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Abstract

An Avoider-Enforcer game is played by two players, called Avoider and Enforcer,
on a hypergraph F ⊆ 2X . The players claim previously unoccupied elements of
the board X in turns. Enforcer wins if Avoider claims all vertices of some element
of F , otherwise Avoider wins. In a more general version of the game a bias b is
introduced to level up the players’ chances of winning; Avoider claims one element of
the board in each of his moves, while Enforcer responds by claiming b elements. This
traditional set of rules for Avoider-Enforcer games is known to have a shortcoming:
it is not bias monotone.

We relax the traditional rules in a rather natural way to obtain bias monotonic-
ity. We analyze this new set of rules and compare it with the traditional ones to



conclude some surprising results. In particular, we show that under the new rules
the threshold bias for both the connectivity and Hamiltonicity games, played on
the edge set of the complete graph Kn, is asymptotically equal to n/ log n.
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1 Biased Maker-Breaker games.

In this paper we consider Avoider-Enforcer games. To motivate our inves-
tigation we start with a short discussion of their widely studied ancestors,
Maker-Breaker games.

Let p and q be positive integers and let F ⊆ 2X be a hypergraph over
the vertex set X. In a (p : q) Maker-Breaker game F , two players, called
Maker and Breaker, take turns selecting previously unclaimed vertices of X
(with Maker going first). Maker selects p vertices per turn and Breaker selects
q vertices per turn. The integers p, q are called the biases of the respective
players. The game ends when every element of the board has been claimed by
one of the players. Maker wins the game if he claims all the vertices of some
winning set; otherwise Breaker wins.

Chvátal and Erdős [3] studied Maker-Breaker games played on the edge
set of the complete graph Kn. They have come to realize that natural graph
games are often “easily” won by Maker when played in a fair fashion (that
is, with p = q = 1), so they explored a more general question: What is the
largest bias b of Breaker, against which Maker can still win a particular game,
if his bias is 1? For such a question to make sense, one would like to have the
following property: if the (1 : b) game F is a Breaker’s win for some integer
b, then the (1 : b′) game F is also a Breaker’s win for any b′ ≥ b. It is easy
to see that this holds for any family F . Formally, Maker-Breaker games are
bias monotone, as Maker wins the (p : q) Maker-Breaker game F for some
hypergraph F and positive integers p, q, then he also wins the (p + 1 : q) and
the (p : q−1) games (the analogous statement for Breaker’s win holds as well).

For a family F of sets, let the threshold bias bF be the non-negative integer
for which Maker has a winning strategy in the (1 : b) game F if and only if
b < bF . Note that bF is well-defined for any (monotone increasing) family F
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(unless F = ∅ or F contains a hyperedge of size at most one).

Chvátal and Erdős [3] have initiated the study of the biased graph games
like “connectivity” and “Hamiltonicity”, where the families of winning sets
are the family T = T (n) ⊆ 2E(Kn) of all n-vertex connected graphs and the
family H = H(n) ⊆ 2E(Kn) of all n-vertex Hamiltonian graphs, respectively.

They proved that bT = Θ
(

n
log n

)
, and Gebauer and Szabó [5] recently showed

that

bT = (1 + o(1))
n

log n
.

Beck [1] has shown that for the Hamiltonicity game we have bH = Θ
(

n
log n

)
.

The current best estimates are

(log 2− o(1))
n

log n
≤ bH ≤ (1 + o(1))

n

log n
,

the lower bound is due to Krivelevich and Szabó [8].

2 Biased Avoider-Enforcer games.

Avoider-Enforcer games are the misère version of Maker-Breaker games. Gen-
erally speaking, a misère game is played according to its conventional rules,
except that it is played to “lose”. The only difference to Maker-Breaker game
rules is that Avoider wins the game if he does not claim all the vertices of any
hyperedge of F ; otherwise Enforcer wins.

Similarly to Maker-Breaker games, one would like to define for every family
F the Avoider-Enforcer threshold bias fF as the non-negative integer for which
Enforcer wins the (1 : b) game F if and only if b < fF . Somewhat surprisingly,
unlike for Maker-Breaker games, such a threshold does not exist in general for
Avoider-Enforcer games (see [6]).

In order to overcome the non-monotonicity of Avoider-Enforcer games and,
as a consequence, the lack of a well-defined threshold bias, we offer a mod-
ification of the rules of Avoider-Enforcer games. We refer to the new rules
as monotone rules, while the original set of rules will be referred to as strict
rules. In this new setting of Avoider-Enforcer games everything remains the
same as before except that we allow both players to claim more elements per
turn than their respective bias. It is easy to see that Avoider-Enforcer games
with these rules are bias monotone. Hence, one can define the threshold bias
fmon
F of the monotone game F as the non-negative integer for which Enforcer

has a winning strategy in the (1 : b) game if and only if b ≤ fmon
F .



Our relaxation of the rules of Avoider-Enforcer games is inspired by the
seemingly plausible assumption that “taking more edges cannot possibly help
a player in an Avoider-Enforcer game”. The presumed analogy to Maker-
Breaker games further supports the idea of monotone rules, since the analogous
relaxation of the rules of Maker-Breaker games does not change the outcome
of the game – it is known that allowing a player to claim less edges than his
respective bias in a Maker-Breaker game cannot help him.

One may wonder about the relationship between a biased Avoider-Enforcer
game played according to the strict rules and the same game played according
to the monotone rules. Is it true that our relaxation of the rules has no
significant effect, other than making the game bias-monotone? Unexpectedly,
the results we obtain are strikingly different, even for such a natural graph
game as connectivity, which is even bias monotone under the strict rules.

Let k be a positive integer and let Dk ⊆ 2E(Kn) denote the hypergraph
containing the edge sets of all graphs on n vertices with minimum degree at
least k. The main result of our paper is the following theorem.

Theorem 2.1 If b ≥ n−1
log(n−2)−1

and n is sufficiently large, then Avoider has

a winning strategy in the monotone (1 : b) game D1. Therefore,

fmon
D1

≤ (1 + o(1))
n

log n
.

This theorem coupled with Theorem 1.5 of [6] exemplifies that in the con-
nectivity game Avoider does benefit from having the possibility of taking more
than one edge per move. As proved in [6], when playing according to the
strict rules, Avoider can only win if the bias of Enforcer is at least as large
as bn−1

2
c + 1, so Avoider will have less than n − 1 edges at the end. On the

other hand, when playing according to the monotone rules, Avoider can avoid

building a connected graph even if Enforcer’s bias is as small as Θ
(

n
log n

)
.

Combined with the results of [8], Theorem 2.1 also has the following im-
portant corollary. Let Ck ⊆ 2E(Kn) denote the hypergraph containing the edge
sets of all k-connected spanning subgraphs of Kn.

Corollary 2.2

fmon
Dk

, fmon
T , fmon

Ck
, fmon
H = (1 + o(1))

n

log n
.

Note that for some of these games, such as “Hamiltonicity” or “k-connectivity”,
where k ≥ 2, currently we do not have such tight results for the Maker-Breaker
version.



3 Concluding remarks and open problems

A natural question one may ask is: Which set of rules is “better” than the
other?

The advantage of monotone rules is the existence of a threshold bias for
every game. Moreover, some of the obtained results concerning the threshold
bias of the monotone Avoider-Enforcer game tend to show great similarity to
their Maker-Breaker analogues.

The benefit of the strict rules lies in their applicability to Maker-Breaker
games (see, e.g., [7]) or to discrepancy type games (see, e.g., [2,4]). In these
applications, in order to provide a strategy for Maker or for Breaker, one
defines an auxiliary Avoider-Enforcer game which models the original Maker-
Breaker game, and uses the winning strategy of Avoider or Enforcer in the
auxiliary game. Clearly, in this situation the monotone rules are useless.
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