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Abstract

For the unbiased Maker-Breaker game, played on the hypergraph H, let τM (H) be the
smallest integer t such that Maker can win the game within t moves (if the game is a
Breaker’s win then set τM (H) = ∞). Similarly, for the unbiased Avoider-Enforcer game
played on H, let τE(H) be the smallest integer t such that Enforcer can win the game
within t moves (if the game is an Avoider’s win then set τE(H) = ∞). We investigate τM

and τE and determine their value for various positional games.

1 Introduction

Let p and q be positive integers and let H be a hypergraph. In a (p, q,H) Maker-Breaker game,
two players, called Maker and Breaker, take turns selecting previously unclaimed vertices of
H. Maker selects p vertices per move and Breaker selects q vertices per move. Maker wins if
he claims all the vertices of some hyperedge of H; otherwise Breaker wins. (Sometimes, when
there is no risk of confusion, we will omit H in the notation above, calling a (p, q,H)-game
simply a (p, q)-game.) For a (1, 1,H) Maker-Breaker game, let τM(H) be the smallest integer
t such that Maker can win the game within t moves (if the game is a Breaker’s win, then set
τM(H) = ∞).

Similarly, in a (p, q,H) Avoider-Enforcer game two players, called Avoider and Enforcer, take
turns selecting previously unclaimed vertices of H. Avoider selects p vertices per move and
Enforcer selects q vertices per move. Avoider loses if he claims all the vertices of some hyperedge
of H; otherwise Enforcer loses. For a (1, 1,H) Avoider-Enforcer game, let τE(H) be the smallest
integer t such that Enforcer can win the game within t rounds (if the game is an Avoider’s win,
then set τE(H) = ∞).

Our attention is restricted to games which are played on the edges of the complete graph on
n vertices, that is, the vertex set of H will always be E(Kn). For quite a few Maker-Breaker
and Avoider-Enforcer games it is rather easy to determine the winner. For example, in the
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connectivity game played on the edges of the complete graph Kn on n vertices, Maker can
easily construct a spanning tree by the end of the game. The Avoider-Enforcer planarity game,
played on the edges of Kn for n sufficiently large, is an even more convincing example – Avoider
creates a non-planar graph and thus loses the game in the end, irregardless of his strategy, the
prosaic reason being that every graph on n vertices with more than 3n− 6 edges is non-planar.
Thus, for games of this type, a more interesting question to ask is not who wins but rather
how long it should take the winner to reach a winning position. This is the type of question
we address here.

We start with providing a brief overview of known and relevant results about fast wins in Maker-
Breaker and Avoider-Enforcer games. As an immediate consequence of the result of Lehman [9],
Maker has a fast winning strategy in the connectivity game. That is, τM(Tn) = n − 1, where
Tn, n ≥ 4 is the hypergraph whose hyperedges are the (edge sets of the) spanning trees of
Kn. This approach can be easily generalized to a fast winning strategy for Maker in the
k-edge-connectivity game. Indeed, if Kn contains 2k pairwise edge disjoint spanning trees,
then by partitioning them into k pairs and applying Lehman’s strategy to each pair we get
1
2
kn ≤ τM(T k

n ) ≤ k(n − 1), where T k
n , n ≥ 4k is the hypergraph whose hyperedges are the

spanning k-edge-connected subgraphs of Kn. The lower bound follows immediately since the
minimum degree of a k-connected graph is at least k. We substantially reduce the gap between
these two bounds. As another immediate consequence of Lehman’s result, we get that Enforcer
cannot win the Avoider-Enforcer cycle game faster than the trivial bound suggests, that is,
τE(Cn) = n, where the hyperedges of Cn are all the cycles of Kn. A result of Bednarska [4]
entails τM(T Bk

n) = k − 1, where the hyperedges of T Bk
n are all the copies of complete binary

trees on k vertices in Kn, and k = o(n). In [5], Chvátal and Erdős provide Maker with a fast
winning strategy for the (1, 1,Hn) Hamilton cycle game, showing that τM(Hn) ≤ 2n, where
Hn is the hypergraph whose hyperedges are the Hamilton cycles of Kn. We almost completely
close the gap between this upper bound and the trivial lower bound of n + 1. Maker can win
the (1, 1,Kq

n) clique game in a constant (depending on q but not on n) number of moves, that
is, τM(Kq

n) = f(q), where the hyperedges of Kq
n are the q-cliques of Kn. The best upper bound,

f(q) = O((q− 3)2q−1) is due to Pekeč (see [10]); Beck proved that the exponential dependency
on q cannot be avoided, namely f(q) = Ω(

√
2

q
) (see [3]). Note that Maker’s strategy for the

clique game provides him with a fast win in the non-planarity game and the non-r-colorability
game by building a copy of K5 and Kr+1, respectively (for background on these games, see [8]).

Some general sufficient conditions for winning Maker-Breaker games and Avoider-Enforcer
games were proved in [2] and [7], respectively. Both are based on the “potential” method
of Erdős and Selfridge [6]. These criteria, however, seem not to be very useful for winning
quickly, as it is assumed that the game is played until every element of the board is claimed
by some player. Nonetheless, using some “fake move” trick (see [3]), they can be used to get
certain, usually rather weak, results.

If Maker wins a (1, q,H) Maker-Breaker game for some positive integer q, then τM(H) ≤
v(H)/(q + 1), where v(H) is the number of vertices in H. Indeed, when playing the (1, 1,H)
game, Maker can use his winning strategy in the (1, q,H) game. In every round, he imagines
that additional q− 1 arbitrary unclaimed vertices were claimed by Breaker. Whenever Breaker
claims a vertex which is already his in Maker’s imagination, Maker imagines that another
(arbitrary still unclaimed) vertex was claimed by Breaker. Clearly, after all vertices have been
claimed (including the ones in Maker’s imagination), Maker has already won, and the number
of rounds played is v(H)/(q + 1). Equivalently, this shows that if Breaker can keep from
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losing the (1, 1,H) game within t rounds, then he can win the (1, v(H)
t
− 1,H) game. It was

proved by Beck in [1] that Breaker, playing the (1, 1,H) game on an almost disjoint n-uniform
hypergraph H, can keep from losing for at least (2 − ε)n moves, for any ε > 0. Hence, we

can immediately deduce that Breaker can win the (1, v(H)
(2−ε)n − 1) game, on any almost disjoint

n-uniform hypergraph H and for every ε > 0. Similarly, if Avoider wins the (1, q,H) game for
some positive integer q, then τE(H) > v(H)/(q + 1). Indeed, when playing the (1, 1,H) game,
Avoider can use his winning strategy from the (1, q,H) game. Equivalently, this shows that

if Enforcer can win the game on H within t rounds, then he can also win the (1, v(H)
t
− 1,H)

game.

To conclude, in order to say something non-trivial about the games we analyze, we will have
to find winning strategies for Maker and Enforcer that are faster than the known strategies
mentioned above (in case they exist).

1.1 Fast strategies for Maker and slow strategies for Breaker

We now turn back to the analysis of some concrete games. All games we consider here are
played on the edges of the complete graph Kn.

Let Mn be the hypergraph whose hyperedges are all perfect matchings of Kn (or matchings
that cover every vertex but one, if n is odd). Let Dn be the hypergraph whose hyperedges are
all spanning subgraphs of Kn of positive minimum degree. We find the exact number of moves
that Maker needs, in order to win the (1, 1,Mn) game and the (1, 1,Dn) game. Obviously,
Maker needs to make at least bn

2
c moves, as this is the size of a member of Mn. We show that

if n is odd, then he does not need more moves, whereas if n is even, then he needs just one more
move. A similar result, showing the tightness of the obvious lower bound for the minimum
degree game Dn, easily follows.

Theorem 1.1 (i)

τM(Mn) =

{ bn
2
c if n is odd

n
2

+ 1 if n is even

(ii)

τM(Dn) =
⌊n

2

⌋
+ 1.

As mentioned earlier, Chvátal and Erdős [5] proved that Maker can win the (1, 1) Hamilton
cycle game on Kn within 2n rounds. Here we show that for sufficiently large n, Maker can win
the (1, 1) Hamilton cycle game within n + 2 rounds. This bound is now only 1 away from the
obvious lower bound.

Theorem 1.2 For sufficiently large n,

n + 1 ≤ τM(Hn) ≤ n + 2.

A corollary of the proof of the previous theorem is that Maker can win the “Hamilton path”
game within n− 1 moves, which is clearly best possible.
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Theorem 1.3 For sufficiently large n,

τM(HPn) = n− 1,

where HPn is the hypergraph whose hyperedges are all Hamilton paths of Kn.

Let Vk
n be the hypergraph whose hyperedges are all spanning k-vertex-connected subgraphs of

Kn. The classical theorem of Lehman [9] asserts that Maker can build a 1-connected spanning
graph in n− 1 moves. From Theorem 1.2 it follows that Maker can build a 2-vertex-connected
spanning graph for the price of spending just 3 more (that is, in n + 2) moves.

In the following, we obtain a generalization of the latter fact for every k ≥ 3. As every k-
connected graph has minimum degree at least k, Maker needs at least kn/2 moves just to build
a member of Vk

n (even if Breaker does not play at all). The next theorem shows that this
trivial lower bound is asymptotically tight, that is, there is a strategy for Maker to build a
k-vertex-connected graph in kn/2 + ok(n) moves.

Theorem 1.4 For every fixed k ≥ 3 and sufficiently large n,

kn/2 ≤ τM(Vk
n) ≤ kn/2 + (k + 4)(

√
n + 2n2/3 log n).

An easy consequence of Theorems 1.1, 1.2 and 1.4, is that for every fixed k ≥ 1 Maker can
build a graph with minimum degree at least k within (1 + o(1))kn/2 moves. This is clearly
asymptotically optimal.

1.2 Slow strategies for Avoider and fast strategies for Enforcer

In the Avoider-Enforcer non-planarity game, Avoider loses the game as soon as his graph
becomes non-planar. Clearly, Enforcer can win this game within 3n− 5 moves no matter how
he plays; that is, τE(NPn) ≤ 3n − 5, where NPn is the hypergraph whose hyperedges are all
non-planar subgraphs of Kn. On the other hand, Avoider can keep from losing for 3

2
n−3 moves

by simply fixing any triangulation and claiming its edges arbitrarily for as long as possible.

The following theorem asserts that the trivial upper bound is essentially tight, that is, Avoider
can refrain from building a non-planar graph for at least (3− o(1))n moves. More precisely,

Theorem 1.5
τE(NPn) > 3n− 28

√
n.

In the Avoider-Enforcer non-k-coloring game NCk
n, Avoider loses the game as soon as his graph

becomes non-k-colorable. Avoider can play for at least (1 − o(1)) (k−1)n2

4k
moves without losing

by simply fixing a copy of the k-partite Turán-graph and claiming half of its edges. On the
other hand, it is not hard to see that the game is an Enforcer’s win if it is played until the end
(see [8]), so Avoider will lose after at most 1

2

(
n
2

) ≈ n2

4
moves. In our next theorem we essentially

close the gap between the two bounds for the case k = 2 (the “non-bipartite game”). We also
improve the trivial lower bound and establish the order of magnitude of the second order term
of τE(NC2

n).
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Theorem 1.6
n2

8
+

n− 2

12
≤ τE(NC2

n) ≤ n2

8
+

n

2
+ 1.

Next, we look at two Avoider-Enforcer games that turn out to be of similar behavior. In the
game Dn Enforcer wins as soon as the minimum degree in Avoider’s graph becomes positive,
and in the game Tn Enforcer wins as soon as Avoider’s graph becomes connected and spanning.
Enforcer wins both games (see [7]), entailing τE(Dn), τE(Tn) ≤ 1

2

(
n
2

)
. On the other hand,

Avoider can choose an arbitrary vertex v, and, for as long as possible, claim only edges which
are not incident with v, implying τE(Dn), τE(Tn) > 1

2

(
n−1

2

)
. This determines the first order

term for both parameters. In the following theorem we determine the second order term and
the order of magnitude of the third.

Theorem 1.7

1

2

(
n− 1

2

)
+

(
1

4
− o(1)

)
log n < τE(Dn) ≤ τE(Tn) ≤ 1

2

(
n− 1

2

)
+ 2 log2 n + 1.
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