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Abstract. We show that any comparison based, randomized algorithm to approximate any given
ranking ofn items within expected Spearman’s footrule distancen2/ν(n) needs at least

n (min{log ν(n), log n} − 6)

comparisons in the worst case. This bound is tight up to a constant factor since there exists a deter-
ministic algorithm that shows that6n log ν(n) comparisons are always sufficient.
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1. Introduction

Our motivation to study approximate sorting comes from the following market research application. We
want to find out how a respondent ranks a set of products. In order to simulate real buying situations the
respondent is presented pairs of products out of which he has to choose the one that he prefers, i.e., he
has to perform paired comparisons. The respondent’s ranking is then reconstructed from the sequence of
his choices. That is, a procedure that presents a sequence of product pairs to the respondent in order to
obtain the product ranking is nothing else than a comparison based sorting algorithm. We can measure
the efficiency of such an algorithm in terms of the number of (pairwise) comparisons needed in order to
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obtain the ranking. The information theoretic lower bound on sorting [6] states that there is no procedure
that can determine a ranking by posing less thann log n

e paired comparison questions to the respondent,
i.e., in generalΩ(n log n) comparisons are needed. Even for only moderately largen that easily is too
much since respondents often get worn out after a certain number of questions (independent ofn) and
do not answer further questions faithfully anymore. On the other hand, it might be enough to know the
respondent’s ranking approximately. In this paper we pursue the question of how many comparisons are
necessary and sufficient in order to approximately rankn products.

In order to give sense to the term “approximately” we need some metric to compare rankings. As-
sume that we are dealing withn products. Since a ranking is a permutation of the products, this means
that we need a metric on the permutation groupSn. Not all of the metrics, e.g., the Hamming distance
that counts how many products are ranked differently, are meaningful for our application. For example,
if in the respondent’s ranking one exchanges every second product with its predecessor, then the resulting
ranking has maximal Hamming distance to the original one. Nevertheless, this ranking still tells a lot
about the respondent’s preferences. In marketing applications Kendall’s tau metric [3] is frequently used
since it seems to capture the intuitive notion of closeness of two rankings and also arises naturally in the
statistics of certain random rankings [7].

Our results. Instead of working with Kendall’s metric we use Spearman’s footrule metric [3] which
essentially is equivalent to Kendall’s metric, since the two metrics are within a constant factor of each
other [3]. The maximal distance between any two rankings ofn products in Spearman’s footrule metric
is less thann2. We show that in order to obtain a ranking at distancen2/ν(n) to the actual ranking, with
any strategy, a respondent has in general to perform at leastn (min{log ν(n), log n} − 6) comparisons
in the worst case, i.e., there is an instance for which any comparison based algorithm performs at least
n (min{log ν(n), log n} − 6) comparisons. Moreover, if we allow the strategy to be randomized such
that the obtained ranking is at expected distancen2/ν(n) to the respondent’s ranking, we can show that
the same bound on the minimum number of comparisons holds.

On the other hand, there is a deterministic strategy (algorithm) that shows that6n log ν(n) compar-
isons are always sufficient.

Related work. At first glance our work seems related to work done on pre-sorting. In pre-sorting
the goal is to pre-process the data such that fewer comparisons are needed afterwards to sort them. For
example in [4] it is shown that withO(1) pre-processing one can saveΘ(n) comparisons for Quicksort on
average. Pre-processing can be seen as computing a partial order on the data that helps for a given sorting
algorithm to reduce the number of necessary comparisons. The structural quantity that determines how
many comparisons are needed in general to find the ranking given a partial order is the number of linear
extensions of the partial order, i.e., the number of rankings consistent with the partial order. Actually,
the logarithm of this number is a lower bound on the number of comparisons needed in general [5]. Here
we study another structural measure, namely, the maximum diameter in the Spearman’s metric of the set
of rankings consistent with a partial order. Our results show that witho(n log n) comparisons one can
make this diameter asymptotically smaller than the diameter of the set of all rankings. That is not the
case for the number of linear extensions which stays inΘ(2n log n).

Notation. The logarithmlog in this paper is assumed to be binary, and by id we denote the identity
(increasing) permutation of[n].
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2. Lower Bound

Here, we show that in order to obtain a ranking reasonably close to the actual ranking, a respondent
has to perform a substantial number of comparisons in the worst case. More precisely, for any (possi-
bly randomized) comparison based algorithm that outputs a ranking at distancen2/ν(n) to the actual
ranking, there is an instance for which it performs (in expectation) at leastn (min{log ν(n), log n} − 6)
comparisons.

The distance of an approximate ranking from the actual ranking will be measured in Spearman’s
footrule metric,

D(π, id) = D(π) =
n∑

i=1

|i− π(i)|,

whereπ(i) is the rank of the element of ranki in the approximate ranking, i.e.,|i − π(i)| measures
deviation of the approximated rank from the actual rank. Note that for any ranking the distance in the
Spearman’s footrule metric to id is at mostn2

2 .
For r > 0, by BD(id, r) we denote the ball centered at id of radiusr with respect to the Spearman’s

footrule metric, so
BD(id, r) := {π ∈ Sn : D(π, id) ≤ r}.

Next we estimate the number of permutations in a ball of radiusr.

Lemma 2.1.

|BD(id, r)| ≤
(

2e(r + n)
n

)n

.

Proof:
Every permutationπ ∈ Sn is uniquely determined by the sequence{π(i)− i}i. Hence, for any sequence
of non-negative integersdi, i = 1, . . . , n, there are at most2n permutationsπ ∈ Sn satisfying|π(i)−i| =
di.

If D(π, id) ≤ r, then
∑

i |π(i) − i| ≤ r. Since the number of sequences ofn non-negative integers
whose sum is at mostr is

(
r+n

n

)
, we have

|BD(id, r)| ≤
(

r + n

n

)
2n ≤

(
2e(r + n)

n

)n

.

ut

Using the previous lemma and Yao’s Principle [8], we give a lower bound for the worst case running
time of any (randomized) comparison based approximate sorting algorithm.

Theorem 2.1. Let A be a randomized approximate sorting algorithm based on comparisons, letν =
ν(n) be a function, and letr = r(n) = n2

ν(n) .
If for every input permutationπ ∈ Sn the expected Spearman’s footrule distance of the output to id

is at mostr, then the algorithm performs at leastn (min{log ν, log n} − 6) comparisons in expectation
in the worst case.
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Proof:
Let k be the smallest integer such thatA performs at mostk comparisons for every input. For a contra-
diction, let us assume that

k < n (min{log ν, log n} − 6) .

First, we are going to prove
1
2
n! > 2k

(
2e(2r + n)

n

)n

. (1)

Sincelog ν − 6 > k/n, we haveν
26 > 2k/n and sinceν = n2

r we get

n

2e
> 2k/n 2e · 2r

n
. (2)

On the other hand, fromlog n− 6 > k/n we get n
26 > 2k/n implying

n

2e
> 2k/n 2e · n

n
. (3)

Putting (2) and (3) together, we obtain

n

e
> 2k/n 2e(2r + n)

n
.

Hence
1
2
n! ≥

(n

e

)n
> 2k

(
2e(2r + n)

n

)n

,

proving (1).
We denote byR the source of random bits forA. One can seeR as the set of all infinite 0-1 sequences,

and then the algorithm is given a random element ofR along with the input. For a permutationπ ∈ Sn

andα ∈ R, we denote byA(π, α) the output of the algorithm with inputπ and random bitsα.
We fix α̃ ∈ R and run the algorithm for every permutationπ ∈ Sn. Note that with the random bits

fixed the algorithm is deterministic. For every comparison made by the algorithm there are two possible
outcomes. We partition the set of all permutationsSn into classes such that all permutations in a class
have the same outcomes ofall the comparisonsthe algorithm makes. Since there is no randomness
involved, we have that for every classC there exists aσ ∈ Sn such that for everyπ ∈ C we have
A(π, α̃) = σ ◦ π, where◦ is the multiplication in the permutation groupSn. In particular, this implies
that the set{A(π, α̃) : π ∈ C} is of size|C|. On the other hand, since the algorithm in this setting
is deterministic and the number of comparisons of the algorithm is at mostk, there can be at most2k

classes. Hence, each permutation inSn is the output for at most2k different input permutations. From

Lemma 2.1 we have|BD(id, 2r)| ≤
(

2e(2r+n)
n

)n
, and this together with (1) implies that at least

n!− 2k

(
2e(2r + n)

n

)n

>
1
2
n!

input permutations have output at distance to id more than2r.
Now, if both the random bitsα ∈ R and the input permutationπ ∈ Sn are chosen at random, the

expected distance of the outputA(π, α) to id is more thanr. Therefore, there exists a permutationπ0 such
that for a randomly chosenα ∈ R the expected distancedD(A(π0, α), id) is more thanr. Contradiction.

ut
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3. Algorithm

The idea of ASORT algorithm is to partition the products into a sorted sequence of equal-sized bins such
that the elements in each bin have smaller rank than any element in subsequent bins. It is based on a
well-studied variation of Quicksort algorithm in which the median is chosen to be the pivot element (see,
e.g., [2]).

The output of the algorithm is the sequence of bins. Note that we do not specify the ordering of
elements inside each bin, but consider any ranking consistent with the ordering of the bins. As it turns
out, any such ranking approximates the actual ranking of the elements in terms of Spearman’s footrule
metric well.

The algorithm ASORT iteratively performs a number of median searches, each time placing the me-
dian into the right position in the ranking. Here the median ofn elements is defined to be the element of
rankbn+1

2 c.

ASORT (B : set, m : int)
1 B01 := B // Bij is thej’th bin in thei’th round
2 for i := 1 to m do
3 for j := 1 to 2i−1 do
4 compute themedianof B(i−1)j

5 Bi(2j−1) := {x ∈ B(i−1)j | x ≤ median}
6 Bi(2j) := {x ∈ B(i−1)j | x > median}
7 end for
8 end for
9 return Bm1, . . . , Bm(2m)

To compute the median in line 4 and to partition the elements in line 5 and 6 we use the deterministic
algorithm by Blum et al. [1] that performs at most5.73n comparisons in order to compute the median of
n elements and to partition them according to the median. We note that in putting the algorithm ASORT

to practice one may want to use a different median algorithm, like, e.g., RANDOMIZEDSELECT [2].
In each round, the sum of the cardinalities of all the bins isn. Hence, one round takes at most5.73n

comparisons. As the algorithm runs form rounds overall, the total number of comparisons is less than
6nm.

Theorem 3.1. Let r = n2

ν(n) . Any ranking consistent with the ordering of the bins computed by ASORT

in log ν(n) rounds, i.e., with less than6n log ν(n) comparisons, has a Spearman’s footrule distance of at
mostr to the actual ranking of the elements fromB.

Proof:
The distance of the actual ranking of the elements inB to any ranking consistent with the ordering of the
bins computed by ASORT in m rounds can be bounded by

n
(⌈ n

2m

⌉
− 1

)
≤ n2

2m
.

Plugging inm = log ν(n), we see that the distance is at mostr. As we saw earlier, the algorithm
performs at most6nm = 6n log ν(n) comparisons. ut
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