c = |B11|
and the elements in B12 have rank at least bn+1

2 c + 1 = |B11| + 1 and at most
n = |B11| + |B12|.

Now assume that the statement holds after the (i − 1)’th round. The algo-
rithm partitions every bin B(i−1)j into two bins Bi(2j−1) and Bi(2j). Again by
construction the elements in bin Bi(2j−1) have rank at least

j−1∑

k=1

|B(i−1)k| + 1 =

j−1∑

k=1

(|Bi(2k−1)| + |Bi(2k)|) + 1 =

(2j−1)−1∑

k=1

|Bik| + 1,

and at most
(2j−1)−1∑

k=1

|Bik| + |Bi(2j−1)| =

2j−1∑

k=1

|Bik|.

Similarly, the elements in bin Bi(2j) have rank at least
∑2j−1

k=1 |Bik| + 1 and at

most
∑j

k=1 |B(i−1)k| =
∑2j

k=1 |Bik|. ut

Lemma 2. b n
2i c ≤ |Bij | ≤ d n

2i e for 0 ≤ i ≤ m and 1 ≤ j ≤ 2i

Proof. We prove by induction that in any round i the sizes of any two bins differ
by at most 1, i.e.,

∣∣|Bij | − |Bik|
∣∣ ≤ 1 for 0 ≤ i ≤ m and 1 ≤ j, k ≤ 2i. The

statement of the lemma then follows since by an averaging argument and the
integrality of the bin sizes, the size of each bin must by of size either d n

2i e or
b n

2i c.
For i = 1 the n elements of B are partitioned either into two equal sized bins

if n is even, or into two bins whose sizes differ by 1 if n is odd.
Now assume that the statement holds for i − 1. Take two bins B(i−1)j and

B(i−1)k. We distinguish two cases.

Case 1. B(i−1)j and B(i−1)k have the same size c. If c is even, then both bins get
split up into two bins each and the resulting four bins all have the same size. If
c is odd, then each of the bins gets split up into two bins of sizes b c

2c and d c
2e,

respectively, which differ by 1.

Case 2. Without loss of generality, |B(i−1)j | = c and |B(i−1)k| = c + 1. If c is
even, then B(i−1)j gets split up into two bins both of size c

2 and B(i−1)k gets
split up into two bins of size c

2 and c
2 + 1, respectively. If c is odd, then B(i−1)j

gets split up into two subsets of size c+1
2 and c+1

2 − 1, respectively, and B(i−1)k

gets split up into two bins of size c+1
2 . In any case the bins differ in size by at

most 1. ut

Lemma 3. In m rounds the algorithm ASort performs less than 6nm compar-

isons.



Proof. The algorithm by Blum et al. [1] needs at most 5.73n comparisons to
find the median of n elements and to partition the elements with respect to the
median. In the i’th round ASort partitions the elements in every bin Bij , 1 ≤
j ≤ 2i with respect to their median. Thus the i’th round needs at most

2i∑

j=1

5.73|Bij | = 5.73

2i∑

j=1

|Bij | = 5.73n ≤ 6n

comparisons. As the algorithm runs for m rounds the overall number of compar-
isons is less than 6nm. ut

Theorem 1. Let r = n2

ν(n) . Any ranking consistent with the ordering of the bins

computed by ASort in log ν(n) + 1 rounds, i.e., with less than

6n(log ν(n) + 1) comparisons, has a Spearman’s footrule distance of at most

r to the actual ranking of the elements from B.

Proof. Using the definition of Spearman’s footrule metric and Lemmas 1 and 2
we can conclude that the distance of the ranking of the elements in B to any
ranking consistent with the ordering of the bins computed by ASort in m rounds
can be bounded by

2m∑

j=1

|Bmj |
2

2
≤ 2m (d n

2m e)2

2

≤ 2m−1
( n

2m
+ 1

)2

≤ 2m−1

(
2n

2m

)2

, since 2m ≤ n

=
n2

2m−1
.

Plugging in log ν(n) + 1 for m gives a distance less than r as claimed in the
statement of the theorem. The claim for the number of comparisons follows
from Lemma 3. ut

3 Lower Bound

For r > 0, by BD(id, r) we denote the ball centered at id of radius r with respect
to the Spearman’s footrule metric, so

BD(id, r) := {π ∈ Sn : D(π, id) ≤ r}.

Next we estimate the number of permutations in a ball of radius r.



Lemma 4. ( r

en

)n

≤ |BD(id, r)| ≤

(
2e(r + n)

n

)n

.

Proof. Every permutation π ∈ Sn is uniquely determined by the sequence {π(i)−
i}i. Hence, for any sequence of non-negative integers di, i = 1, . . . , n, there are
at most 2n permutations π ∈ Sn satisfying |π(i) − i| = di.

If dD(π, id) ≤ r, then
∑

i |π(i) − i| ≤ r. Since the number of sequences of n
non-negative integers whose sum is at most r is

(
r+n

n

)
, we have

|BD(id, r)| ≤

(
r + n

n

)
2n ≤

(
2e(r + n)

n

)n

.

Next, we give a lower bound on the size of BD(id, r). Let s := dn2

r e, and let
us first assume that n is divisible by s. We divide the index set [n] into s blocks
of size n/s, such that for every i ∈ {1, 2, . . . , s} the ith block consists of elements
(i− 1)n

s + 1, (i− 1)n
s + 2, . . . , in

s . For every s permutations π1, π2, . . . , πs ∈ Sn/s

we define the permutation ρ ∈ Sn to be the concatenation of the permutations
applied to corresponding blocks, so ρ := π1(b1)π2(b2) . . . πs(bs). Note that the
distance of ρ to id with respect to Spearman’s footrule metric is at most n ·
n/s ≤ r, since |ρ(i) − i| ≤ n/s, for every i ∈ [n]. Obviously, for every choice
of π1, π2, . . . , πs we get a different permutation ρ, which means that we have at
least ((n

s

)
!
)s

≥
( r

en

)n

different permutations in BD(id, r).
If n is not divisible by s, we divide [n] into s blocks of size either dn/se or

bn/sc, again apply an arbitrary permutation on each of them and we can obtain
the same bound in an analogous fashion. �

Theorem 2. Let A be a randomized approximate sorting algorithm, let ν = ν(n)

be a function, and let r = r(n) = n2

ν(n) .

If for every input permutation π ∈ Sn the expected Spearman’s footrule dis-

tance of the output to id is at most r, then the algorithm performs at least

n (min{log ν, log n} − 6) comparisons.

Proof. Let k be the smallest integer such that A performs at most k comparisons
for every input. For a contradiction, let us assume that k < n (min{log ν, log n} − 6).

First, we are going to prove

1

2
n! > 2k

(
2e(2r + n)

n

)n

. (1)

Since log ν − 6 > k/n, we have ν
26 > 2k/n and since ν = n2

r we get

n

2e
> 2k/n 2e · 2r

n
. (2)



On the other hand, from log n − 6 > k/n we get n
26 > 2k/n implying

n

2e
> 2k/n 2e · n

n
. (3)

Putting (2) and (3) together, we obtain

n

e
> 2k/n 2e(2r + n)

n
.

Hence
1

2
n! ≥

(n

e

)n

> 2k

(
2e(2r + n)

n

)n

,

proving (1).
By R we denote the source of random bits for A. One can see R as the set

of all infinite 0-1 sequences, and then the algorithm is given a random element
of R along with the input. For a permutation π ∈ Sn and α ∈ R, by A(π, α) we
denote the output of the algorithm with input π and random bits α.

We fix α̃ ∈ R and run the algorithm for every permutation π ∈ Sn. Note that
with the random bits fixed the algorithm is deterministic. For every comparison
made by the algorithm there are two possible outcomes. We partition the set of
all permutations Sn into classes such that all permutations in a class have the
same outcomes of all the comparisons the algorithm makes. Since there is no
randomness involved, we have that for every class C there exists a σ ∈ Sn such
that for every π ∈ C we have A(π, α̃) = σ ◦ π. In particular, this implies that
the set {A(π, α̃) : π ∈ C} is of size |C|. On the other hand, since the algorithm
in this setting is deterministic and the number of comparisons of the algorithm
is at most k, there can be at most 2k classes. Hence, each permutation in Sn is
the output for at most 2k different input permutations. From Lemma 4 we have

|BD(id, 2r)| ≤
(

2e(4r+n)
n

)n

, and this together with (1) implies that at least

n! − 2k

(
2e(2r + n)

n

)n

>
1

2
n!

input permutations have output at distance to id more than 2r.
Now, if both the random bits α ∈ R and the input permutation π ∈ Sn

are chosen at random, the expected distance of the output A(π, α) to id is more
than r. Therefore, there exists a permutation π0 such that for a randomly chosen
α ∈ R the expected distance dD(A(π0, α), id) is more than r. Contradiction. �

4 Conclusion

Motivated by an application in market research we studied the problem to ap-
proximate a ranking of n items. The metric we use to compare rankings is Spear-
man’s footrule metric, which is within a constant factor to Kendall’s tau metric
that is frequently used in marketing research. We showed that any randomized al-
gorithm needs at least n (min{log ν(n), log n} − 6) comparisons to approximate



a given ranking of n items within expected distance n2/ν(n) . This result is
complemented by an algorithm that shows that 6n(log ν(n) + 1) comparisons
are always sufficient.

In particular, this means that in some cases substantially less comparisons
have to be performed than for sorting exactly, provided that a sufficiently large
error is allowed. That is, as long as the desired expected error is of order n2−α

for constant α one needs Ω(n log n) comparisons, which asymptotically is not
better than sorting exactly. But to achieve expected error of order n2−o(1) only
o(n log n) comparisons are needed.
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