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Abstract

We study the biased (1 : b) Maker-Breaker positional games, played
on the edge set of the complete graph on n vertices, Kn. Given Breaker’s
bias b, possibly depending on n, we determine the bounds for minimal
number of moves, depending on b, in which Maker can win in each of the
two standard graph games, the Perfect Matching game and the Hamilton
Cycle game.

1 Introduction

In a Maker-Breaker positional game, a finite setX and a family E of subsets ofX
are given, and two players, Maker and Breaker, alternate in claiming unclaimed
elements of X until all the elements are claimed, with Breaker going first. In
the standard setting, each player claims exactly one element of X. Maker wins
if he claims all elements of a set from E , and Breaker wins otherwise. The set
X is referred to as the board, and the elements of E as the winning sets. As
Maker-Breaker positional games are finite games of perfect information and no
chance moves, we know that in every game one of the players has a winning
strategy. More on various aspects of positional game theory can be found in
the monograph of Beck [1] and in the recent monograph [9].

We are interested in positional games on graphs, where the board X is the edge
set of a graph, and we will mostly deal with games played on the edge set of
the complete graph E(Kn). Three standard positional games that we will look
at here are Connectivity game, where Maker wants to claim a spanning tree,
Perfect Matching game, where the winning sets are all perfect matchings of
the base graph, and Hamilton Cycle game, where Maker’s goal is to claim a
Hamilton cycle.

Once the order n of the base graph gets large, it turns out that Maker can
win in each of the three mentioned games in a straightforward fashion. But

∗Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,
Serbia. Research partly supported by Ministry of Education, Science and Technological De-
velopment, Republic of Serbia, and Provincial Secretariat for Science and Technological Devel-
opment, Province of Vojvodina. Email: {mirjana.mikalacki,milos.stojakovic}@dmi.uns.ac.rs.

1



our curiosity does not end there, as there are several standard approaches to
make the setting more interesting to study. One of them is the so-called biased
games, where Breaker is given more power by being allowed to claim more than
one edge per move. The other approach we focus on is the fast win of Maker,
where the question we want to answer is not just if Maker can win, but also
how fast he can win.

Given a positive integer b, in the (1 : b) biased game Breaker claims b edges
in each move, while Maker claims a single edge. The parameter b is called the
bias. Maker-Breaker games are “bias monotone”, i.e. if Breaker wins the (1 : b)
game, for some value of b, then he also wins the (1 : b + 1) game. Due to the
bias monotonicity of Maker-Breaker games, it is straightforward to conclude
that for any positional game there is some value b0 = b0(n) such that Maker
wins the game for all b < b0(n), while Breaker wins for b ≥ b0(n) (see [9] for
details). We call b0(n) the threshold bias for that game.

The biased games were first introduced and studied by Chvátal and Erdős
in [2], and some thirty years later the papers of Gebauer and Szabó [7] and
Krivelevich [11] finally located the leading term of the thresholds for the games
of Connectivity, Perfect Matching and Hamilton Cycle, which turned out to be
n/ lnn for all three games.

Moving on to the concept of fast winning, when we know that Maker can
win an unbiased game, a natural question that we can ask is – what is the
minimum number of moves for Maker to win? Questions of this type appeared
frequently, often as subproblems, in classical papers on positional games, and
the concept of fast Maker’s win was further formalized in [8]. It is not hard to
see that Maker can win the unbiased Connectivity game as fast as the size of
the winning set allows, in n− 1 moves. For the other two games it takes him a
bit longer (one move longer, to be more precise) – he can win unbiased Perfect
Matching game in n/2 + 1 moves (for n even) [8], and unbiased Hamilton cycle
game in n + 1 moves [10], and in both cases that is the best he can do. We
note that some research has also been done on fast Maker’s win in unbiased k-
Connectivity, Perfect Matching and Hamilton Cycle games played on the edge
set of a random graph, see [3].

Knowing how fast Maker can win, and how to win fast, is important, as this
often helps us when looking at other positional games. Indeed, there are numer-
ous examples where a player’s winning strategy may call for building a certain
structure quickly before proceeding to another task. Also, one of very few tools
that proved to be useful when tackling the so-called strong positional games
are the fast Maker’s winning strategies, see [4, 5, 6].

2 Results

Our goal here is to combine the two presented concepts – the biased games and
the fast winning, looking into the possibilities for Maker to win fast in biased
games. In other words, given a game G and a bias b such that Maker can win
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(1 : b) biased game, we want to know in how many moves he can win the game.
One obvious lower bound for the duration of the game is the size of the smallest
winning set, and that is n− 1 for Connectivity, n

2 for Perfect Matching, and n
for Hamilton Cycle.

It is not hard to see that in Connectivity game Maker does not ever need to
close a cycle, and therefore, even in the biased game, whenever he can win he
can do so in exactly n − 1 moves. This imposes a natural question whether
Maker can do the same in case of other two aforementioned games, i.e. to win
in optimal number of moves whenever he has a winning strategy. It turns out
that for the biased games of Perfect Matching and Hamilton Cycle this is not
possible, as Maker needs additional moves to finish building the desired graphs.
Hence, we are also interested in seeing how the increase in bias influences the
duration of the games.

The following theorem gives fast Maker’s win in Perfect Matching game for
most of the range of biases for which Maker can win, up to the (order of the)
threshold for Maker’s win in the game.

Theorem 2.1 There exist δ > 0 and C > 0 such that for every b ≤ δn
100 lnn ,

Maker can win the (1 : b) Perfect Matching game played on E(Kn) within
n
2 + Cb ln b moves, for large enough n.

Moving on to Hamilton Cycle game, winning quickly becomes more difficult
for Maker. In this game, the strategies of Maker change as bias grows, unlike
in Perfect Matching game, where Maker can use the same strategy on almost
whole range of biases for which he can win. The following two theorems give
results for fast Maker’s win in Hamilton Cycle game for different bias ranges.
The first one is more powerful, but it applies only for small values of bias, while
the second one covers a wider range of bias.

Theorem 2.2 There exists C > 0 such that for b ≥ 2 and b = o
(

lnn
ln lnn

)
,

Maker can win the (1 : b) Hamilton Cycle game game played on E(Kn) within
n+ Cb2 ln b moves, for large enough n.

Theorem 2.3 There exist δ > 0 and C > 0, such that for b ≤ δ
√

n
ln5 n

Maker

can win the (1 : b) Hamilton Cycle game played on E(Kn) within n+Cb2 ln5 n
moves, for large enough n.

Finally, when the bias is large, we can apply the following result of Krivele-
vich [11], as it provides Maker with a win within 14n moves in Hamilton Cycle
game, and thus also in Perfect Matching game.

Theorem 2.4 ([11], Theorem 1) Maker can win the (1 : b) Hamilton Cycle

game played on E(Kn) in at most 14n moves, for every b ≤
(

1− 30
ln1/4 n

)
n

lnn ,

for large enough n.
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On the other hand, we are curious about finding Breaker’s strategies in both
Perfect Matching and Hamilton Cycle games for preventing Maker from winning
in optimal number of moves. The following theorem shows that Breaker can
postpone Maker’s win, and that we can move away from the obvious lower
bound in both games.

Theorem 2.5 In (1 : b) Maker-Breaker game, for every bias b, Breaker can
postpone Maker’s win

(i) in Perfect Matching game for at least n
2 + b

4 moves,

(ii) in Hamilton Cycle game for at least n+ b
2 moves.

3 Concluding remarks

If the number of moves Maker needs to play in order to win in Perfect Matching
game is denoted by p(b), on the whole range of biases between 1 and (1 −
o(1))n/ lnn we have that b

4 ≤ p(b) − n
2 ≤ O(b ln b), as given by Theorem 2.1,

Theorem 2.4 and Theorem 2.5 (i).

In Hamilton Cycle game, if we denote the number of moves Maker needs to
play in order to win by h(b), then Theorem 2.2, Theorem 2.3, Theorem 2.4
and Theorem 2.5 (ii) provide non-trivial upper and lower bounds for the whole
range of biases between 1 and (1− o(1))n/ lnn. If we look at the value h(b)−n
and express both the upper and lower bounds as functions of b, the lower bound
on the whole range is b

2 , while the upper bound varies between b1+ε and b7+ε,
for any ε > 0. In particular, for b a constant, both upper and lower bounds are
a constant.

Finding the right order of magnitude of both p(b)− n
2 and h(b)− n remains an

open problem, and we are particularly curious if they are linear in b.
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