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Institut für Theoretische Informatik
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Abstract

A family of permutations F ⊆ Sn with a probability distribution on it is
called k-restricted min-wise independent if we have Pr[minπ(X) = π(x)] =
1

|X| for every subset X ⊆ [n] with |X| ≤ k, every x ∈ X, and π ∈ F chosen

at random. We present a simple proof of a result of Norin: every such
family has size at least

( n−1
⌊ k−1

2 ⌋
)
. Some features of our method might be of

independent interest.
The best available upper bound for the size of such family is 1 +∑k

j=2(j− 1)
(
n
j

)
. We show that this bound is tight if the goal is to imitate

not the uniform distribution on Sn, but a distribution given by assigning
suitable priorities to the elements of [n] (the stationary distribution of the
Tsetlin library, or self-organizing lists). This is analogous to a result of
Karloff and Mansour for k-wise independent random variables.

We also investigate the cases where the min-wise independence con-
dition is required only for sets X of size exactly k (where we have only
an Ω(log log n+ k) lower bound), or for sets of size k and k−1 (where we
already obtain a lower bound of n−k+2).

1 Introduction

Let Sn denote the set of all permutations of [n] = {1, 2, . . . , n}. A family
F ⊆ Sn of permutations with a probability distribution on it is called min-wise
independent if, for any set X ⊆ [n], the following condition holds: For every
x ∈ X and for π chosen at random from F , we have

Pr[minπ(X) = π(x)] =
1

|X|
.
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That is, we require that all elements of X have equal chance of becoming the
minimum element of the image of X under π. We call this condition the min-
uniform condition for X.

As for the probability distribution on F , two basic cases can be distin-
guished: Either the distribution is required to be uniform (then we call F a
uniform family), or it can be arbitrary (then we speak of a biased family).

Min-wise independent families of permutations were introduced and thor-
oughly investigated by Broder, Charikar, Frieze, and Mitzenmacher [3]. They
are essential to algorithms for detecting near-duplicate documents, such as
used in practice by the AltaVista Web indexing software; see, e.g., [3] for ex-
planation and references. A partial list of subsequent works in this area is
[4, 5, 9, 10, 15, 17].

Size of min-wise independent families. Broder et al. [3] showed that the
size of any uniform min-wise independent family is at least the least common
multiple of 2, 3, . . . , n, which is of order en−o(n). They constructed a uniform
min-wise independent family of size at most 4n, and later Takei, Itoh, and
Shinozaki [17] provided a construction exactly matching the lower bound just
mentioned.

Biased min-wise independent families can be somewhat smaller, but they
still require exponential size: The bounds from [3] are Ω(

√
n 2n) from below and

n2n−1−1 from above (the latter bound uses the linear programming approach
of Koller and Megiddo [13], which we briefly discuss in Section 3).

Thus, min-wise independent families are necessarily exponentially large and
thus impractical for some applications. The condition of min-wise independence
can be relaxed in various ways.

Approximate min-wise independence. One of them is approximate min-
wise independence [3], where the probability of minπ(X) = π(x) is only close to
1

|X| , rather than equal to it. That is, we require that
∣∣∣Pr[minπ(X) = π(x)]− 1

|X|

∣∣∣ ≤
ε

|X| , where ε > 0 is a prescribed error parameter. This concept seems very suit-
able for applications, and very small approximate min-wise independent families
have been constructed. We refer to Broder et al. [3], Indyk [9], and Saks et al.
[15] for upper and lower bounds.

Restricted min-wise independence. In this paper we study a different
relaxation of min-wise independence, where the min-uniform condition is re-
quired to hold exactly, but only for some sets X. Namely, we call a family
F k-restricted min-wise independent if the min-uniform condition holds for all
X ⊆ [n] with |X| ≤ k.

This perhaps most natural concept of restricted min-wise independence was
also introduced by Broder et al. [3]. By a sophisticated method using graph
entropy, they proved a lower bound of Ω(k2k/2 log(n/k)) for the size of any
(possibly biased) k-restricted min-wise independent family. They also noted
that for uniform k-restricted min-wise independent families, one obtains a lower
bound of ek−o(k) by the method used for uniform min-wise families, and that
the upper bound of

∑k
j=2 j

(
n
j

)
(= Θ(nk) for k fixed) for biased k-restricted

min-wise independent families follows by the linear programming approach.
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The problem was further investigated by Itoh et al. [10], who constructed an

explicit uniform k-restricted min-wise independent family of size n
(1+ 2

lgn
)k
, and

proved a lower bound of n−1 (for any k ≥ 3). Recently Norin [14] proved the
following stronger lower bound:

Theorem 1 ([14]) Let F be a k-restricted min-wise independent family (with
an arbitrary, possibly biased, probability distribution), and let n ≥ 2k. Then

|F| ≥
(
n− 1

⌊k−1
2 ⌋

)
.

In Section 2 we present an alternative proof of this fact. Although we found
it without knowing of Norin’s work, it has some similarities to his proof, but
it is considerably simpler and shorter. Some of the features of our proof, such
as the use of complex random variables, appear to be new in this context and
could be useful in other problems as well.

Recently we have learned that Itoh et al. [11] independently proved a lower

bound similar to Theorem 1 but slightly stronger, namely,
∑(k−1)/2

i=0

(
n−1
i

)
for

k odd and
∑k/2−1

i=0

(
n−1
i

)
+

(
n−2
k/2−1

)
for k even. Their method differs from both

Norin’s and ours in several ways.

Non-uniform distributions on Sn. While we do not know whether the
lower bound in Theorem 1 can be improved, we show that in a more general set-
ting, the upper bound of order nk obtained by the linear programming approach
is tight.

In that more general setting, we do not want our family F of permutations
to imitate, as far as the minima of at most k-element sets are concerned, the uni-
form distribution on Sn, but rather distributions where a random permutation
is selected according to some given priorities of the elements. The priorities are
positive real numbers w1, w2, . . . , wn, and a random permutation π is chosen,
briefly speaking, by “sampling from the priorities without replacement”. More
precisely, we select π in n steps as follows: We maintain a current set C of
elements, which is initialized to [n] before the first step. In the ith step, we
pick the element that becomes the ith element in the ordering given by π (that
is, we pick π−1(i)). We pick it at random from the current set C, where each
a ∈ C is chosen with probability

wa∑
b∈C wb

.

The chosen element is deleted from C and we continue with the next step.
This distribution is known as the stationary distribution of the Tsetlin li-

brary Markov chain [18], and it arises naturally in computer science (e.g., for
self-organizing lists), as well as in many applied contexts; see, for instance, Fill
[7].

The above algorithmic description can easily be turned into a formal de-
scription of the resulting probability distribution µ = µ(w1, . . . , wn) on Sn,
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but we omit the formulas. The important property for us, whose (straightfor-
ward) proof we also omit, is that for X ⊆ [n] and x ∈ X, the probability of
minπ(X) = π(x) for π chosen at random with respect to µ is

wx∑
y∈X wy

.

It should be clear what is meant by saying that a family F ⊆ Sn (with a
probability distribution on it) is k-restricted min-wise independent with respect
to a given probability distribution µ on Sn: For any at most k-element X ⊆ [n]
and any x ∈ X, the probability of minπ(X) = π(x) is the same for π selected
at random from F and for π selected at random from µ. Now we can state our
(exact) result:

Theorem 2

(i) Let µ be an arbitrary probability distribution on Sn. Then there exists a
(biased) family F ⊂ Sn of size at most

1 +

k∑
j=2

(j − 1)

(
n

j

)
that is k-restricted min-wise independent with respect to µ.

(ii) There exist positive priorities w1, . . . , wn such that the upper bound in (i)
cannot be improved for the distribution µ = µ(w1, . . . , wn). In fact, the
set of positive vectors (w1, . . . , wn) ∈ Rn that do not have this property
is contained in the zero set of a non-zero polynomial in w1, . . . , wn, and
thus it is nowhere dense and of measure zero.

In particular, for k = n we obtain the bound (n−2)2n−1.
The theorem is proved in Section 3. It is analogous to a result of Karloff

and Mansour concerning k-wise independent random variables (although it is
proved differently); for comparison, we outline the relevant notions and results.

Remark on k-wise independent random variables. Random variables
X1, X2, . . . , Xn on some probability space are called k-wise independent if every
k of them are mutually independent. The investigation of k-wise independence
predates the study of min-wise independent permutations (and most of the
questions, results, and techniques concerning min-wise independence have their
analogs and inspirations there). Here we focus on results which seem most rele-
vant to our topic. For simplicity, we consider k fixed in the following discussion.

Alon et al. [1] constructed a family of n k-wise independent random vari-
ables, each attaining values 0 and 1 with probability 1

2 , on a space of size

O(n⌊k/2⌋). They also proved that any family of n k-wise independent random
variables require size Ω(n⌊k/2⌋), provided that none of the variables attains a
single value with probability 1 (a special case of this result was independently
obtained by Chor, Goldreich, H̊astad, Friedman, Rudich, and Smolensky [6]).

On the other hand, Karloff and Mansour [12] showed that, for suitably
chosen probabilities p1, . . . , pn (for example, pi =

k
n will do), a family of k-wise
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independent 0/1 random variables X1, . . . , Xn, where Xi attains value 1 with
probability pi, requires space size Ω(n

k). This is the inspiration for Theorem 2.
Thus, the existence of a space of size O(n⌊k/2⌋) for the uniform 0/1 case can

be considered as a “lucky coincidence” made possibly by symmetry. A very
interesting open problem is, whether a “lucky” construction of an k-restricted
min-wise independent family of permutations (with respect to the uniform dis-
tribution) exists, of size much smaller than nk.

Restricted min-wise independence for sets of size exactly k. The
min-uniform condition for all X of size exactly k does not generally imply the
min-uniform condition for sets X of smaller size. One way of seeing this is to
note that the order of the last k−1 elements in the permutations of F does
not affect the min-uniform condition for sets of size k (or larger), while it does
affect the min-uniform condition for sets smaller than k.

We thus define, for a set S ⊆ [n], a family of permutations to be S-restricted
min-wise independent if the min-uniform condition holds for all X ⊆ [n] with
|X| ∈ S. We will consider mainly the case with S = {k}.

The problem of estimating the size of {k}-restricted min-wise independent
families was raised by Emo Welzl, and it seems challenging. We do not know of
any substantial improvement of the O(nk) upper bound, but neither the proof
method of Theorem 1 nor some other approaches used for lower bounds in the
literature seem applicable here. At first sight, it is not even obvious that such a
family cannot have size depending only on k. (On the other hand, if we admit
more general distributions on Sn as in Theorem 2, we can obtain an exact
bound, (k−1)

(
n
k

)
+ 1, by following the proof of Theorem 2 almost literally.)

Some results in this direction are presented in Section 4.

2 The lower bound for k-restricted min-wise inde-
pendent families

All known proofs of Theorem 1 use the following somewhat surprising prop-
erty of k-restricted min-wise independent families. We present a short proof
(avoiding some calculations from [14]).

Proposition 3 ([14]) Let F be a k-restricted min-wise independent family, let
X be a k-element subset of [n], and let X = A ∪ {x} ∪ B be a partition of X.
Then, for π chosen from F at random,

Pr[π(A) < π(x) < π(B)] =
1

(a+ 1)
(

k
a+1

) , (1)

where a = |A| (this probability is the same as for π chosen uniformly at random
from Sn). Here π(A) < π(x) means that every element of A precedes x in the
ordering given by π.

Proof. We proceed by induction on a = |A|. The case a = 0 follows
immediately from the min-uniform condition.
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Now we suppose that (1) holds for all X and all partitions X = A∪{x}∪B
with |A| < a. Let us consider some X and some partition X = A ∪ {x} ∪ B
with |A| = a. We have

1

k − a+ 1
= Pr[π(x) < π(B)] =

=
∑
C⊆A

Pr[π(C) < π(x) < π(B ∪ (A \ C))] .

For every proper subset C ⊂ A probability Pr[π(C) < π(x) < π(B ∪ (A \ C))]
is, by the inductive assumption, the same as if π were selected uniformly at
random from Sn. Therefore, Pr[π(A) < π(x) < π(B)] must also be the same as
for π selected uniformly at random from Sn. The proposition is proved. 2

For later use, we note that the proof of the validity of (1) with |A| ≤ a
requires the min-uniform condition only for sets of size k− a, k− a+ 1, . . . , k.

In our proof of Theorem 1 we are going to use a result on the rank of certain
inclusion matrices. Let Ln(i, j), 1 ≤ j ≤ i ≤ n, be the 0/1 matrix with rows
indexed by all i-element subsets S ⊆ [n], columns indexed by all j-element
subsets T ⊆ [n], and with the entry at position (S, T ) equal to 1 if T ⊆ S
and equal to 0 otherwise. This matrix is a representative of a wide class of so-
called inclusion matrices; see, e.g., Babai and Frankl [2]. We need the following
statement.

Theorem 4 (Gottlieb [8]) For every i, j, 1 ≤ j ≤ i ≤ n, the matrix Ln(i, j)
has full rank; that is

rankLn(i, j) = min

{(
n

i

)
,

(
n

j

)}
.

A different proof, which establishes much more, can be found in [2].

Proof of Theorem 1. Our basic strategy is inspired by Alon, Babai, and
Itai [1]. We suppose that a k-restricted min-wise independent family F with its
probability distribution is given, and we define a suitable family (Xi : i ∈ I) of

random variables on F . We consider the |I|× |I| matrix MI :=
(
E[XiXj ]

)
i,j∈I

(where E[X] denotes the expectation of X) and prove that it is non-singular.
Then it follows that |F| ≥ |I|. Indeed, let us consider each random variable Xi

as a vector with |F| components. We verify that these |I| vectors are linearly
independent and, consequently, the vector space of all |F|-component vectors
has dimension at least |I|.

To check the linear independence of the vectors Xi, let us suppose that
(αi : i ∈ I) are scalars such that

∑
i∈I αiXi = 0. Then, for every j ∈ I,

Xj

∑
i∈I

αiXi =
∑
i∈I

αiXiXj = 0,

and therefore,

E

[∑
i∈I

αiXiXj

]
=

∑
i∈I

αiE[XiXj ] = 0.
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Since MI is non-singular, it follows that αi = 0 for all i ∈ I, and so the Xi are
linearly independent.

In the construction of Alon et al. [1], the Xi attain real values, and they
are constructed so that MI is a non-singular diagonal matrix. We are going to
use a more general MI and complex random variables.

We let ℓ := ⌊k−1
2 ⌋. Our random variables will be indexed by ℓ-element

subsets S ⊂ [n− 1]; that is, I =
([n−1]

ℓ

)
. They are defined as follows:

XS(π) =


1 if π(n) < π(S),
i if π(S) < π(n), and
0 otherwise.

Here i =
√
−1 is the imaginary unit. In other words, XS has value 1 if n appears

as the first element of the set S ∪ {n}, value i if n appears as the last element,
and value 0 otherwise.

We have

XSXT =


1 if π(n) < π(S ∪ T ),

−1 if π(S ∪ T ) < π(n),
i if either π(S) < π(n) < π(T ) or π(T ) < π(n) < π(S), and
0 otherwise.

Using Proposition 3, we can calculate the expectations E[XSXT ], i.e., the
matrix MI :

E[XSXT ] =

{
0 if S ∩ T ̸= ∅, and

i 2

(ℓ+1)(2ℓ+1
ℓ+1 )

if S ∩ T = ∅.

Thus, MI is a constant multiple of the “intersection matrix” with the entry
(S, T ) being 1 for S ∩ T = ∅ and 0 otherwise. This, in turn, is the same as
the matrix Ln(n− ℓ− 1, ℓ), which is non-singular by Theorem 4. Theorem 1 is
proved. 2

3 Bounds for more general distributions on Sn

Proof of part (i) of Theorem 2. We follow the method of Koller and
Megiddo [13]. Let µ be a given probability distribution on Sn, and for X ⊆ [n]
and x ∈ X, let pX,x be the probability of minπ(X) = π(x) for π chosen at
random from µ. (So pX,x = 1

|X| if µ is the uniform distribution.)
To each permutation π ∈ Sn, we assign a real variable απ. Under the

conditions
απ ≥ 0, for all π, (2)

and ∑
π∈Sn

απ = 1, (3)

these variables specify a probability distribution on Sn. If we, moreover, pos-
tulate the conditions ∑

π∈Sn:minπ(X)=π(x)

απ = pX,x (4)
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for every at most k-element X ⊆ [n] and every x ∈ X, any solution to the
linear system (2), (3), (4) specifies a probability distribution making Sn into a
k-restricted min-wise independent family (with respect to µ).

Next, we note that some of the equations in the above system are redundant.
Namely, for every fixed X, we have∑

x∈X

∑
π∈Sn:minπ(X)=π(x)

απ =
∑
π∈Sn

απ = 1,

and so one of the |X| equations (4) can be omitted for every X. Hence, the
conditions on the απ can be specified by a system ofm0 := 1+

∑
2≤|X|≤k(|X|−1)

linear equations (m0 is precisely the number appearing in the upper bound we
want to prove).

This system certainly has a solution (namely, the one given by απ = µ({π})),
and hence there is also a basic solution with at most m0 non-zero components.
By collecting the permutations with απ ̸= 0 in such a solution, we obtain a
(biased) k-restricted min-wise independent family of the desired size. 2

It follows from part (ii) of Theorem 2 that no further equations from the
above system can be eliminated. This can also be easily shown directly, by
checking that the matrix of the system has rank m0.

For the proof of part (ii) we need some preparations. Let x = (x1, x2, . . . , xn)
be a vector of n variables (indeterminates), and let R(x) denote the field of
rational functions in x1, x2, . . . , xn with real coefficients. Each element of R(x)
can thus be written as p(x)/q(x) for some n-variate polynomials p(x) and q(x) ̸=
0.

For each X ⊆ [n] with 2 ≤ |X| ≤ k, we fix one element aX ∈ X, and we let
I = {(X, a) : a ∈ X, a ̸= aX}. (We now write a instead of x for the element of
X, in order to avoid confusion with the variables xi.) Note that |I| = m0 − 1,
where m0 is as in the proof of part (i) above.

For every (X, a) ∈ I, we define the rational function

fX,a(x) :=
xa∑
b∈X xb

If w = (w1, w2, . . . , wn) is a vector of priorities specifying a probability dis-
tribution µ(w) = µ(w1, . . . , wn) on Sn, then fX,a(w) is the probability of
minπ(X) = π(a).

Lemma 5 The rational functions fX,a(x), (X, a) ∈ I, plus the constant ra-
tional function 1, are linearly independent when R(x) is considered as a (real)
vector space.

Proof. Suppose that β1 and βX,a, (X, a) ∈ I, are real numbers such that

β1 +
∑

(X,a)∈I

βX,afX,a(x) = 0.
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(the rational function equal to 0 everywhere). Substituting for fX,a and rear-
ranging, we obtain

β1 +
∑
X

NX(x)

DX(x)
= 0, (5)

where DX(x) =
∑

b∈X xb and NX(x) =
∑

a∈X\{aX} βX,axa. We are going to
show that NX(x) is identically 0 for each X; then β1 = 0 as well and the desired
linear independence follows.

Let us fix some X. We multiply the equation (5) by the polynomial R(x) :=∏
Y ̸=X DY (x) (the product is over all Y of size between 2 and k except for

Y = X). The left-hand side of the resulting equality is R(x)NX(x)/DX(x)
plus a polynomial, and so R(x)NX(x)/DX(x) is a polynomial, too. Since the
(irreducible) polynomial DX(x) does not divide R(x), it must divide NX(x),
and this is possible only if NX(x) is the zero polynomial. The lemma is proved.

2

Proof of part (ii) of Theorem 2. Suppose that w = (w1, . . . , wn) is a
vector of positive priorities, F ⊂ Sn is a family of m < m0 permutations, and
pπ, π ∈ F , are probabilities such that F with the distribution given by these
pπ is k-restricted min-wise independent with respect to the distribution µ(w)
on Sn.

Then the numbers fX,a(w), as well as the number 1, are expressible as a sum
of some of the pπ. More explicitly, for y = (yπ : π ∈ F), we let ℓ1(y) =

∑
π∈F yπ

and
ℓX,a(y) =

∑
π∈F :π(a)=minπ(X)

yπ, (X, a) ∈ I.

Then we have 1 = ℓ1(p) and fX,a(w) = ℓX,a(p).
Now ℓ1(y) and ℓX,a(y) are m0 homogeneous linear polynomials in m < m0

variables, and so they are linearly dependent. So there exist real numbers
β1 and βX,a, (X, a) ∈ I, such that β1ℓ1(y) +

∑
(X,a)∈I βX,aℓX,a(y) is the zero

polynomial. Then we obtain

β1 +
∑

(X,a)∈I

βX,afX,a(w) = 0. (6)

On the other hand, the rational function

F (x) = β1 +
∑

(X,a)∈I

βX,afX,a(x)

is non-zero (as an element of R(x)) by Lemma 5. Therefore, the w satisfying
(6) are zeros of F (x), and hence zeros of a non-zero polynomial.

So for each fixed family F ⊂ Sn of fewer than m0 permutations, the set of
w for which F can be made k-restricted min-wise independent with respect to
µ(w) by some choice of the probabilities pπ is contained in the zero set of a non-
zero polynomial. By taking the product of these polynomials over the finitely
many possible choices of F , we get a polynomial P (x) such that whenever there
exists a k-restricted min-wise independent family F with respect to µ(w) with
|F| < m0, then P (w) = 0. Theorem 2 is proved. 2
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4 Remarks on {k}-restricted min-wise independent
families

Let N(n, k) denote the minimum cardinality of a family F ⊆ Sn such that for
every k-element X ⊆ [n] and every x ∈ X, F contains a permutation π with
minπ(X) = π(x). Clearly, N(n, k) is a lower bound for the size of any (possibly
biased) {k}-restricted min-wise independent family.

Spencer [16] proved that N(n, 3) ≥ log2 log2 n (to see this, consider a family
of fewer permutations and, by iterated application of the Erdős–Szekeres lemma,
find elements a, b, c such that b is between a and c in each of the permutations).
It is also easy to see that N(n, k) ≥ N(n−1, k−1)+1: Given a family attaining
N(n, k), we delete one (arbitrarily chosen) permutation π, as well as the first
element under that permutation. We thus get:

Proposition 6 If F is a (possibly biased) {k}-restricted min-wise independent
family, k ≥ 3, then

|F| ≥ N(n, k) ≥ ⌈log2(log2(n− k + 2))⌉+ k − 2.

For a uniform family F , the leading constant can be improved a little.
Namely, consider a subfamily F ′ ⊆ F consisting of N(n, k) − 1 permutations.
Then there are X, |X| = k, and x ∈ X such that minπ(X) ̸= π(x) for all
π ∈ F ′. Then, for π chosen at random from F , we have

1

k
= Pr[minπ(X) = π(x)] ≤ |F| − |F ′|

|F|
=

|F| − (N(n, k)− 1)

|F|
.

This yields the following:

Proposition 7 If F is a uniform {k}-restricted min-wise independent family,
k ≥ 3, then

|F| ≥ k

k − 1

(
⌈log2(log2(n− k + 2))⌉+ (k − 3)

)
.

As a construction due to Hajnal, presented in [16], shows, we have N(n, k) =
O(log log n) for every fixed k, and thus, unfortunately, the lower bound in
Proposition 6 cannot be further improved by this approach.

The following proposition addresses an “intermediate case” between k-restricted
min-wise independent families and {k}-restricted min-wise independent fami-
lies.

Proposition 8 Let F ⊆ Sn be a (possibly biased) {k−1, k}-restricted min-wise
independent family. Then |F| ≥ n− k + 2.

Proof. We proceed as in the proof of Theorem 1, defining a suitable family
(Xi)i∈I of random variables. This time we let I := [n − k + 2], S := {n − k +
3, n− k + 4, . . . , n}, and

Xi =

{
1 if π(i) < π(S), and
0 otherwise.
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We have E
[
X2

i

]
= 1

k−1 . By the remark following the proof of Proposition 3, we

can further calculate E[XiXj ] =
2

k(k−1) for i ̸= j. The resulting matrix MI is
easily checked to be non-singular, and the proposition is proved. 2

Open problems

1. The most interesting questions seems to be the order of magnitude for
k-restricted min-wise independent families of permutations with k fixed
and n → ∞. Is the exponent about k

2 , or about k, or. . . ?

2. Can one improve the lower (or upper) bound for {k}-restricted min-wise
independent families?

Acknowledgment

We would like to thank Emo Welzl for bringing the problems studied in this
paper to our attention, formulating one of them, and for numerous discussions
and valuable suggestions. We also thank Pavel Pudlák and Jǐŕı Sgall for kindly
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