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Abstract. We show that any comparison based, randomized algorithm to approximate any given
ranking ofn items within expected Spearman’s footrule distanté (n) needs at least

n (min{log v(n),logn} — 6)

comparisons in the worst case. This bound is tight up to a constant factor since there exists a deter-
ministic algorithm that shows thék log v(n) comparisons are always sufficient.
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1. Introduction

Our motivation to study approximate sorting comes from the following market research application. We
want to find out how a respondent ranks a set of products. In order to simulate real buying situations the
respondent is presented pairs of products out of which he has to choose the one that he prefers, i.e., he
has to perform paired comparisons. The respondent’s ranking is then reconstructed from the sequence of
his choices. That is, a procedure that presents a sequence of product pairs to the respondent in order to
obtain the product ranking is nothing else than a comparison based sorting algorithm. We can measure
the efficiency of such an algorithm in terms of the number of (pairwise) comparisons needed in order to
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obtain the ranking. The information theoretic lower bound on sorting [6] states that there is no procedure
that can determine a ranking by posing less thawg = paired comparison questions to the respondent,

i.e., in general2(nlogn) comparisons are needed. Even for only moderately larget easily is too

much since respondents often get worn out after a certain number of questions (indepemdertcbf

do not answer further questions faithfully anymore. On the other hand, it might be enough to know the
respondent’s ranking approximately. In this paper we pursue the question of how many comparisons are
necessary and sufficient in order to approximately raipkoducts.

In order to give sense to the term “approximately” we need some metric to compare rankings. As-
sume that we are dealing withproducts. Since a ranking is a permutation of the products, this means
that we need a metric on the permutation grélyp Not all of the metrics, e.g., the Hamming distance
that counts how many products are ranked differently, are meaningful for our application. For example,
if in the respondent’s ranking one exchanges every second product with its predecessor, then the resulting
ranking has maximal Hamming distance to the original one. Nevertheless, this ranking still tells a lot
about the respondent’s preferences. In marketing applications Kendall’s tau metric [3] is frequently used
since it seems to capture the intuitive notion of closeness of two rankings and also arises naturally in the
statistics of certain random rankings [7].

Our results. Instead of working with Kendall’s metric we use Spearman’s footrule metric [3] which
essentially is equivalent to Kendall's metric, since the two metrics are within a constant factor of each
other [3]. The maximal distance between any two rankings pfoducts in Spearman'’s footrule metric
is less tham?. We show that in order to obtain a ranking at distanég(n) to the actual ranking, with
any strategy, a respondent has in general to perform atigasin{log v(n),logn} — 6) comparisons
in the worst case, i.e., there is an instance for which any comparison based algorithm performs at least
n (min{logv(n),logn} — 6) comparisons. Moreover, if we allow the strategy to be randomized such
that the obtained ranking is at expected distamcé/(n) to the respondent’s ranking, we can show that
the same bound on the minimum number of comparisons holds.

On the other hand, there is a deterministic strategy (algorithm) that show&:thatv(n) compar-
isons are always sufficient.

Related work. At first glance our work seems related to work done on pre-sorting. In pre-sorting
the goal is to pre-process the data such that fewer comparisons are needed afterwards to sort them. For
example in [4] itis shown that wit)(1) pre-processing one can s&én) comparisons for Quicksort on
average. Pre-processing can be seen as computing a partial order on the data that helps for a given sorting
algorithm to reduce the number of necessary comparisons. The structural quantity that determines how
many comparisons are needed in general to find the ranking given a partial order is the number of linear
extensions of the partial order, i.e., the number of rankings consistent with the partial order. Actually,
the logarithm of this number is a lower bound on the number of comparisons needed in general [5]. Here
we study another structural measure, namely, the maximum diameter in the Spearman’s metric of the set
of rankings consistent with a partial order. Our results show that #fitdog n) comparisons one can
make this diameter asymptotically smaller than the diameter of the set of all rankings. That is not the
case for the number of linear extensions which stay(@f*'°s ™).

Notation. The logarithmlog in this paper is assumed to be binary, and by id we denote the identity
(increasing) permutation o¢f|.



J. Giesen, E. Schubert, M. Stojakibi/Approximate Sorting 1003

2. Lower Bound

Here, we show that in order to obtain a ranking reasonably close to the actual ranking, a respondent
has to perform a substantial number of comparisons in the worst case. More precisely, for any (possi-
bly randomized) comparison based algorithm that outputs a ranking at distafegn) to the actual
ranking, there is an instance for which it performs (in expectation) atte@stn{log v(n),logn} — 6)
comparisons.

The distance of an approximate ranking from the actual ranking will be measured in Spearman’s
footrule metric,

D(m,id) = D(w) = > _ |i — w(d)],
=1

wheren (i) is the rank of the element of rankin the approximate ranking, i.el4 — 7(i)| measures
deviation of the approximated rank from the actual rank. Note that for any ranking the distance in the
Spearman’s footrule metric to id is at md§2{.
Forr > 0, by Bp(id, r) we denote the ball centered at id of radiusith respect to the Spearman’s
footrule metric, so
Bp(id,r) :={m € S, : D(m,id) <r}.

Next we estimate the number of permutations in a ball of racius

Lemma 2.1. "
2
|Bp(id, )| < (e(r—&—n)) .
n
Proof:
Every permutationr € S,, is uniquely determined by the sequeredi) —i},. Hence, for any sequence
of non-negative integerg, i = 1, ..., n, there are at mo&t* permutationsr € S,, satisfying|w(i)—i| =
d;.

If D(m,id) < r, then),|n(i) —i| < r. Since the number of sequences:afion-negative integers
whose sum is at mostis ('), we have

n

Bp(id, )| < (””)2" < (““”)

n n

O

Using the previous lemma and Yao’s Principle [8], we give a lower bound for the worst case running
time of any (randomized) comparison based approximate sorting algorithm.

Theorem 2.1. Let A be a randomized approximate sorting algorithm based on comparisons=et
v(n) be a function, and let = r(n) = %

If for every input permutatiomr € .S,, the expected Spearman’s footrule distance of the output to id
is at mostr, then the algorithm performs at leastmin{log v,logn} — 6) comparisons in expectation

in the worst case.
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Proof:
Let k be the smallest integer such thétperforms at mosk comparisons for every input. For a contra-
diction, let us assume that

k < n (min{logv,logn} —6).

%n! > ok (WW)” (1)

n

First, we are going to prove

Sincelog v — 6 > k/n, we have > 2/ and sinces = 1—2 we get

n 2k/n26'2r'

— 2

2e > n )
On the other hand, frodogn — 6 > k/n we getgs > 2k/™ implying

N gkmZe @3)

2e n

Putting (2) and (3) together, we obtain

e n
Hence "
Las (ﬁ)" o ok <26<2T+n>> 7
2 e n
proving (1).

We denote byR the source of random bits fot. One can se® as the set of all infinite 0-1 sequences,
and then the algorithm is given a random elemenkaflong with the input. For a permutatiane S,
anda € R, we denote byA(w, ) the output of the algorithm with input and random bitsr.

We fix @ € R and run the algorithm for every permutatienc S,,. Note that with the random bits
fixed the algorithm is deterministic. For every comparison made by the algorithm there are two possible
outcomes. We partition the set of all permutatigfisinto classes such that all permutations in a class
have the same outcomes af the comparisonghe algorithm makes. Since there is no randomness
involved, we have that for every clags there exists a € S,, such that for everyr ¢ C we have
A(m, &) = o o w, whereo is the multiplication in the permutation grou,. In particular, this implies
that the sef{ A(m,a) : = € C} is of size|C|. On the other hand, since the algorithm in this setting
is deterministic and the number of comparisons of the algorithm is at ipdkere can be at mogt
classes. Hence, each permutatiorsjnis the output for at most* different input permutations. From

Lemma 2.1 we havgBp(id, 2r)| < (W)n and this together with (1) implies that at least

n
n! — ok (WW> > ln!
n 2

input permutations have output at distance to id more than
Now, if both the random bitex € R and the input permutation € S,, are chosen at random, the
expected distance of the outpdifr, «) to id is more tham. Therefore, there exists a permutatigrsuch
that for a randomly chosem € R the expected distanek, (A(m, «), id) is more than-. Contradiction.
0
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3. Algorithm

The idea of A®RT algorithm is to partition the products into a sorted sequence of equal-sized bins such
that the elements in each bin have smaller rank than any element in subsequent bins. It is based on a
well-studied variation of Quicksort algorithm in which the median is chosen to be the pivot element (see,
e.g., [2]).

The output of the algorithm is the sequence of bins. Note that we do not specify the ordering of
elements inside each bin, but consider any ranking consistent with the ordering of the bins. As it turns
out, any such ranking approximates the actual ranking of the elements in terms of Spearman’s footrule
metric well.

The algorithm ASRT iteratively performs a number of median searches, each time placing the me-
dian into the right position in the ranking. Here the median elements is defined to be the element of
rank | 24 |.

ASORT (B : set, m : int)

1 By :=B // Bjisthej'thbininthei'th round
2 fori:=1tomdo

3 forj:=1to2'do

4 compute thenedianof B(;_,);

5 Bi(ijl) = {l‘ S B(ifl)j | T < mediar}

6 Bj(2j) := {7 € B(i—1); | * > mediar}

7 end for

8 end for

9 return By, ..., Byem)

To compute the median in line 4 and to partition the elements in line 5 and 6 we use the deterministic
algorithm by Blum et al. [1] that performs at mdst3n comparisons in order to compute the median of
n elements and to partition them according to the median. We note that in putting the algorithRTAS
to practice one may want to use a different median algorithm, like, eAq\DRMIZED SELECT [2].

In each round, the sum of the cardinalities of all the bins.islence, one round takes at mést3n
comparisons. As the algorithm runs fer rounds overall, the total number of comparisons is less than
6nm.

Theorem 3.1. Letr = #2) Any ranking consistent with the ordering of the bins computed bpRAS

in log v(n) rounds, i.e., with less thain log v(n) comparisons, has a Spearman’s footrule distance of at
mostr to the actual ranking of the elements framn

Proof:
The distance of the actual ranking of the elementB @ any ranking consistent with the ordering of the
bins computed by ASRT in m rounds can be bounded by

2

dRUET

Plugging inm = logv(n), we see that the distance is at mestAs we saw earlier, the algorithm
performs at mostnm = 6nlog v(n) comparisons. 0
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