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Abstract

We introduce and study Maker-Breaker positional games on random graphs.
Our goal is to determine the threshold probability pF for the existence of
Maker’s strategy to claim a member of F in the unbiased (one-on-one)
game played on the edges of the random graph G(n, p), for various target
families F of winning sets. More generally, for each probability above this
threshold we study the smallest bias b such that Maker wins the (1 : b)
biased game. We investigate these functions for a number of basic games,
like the connectivity game, the perfect matching game, the clique game, the
Hamiltonian cycle game and the tree game. Particular attention is devoted
to unbiased games, when b = 1.

Next, we consider the planarity game and the k-coloring game on the
complete graph on n vertices. In the planarity game the winning sets are
all non-planar subgraphs, and in the k-coloring game the winning sets are
all non-k-colorable subgraphs. For both of the games we look at a (1 : b)
biased game. We are interested in determining the largest bias b such that
Maker wins the Maker-Breaker version of the game. On the other hand,
we want to find the largest bias b such that Forcer wins the Avoider-Forcer
version of the game.

Finally, we deal with balanced online games on the random graph pro-
cess. The game is played by a player called Painter. Edges in the random
graph process are introduced two at a time. For each pair of edges Painter
immediately and irrevocably chooses one of the two possibilities to color
one of them red and the other one blue. His goal is to avoid creating a
monochromatic copy of a prescribed fixed graph H, for as long as possible.
We study the threshold mH for the number of edges to be played to know
that Painter almost surely will create a monochromatic copy of H, for H
being a cycle, a path and a star.
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Zusammenfassung

In dieser Arbeit führen wir sogenannte “Maker-Breaker” Spiele auf zufälli-
gen Graphen G(n, p) ein. Mit pF bezeichnen wir den Schwellenwert für die
Kantenwahrscheinlichkeit, ab der eine Strategie existiert, so dass “Maker”
ein Element der Menge F für sich behaupten kann. Ein Ziel dieser Arbeit
ist es, pF für unterschiedliche Gewinnmengen F zu ermitteln. Gespielt wird
zunächst die (1 : 1) Variante, wobei in jeder Runde beide Spieler genau eine
Kante des Graphen wählen. Darüber hinaus ermitteln wir für Wahrschein-
lichkeiten über diesem Schwellenwert die kleinste zulässige Gewichtung b,
welche es noch ermöglicht, dass Maker das ungleiche Spiel (1 : b) gewinnt.
Wir untersuchen verschiedene Spiele, nämlich das Konnektivitätsspiel, das
Perfekte-Matchingspiel, das Hamiltonsche-Kreisspiel und das Baumspiel.
Besondere Beachtung schenken wir dabei immer der ausgeglichenen Vari-
ante der Spiele, d.h. dem Fall b = 1.

Desweiteren betrachten wir das Planaritätsspiel sowie das k-Färbungs-
spiel, beide auf dem vollständigen Graphen mit n Knoten. Die Gewinn-
menge des Planaritätsspiels ist die Menge aller nicht planaren Subgraphen;
die des k-Färbungsproblems die Menge aller Subgraphen, welche nicht k-
färbbar sind. Für beide Spiele untersuchen wir abermals die (1 : b) Vari-
ante. Hier soll die grösstmögliche Gewichtung b ermittelt werden, sodass
“Maker” die “Maker-Breaker” Varianten der Spiele gewinnt. Andererseits
interessieren wir uns für die grösstmögliche Gewichtung b, sodass “Forcer”
die “Avoider-Forcer” Varianten der Spiele gewinnt.

Zuletzt befassen wir uns mit balancierten Online-Spielen auf dem zufälli-
gen Graph Prozess. Wir nennen den einzigen Spieler “Painter”. Pro Runde
werden jeweils zwei zufällige Kanten gespielt. Für jedes dieser Kantenpaare
entscheidet sich “Painter” unmittelbar und unwiderruflich für eine der bei-
den Kantenfärbungen, wobei eine der Kanten rot, die andere blau gefärbt
wird. Dabei möchte “Painter” solange wie möglich die Entstehung einer mo-
nochromatischen Kopie des gegebenen Graphen verhindern. Wir betrachten
den Grenzwert mH der Anzahl gespielter Kanten, sodass “Painter” fast si-
cher eine monochromatische Kopie von H erzeugen wird, wobei hier mH

für Kreise, Pfade und Sterne untersucht wird.
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Chapter 1

Introduction

What-what-what?!
What do I want to ask?

Yoshio Okamoto

As the title suggests, this thesis is about games on graphs. At first
sight, the topic may suggest lots of fun since games are widely recognized
as amusing. But the reader should keep in mind that this is a collection of
mathematical results and as such has a moderate fun impact.

What follows is a brief description of our results in a slightly impre-
cise manner, all for keeping it concise. We hope to make it shorter than
the whole thesis (trivially true; by inclusion), but still longer than the ab-
stract. Next to the results, one can find some information about their exact
coordinates in the thesis.

1.1 A short version of the thesis

1.1.1 Chapter 2

In Chapter 2 we introduce the basic concepts that will be used throughout
the thesis.

When we say games, we mostly mean positional games, and when we
say graphs, we mostly mean random graphs. A positional game is a 4-
tuple (X,F , a, b), where X is a finite set, the “board”, F ⊆ 2X is the set
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CHAPTER 1. INTRODUCTION

of winning sets, and a and b are positive integers. There are two basic
variants of rules for playing a game.

In the first one, we call the players Maker and Breaker. They alternately
claim unclaimed elements of X. Maker claims a of them per move, and
Breaker b of them per move. The game ends when all elements of X are
claimed. Maker wins the game if he claimed all elements of a set from F ,
and otherwise Breaker wins.

In the other variant of the rules, we call the players Avoider and Forcer.
The only difference to the Maker-Breaker variant is that Avoider loses if
he claims all elements of a set from F , and otherwise Forcer loses.

The random graph G(n, p) is a graph on n vertices, such that each two
vertices are connected by an edge with probability p, independently for
every pair of vertices.

1.1.2 Chapter 3

In Chapter 3 we deal with Maker-Breaker games played on edges of the
random graph G(n, p). We consider winning sets F to be the set of all
representatives of some well-known graph-theoretic structure: the set of
all spanning trees, the set of all Hamiltonian cycles, the set of all perfect
matchings, the set of all cliques of size k. Generally, we assume that n
tends to ∞.

We first consider unbiased (1 : 1) games. For each mentioned set of
winning sets, it is easy to see that Maker can win the game when p = 1. We
are interested in the following. What is the smallest probability pF = pF (n)
for which Maker still can win the game a.s.?

More generally, for every p > pF we would like to determine the largest
bias bpF such that Maker still wins (1 : bpF ) game on edges of G(n, p).

In Section 3.3 our attempt is to determine the value bpF for the men-
tioned families of winning sets. We manage to find the order of bpF for all
the games in question, except for the Hamiltonian cycle game for which we
just give upper and lower bounds.

Next, we give particular attention to (1 : 1) games in Section 3.4, trying
to determine the threshold probability pF more accurately. We deal with

2



1.1. A SHORT VERSION OF THE THESIS

the connectivity game, the clique game, the Hamiltonian cycle game and
the G-game for arbitrary fixed graph G. Unlike in the general case, we
manage to give the exact threshold for the Hamiltonian cycle game.

The results presented in this chapter are joint work with Michael Kriv-
elevich and Tibor Szabó [41, 30].

1.1.3 Chapter 4

In Chapter 4 we take a closer look at the planarity game and the k-coloring
game, played on edges of the complete graph on n vertices. For each of
them, we look at both the Maker-Breaker variant and the Avoider-Forcer
variant of the game.

The planarity game is analyzed in Section 4.2. The winning sets are all
non-planar subgraphs of the complete graph. Therefore, Maker wins the
game if he claims a non-planar graph, and Breaker wins otherwise. On the
other hand, Forcer wins if Avoider claims a non-planar graph, and Avoider
wins otherwise.

In the biased (1 : b) game, we would like to determine the smallest
value of b such that Breaker (resp. Forcer) still can win the game. For the
Maker-Breaker version we find an upper bound and a lower bound for this
value that are both of order n. On the other hand, the bounds we get for
the Avoider-Forcer version of the game are not of the same order.

In Section 4.3 we consider the k-coloring game. Similarly as in the
planarity game, Maker wins the Maker-Breaker variant of the game if he
claims a non-k-colorable graph, and Forcer wins the Avoider-Forcer variant
of the game if Avoider claims a non-k-colorable graph.

Again, we would like to determine the smallest integer b such that
Breaker (resp. Forcer) still can win (1 : b) game. In the Maker-Breaker
game, we exhibit an upper bound and a lower bound for this value that
are both linear, whereas for the Avoider-Forcer version we just manage to
give bounds that are not of the same order.

The results presented in this chapter are joint work with Dan Hefetz,
Michael Krivelevich, and Tibor Szabó [27].

3



CHAPTER 1. INTRODUCTION

1.1.4 Chapter 5

In Chapter 5 we deal with games played by a single player (whom we
call Painter) on the random graph process. We call these games balance
avoidance games.

Edges of the complete graph on n vertices are introduced two at a time,
in a random order. For each pair, Painter immediately and irrevocably
chooses one of the two possibilities to color one of them red and the other
one blue. His goal is to avoid creating a monochromatic copy of a prescribed
fixed graph H.

We would like to determine the number of edges to be played such that
Painter will lose a.s., independent of his strategy.

In Section 5.2.1 we give a generic theorem that gives this threshold for
a class of graphs. As a consequence, we get the threshold for the game of
avoiding cycles Cl, l ≥ 3.

Next, in Section 5.2.2 we deal with stars. We estimate the number of
stars of fixed size at any point of the game, and as a consequence give the
number of moves that Painter can survive a.s. without creating a star Sk,
k ≥ 2. Finally, we deal with the game of avoiding paths in Section 5.2.3.
We exhibit an upper bound for the number of moves when avoiding a path
Pk, k ≥ 2, but give the exact threshold for the number of moves only for
k = 2 and k = 3.

The results presented in this chapter are joint work with Martin Marcin-
iszyn and Dieter Mitsche [34].

1.2 Preliminaries

For a graph G, e(G) and v(G) denote the number of edges and vertices
(respectively) of G, δ(G) denotes the minimum degree of G, ∆(G) denotes
the maximum degree, and E(G) and V (G) denote the sets of edges and
vertices (respectively). For A,B ⊆ V (G), A ∩B = ∅, we define EG(A : B)
to be the set of edges of G joining A and B, and eG(A : B) = |EG(A : B)|.
If C ⊆ V (G) and v ∈ V (G), then NC(v) denotes the set of neighbors of v
in C. The length of a path is equal to the number of its edges.

4



1.2. PRELIMINARIES

For every graph G we define d(H) = e(H)
v(H) , m(G) = maxH⊆G d(H),

d2(H) = e(H)−1
v(H)−2 and

m2(G) = max
H⊆G

v(H)≥3

d2(H).

A graph G with m(G) = d(G) is called balanced.

Let T be a rooted tree with root r. Then the down-degree of a vertex
v ∈ V (T )\r is d(v) = d(v)−1. The down-degree of the root r is d(r) = d(r).
The depth ν(T ) of the tree T is equal to the maximal length of a path in
T with one endpoint in r. A vertex v ∈ V (T ) is said to be on the ith level,
if there exists an r − v path in T of length i. The root r is said to be on
the 0th level.

The logarithm logn in this thesis is always of natural base.

For functions f(n), g(n) ≥ 0, we say that f = O(g) if there are constants
C and K, such that f(n) ≤ Cg(n) for n ≥ K; f = Ω(g) if g = O(f);
f = Θ(g) if f = O(g) and f = Ω(g); f = o(g) if f(n)/g(n) → 0 when
n → ∞; f = ω(g) if g = o(f); f ∼ g if f(n)/g(n) → 1 when n → ∞.

Let X be a sum of independent indicator random variables, with µ :=
E[X] > 0. Throughout the thesis, we are going to use the following Cher-
noff bounds, see, e.g., [35, Theorem 4.1, Theorem 4.2].

For 0 < δ < 1 and ρ > 1, we have

Pr[X ≤ δµ] <
(e
δ

)δµ
· e−µ < e−µ(1−δ)2/2,

and

Pr[X ≥ ρµ] <

(
e

ρ

)ρµ

· e−µ.
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Chapter 2

Basics

You can’t win.
You can’t break even.
You can’t even quit the game.

Ginsberg’s Thm, from Murphy’s Laws

2.1 Positional games

2.1.1 Combinatorial games

A natural and general way to classify games is the following: The games of
pure chance, the games of mixed chance and skill, and the games of pure
skill (sometimes also called the games of no chance).

Combinatorial game theory focuses on the games of pure skill and no
chance. It studies strategies and outcomes of two-player games of perfect
knowledge, like chess or Tic-Tac-Toe. An important distinction between
this topic and classical game theory (a branch of economics) is that game
players are assumed to move in sequence rather than simultaneously, so
there is no point in randomization or other information-hiding strategies.

Typically, the payoff function has three values: win of the first player,
win of the second player, and a draw. Since the games we are looking at
are of perfect information and of pure skill, the outcome depends only on
the skill of each of the players. If we assume that both players are playing
according to the best possible strategy, it is known—in theory—who will
win even before the game starts. In other words, depending on the outcome
we can divide all such games into three classes. Either the first player has a

7



CHAPTER 2. BASICS

strategy to win, or the second player has a strategy to win, or both players
have a strategy to avoid losing.

Amongst all combinatorial games, we would like to devote particular
attention to positional games.

2.1.2 Strong positional games

In the following three sections we largely rely on the preliminary version of
the book [12] by Beck.

Before the formal description of the strong positional games, we give an
example—a well-known positional game called Tic-Tac-Toe.

The board on which the game is played is a 3-by-3 square grid. Two
players, Xena and Obelix, alternately put their marks into the squares.
First Xena spots one of the nine squares and marks it with an “X”, then
Obelix spots one of the unmarked squares and marks it with an “O”, and
so on. The player who first marks three squares in a line wins. If all nine
squares are marked and nobody has won, it is a draw.

It is well-known that this game is a draw if both players are playing
as good as possible. To define the game more formally, we assign numbers
to squares. Then the board on which the game is played can be seen as
X = {1, 2, . . . , 9}. In each move, Xena claims one unclaimed element of
X, and then Obelix claims one unclaimed element of X. All the possible
ways to win can be now expressed without the geometric interpretation—a
player wins as soon as (s)he claims all elements of one of sets in

F =
{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7},

{2, 5, 8}, {3, 6, 9}, {1, 5, 9}, {3, 5, 7}
}
.

In the same fashion we can define a general notion of a strong positional
game. Let X be a finite nonempty set and F ⊆ 2X . We refer to X as the
board, and the set F as the set of winning sets. The players alternately
claim elements of X and the winner is the one who first claims all elements
of some winning set F ∈ F . Often it is enough to fix the family of winning
sets, as we can take the union ∪F∈FF as the board.

Obviously, playing an extra move at any point of the game cannot hurt
a player. In particular, if the second player would have a strategy to win

8



2.1. POSITIONAL GAMES

a game, the first player could also apply the same strategy after his first
move and win the game. That means that second player cannot win, if we
assume that both players are playing the optimal strategies. Therefore, the
only two possible outcomes of the game are a first player’s win, and a draw.
The argument that we informally described here appears in the literature
as strategy stealing (see [9]).

Even though the outcome of a game is its property, no efficient way of
determining it in general is known. One possibility is a brute force search
through the whole game tree, which is of exponential size in the size of the
board.

Another argument that can be applied to the strong positional games is
a Ramsey type argument. Namely, we say that the board X has a Ramsey
property with respect to the set of winning sets F , if in any 2-coloring of X
one of the elements of F is monochromatic. Then the draw is impossible,
which implies that the first player has s strategy of winning the game.

A simple concept that helps us figure out that a game is a draw, is
the existence of a pairing strategy for the second player. Suppose that for
every F ∈ F there exist two elements x1

F , x
2
F ∈ F , such that for every two

different F, F ′ ∈ F we have {x1
F , x

2
F } ∩ {x1

F ′ , x2
F ′} = ∅, i.e., there exists

a matching of the board elements, such that every F ∈ F contains both
elements of a matched pair. Then the second player can avoid loosing.
Indeed, he has a simple strategy that can prevent the first player from
completely occupying a winning set—whenever the first player claims one
element of such a two-set, the second player claims the other one. Then,
since every winning set contains one such pair, at the end of the game each
of the winning sets will have at least one element claimed by the second
player.

On the topic of strong positional games many questions have been asked,
but only few are answered. The concept of the game is rather simple and
many of the well-known games fit into this framework. The problem is
that we are still lacking the means to deal with strong positional games,
and problems often seem hopelessly unsolvable. For most of the games,
the only way to determine the outcome is brute force analysis of the game
tree, for which we lack computational power even at very small instances.
In the remaining we list some results on strong positional games.

9



CHAPTER 2. BASICS

One of the games that has been thoroughly studied is Tic-Tac-Toe itself,
or more precisely, its generalizations. Here we look at the so called nd-game.

The board is the d dimensional cube of edge size n, subdivided into
nd congruent subcubes. The original game of Tic-Tac-Toe is a 32 game
according to this definition. The course of the game is also analog—the
player who first occupies n cubes in a line wins.

Hales and Jewett [25] proved by a Ramsey type argument that for every
n there exists d(n) such that nd game is a first player’s win for d ≥ d(n).
However, the bounds for the smallest such d are very far from being tight.
The best bound from above given by Shelah in [40] is d < towern(n),
where towerk(n) denotes the k-fold iteration of the exponential function:
tower1(n) = 2n, and towerk(n) = 2towerk−1(n). Hales and Jewett on the
other hand proved that d ≥ n, which is still tremendously far away from
the upper bound.

Beck [11] resolved the outcome of several nd games for concrete values
of d and n. The smallest nd game for which it is not known whether the
first player wins is 53 game.

2.1.3 Weak positional games

The concept of weak positional games comes out as a simplification of the
rules for the strong positional games, and we mainly deal with them in the
thesis.

The setup remains the same—the game is played on a finite nonempty
set X, and the set of winning sets is F ⊆ 2X . However, the way in which
the game is played has one crucial difference. Only one player—whom we
call Maker—has a goal of occupying a winning set, while the other one—
Breaker—is just trying to stop him from doing so. More precisely, if at any
point of the game Maker claims all elements of a winning set F ∈ F , then
he wins the game. If all the elements of the board are claimed and Maker
did not win, Breaker wins. As we mentioned before, assuming that both
players are playing best possible strategies, the winner is determined even
before the game starts. Each game is either a Maker’s win or a Breaker’s
win, and no draw is possible.

The pair (X,F) we call a weak positional game, a Maker-Breaker posi-

10



2.1. POSITIONAL GAMES

tional game, or sometimes just a positional game if there is no confusion.

We come back to our first example—Tic-Tac-Toe, now played in a
Maker-Breaker version. It turns out that the outcome of the game is dif-
ferent from the outcome of the strong version. It is easy to find a strategy
for Maker to win, if he wants to claim three squares in a line, but not
necessarily first.

Already this suggests that the concept of a weak game is substantially
different from strong games. Before we get deeper into the topic of weak
games, let us note which results on the strong games transfer to the weak
games.

Firstly, we mention the obvious—if the first player has a winning strat-
egy in a strong game, then Maker has a strategy in the corresponding weak
game. Also, if Breaker can win a weak game, then the second player surely
can force a draw in the strong game counterpart.

Since the roles of Maker and Breaker are crucially different, there is no
point in looking at strategy stealing—Maker cannot win a game by adopting
a strategy of Breaker in the same game, and vice versa. As we will see later,
it may be that Maker can win a game by adopting the role of Breaker in
a different game, but this concept is more subtle, it requires some analysis
and in that case we cannot talk about strategy stealing anymore.

On the other hand, Ramsey type arguments can be applied to guarantee
Maker’s win in the weak game, since they give the existence of a winning
strategy for the first player in the strong game.

As for the pairing strategy argument, we now see that this concept is
actually tailored for the role of Breaker in a weak game, and its application
for the second player’s draw in the strong game is just an implication.

Unlike for strong games, the list of tools to tackle weak games extends
beyond this point. In the following we present a few general criterions that
can be applied on a wide spectrum of games, ensuring the win for one of
the players.

The first to be mentioned is certainly the famous Erdős-Selfridge The-
orem, that provides Breaker’s win. It is surprisingly easy to state and
can be applied on virtually every positional game that satisfies the single
condition.

11
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Theorem 1 (Erdős-Selfridge [21]) If∑
A∈F

2−|A| < 1/2,

then Breaker has a winning strategy in the (X,F) game.

A particularly remarkable thing about this statement is that it depends
neither on the size of the board, nor on the winning set structure—the only
thing that matters is the size of the winning sets. One may expect that a
statement of such simple form cannot give strong results. But that is not
at all true—for several families of games its result is sharp, i.e., whenever
Breaker can win, the theorem can be applied to confirm it (see, e.g., [10]).
Another additional treat of the Erdős-Selfridge Theorem is that it not only
ensures that Breaker can win, but its proof also provides a winning strategy
for Breaker.

We switch sides now, and look at Maker’s possibilities to win. The
following theorem was proven by Beck in [4], giving a general criterion for
Maker’s win.

Theorem 2 (Beck [4]) Let (X,F) be a positional game. Assume that for
any two points in X there are not more than ∆2 = ∆2(F) winning sets
A ∈ F that contain both of them. If∑

A∈F

2−|A| >
1

8
∆2|X|,

then Maker has a winning strategy in (X,F).

We refer to ∆2(F) as the pair-degree.

If X is a finite nonempty set, F ⊆ 2X and a, b are positive integers,
then the 4-tuple (X,F , a, b) is a biased (a : b) game. In a biased (a : b)
game, Maker claims a elements (instead of 1) and Breaker claims b elements
(instead of 1) in each move.

For an unbiased game (X,F) that is a Maker’s win, a natural question
to ask is: What is the smallest integer bF for which Breaker wins the
(1 : bF ) game (see Figure 2.1)? On the other hand, if an unbiased game

12
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Figure 2.1: Threshold bias

is a Breaker’s win, we can pose the analog question about the threshold
for the (aF : 1) game. The problem of finding this threshold for various
positional games has been studied in [1, 2, 3, 13, 14, 15, 18].

Throughout the thesis we will assume that Maker starts the game, un-
less otherwise stated. But, we would also like to discuss the games in which
Breaker starts. In order to avoid confusion, the biased game with board X
and set of winning sets F in which Breaker starts is denoted by (X̂,F , a, b).
Note that a is always the bias of Maker, independently from who is the first
player to move.

A version of the Erdős-Selfridge Theorem for biased games was proved
by Beck in [2]. We present here its version for the games started by Breaker.

Theorem 3 (Beck, [2]) If∑
A∈F

(1 + b)−|A|/a < 1,

then Breaker has a winning strategy in (X̂,F , a, b).

If Maker plays first, then 1 on the right hand side of the criterion is to
be replaced by the fraction 1

1+b .

A counterpart winning criterion for Maker for biased games was also
proved by Beck.

Theorem 4 (Beck, [2]) Let (X,F , a, b) be a biased positional game. As-
sume that for any two points in X there is not more than ∆2 = ∆2(F)
winning sets A ∈ F that contain both of them. If

∑
A∈F

(
1 +

b

a

)−|A|

>
a2b2

(a + b)3
∆2|X|,

13
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then Maker has a winning strategy in (X,F , a, b).

As a further generalization, we look at biased games in which the goal of
Maker is to claim many (instead of one) winning sets. More precisely, Maker
wins the game if he claims all elements of at least c winning sets from F .
Then we are actually talking about the game (X, {∪B∈FB : F ∈

(F
c

)
}, a, b),

whose winning sets are all possible unions of c sets in F . Later, we are
going to make use of the following extension of the Biased Erdős-Selfridge
Theorem.

Theorem 5 ([2, 13]) If for a positive integer c we have∑
A∈F

(1 + b)−|A|/a < c
1

1 + b
,

then Breaker has a winning strategy in the (X, {∪B∈FB : F ∈
(F
c

)
}, a, b)

game.

The games we are particularly interested in are the games on graphs.
The board on which the game is played is the set of edges of a complete
graph on n vertices, X = E(Kn). The winning sets are usually representa-
tives of some well-known graph-theoretic structure, like clique, path, cycle,
spanning tree, Hamiltonian cycle, etc. These games are frequently studied
in the literature in the last couple of years, and some results in connection
with them can be found in [1, 5, 7, 9, 13, 14, 15, 18, 24, 31, 37, 41].

As a first example, we can look at the triangle Maker-Breaker game
played on edges of K5. For a precise definition, let K3 = K3(K5) be the
set of all 3-sets of edges of K5 which form a triangle. The game is formally
described as (E(K5),K3).

Without going into details, we will show that Maker can win this game.
He can start by claiming three (out of four) edges adjacent to a vertex.
Then, after his third move, there are two unclaimed edges that potentially
can close Maker’s triangle. Breaker cannot take both of them, so Maker
wins in his fourth move.

It is also not hard to check that the triangle game on edges of K4 can
be won by Breaker. On the other hand, (E(Kn),K3) is a Maker’s win for

14
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every fixed n ≥ 6. That follows simply by a Ramsey type argument—it is
well-known that every 2-coloring of Kn contains a monochromatic triangle,
if n ≥ 6.

We saw that on a large graph Maker can “easily” claim a triangle,
meaning that he can do it in just four moves. This answers our initial
question of who can win the game, but the proof and the result itself do
not seem that breathtaking (in our opinion, at least). One obvious way to
make it harder for Maker and spice up the game a little bit is to let Breaker
claim more than one edge per move. The new, more interesting question
is: Who wins the biased game (E(Kn),K3, 1, b)?! Depends on what is b, of
course.

First thing to note is that if Breaker can win the (1 : b) game for b = b0,
then he also can win it for every b > b0. We already saw that for b = 1
Maker wins, and Breaker obviously can win when b =

(
n
2

)
− 1. Therefore,

there has to exist the smallest integer bK3 = bK3(n) for which Breaker wins.

2.1.4 Avoider-Forcer and Picker-Chooser games

In the previous section we saw what a Maker-Breaker game is.

The so called Avoider-Forcer games are the misère version of Maker-
Breaker games. There are two players, called Avoider and Forcer. The main
difference—informally speaking—is that in Maker-Breaker games Maker’s
goal is to create, while in Avoider-Forcer games Avoider wants to avoid
creating.

The setup stays the same, there is a board X and a set of winning sets
F ⊆ 2X , and Avoider and Forcer alternately claim the unclaimed elements
of X. Forcer wins as soon as Avoider claims all the elements of a winning
set from F . If the game ends and Forcer did not win, then Avoider wins
(for more detail see, e.g., [9]).

Without going into details, we note that Beck gave the analogs of un-
biased versions of Erdős-Selfridge Theorem (Theorem 1), now for Forcer’s
win, and Theorem 2, now for Avoider’s win. Furthermore, Hefetz, Krivele-
vich and Szabó [26] gave the extension of the criterion for Avoider’s win
to all games with bias (b : 1). To our knowledge there is still no general
criterion of that kind for either Avoider’s win or Forcer’s win in (a : b)
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game.

In so-called Picker-Chooser games we come across yet another way of
playing on a board X. They are defined in [3] by Beck. The game is
played by two players, Picker and Chooser. In each move, Picker picks
two previously unpicked elements of the board, and then Chooser chooses
which one of the two edges to claim, and the other one automatically goes
back to Picker. Note that this way at any point of the game both players
have the same number of elements claimed.

We still did not say how each of the players can win. Again we have
the set of winning sets F ⊆ 2X , but there are still several versions of the
game depending on how the winner is determined. Firstly, we can either
look at the standard game in which the goal is to claim a winning set, or
the misère version of it in which the goal is to avoid claiming a winning set.

Note that unlike in Maker-Breaker or Avoider-Forcer games, in the
Picker-Chooser games we distinguish between the players already in the
way the game is played. Therefore, there is the total of four different kinds
of games.

If Chooser wants to occupy a winning set, then we call the game Chooser-
Picker game. On the other hand, if the goal of Picker is to occupy a winning
set, then we call the game Picker-Chooser game. For games of avoiding win-
ning sets we also have two variants. If Chooser avoids, we call it Chooser-
Picker Misère game, and if Picker avoids, we call it Picker-Chooser Misère
game.

2.2 Random graphs

In this section we will introduce random graphs, and mention some of
their basic properties. This topic is about 50 years old, but had its rapid
expansion in the last two decades. One can get a better insight in the
theory of random graphs by exploring books by Bollobás [17], and Janson,
 Luczak, Ruciński [28].
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2.2.1 Models of random graphs

Informally speaking, a random graph is a graph obtained as a result of a
random procedure. This can be formalized by representing the “random
procedure” by a probability space (Ω,F ,P), where Ω is the set of all graphs
with vertex set [n], F is the family of all subsets of Ω, and P is a probability
distribution on Ω. Depending on the definition of P, there are two basic
models of random graphs.

Given a real number p, with 0 ≤ p ≤ 1, and an integer n, the binomial
random graph is defined by setting

P(G) = peG(1 − p)(
n
2)−eG

for every graph G on vertex set [n]. The binomial random graph is denoted
by G(n, p).

One way to check that the function above is really a probability distri-
bution is to calculate directly the sum of P(G) over all graphs G on vertex
set [n], using binomial formula. But it is also important to recognize the
“random procedure” behind the definition. The distribution can be viewed
as a result of

(
n
2

)
independent coin flips, one for each couple of vertices,

with probability of success equal to p. Then two vertices are connected if
and only if the coin flip for this pair of vertices was successful.

The real number p should not necessarily be seen as a constant. Actu-
ally, large part of the random graph literature is devoted to cases in which
p = p(n) → 0 as n → ∞.

Given an integer M , with 0 ≤ M ≤
(
n
2

)
, the uniform random graph is

defined by setting

P′(G) =

((n
2

)
M

)−1

for every graph G with M edges on vertex set [n], and

P′(G) = 0

for all other graphs. The uniform random graph is denoted by G(n,M).

The random graph process is a stochastic process that describes the
random graph evolving in time. The process starts from an empty graph on
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vertex set [n] and proceeds by adding one edge at a time, chosen uniformly
at random from the set of all edges not yet chosen.

To be more formal, let e1, . . . , em be the edges of Kn, where m =
(
n
2

)
.

Choose a permutation π ∈ Sm uniformly at random and define an in-
creasing sequence of subgraphs (Gi) where V (Gi) = [n] and E(Gi) =
{eπ(1), . . . , eπ(i)}. It is clear that Gi is a graph with i edges, selected uni-
formly at random from all n-vertex graphs with i edges. In other words,
Gi = G(n, i).

2.2.2 Graph properties, thresholds and hitting time

A set Q of graphs with vertex set [n] is called a property of graphs of order
n if for every two graphs G and H on vertex set [n], G ∈ Q and G being
isomorphic to H implies that H ∈ Q. If G ∈ Q, we say that “graph G has
property Q”.

A property is said to be monotone increasing, if for every two graphs
G and H on vertex set [n], G ∈ Q and G ⊆ H implies that H ∈ Q. That
is, a property is called increasing if a graph that has this property cannot
lose it when some edges are added to it. The complement of a monotone
increasing property is called a monotone decreasing property.

For example, we can define the property “is connected” as the set C of
all graphs on vertex set [n] which are connected. This property is mono-
tone increasing, since adding edges to a connected graph cannot make it
disconnected. On the other hand, the complement property C contains all
graphs that are not connected, and it is decreasing. Obviously, taking away
edges from a graph that has a decreasing property will not make it lose this
property.

The following two propositions are crucial, as they provide a frequently
exploited connection between the binomial and uniform random graphs.
Let m =

(
n
2

)
.

Proposition 6 [28, Proposition 1.12] Let Q = Q(n) be an arbitrary (not
necessarily monotone) property, p = p(n) ∈ [0, 1] and 0 ≤ a ≤ 1. If for
every sequence M = M(n) such that

M = mp + O(
√
mp(1 − p))

18
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it holds that Pr[G(n,M) ∈ Q] → a as n → ∞, then also Pr[G(n, p) ∈ Q] →
a as n → ∞.

In the other direction we do not have asymptotic equivalence in such
generality. But the analog statement holds if we assume that the property
is monotone.

Proposition 7 [28, Proposition 1.13] Let Q = Q(n) be a monotone prop-
erty, 0 ≤ M = M(n) ≤ m and 0 ≤ a ≤ 1. If for every sequence
p = p(n) ∈ [0, 1] such that

p =
M

m
+ O

(√
M(m−M)

m3

)
it holds that Pr[G(n, p) ∈ Q] → a as n → ∞, then also Pr[G(n,M) ∈ Q] →
a as n → ∞.

For a monotone increasing property Q, a sequence p̂ = p̂(n) is called a
threshold if

Pr[G(n, p) ∈ Q] →
{

0 if p = o(p̂)
1 if p = ω(p̂)

.

A threshold M̂ = M̂(n) for the uniform model of the random graphs is
defined analogously by

Pr[G(n,M) ∈ Q] →

{
0 if M = o(M̂)

1 if M = ω(M̂)
.

One surprising property of monotone thresholds is the so called thresh-
old behavior. Ever since the following theorem was proved by Bollobás and
Thomason, a lot of research has been directed towards finding thresholds
for various properties of graphs.

Theorem 8 [16] Every monotone property has a threshold.

Knowing that every monotone property has this sudden jump at the
threshold, a next question to ask is how sudden the jump really is? It
turns out that it is not the same for all properties.
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property threshold p

G contains a (fixed) subgraph H n−vH/eH

G is connected
logn

n

G has a perfect matching
logn

n

G has a Hamiltonian cycle
logn

n

G is non-planar n−1

Table 2.1: Thresholds for some graph properties in G(n, p)

If for a monotone property Q and sequence p̂ = p̂(n) we have

Pr[G(n, p) ∈ Q] →
{

0 if p ≤ (1 − ε)p̂
1 if p ≥ (1 + ε)p̂

for every ε > 0, then we say that p̂ is a sharp threshold for property Q.

In Table 2.1 we give some graph properties and thresholds for their
appearance in G(n, p) random graph model.

One additional property of the random graphs that we will use later is
the following estimate for the number of copies of a fixed graph H appear-
ing in G(n, p). Let YH denote the number of copies of a fixed graph H
appearing in the random graph G(n, p) and µ = E[YH ].

Theorem 9 [42, Theorem 2.1] If H is balanced and ε is a positive con-
stant, then

Pr[YH ≥ (1 + ε)µ] ≤ exp
(
−Ω

(
µ

1
vH−1

))
.

We now come back to the random graph processes. Given a particular
graph process (Gi) and a monotone increasing graph property P possessed
by Kn, the hitting time τ(P) = τ(P, (Gi)) is the minimal i for which Gi

has property P.
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It turns out that some pairs of properties have the same hitting time
a.s., meaning that in almost all graph processes they come at the exactly
same time. For example, it can be shown that the hitting time for “having
a perfect matching” is a.s. the same as the hitting time for “having no
isolated vertices” [28, Theorem 4.6].

2.3 Games on random graphs

We briefly describe two different games on random graphs that we are going
to analyze in detail later.

For Maker-Breaker games, we introduce a new approach to even out a
possible advantage Maker has in (1: 1) game, by randomly reducing the
board size and keeping only those winning sets which survive this thinning
intact.

Definition 1 Let (X,F , a, b) be a biased game. A random game
(Xp,Fp, a, b) is a probability space of games where each x ∈ X is indepen-
dently included in Xp with probability p, and Fp = {W ∈ F : W ⊆ Xp}.

Apart from the trivial case ∅ ∈ F , Breaker surely wins when p = 0. On
the other hand, for p = 1 the winner of the random game is the same as in
(X,F , a, b). For any other probability p, 0 < p < 1, we cannot be sure who
(Maker or Breaker) wins the random game Fp. The best we can conclude is
that Maker (or Breaker) wins a.s. (almost surely), i.e., the probability that
Maker (Breaker) wins tends to 1 if the board size tends to infinity. (So we
actually talk about an infinite family of probability spaces of games . . . )
We are particularly interested in random Maker-Breaker games on edges of
a complete graph on n vertices. We consider this model in Chapter 3.

Now we switch to a different kind of games on random graphs, which
we analyse in Chapter 5. They are played by a single player, Painter.
He maintains a balanced 2-coloring in the random graph process, coloring
two edges at a time in an online fashion. His goal is to avoid creating a
monochromatic copy of a fixed graph F for as long as possible.

More precisely, if the edges in a graph process are coming in order
(eπ(1), eπ(2), . . . , eπ(m)), then in the ith move of the game Painter is pre-
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sented with edges eπ(2i−1) and eπ(2i). He then immediately and irrevocably
chooses one of the two possibilities to color one of them red and the other
one blue. Therefore, after playing the first i moves, Painter has created a
balanced 2-coloring of the graph G2i. Note that at the move i he has no
knowledge of the order in which the remaining edges will be presented to
him in the moves to come.

Let F be a fixed graph. Painter loses the game as soon as he cre-
ates a monochromatic copy of F , i.e., Painter loses in the move min{i :
G2i contains a monochromatic copy of F}. His goal is to play as long as
possible without losing, and we would like to determine how long that is.
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Chapter 3

Positional games on
random graphs

Enemy spotted!
...
Hold this position!

radio messages from Counter Strike

3.1 Introduction

Typical, well-studied examples of positional games are played on the edges
of a complete graph, i.e., X = E(Kn). Maker’s goal usually is to build
a graph theoretic structure – like a spanning tree, a perfect matching, a
Hamiltonian cycle, or a clique of fixed size. It turns out that all these games
are won easily by Maker if n is sufficiently large, so in order to make things
more fair (if such thing exists; actually no game of perfect information is
fair as the winner—in theory—is known in the beginning of the game) one
could give Breaker extra power by allowing him to claim more than 1 edge
in each move.

For a family F the smallest integer bF is sought (and sometimes found;
see [1, 2, 3, 13, 14, 15, 18]) for which Breaker wins the (1 : bF ) game.

In the connectivity game Maker’s goal is to build a connected spanning
subgraph; i.e., in this game the family of winning sets is the family T = Tn
of all spanning trees on n vertices. Chvátal and Erdős proved [18] that
bT = Θ( n

logn ).

Beck [1] established bH = Θ( n
log n ), where H = Hn is the family of all
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Hamiltonian cycles on n vertices.

For the family Kk = Kk,n of all k-cliques on n vertices, Bednarska and

 Luczak [13] showed that bKk
= Θ(n

2
k+1 ). More generally, they proved that

in the game in which Maker’s goal is to claim an arbitrary fixed graph G,
the threshold bias is Θ(n1/m2(G)).

Playing on a random board. Let (X,F) be a particular sequence of
games, where ∅ /∈ F , the board size tends to infinity, and (X,F , 1, 1) is won
by Maker provided |X| is big enough. The first natural question to ask is:
What is the threshold probability pF at which an almost sure Breaker’s
win turns into an almost sure Maker’s win? More precisely, we would like
to determine pF for which

• Pr[(Xp,Fp, 1, 1) is a Breaker’s win] → 1 for p = o(pF ), and

• Pr[(Xp,Fp, 1, 1) is a Maker’s win] → 1 for p = ω(pF ),

as in Figure 3.1.

Figure 3.1: Threshold probability

Such a threshold pF exists [16], since being a Maker’s win is an increas-
ing property.
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Figure 3.2: Dependency of bias and probability

Our main goal in this chapter is to establish a connection between the
natural threshold values, bF and pF , corresponding to the two different
weakenings of Maker’s power: bias and random thinning, respectively. We
find that there is an intriguing reciprocal connection between these two
thresholds in a number of well-studied games on graphs.

Recall the notations T , H, and Kk, and let us denote by M the set of
all perfect matchings on the graph Kn.

Theorem 10 For positional games, played on E(Kn), we have

(i) pT = logn
n ,

(ii) pM = logn
n ,

(iii) pH = logn
n ,

(iv) n− 2
k+1−ε ≤ pKk

≤ n− 2
k+1 , for every integer k ≥ 4 and every constant
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ε > 0.

(v) pK3 = n− 5
9 .

For the connectivity game T an even more precise statement is true.
In Corollary 28 we observe that Maker starts to win a.s. at the very mo-
ment when the last vertex of the random graph process picks up its second
incident edge.

Note that part (iii) of the last theorem implies that in the random graph
with edge probability p ≥ C logn

n Maker can build a Hamiltonian cycle in
the one-on-one game. So Pósa’s result [38] (which gives the existence of
a Hamiltonian cycle) is true constructively even if an adversary is playing
against us.

More generally, for every p we would like to find the smallest bias bpF
such that Breaker wins the random game (Xp,Fp, 1, b

p
F ) a.s.

Note that by definition bF = b1F . Another trivial observation is that
bpF = 0 provided p is less than the threshold for the appearance of the first
element of F in the random graph. Hence, we get a general dependency of
bias and probability, as described in Figure 3.2.

We obtain the following.

Theorem 11 There exist constants C1, C2, C3, such that

(i) bpT = Θ (pbT ) = Θ
(
p n
log n

)
, provided p ≥ C1

1
bT

,

(ii) bpM = Θ (pbM) = Θ
(
p n
log n

)
, provided p ≥ C2

1
bM

,

(iii) Ω
(
p

√
n

logn

)
≤ bpH ≤ O

(
p n
log n

)
, provided p ≥ C3

logn√
n
,

(iv) There exists ck > 0, such that bpKk
= Θ (pbKk

) = Θ
(
pn

2
k+1

)
, provided

p = Ω
(

logck n
bKk

)
.
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Figure 3.3: Connectivity game and matching game

One can see that bpF is of order p/pF = pbF for the connectivity game
and the perfect matching game (Figure 3.3), provided p ≥ CpF for some
constant C. In particular for these games pF = Θ(1/bF ).

In the Hamiltonian cycle game, we can obtain the exact value only for
(1 : 1) games, for other values of bias we just give some upper and lower
bounds (see Figure 3.4). Nevertheless we think that our arguments for
finding pH can be extended for general bias, to prove that the Hamiltonian
cycle game behaves “nicely”, i.e., the same way as the connectivity game
and the perfect matching game.

Conjecture 1 Let H be the set of Hamiltonian cycles in Kn. There exists
a constant C such that

bpH = Θ

(
p

n

log n

)
, provided p ≥ C logn

n .

Note that the Theorem 10 (iii) implies that the conjecture is valid when
p is of order log n

n .
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Figure 3.4: Hamiltonian cycle game

In part (iv) of Theorem 11, generalizing the arguments of Bednarska
and  Luczak [13] we show that one can estimate bpKk

up to a constant factor,
for all probabilities down to a polylogarithmic factor away from the critical

probability 1/bKk
= n− 2

k+1 , see Figure 3.5 (left).

On the other hand Theorem 10 part (v) shows that in the case k = 3
we cannot get arbitrarily close to probability 1/bKk

, since Maker can win
even for probabilities below 1/bK3 = n−1/2, as in Figure 3.5 (right).

3.2 A criterion

As we saw, one of few general, but still very applicable results to decide
the winner of biased positional games is Theorem 3, the biased version of
the Erdős–Selfridge Theorem. It provides a criterion for Breaker to win,
applicable on any game.

In this section we give an adaptation of this criterion which proves to
be very useful in dealing with positional games on a random board. We
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Figure 3.5: k-clique game, k ≥ 4 (left), and triangle game (right)

need the following technical definition.

Definition 2 Let (X,F , a, b) be a biased game. Random game
(Xp,F∩

p , a, b) with induced set of winning sets is a probability space of
games, where Xp is defined as in Definition 1 and

F∩
p = {W : ∃F ∈ F , W = F ∩Xp}.

The following statement is the randomized version of the Erdős-Selfridge
Theorem. It is stated for the biased (b : 1) game in which Breaker is the
first player, because this is the version we will need in our applications.

Theorem 12 Let F be a set of winning sets on X with∑
A∈F

2−
|A|
b < 1 (3.1)

(i.e., the condition of the Erdős–Selfridge Theorem holds for the (X̂,F , b, 1)
game), and

lim
n→∞

min
A∈F

|A|
b

= ∞. (3.2)
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If p and δ > 0 are chosen so that

p >
4 log 2

δ2b

holds, then the game (X̂p,F∩
p , (1 − δ)pb, 1) is a Breaker’s win a.s.

Proof. For each A ∈ F and its corresponding set A′ ∈ F∩
p we have

E[|A′|] = p|A|. If all winning sets A′ ∈ F∩
p have size at least (1 − δ)p|A|,

then ∑
A′∈F∩

p

2−
|A′|

(1−δ)pb ≤
∑
A∈F

2−
(1−δ)p|A|
(1−δ)pb =

∑
A∈F

2−
|A|
b < 1.

Using the Erdős–Selfridge theorem we obtain that Breaker wins the
(X̂p,F∩

p , (1 − δ)pb, 1) game, provided |A′| ≥ (1 − δ)p|A| for all A′ ∈ F∩
p .

Next we check that this condition holds almost surely. Using a Chernoff
bound, we obtain that

Pr[∃A ∈ F : |A′| ≤ (1 − δ)p|A|] ≤
∑
A∈F

e−
δ2p|A|

2 .

If we denote minA∈F
|A|
b by mn, then we have∑

A∈F
e−

δ2p|A|
2 ≤

∑
A∈F

2−2
|A|
b ≤

∑
A∈F

2−mn2−
|A|
b < 2−mn → 0,

and therefore all winning sets A′ ∈ F∩
p have size at least (1 − δ)p|A| a.s.

2

3.3 Games

3.3.1 Connectivity game

The first game we study is a random version of the biased connectivity
game (E(Kn), T , 1, b) on a complete graph on n vertices Kn. Maker’s goal
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is to build a spanning, connected subgraph, i.e., T is the set of all spanning
trees on n vertices.

It is obvious that pT = Ω( log n
n ), since for lower probabilities the random

graph is a.s. not connected, and Breaker wins even if he does not claim any
edges.

First we generalize this for arbitrary probability p by providing Breaker
with a strategy to isolate a vertex. One of our main tools is the following
winning criterion of Chvátal and Erdős on games with disjoint winning
sets.

Theorem 13 [18] In a biased (b : 1) game with k disjoint winning sets of
size s in which Breaker makes the first move, Maker wins if

s ≤ (b− 1)
k−1∑
i=1

1

i
. (3.3)

Corollary 14 In a biased (b : 2) game with k disjoint winning sets of size
at most s Maker wins if

s ≤
(⌊

b

2

⌋
− 1

) k−1∑
i=1

1

i
.

Proof of Corollary. Recall that as a default Maker starts the game. We
will prove that when Breaker starts, the bias is (2b : 2), there are k winning
sets and (3.3) holds, then Maker still wins. Indeed, since the winning sets
are disjoint, after Breaker’s move Maker can just pretend to play a (b : 1)
game and answer with his first b moves to one of the two selections of
Breaker, and answer with his second b moves to the other move of Breaker,
both according to the (b : 1) strategy. Now the Corollary follows, since
starting instead of being second player cannot hurt Maker. 2

Theorem 15 There exists K0 > 0 so that for arbitrary p ∈ [0, 1] and
b ≥ K0p

n
log n Breaker, playing the (1 : b) game on the edges of the random

graph G(n, p), can achieve that Maker’s graph has an isolated vertex a.s.
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Proof. Let us fix

b =

⌊
K0pn

log n

⌋
,

where K0 is a constant to be determined later. Note that we can assume
p > log n/2n, since otherwise the random graph has an isolated vertex a.s.,
thus Breaker achieves his goal without having to play any moves.

We present a strategy for Breaker to claim all the edges incident to some
vertex of G(n, p). If successful, this strategy prevents Maker from building
a connected spanning subgraph. A similar strategy was introduced by
Chvátal and Erdős [18] for solving the problem on the complete graph.

Let C be an arbitrary subset of the vertex set of cardinality ⌊n/ log n⌋.
Breaker will claim all the edges incident to some vertex v ∈ C (thus pre-
venting Maker from claiming any edge incident to v). We would like to
use the game from Corollary 14, with the winning sets being the ⌊n/ log n⌋
stars of size at most n − 1 whose center is in C. Since these stars are not
necessarily disjoint, formally we will talk about ordered pairs of vertices:
the winning sets are denoted by Wv = {(v, u) : u ∈ V }, v ∈ C. We call
this game Box. To avoid confusion with Maker and Breaker of the game
from Theorem 15, the players from Corollary 14 will be called BoxMaker
and BoxBreaker. Recall that in Box the bias is (b : 2).

Breaker will utilize the strategy of BoxMaker from Corollary 14 to
achieve his goal. How? He will play a game of Box in such a way that
a win for BoxMaker automatically implies a win for Breaker. When Maker
selects an edge uv, Breaker interprets it as BoxBreaker claimed the ele-
ments (u, v) and (v, u) in Box. Whenever Breaker would like to make a
move, he looks at the current move of BoxMaker in Box, and takes those
edges which correspond to the b ordered pairs BoxMaker selected. If he is
supposed to select an edge which has already been selected by him, he se-
lects an arbitrary unoccupied edge. Note that the above strategy never calls
for Breaker to select an edge which has already been selected by Maker.

It is also obvious, that if BoxMaker wins Box, then Breaker occupied
all incident edges of a vertex from C.

In order to apply Corollary 14 it is enough then to show that the size
d(v) of each winning set is appropriately bounded from above, i.e., for each
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v ∈ C we have

d(v) ≤ K0

8
pn ≤

(⌊
b

2

⌋
− 1

) k−1∑
i=1

1

i

a.s.

Indeed, using a Chernoff bound and K0 large enough, we obtain that
for every v ∈ C

Pr

[
d(v) >

K0

8
pn

]
≤ e−

K0pn
8 ≤ n−K0

16 .

Therefore we have

Pr

[
∃v ∈ C : d(v) >

K0

8
pn

]
≤ n · n−K0

16 → 0,

provided K0 is large enough. Then Corollary 14 guarantees BoxMaker’s
win, thus Breaker’s win a.s., and the proof of Theorem 15 is complete. 2

Next we give a winning strategy for Maker in the connectivity game,
thus determining the threshold bias bpT up to a constant factor.

Obviously, Breaker wins if and only if he claims all the edges of a cut,
i.e., all the edges connecting some set of vertices with its complement.
In order to win Maker has to claim one edge in each of the cuts. This
observation enables us to formulate the connectivity game in a different
way, where winning sets are cuts and roles of players are exchanged –
Breaker wants to occupy a cut and Maker wants to prevent Breaker from
doing so. To avoid confusion we refer to the players of this “cut-game” by
CutMaker and CutBreaker.

This new point of view enables us to give Maker a winning strategy
using Theorem 12, which is a criterion for CutBreaker’s win. Observe, that
in this “cut-game” CutBreaker (alias Maker) only cares about occupying
the existing edges of a cut, that’s why we are going to look at the family
F∩

p instead of Fp.

Theorem 16 There exists k0 > 0, so that for p > 32 log n
n and b ≤ k0p

n
log n

Maker wins the random connectivity game (E(Kn)p, Tp, 1, b) a.s.
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Proof. For

b0 =
log 2

2
· n

log n

we are going to prove that the conditions of Theorem 12 are satisfied if F
is the set of all cuts in a complete graph with n vertices.

On one hand, Beck [2] showed

n/2∑
k=1

(
n

k

)
2−

k(n−k)
b0 → 0,

which means that condition (3.1) holds in this setting.

For a cut A ∈ F we have |A| ≥ n− 1 which implies condition (3.2). If
we set δ = 1/2 we can apply Theorem 12 which gives that

(Ê(Kn)p,F
∩
p ,

log 2

4
p

n

log n
, 1)

is a CutBreaker’s win a.s. The statement of the theorem immediately
follows. 2

Theorem 15 and Theorem 16 together imply part (i) of both Theorem 10
and 11.

3.3.2 Hamiltonian cycle game

Here we investigate the random version of the (1: b) biased game
(E(Kn),H, 1, b) on the complete graph Kn, where H is the set of all Hamil-
tonian cycles. Maker’s goal is to occupy all edges of a Hamiltonian cycle,
while Breaker wants to prevent that. Breaker can obviously win when
Maker is not able to claim a connected graph and thus from Theorem 15
we obtain the following corollary.

Corollary 17 There exists H0 > 0 so that for every p ∈ [0, 1] and b ≥
H0p

n
logn Breaker wins the random Hamiltonian cycle game

(E(Kn)p,Hp, 1, b) a.s.

In the proof of the following theorem, we give a Maker’s winning strat-
egy for the Hamiltonian cycle game.
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Theorem 18 There exists h0 > 0, so that for p > 32 log n√
n

and b ≤ h0p
√
n

log n

Maker wins the random Hamiltonian cycle game (E(Kn)p,Hp, 1, b) a.s.

Proof. Maker wins, if at the end of the game the subgraph GM (con-
taining the edges claimed by Maker) has connectivity κ(GM ) greater or
equal than independence number α(GM ). Indeed, from the criterion of
Chvátal and Erdős for Hamiltonicity [19], we obtain that GM then con-
tains a Hamiltonian cycle.

We show that Maker, using only his odd moves, can ensure that the
connectivity of his graph at the end of the game is greater than k =

√
n/2

and, using his even moves, can make the independence number at the
end of the game smaller than k =

√
n/2. In other words we will look at

two separate games where in each of them Maker plays one move against
Breaker’s 2b moves. This is a correct strategy, because moves of Maker
made in one of these games cannot hurt him in the other.

We first look at the odd Maker’s moves. To ensure that κ(GM ) ≥ k,
Maker has to claim one edge in every cut of a graph obtained from the
initial graph by removing some k vertices. More precisely, we are going to
prove the conditions of Theorem 12 for the biased (b′ : 1) game, where

b′ =
log 2

2
·
√
n

log n

and

F =

{
{v1v2 : v1 ∈ V1, v2 ∈ V2} :

V (Kn) = V0∪̇V1∪̇V2, |V0| = k, V1, V2 ̸= ∅
}
.

That is, Maker plays the role of “CutBreaker” by trying to break all the
cuts in F .

Since the size of each of the sets in F is at least n− k − 1 we have

lim
n→∞

min
A∈F

|A|
b′

= lim
n→∞

2 log n(n−
√
n/2 − 1)

log 2
√
n

= ∞,
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and the condition (3.2) holds. Next, we have

∑
A∈F

2−
|A|
b′ =

n−k
2∑

i=1

(
n

i

)(
n− i

k

)
2−

i(n−i−k)

b′

<
k∑

i=1

n2k2−
n−k−1

b′ +

n−k
2∑

i=k+1

22n−
k(n−2k)

b′

< k · n−
√
n + n · n−n → 0,

which gives the condition (3.1). Therefore, CutBreaker (alias Maker) wins
the game (

Ê(Kn)p,F
∩
p ,

log 2

4
p

√
n

log n
, 1

)
a.s., provided p ≥ 32 log n√

n
.

In the other part of the game using even moves Maker has to ensure
that α(GM ) ≤ k =

√
n/2. That is going to be true if Maker manages to

claim at least one edge in every clique of k elements. To prove that it is
possible we again use Theorem 12 for a biased (b′ : 1) game with the same
value of

b′ =
log 2

2
·
√
n

log n
.

But now F is the family of the edge-sets of all cliques of size k and Maker
will play the role of “CliqueBreaker” in this game.

We have

lim
n→∞

min
A∈F

|A|
b′

= lim
n→∞

2 log n
(√

n
2
2

)
log 2

√
n

= ∞,

and the condition (3.2) is satisfied. It remains to prove that the condition
(3.1) holds. ∑

A∈F

2−
|A|
b′ =

(
n

k

)
2−

(k
2)
b′

<
(ne
k

2−
k−1
2b′
)k

< 2−
√
n → 0.
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Therefore, CliqueBreaker wins the game(
Ê(Kn)p,F

∩
p ,

log 2

4
p

√
n

log n
, 1

)
a.s., provided p ≥ 32 log n√

n
.

Putting the two parts of the game together we have that Maker wins(
E(Kn)p,Hp, 1,

1

16
p

√
n

log n

)
a.s. 2

Combining the statements of Corollary 17 and Theorem 18 we obtain
part (iii) of both Theorems 10 and 11.

3.3.3 Perfect matching game

The upper and lower bounds obtained in the previous subsection for the
threshold bias of the random Hamiltonian cycle game are not tight. We
firmly believe that our strategy for Maker in that game is not optimal. The
game we consider next is simpler for Maker, and for that we are able to
obtain bounds optimal up to a constant factor.

Recall that M is the set of all perfect matchings on Kn. We will assume
that n is even. In the game (E(Kn),M, 1, b) Maker’s goal is to occupy all
edges of a perfect matching, while Breaker wants to prevent that.

The following theorem provides the winning strategy in the random
perfect matching game for Maker.

Theorem 19 There exists m0 > 0, so that for p > 64 log n
n and b ≤

m0p
n

log n Maker wins the random perfect matching game (E(Kn)p,Mp, 1, b)
a.s.

Proof. We can show that Maker can win in a slightly harder game.
More precisely, if the set of vertices of Kn is partitioned into two sets A
and B of equal size before the game starts, we are going to show that Maker
can claim a perfect matching with edges going only between A and B.

37



CHAPTER 3. POSITIONAL GAMES ON RANDOM GRAPHS

For disjoint sets X,Y ⊂ V (Kn), we define E(X,Y ) to be the set of
edges between X and Y . Let F be a family of sets of edges,

F = {E(X,Y ) : ∅ ̸= X ⊂ A, ∅ ̸= Y ⊂ B, |X| + |Y | =
n

2
+ 1}.

Suppose that at the end of the game Maker has not claimed all edges
of any perfect matching between A and B. Hall’s necessary and sufficient
condition for existence of a perfect matching implies that there exist sets
X0 ⊂ A and Y0 ⊂ B such that |X0| > |Y0| and all edges in E(Kn)p ∩
E(X0, B \ Y0) were claimed by Breaker.

Therefore, in order to win, Maker has to claim at least one edge in each

of the sets from F , i.e., the game (Ê(Kn)p,F∩
p , b, 1), which we call Hall,

should be a HallBreaker’s win.

To prove that HallBreaker wins we are going to use Theorem 12. We
set δ = 1/2 and

b0 =
log 2

4
· n

log n
.

First we show that condition (3.1) holds. We have

n/2∑
k=1

(
n/2

k

)(
n/2

n/2 − k + 1

)
2−

k(n/2−k+1)
b0 < 2

⌊n/4⌋∑
k=1

(
n/2

k

)2

2−
k(n/2−k+1)

b0

< 2

⌊n/4⌋∑
k=1

(
e2 log(n/2)−2 log n

)k
= 2

⌊n/4⌋∑
k=1

(
1

4

)k

< 1.

Since

lim
n→∞

min
A∈F

|A|
b0

> lim
n→∞

log n = ∞,

the condition (3.2) is also satisfied and we can apply Theorem 12 proving
that HallBreaker wins the random game(

Ê(Kn)p,F
∩
p ,

log 2

8
p

n

log n
, 1

)
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a.s., provided p > 64 log n/n.

This immediately implies that Maker wins (E(Kn)p,Mp, 1, b) a.s. 2

Theorem 15 ensures a win for Breaker in the perfect matching game, if

b >
K0pn

log n
.

This, together with the above Theorem 19 proves part (ii) of Theorems 10
and 11.

3.3.4 Clique game

Here we look at the random version of the (1: b) biased clique game
(E(Kn),Kk, 1, b) on a complete graph Kn, where Kk is the set of all cliques
of constant size k. Maker’s goal is to occupy all edges of a clique of size k
while Breaker wants to prevent that.

The deterministic clique game was extensively studied by Bednarska
and  Luczak in [13]. They proved a more general result by determining the
order of the threshold bias for the whole family of games in which Maker’s
goal is to claim an arbitrary fixed graph H. In this section, we will largely
rely on the constructions and ideas from their paper.

If {F1, . . . , Ft} is a family of k-cliques having two common vertices, and
ei ∈ E(Fi), i = 1, . . . , t are distinct edges, then we call the graph ∪t

i=1Fi a
t-2-cluster and the graph ∪t

i=1(Fi−ei) a t-fan. If furthermore the k-cliques
have three vertices in common, then a t-2-cluster is called a t-3-cluster and
a t-fan is called a t-flower. A t-fan or a t-2-cluster is said to be simple, if
the pairwise intersections (of any two k-cliques) have size exactly 2.

In order to prevent Maker to occupy a clique Kk, Breaker will play
two auxiliary games. In the first one he prevents Maker from occupying a
3-cluster of constant size.

Lemma 20 There exists t = t(k), so that for ε = 1
2(k+2) , p = ω(n− 2

k+1 )

and b > pn
2(1−ε)
k+1 Breaker wins the game (E(Kn)p, t-3-clusters, 1, b) a.s.

Proof. To apply Theorem 3, it is enough to check that there exists t
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such that for the random variable

Y :=
∑

t-3-cluster C in G(n, p)

(1 + b)−e(C),

Y < 1
b+1 holds a.s.

We have

E[Y ] =
∑

t-3-cluster C in Kn

(
p

1 + b

)e(C)

.

Let b1 = b+1
p − 1. In [13], it is shown that there exists t for which

∑
t-3-cluster C in Kn

(
p

1 + b

)e(C)

≤ K0
1

b1+k0
1

,

where k0,K0 > 0 are constants depending on k. This implies E[Y ] =

o
(

1
b+1

)
, and by Markov inequality we get that Y < 1

b+1 a.s. 2

During a game, a t-fan (or t-flower) is said to be dangerous if all the
t edges missing from the cliques that make up the t-fan are present in
the graph on which the game is played, but not yet claimed by any of the
players. Note that if at any moment of the game (E(Kn)p, t-3-clusters, 1, b)
Maker claimed a dangerous (b+1)t-flower, then he could win since he could
claim a t-3-cluster in his next t moves by simply claiming missing edges,
one by one. Hence, Lemma 20 implies the following.

Corollary 21 There exists t = t(k) so that for ε = 1
2(k+2) and p =

ω(n− 2
k+1 ), Breaker playing a (1 : pn

2(1−ε)
k+1 ) game on edges of the random

graph E(Kn)p can make sure that Maker does not claim a dangerous(
pn

2(1−ε)
k+1 t

)
-flower at any moment of the game.

Next we deal with the second auxiliary game of Breaker; in this game
he prevents the appearance of too many simple bε-fans.
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Lemma 22 There exists C0 > 0, such that for ε1 = 1
6(k+2) ,

p ≥ log1/ε1 n

n
2

k+1

,

b > C0pn
2

k+1 and s = bε1 Breaker wins the game(
E(Kn)p, unions of

1

2

(
b

s

)
simple s-fans, 1, b/2

)
a.s.

Proof. Let cs(n) be the number of simple s-2-clusters contained in
Kn, and let Xs be the random variable counting the number of simple
s-2-clusters contained in G(n, p). Using the first moment method we get

Pr[Xs ≥ E[Xs] log n] ≤ 1

log n
−→ 0,

and using this, a.s. we have that∑
dangerous simple
s-fan C in G(n, p)

(1 + b/2)−e(C)

≤
∑

simple s-2-cluster K
in G(n, p)

(
k

2

)s

(1 + b/2)−s((k
2)−2)−1

≤
(
k

2

)s

log n · cs(n)ps((
k
2)−1)+12sk

2

b−s((k
2)−2)−1

≤ log n · Cs
1

(
n

2

)( n
k−2

)s
s!

(p
b

)s((k
2)−1)+1

bs

≤ n3 · Cs
1n

(k−2)s

(
1

C0n
2

k+1

)s(k+1)(k−2)/2+1
bs

s!

≤ n3 ·

 C1

C
(k
2)−1

0

s(
1

C0n
2

k+1

)
bs

s!

<
1

2

(
b

s

)
1

b + 1
,
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where C1 = C1(k) is a constant. The last inequality is valid since p ≥
n− 2

k+1 log1/ε1 n, and for C0 large enough C1

C
(k
2)−1

0

s

≤ n−5.

This enables us to apply Theorem 5, and the statement of the lemma is
proved. 2

Now we are ready to state and prove the theorem ensuring Breaker’s
win in the clique game on the random graph. In the proof, we are going to
use this result of Bednarska and  Luczak.

Lemma 23 [13] For every 0 < ε < 1 there exists b0 so that every graph
with b > b0 vertices and at most b2−ε edges has at least 1

2

(
b

bε/3

)
independent

sets of size bε/3.

Theorem 24 There exists C0 > 0 so that for p ≥ n− 2
k+1 log6k+12 n and

b ≥ C0pn
2

k+1 Breaker wins the random clique game (E(Kn)p, (Kk)p, 1, b)
a.s.

Proof. Breaker will use b/2 of his moves to defend “immediate threats”,
i.e., to claim the remaining edge in all k-cliques in which Maker occupied
all but one edge. In order to be able to do this Breaker must ensure that
he never has to block more than b/2 immediate threats, that is, there is no
dangerous b/2-fan.

He will use his other b/2 moves to prevent Maker from creating a dan-
gerous (b/2)-fan.

From Corollary 21 we get that Breaker can prevent Maker from claiming

a dangerous f -flower (where f = tpn
2(1−ε)
k+1 , ε = 1

2(k+2) and t is a positive

constant) using less than b/4 edges per move. On the other hand, from
Lemma 22 we have that if C0 is large enough Breaker can prevent Maker
from claiming 1

2

(
b/2
s

)
simple s-fans using b/4 edges per move, where s =

(b/2)ε/3.

Suppose that Maker managed to claim a dangerous (b/2)-fan. We define
an auxiliary graph G′ with the vertex set being the set of all b/2 k-cliques of
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this dangerous fan, and two k-cliques being connected with an edge if they
have at least 3 vertices in common. Since there is no dangerous f -flower in
Maker’s graph, the degree of each of the vertices of the graph G′ is at most
fk and therefore

e(G′) <
bfk

2
≤
(
b

2

)2−ε

.

On the other hand, the number of independent sets in G′ of size s cannot
be more than 1

2

(
b/2
s

)
, since each of the independent sets in G′ corresponds

to a simple s-fan in Maker’s graph.

Since the last two facts are obviously in contradiction with Lemma 23,
Maker cannot claim a dangerous b/2-fan and the statement of the theorem
is proved. 2

To prove the theorem for Maker’s win, we need the following lemma
which is a slight modification of a result from [13, Lemma 4]. It is stated
in more general form—for each graph H containing a cycle, not only for
cliques.

Lemma 25 Let H be a graph containing a cycle. There exists 0 < δk < 1,
such that a.s. for M = 2⌊n2−1/m2(H)⌋ each subgraph of the random graph
G(n,M) with ⌊(1 − δk)M⌋ edges contains a copy of H.

Proof. For 0 < δk < 1, we call a subgraph F of Kn bad, if F has
M edges and it contains a subgraph F ′ with ⌊(1 − δk)M⌋ edges that does
not contain a copy of H. In [13], it is proved that there exist constants
0 < δk < 1 and c′1 > 0 such that the number of bad subgraphs of Kn is
bounded from above by

e−c′1M/6

((n
2

)
M

)
= o(1)

((n
2

)
M

)
.

Hence, the probability that G(n,M) is bad tends to 0. 2

Using the last lemma we can prove a theorem for Maker’s win in the
H-game, where H is arbitrary fixed graph containing a cycle.

Theorem 26 Let H be a graph containing a cycle, and let FH be the set

of all copies of H in Kn. There exists c0 > 0 so that for p > 1
c0
n
− 1

m2(H)
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and b ≤ c0pn
1

m2(H) Maker wins the random H-game (E(Kn)p, (FH)p, 1, b)
a.s.

Proof. We will follow the analysis of the random Maker’s strategy
proposed in [13], looking at G(n,M ′), where M ′ = p

(
n
2

)
. We will prove

that H-game on G(n,M ′) is a Maker’s win a.s., which implies that the
same is true on G(n, p), as being a Maker’s win is a monotone property
[17, Chapter 2].

In each of his moves Maker chooses one of the edges of G(n,M ′) that
was not previously claimed by him, uniformly at random. If the edge is
free he claims it and we call that a successful Maker’s move. If the edge
was already claimed by Breaker, then Maker skips his move (e.g., claims
an arbitrary free edge, and that edge we will not encounter for the future
analysis).

Let 0 < δk < 1 be chosen so that the conditions of Lemma 25 are
satisfied. We look at the course of game after M = 2⌊n2−1/m2(H)⌋ moves.

By choosing c0 ≤ δk/12, we have

M ≤ δk
6c0

⌊n2−1/m2(H)⌋

≤ δk
2

1

b + 1
p

(
n

2

)
.

That means that only at most δk/2 fraction of the total number of ele-
ments of the board E(G(n,M ′)) is claimed (by both players) after move
M . Therefore, the probability that the edge randomly chosen in Maker’s
mth move, m ≤ M , is already claimed by Breaker is bounded from above
by δk/2. That means that Maker has at least (1 − δk)M successful moves
a.s.

Since in each of his moves Maker has chosen edges uniformly at random
(without repetition) from E(G(n,M ′)), the graph containing edges chosen
by Maker in his first M moves (both successful and unsuccessful) actually
is the random graph G(n,M). Applying Lemma 25, we get that the graph
containing edges claimed by Maker in his successful moves contains graph
H a.s., which means that there exists a non-randomized winning strategy
for Maker a.s. 2
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Corollary 27 There exists c0 > 0 so that for p > 1
c0
n− 2

k+1 and b ≤
c0pn

2
k+1 Maker wins the random clique game (E(Kn)p, (Kk)p, 1, b) a.s.

Combining the statements of Theorem 24 and Corollary 27 we obtain
part (iv) of Theorem 11.

3.4 Unbiased games

3.4.1 Connectivity one-on-one

A theorem of Lehman enables us to determine the threshold probability
pT with extraordinary precision. Namely, Lehman [31] proved that the
unbiased connectivity game is won by Maker (now as the second player!) if
and only if the underlying graph contains two edge-disjoint spanning trees.
The threshold for the appearance of two edge-disjoint spanning trees was
determined exactly by Palmer and Spencer [36].

The consequence of the theorems of Lehman, and Palmer and Spencer
is that the very moment the last vertex receives its second adjacent edge,
the unbiased connectivity game is won by Maker a.s. More precisely, the
following is true.

Corollary 28 For the unbiased connectivity game we have that a.s.

τ(Maker wins T ) = τ(∃ two edge-disjoint spanning trees) = τ(δ(G) ≥ 2).

In particular, for edge-probability

p =
log n + log log n + g(n)

n
,

where g(n) tends to infinity arbitrarily slowly, Maker wins the unbiased
connectivity game a.s., while if g(n) → −∞, then Breaker wins a.s.

Remark. The assumption that Maker is the second player is just technical,
for the sake of smooth applicability of Lehman’s Theorem. If Maker is the
first player, then from the proof of Lehman’s Theorem one can infer that
Maker wins if and only if the base graph contains a spanning tree and a
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spanning forest of two components, which are edge-disjoint. This property
has the same sharp threshold as the presence of two edge-disjoint spanning
trees, and the hitting time should be the same when the next to last vertex
receives its second incident edge.

3.4.2 Hamiltonian cycles one-on-one

Let H = ([n], E) be a graph, and let

LARGE = LARGE(H) = {v ∈ [n] : d(v) ≥ log n

10
},

and
SMALL = SMALL(H) = [n] \ LARGE.

Frieze and Krivelevich proved in [23] that if a graph H satisfies the
following seven properties, than it is Hamiltonian.

P1 δ(H) ≥ 2,

P2 SMALL contains no edges,

P3 No v ∈ [n] is within distance 2 of more than one vertex from SMALL,

P4 S ⊆ LARGE and

|S| ≤ n
log log n

log n

implies that

|N(S)| ≥ |S| log n

10 log log n
,

P5 A,B ⊆ [n], A ∩B = ∅,

|A|, |B| ≥ 20n
log log n

log n

implies that there are at least

|A||B| log n

2n

edges joining A and B,
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P6 A,B ⊆ [n], A ∩B = ∅, |A| ≤ |B| ≤ 4|A| and

|B| ≤ 200n
log logn

log n

implies that there are at most 2400|A| log logn edges joining A and
B,

P7 If

|A| ≤ 30n
log log n

log n
,

then A contains at most 100|A| log log n edges.

Lemma 29 [23] If G = ([n], E) satisfies P1–P7 above, then G is Hamil-
tonian.

We will use this result to give a strategy for Maker in the Hamiltonian
cycle game.

Theorem 30 There exists a constant C, such that for p ≥ C log n
n Maker

can win the Hamiltonian cycle game (E(Kn)p,Hp) a.s.

Proof. We are going to show that there exists a Maker’s wining strategy
a.s., for p = 5.4 logn

n . Since “being a Maker’s win” is an increasing graph

property [16], Maker can win a.s. for any p ≥ 5.4 log n
n .

From now on, we set p = 5.4 logn
n . We will prove that Maker can a.s.

play the game in a way that in the end of the game the graph containing
edges claimed by Maker satisfies properties P1-P7, and thus is Hamiltonian.

Before we discuss the strategy, we need to verify several properties of
G = G(n, p). First, we show that

δ(G) > 2.2 log n (3.4)

holds a.s. Indeed, using Chernoff bounds we get

Pr[∃v ∈ [n] : d(v) ≤ 2.2 log n] ≤ n

(
5.4 · e

2.2

)2.2 log n

e−5.4 log n

≤ n−4.4+2.2·(1−log 0.41) = o(1).

47



CHAPTER 3. POSITIONAL GAMES ON RANDOM GRAPHS

It follows that a.s. for every v ∈ [n] we can select a set S(v) of exactly
2.2 log n edges incident to v.

Next, we have that a.s. for all A ⊆ [n],

if a = |A| < n

log2 n
, then eG(A) ≤ 3a, (3.5)

since

Pr

[
∃A ⊆ [n] : a = |A| < n

log2 n
, eG(A) > 3a

]

≤
n/ log2 n∑

a=1

(
n

a

)((a
2

)
3a

)
p3a

≤
n/ log2 n∑

a=1

(
ne

a

(
5.4 · ae log n

6n

)3
)a

≤
n/ log2 n∑

a=1

(
5.43 · e4

63
log−1 n

)a

= o(1).

We also get that a.s. for every two sets A,B ⊆ [n] with A ∩B = ∅,

n

log3 n
≤ a = |A| ≤ n

log logn

log n
,

and

b = |B| = n− a

(
1 +

log n

10 log log n

)
,

we have

eG(A : B) ≥ 0.7 · abp, (3.6)
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following from

Pr[∃A,B ⊆ [n] : eG(A : B) < 0.7 · abp]

≤
n log log n

log n∑
a= n

log3 n

(
n

a

)(
n

a logn
10 log log n

)
e−

0.32·abp
2

≤
n log log n

log n∑
a= n

log3 n

(
ne

a
·
(

10en log logn

a log n

) log n
10 log log n

· e−
9·0.32·5.4(1−o(1))

20 logn

)a

≤
n log log n

log n∑
a= n

log3 n

(
log3 n ·

(
10e log2 n log logn

) log n
10 log log n · e1−0.218·logn

)a

≤
n log log n

log n∑
a= n

log3 n

e
a log n

10 (−0.18+o(1))

= o(1).

In the last derivation we used that b > n
(

9
10 − o(1)

)
.

Finally, we have that a.s. for every two sets A,B ⊆ [n] with A ∩B = ∅
holds that

if a = |A| = |B| = 20n
log logn

log n
, then e(A : B) > 0.8a2p, (3.7)

since

Pr
[
∃A,B ⊆ [n] : e(A : B) ≤ 0.8a2p

]
≤

(
n

a

)2

e−0.02·a2p

≤
(ne
a

· e−0.01·ap
)2a

≤ e2a(−0.08·log log n+o(log log n))

= o(1).

This implies that a.s. for every two sets A and B satisfying the conditions
above there exists a set T (A,B) ⊆ E(A : B) of cardinality 8.6a2 logn

2n .
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Now we can define the set of winning sets for an auxiliary game AUX.
We will show that on a graph satisfying properties (3.4), (3.5), (3.6) and
(3.7), AUXBreaker can win the game. In particular, since the graph G(n, p)
satisfies these properties a.s., this will mean that AUXBreaker can win on
G(n, p) a.s. Knowing this, we will show that Maker can claim a graph that
satisfies properties P1-P5 by taking the role of AUXBreaker.

We define

F1 := {K : ∃v ∈ [n],K ⊆ S(v), |K| = 2.1 log n},

F2 := {E(A : B) : A,B ⊆ [n], A ∩B = ∅, n

log3 n
≤ |A| ≤ n

log logn

log n
,

|B| = n− a

(
1 +

log n

10 log log n

)
},

F3 := {C : ∃A,B ⊆ [n], A ∩B = ∅, a = |A| = |B| = 20n
log log n

logn
,

C ⊆ T (A,B), |C| = 7.6a2
log n

2n
},

F = F1 ∪ F2 ∪ F3.

Family F is the set of winning sets for the game AUX. To prove that
AUXBreaker has a winning strategy, it remains to verify the conditions of
Theorem 3 (Erdős-Selfridge Theorem). We do the calculation separately
for F1, F2 and F3.

First, we have

∑
A∈F1

2−|A| ≤ n

(
2.2 log n

0.1 log n

)
2−2.1·logn

≤ n(22e)0.1·log nn−2.1·log 2

≤ n
11+log 22

10 −2.1·log 2

= o(1).

50



3.4. UNBIASED GAMES

Since 0.7 · log 2 > 0.32

2 , from the calculation used to prove (3.6) we get

∑
A∈F2

2−|A| ≤
n log log n

log n∑
a= n

log3 n

(
n

a

)(
n

a log n
10 log log n

)
e−0.7·log 2·abp

= o(1).

Finally, we obtain

∑
A∈F3

2−|A| ≤
(
n

a

)2(8.6a2 logn
2n

a2 log n
2n

)
2−7.6a2 log n

2n

≤
(ne
a

)2a
(8.6 · e)a

2 log n
2n e−2a(1.9·log 2·a log n

n )

≤ e2a(log log n(6+5 log 8.6−38 log 2)+o(log log n))

= o(1).

and the condition of the Erdős-Selfridge Theorem is satisfied a.s., since we
have ∑

A∈F

2−|A| =
∑
A∈F1

2−|A| +
∑
A∈F2

2−|A| +
∑
A∈F3

2−|A|

= o(1).

Therefore, Maker can a.s. win the auxiliary game as AUXBreaker, i.e., he
can claim an edge in each of the sets from F . Let EM be the set of all
edges of E(Kn)p claimed by Maker during the game, and let M = ([n], EM ).
Assuming that AUXBreaker wins the game, we will prove that M satisfies
properties P1-P5 a.s.

Knowing that each set in F1 has at least one edge from EM , the minimal
degree of M must be at least log n

10 . That means that SMALL(M) = ∅,
satisfying properties P1, P2 and P3.

We verify that M satisfies P4. If s = |S| ≤ n
log3 n

and

|NM (S)| < s
log n

10 log log n
,
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then

|S ∪NM (S)| ≤ s

(
1 +

log n

10 log log n

)
< s

log n

60
≤ n

log2 n
.

Applying (3.5) on S ∪NM (S) we have

eM (S ∪NM (S)) ≤ 3|S ∪NM (S)| < s log n

20
.

But we know that this cannot hold, since from (3.4) we get

eM (S ∪NM (S)) ≥ 1

2
|S| log n

10
=

s log n

20
,

implying that this will not happen a.s.

Suppose that there is a set S ⊆ [n] satisfying

n
log log n

logn
> s = |S| > n

log3 n

and

|NM (S)| ≤ s
log n

10 log log n
.

Then, none of the edges of E(S : [n] \ (S ∪ NM (S))) are in M . That is a
contradiction, since E(S : [n] \ (S ∪NM (S))) contains a set from F2.

Now we prove that M satisfies P5. If

a = |A| = |B| = 20n
log log n

log n

and

eM (A : B) < a2
logn

2n
,

(3.7) implies that a.s. there is a set of at least 7.6a2 log n
2n edges in T (A,B)

that are not claimed by Maker. This set contains a set from F3, which is
in contradiction with the Maker’s win in the game AUX on F3 (playing as
AUXBreaker).

Let both A and B have size at least a = 20n log log n
log n . The expectation of

eM (A′:B′)
a2 , where A′ and B′ are random a-subsets of A and B, respectively,
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is eM (A:B)
|A||B| . We obtained in the previous case that eM (A′:B′)

a2 is larger than
log n
2n for all A′, B′ a.s., and therefore eM (A : B) ≥ |A||B| log n

2n .

It remains to check that the Maker’s graph satisfies properties P6 and
P7. To do that, we will prove that G(n, p) satisfies the properties. Since
both properties are decreasing, this implies that the Maker’s graph satisfies
them as well.

First, we look at property P6. If |A| ≤ n
log3 n

, then |A ∪ B| ≤ n
log2 n

.

From (3.5) we have

e(A : B) ≤ e(A ∪B) ≤ 3|A ∪B| ≤ 15|A| ≤ 2400|A| log logn.

Next, we look at the case |A| > n
log3 n

. We define

K =

{
a

b
: a, b ∈ N, a, b ≤ n, 1 ≤ b

a
≤ 4

}
.

Obviously, |K| is bounded from above by n2. Using Chernoff bounds, we
get

Pr[M does not satisfy P6]

≤ n2 max
k∈K

200n log log n
k log n∑

a= n
log3 n

(
n

a

)(
n

ka

)
·

·
(

5.4eka log n

2400n log log n

)2400a log log n

e−5.4·ka2 log n
n

≤ n2 max
k∈K

200n log log n
k log n∑

a= n
log3 n

(
e log3 n · e4 log12 n

)a ·
·
(

5.4eka log n

2400n log log n

)2400a log log n

e−5.4·ka2 log n
n

≤ n2 max
k∈K

200n log log n
k log n∑

a= n
log3 n

exp

{
a log log n

(
15 + 2400 log

5.4 · ek
2400

+

+2400 log a− 2400 log
n log log n

log n
− 5.4 · ka log n

n log log n
+ o(1)

)}
.
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Note that we can apply Chernoff bounds here, as

ρ =
2400n log logn

5.4ka log n
>

2400

5.4 · 200
> 1.

Since

2400 log a− 5.4ka
logn

n log log n

as function of a over the interval of the summation is a growing function,
we can substitute

a =
200n log log n

k log n

to get an upper bound, and thus

Pr[M does not satisfy P6]

≤ n2 max
k∈K

200n log log n
k log n∑

a= n
log3 n

exp

{
a log log n ·

·
(

15 + 2400 log
5.4 · e

12
− 1080 + o(1)

)}

≤ n2

200n log log n
log n∑

a= n
log3 n

exp{−a log log n} = o(1).

It remains to check that P7 holds for G(n, p), and thus also for M . If
|A| < n

log2 n
then from (3.5) we get that a.s. e(A) ≤ 3|A| ≤ 100|A| log log n.

For

n

log2 n
≤ a = |A| < 30n log log n

log n
,
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using Chernoff bounds we have

Pr[M does not satisfy P7]

≤

30n log log n
log n∑

a= n
log2 n

(
n

a

)(
5.4ea log n

200n log log n

)100a log log n

e−
5.4·a2 log n

n (a
2)

≤

30n log log n
log n∑

a= n
log2 n

(
e log2 n

)a( 5.4ea log n

200n log log n

)100a log log n

e−
5.4·a2 log n

n (a
2)

≤

30n log log n
log n∑

a= n
log2 n

exp

{
a log log n

(
2 + 100 log a + 100 log

5.4 · e
200

−100 log
n log log n

log n
− 2.7 · a log n

n log log n
+ o(1)

)}
.

Note that we can apply Chernoff bounds here, as

ρ =
200n log logn

5.4a log n
≥ 200

5.4 · 30
> 1.

Since

100 log a− 2.7 · a log n

n log log n

as function of a over the interval of the summation is a growing function,
we can substitute

a =
30n log log n

log n

to get an upper bound, and thus

Pr[M does not satisfy P7]

≤

30n log log n
log n∑

a= n
log2 n

exp

{
a log log n

(
2 + 100 log

3 · 5.4 · e
20

− 15 · 5.4 + o(1)

)}

≤

30n log log n
log n∑

a= n
log2 n

exp{−a log logn} = o(1).
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Therefore, M satisfies all properties P1-P7 a.s., and from Lemma 29 it
follows that M is Hamiltonian a.s. 2

3.4.3 k-cliques one-on-one

Let us fix k and let (F1, . . . , Fs) be a sequence of k-cliques. Then F =
∪s
i=1Fi is called an s-bunch if V (Fi) \ (∪i−1

j=1V (Fj)) ̸= ∅ and |V (Fi) ∩
(∪j<iV (Fj))| ≥ 2, for each i = 2, . . . , s. Recall that an s-bunch in which
the pairwise intersection of any two cliques is the same two vertices, was
called a simple s-2-cluster. Let us denote the simple s-2-cluster by Cs.

Recall that the density of G is defined as d(G) = e(G)
v(G) , and the maximum

density of G is defined as m(G) = maxH⊆G d(H). A graph G with m(G) =
d(G) is called balanced. The maximum density of a graph G determines the
threshold probability for the appearance of G in the random graph. More
precisely, (i) if p = o(n−1/m(G)), then G(n, p) does not contain G a.s., and
(ii) if p = ω(n−1/m(G)), then G(n, p) does contain G a.s.

We need two properties of simple s-2-clusters and s-bunches.

Lemma 31 For every positive integer s, Cs is balanced and has maximum
density

m(Cs) = d(Cs) =
k + 1

2
− k

sk − 2s + 2
.

Proof. It is easy to check that v(Cs) = s(k−2)+2, e(Cs) = s
(
k
2

)
−s+1,

and thus

d(Cs) =
e(Cs)

v(Cs)
=

k + 1

2
− k

sk − 2s + 2
.

Let T be a subgraph of Cs. We want to prove d(T ) ≤ d(Cs). Since Cs

is the union of k-cliques, Cs = ∪s
i=1Fi, if we set Ei = Fi ∩ T we have that

T = ∪s
i=1Ei, and we can assume that each Ei is a clique of order ki ≤ k.

We can also assume that the two vertices in ∩s
i=1V (Fi) are in T , since

otherwise their inclusion would increase the density. This implies ki ≥ 2
for i = 1, . . . , s.
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Let us relabel the cliques in such a way that Ei ̸= Fi if and only if
i = 1, . . . , s1. Then

e(Cs)

v(Cs)
≥ e(T )

v(T )
=

e(Cs) −
∑s1

i=1

((
k
2

)
−
(
ki

2

))
v(Cs) −

∑s1
i=1(k − ki)

,

since
e(Cs)

v(Cs)
<

k + 1

2
≤
∑s1

i=1 (k − ki)
k+ki−1

2∑s1
i=1(k − ki)

.

The last inequality is true since the last fraction is the weighted average of
the numbers (k + ki − 1)/2, each of them being at least (k + 1)/2. 2

Lemma 32 Let s ≥ 3 be a positive integer. No s-bunch has smaller max-
imum density than the simple s-2-cluster.

Proof. When k = 3, the s bunch is a union of triangles. Then any
s-bunch has the same number of vertices as the simple s-2-cluster, while
the number of edges, and thus the density is minimized for the simple
s-2-cluster.

From now on let us assume that k ≥ 4. Let s ≥ 3, and let (F1, F2, . . . , Fs)
be the sequence of k-cliques of an arbitrary s-bunch Bs = ∪s

i=1Fi. For every
i ∈ {2, 3, . . . , s}, let F ′

i =
(
∪i−1
j=1Fj

)
∩ Fi. Then, we have

d(Bs) =
s
(
k
2

)
−
∑s

i=2 e(F
′
i )

sk −
∑s

i=2 v(F ′
i )

=
e(Cs) −

∑s
i=2(e(F ′

i ) − 1)

v(Cs) −
∑s

i=2(v(F ′
i ) − 2)

≥
e(Cs) −

∑s
i=2(

(
v(F ′

i )
2

)
− 1)

v(Cs) −
∑s

i=2(v(F ′
i ) − 2)

≥ e(Cs)

v(Cs)
.

In the last inequality the terms with v(F ′
i ) = 2 disappear, and otherwise

we use that v(F ′
i ) ≤ k − 1 for every i, so(

v(F ′
i )

2

)
− 1

v(F ′
i ) − 2

≤ k

2
≤ e(Cs)

v(Cs)
.
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Hence, simple s-2-clusters have the smallest density among all s-bunches.
For any s-bunch Bs and the simple s-2-cluster Cs we immediately obtain

m(Bs) ≥ d(Bs) ≥ d(Cs) = m(Cs),

and the lemma is proved. 2

Remark. The previous lemma is of course true for s = 1, but not for
s = 2.

As a consequence of the last two lemmas we get a strategy for Breaker
in the (1 : 1) clique game.

Let H be a graph and consider the auxiliary graph GH with vertices
corresponding to the k-cliques of H, two vertices being adjacent if the
corresponding cliques have at least two vertices in common. Let F1, . . . , Fs

be the cliques corresponding to a connected component of GH . Then the
graph ∪s

i=1Fi is called an s-collection or just a collection of H. Note that
the edge-set of any H is uniquely partitioned into sets N and E(Ai), where
N contains the edges which do not participate in a k-clique, while the Ai

are the collections of H.

Theorem 33 For every k ≥ 4 and ε > 0, pKk
≥ n− 2

k+1−ε. For k = 3, we

have that pK3 ≥ n− 5
9 .

Proof. First we give a strategy for Breaker to win Kk if the game
is played on the edge-set of a (2k − 4)-degenerate graph L. Consider the
ordering v1, . . . , vv(L) of V (L), such that |NVj (vj+1)| ≤ 2k − 4 for j =
1, . . . , v(L) − 1, where Vj = {v1, . . . , vj}. Then Breaker’s strategy is the
following: if Maker takes an edge connecting vj+1 to Vj , then Breaker takes
another one also connecting vj+1 to Vj . If there is no such edge available,
then Breaker takes an arbitrary edge. Suppose for a contradiction that
Maker managed to occupy a k-clique vi1 , . . . , vik against this strategy, where
i1 < · · · < ik. This is impossible, since Maker could have never claimed
k − 1 of the edges vjvik , j < ik.

Let E(Kn)p = N ∪̇E(A1)∪̇ . . . ∪̇E(Ah) be the partition of the edges,
such that N contains all edges that do not participate in any k-clique,
and each Ai is a collection of k-cliques. (Corresponding to the connected

58



3.4. UNBIASED GAMES

components of the auxiliary graph GG(n,p) defined on the set of k-cliques
of G(n, p).)

Breaker can play the game (E(Kn)p, (Kk)p, 1, 1) by playing separately
on each of the sets E(Ai). More precisely, whenever Maker claims an edge
which is in some E(Ai), Breaker can play according to a strategy restricted
just to E(Ai). Since, crucially, the edge-set of each k-clique is completely
contained in exactly one of the E(Ai), Maker can only win the game on
E(Kn)p if he wins on one of the E(Ai).

Now we are going to show that every collection A on v(A) = v vertices
contains a ⌈ v−2

k−2⌉-bunch. We take an arbitrary k-clique F1 from A, and
build a bunch recursively as follows. If we picked k-cliques F1, . . . , Fi, then
we choose Fi+1 such that |V (Fi+1) ∩ (∪i

j=1V (Fj))| ≥ 2 and V (Fi+1) \
(∪i

j=1V (Fj)) ̸= ∅. Note that this means that ∪i+1
j=1Fj is an (i + 1)-bunch.

Since the auxiliary graph GA of the collection is connected we can keep
doing this until V (A) = ∪i0

j=1V (Fj) for some i0. Knowing that v(Fi) = k
for all i ≤ i0, we have

i0 ≥ 1 +
v − k

k − 2
=

v − 2

k − 2
.

So there exists an ⌈ v−2
k−2⌉-bunch which is a subgraph of A.

We first look at the case k ≥ 4. Let ε > 0 be a constant. From
Lemma 31 it follows that there exists an integer v such that for s0 = ⌈ v−2

k−2⌉
we have

m(Cs0) ≥ k + 1

2
− k

v
>

(
2

k + 1
+ ε

)−1

.

Then for p = O(n− 2
k+1−ε) it follows that there is no s0-bunch in G(n, p)

a.s., since we have that the first s0-bunch that appears in the random graph
is the one of the minimum maximum density, which, by Lemma 32, is the
simple s0-2-cluster. Note here that there is a constant (depending on k and
ε) number of non-isomorphic s0-bunches.

Since in G(n, p) there are no s0-bunches a.s., there are also no collections
on v vertices a.s.

Finally, all the collections Ai are (2k − 4)-degenerate a.s., since graphs
which are not (2k − 4)-degenerate have maximum density at least 2k−3

2 ≥
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k+1
2 , provided k ≥ 4. Note that we know already that a.s. all collections

have order at most v and thus there are at most a constant (depending on
k and ϵ) number of non-isomorphic non-(2k − 4)-degenerate graphs.

This proves that Breaker has a winning strategy a.s., if k ≥ 4 and

p = O(n− 2
k+1−ε).

Next, we look at the case k = 3. As we saw, any collection of triangles on
v vertices contains a (v − 2)-bunch. Thus for p = o(n−5/9), no v-collection
with v ≥ 15 will appear in G(n, p) a.s., since it would contain a 13-bunch,
whose maximum density is at least m(C13) = 2 − 3

15 . This observation
makes the problem finite: one has to check who wins on collections up to
14 vertices.

Suppose that Maker can win the triangle game on some collection of
triangles on v ≤ 14 vertices and with maximum density less than 9/5. Let A
be a minimal such collection (Maker cannot win on any proper subcollection
of A).

If there was a vertex w ∈ V (A) with dA(w) ≤ 2, the minimality of A
would imply that Breaker has a winning strategy on A. Indeed, Breaker
plays according to his strategy on A−w, and as soon as Maker claims one
edge adjacent to w Breaker claims the other edge adjacent to w (if that
edge exists otherwise he does not move). This would mean that Breaker
can win on A, a contradiction. Thus, δA ≥ 3.

Let B be a (v − 2)-bunch contained in A, with V (A) = V (B). Since
δB = 2, we have e(A) ̸= e(B). Then

2 − 3

v
= m(Cv−2) ≤ e(B)

v
<

e(A)

v
<

9

5
,

and

2v − 3 = e(Cv−2) ≤ e(B) < e(A) <
9v

5
.

It is easy to check that Maker cannot win the game on a graph with less
than 5 vertices, thus v > 4, so e(B) = e(Cv−2) and e(A) − e(B) = 1.

Let {e} = E(A)\E(B), and let T1, . . . , Tv−2 be the sequence of triangles
whose union is the (v − 2)-bunch B. Since e(B) = e(Cv−2), for every
i = 2, . . . , v − 2 we have that Ti has a common edge with ∪i−1

j=1Tj . Then B
must have at least 2 vertices of degree 2. From δB∪{e} = δA = 3 we obtain
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that B has exactly two vertices b1, b2 with dB(b1) = dB(b2) = 2, and
moreover e = {b1, b2}. Since e has to participate in at least one triangle of
the collection A, b1 and b2 have to be connected with a 2-path in B, which
is possible only if all T1, . . . , Tv−2 share a vertex. That means that A is a
(v − 1)-wheel and it is easy to see that Breaker can win the triangle game
on a wheel of arbitrary size by a simple pairing strategy.

This contradiction proves that for p = o(n−5/9), a.s. there is no triangle
collection in G(n, p) on which Maker can win, which means that Breaker
a.s. wins the game on the whole graph. 2

From Corollary 27 we get that Maker can win the game

(E(Kn)p, (Kk)p, 1, 1) for p = Θ(n− 2
k+1 ) and thus we immediately obtain

pKk
= O(n− 2

k+1 ). For the triangle game K3 a stronger upper bound can be
found.

Proposition 34 The game (E(Kn)p, (K3)p, 1, 1) is a Maker’s win a.s.,

provided p = ω(n− 5
9 ).

Proof. It is easy to check that Maker can claim a triangle in the (1: 1)
game if the board on which the game is played is on edges of K5− e, where
e ∈ E(K5), Figure 3.6. Indeed, in the first two moves Maker can claim two
out of three edges of the triangle in the middle. Denote those edges by e1
and e2. Note that Breaker has to claim the third edge of that triangle in
one of the first two moves, otherwise he loses after the third move of Maker.

Hence, after two moves Breaker has claimed one edge of the triangle,
and one more edge, say adjacent to the left-most vertex. Then in the third
move Maker claims the edge adjacent to e1, e2, and the right-most vertex.
Note that the remaining two edges adjacent to the right-most vertex are
unclaimed and both potentially close Maker’s triangle. Breaker cannot
claim both of them in the third move, and thus he loses.

Therefore, as soon as the graph G(n, p) contains K5 − e a.s., the initial
game can be won by Maker a.s. 2

Corollary 27, Theorem 33 and Proposition 34 imply parts (iv) and (v)
of Theorem 10.
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Figure 3.6: Maker can win the triangle game on K5 minus an edge

3.4.4 G-game one-on-one

Here we give several results for the (1 : 1) game of making an arbitrary
fixed graph G. Let FG be a family of subgraphs of Kn isomorphic to G.
First, we apply similar argument to the one used in the clique game to
obtain the following general criterion. We define the notions of bunch of G
and collection of G, analogously as in the clique case.

Let (F1, . . . , Fs) be a sequence of copies of G. Then F = ∪s
i=1Fi is

called an s-bunch of G, or just a bunch of G, if V (Fi) \ (∪i−1
j=1V (Fj)) ̸= ∅

and |E(Fi) ∩ (∪j<iE(Fj))| ̸= ∅, for each i = 2, . . . , s.

Let L be a graph and consider the auxiliary graph LG with vertices
corresponding to the subgraphs of L isomorphic to G, two vertices being
adjacent if the corresponding graphs have at least one edge in common.
Let F1, . . . , Fs be the copies of G corresponding to a connected component
of GH . Then the graph ∪s

i=1Fi is called an s-collection of G or just a
collection of G.

Theorem 35 Let G be a graph s.t. there exists an integer k ≥ 2 with
m2(G) ∈ (k−1, k− 1

2 ]. For arbitrarily small ε > 0 and for p = n−m2(G)−1−ε,
Breaker can win the game (E(Kn)p, (FG)p, 1, 1) a.s.

Proof. There exists H ⊆ G with d2(H) = m2(H) = m2(G). First, note
that m2(H) = d2(H) > k − 1 implies δ(H) ≥ k. Indeed, if we assume that
H has a vertex of degree less than k, then removal of that vertex would
increase the 2-density.

In every collection C of H on a vertices there is also a bunch B of H on
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the same number of vertices. That bunch contains a sequence of at least
b = a/v(H) copies of H.

In general, if a copy H ′ of H is added to a bunch B′, we define vold =
#(V (H ′) ∩ V (B′)), vnew = #(V (H ′) \ V (B′)), eold = #(E(H ′) ∩ E(B′)),
enew = #(E(H ′) \ E(B′)).

Then,

d2(H) =
e(H ′) − 1

v(H ′) − 2
=

enew + eold − 1

vnew + vold − 2
.

Since eold−1
vold−2 ≤ d2(H), we have enew

vnew
≥ d2(H). If we imagine that the bunch

B is rebuilt from its sequence of copies of H, by starting from a single copy
and adding one copy at a time, then we get

d(B) =
e(H) + e

(2)
new + · · · + e

(b)
new

v(H) + v
(2)
new + · · · + v

(b)
new

≥ d2(H) − ε′(b),

where ε′(b) is a positive function tending to 0 when b → ∞.

Let b0 be an integer, such that for every b > b0 we have ε′(b) < ε. Then

for p = n−m2(G)−1−ε, G(n, p) a.s. contains no bunch of order greater then
a0 := v(H) · b0, and thus it also contains only collections of order at most
a0.

For every collection C we have d(C) < m2(G) < k − 1
2 a.s., thus C is

2(k− 1)-degenerate. Then there is an obvious pairing strategy for Breaker
on C to keep Maker’s graph (k − 1)-degenerate.

But δ(H) ≥ k implies that H cannot be a subgraph of a (k − 1)-
degenerate graph, and Breaker wins the game on each of the collections
a.s. 2

Theorem 26 gives the upper bound for pFG if G contains a cycle, and
thus we have that all graphs with m2(G) ∈ (k − 1, k − 1

2 ] for some k ≥ 2

have the threshold pFG between n−m2(G)−1−ε and n−m2(G)−1

.

One class of graphs for which the last theorem does not give a bound
on the threshold is trees, since m2(T ) = 1 for every tree T . The following
statement allows us to observe the tree game on the random graph locally.

Lemma 36 Let T be a tree.
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(i) There exists a tree T ′ such that Maker can win the T -game
(E(T ′), T ′

T , 1, 1), where T ′
T is the set of all copies of T in T ′.

(ii) Let T be a tree of minimal size such that Maker can win the T -game
(E(T ), TT , 1, 1), where TT is the set of all copies of T in T .

Then we have pFT
= n

− e(T )+1

e(T ) .

Proof. (i) We assume that T is rooted arbitrarily, with depth ν(T ). Let
T ′ be the rooted tree of depth ν(T ), such that for every i = 0, 1, . . . , ν(T )
the down-degree of every vertex v ∈ V (T ′) on level i is

d(v) = 2 ·max u∈V (T )
u on ith level of T

d(u),

i.e., doubled maximal down-degree of ith level of T . In the following, we
exhibit a winning strategy for Maker (as the second player) in the game

(Ê(T ′), T ′
T , 1, 1), which will obviously imply the statement of the lemma.

For every vertex v ∈ V (T ′) the down-degree d(v) is even, and therefore
we can arbitrarily pair up the edges going downwards from v. Maker now
simply applies a pairing strategy, thus claiming half of the edges going
down from each of the vertices of T ′. At the end of the game, the graph
claimed by Maker is a tree of depth ν(T ), and every vertex on ith level has
down-degree max u∈V (T ),

u on ith level of T
d(u). This tree obviously contains T as a

subgraph, and thus Maker wins the game.

(ii) If p = o

(
n
− e(T )+1

e(T )

)
, then the graph G(n, p) a.s. contains no connected

component of order e(T ) or larger, and every connected component is a
tree. Since we assumed that T is the minimal tree on which Maker can win
the T -game, he cannot win the game on any of the connected components
of G(n, p), and thus he also cannot win the game on the whole edge-set of
G(n, p).

On the other hand, if p = ω

(
n
− e(T )+1

e(T )

)
, then G(n, p) contains a copy

of T a.s. In that case Maker can win the game on the whole G(n, p) by
simply restricting his play to edges of T . 2

In the following three propositions, we give some bounds on the thresh-
old for some special classes of trees, with the help of the previous lemma.
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Proposition 37 The threshold probability for the l-path game is

pFPl
= n

− el+1

el , where el = Θ
(

2l/2
)
.

Proof. Using Lemma 36, we only need to show that for the minimal size
el of a tree on which Maker can win the path game we have el = Θ

(
2l/2

)
.

It is easy to check that Maker can win the game on the tree T0 that
has a root of degree 3, and below it three binary trees of depth ⌈l/2⌉ − 1.
Indeed, if he starts by claiming an edge adjacent to the root, and then
proceeds by a pairing strategy described in the proof of Lemma 36 (i), he
will claim two edges adjacent to the root, and one edge going down from
every other vertex (which is not a leaf). Therefore, at the end of the game
there will be two disjoint paths of length ⌈l/2⌉ adjacent to the root that
are claimed by Maker, and thus also an l-path claimed by Maker. The size
of the tree T0 is 1 + 3 ·

(
2⌈l/2⌉ − 2

)
.

On the other hand, Breaker can win the game on any tree of size less
than 2⌈l/2⌉. To prove that, we root the tree arbitrarily and we apply Theo-
rem 3 on the set L of all paths of length ⌈l/2⌉ that are contained in a path
connecting the root and a leaf. Each such path is uniquely determined by
the one of its endpoints that is further away from the root (“lowest point”),
and thus the number of elements of L is less than the number of vertices of
the tree. Therefore, if the game is played on the edges of a tree with less
than 2⌈l/2⌉ vertices, then Breaker can prevent Maker from claiming a path
from L. Since every l-path in a rooted tree must contain one of the paths
from L, Breaker can also win the l-path game. 2

Proposition 38 The threshold probability for the d-star game is

pFSd
= n− 2d

2d−1 .

Proof. Maker will win the d-star game playing on edges of a star of size
2d− 1, independent of his strategy.

On the other hand, on any tree of size less than 2d−1 Breaker wins the
d-star game independent of his strategy, since throughout the game Maker
claims at most d− 1 edges.
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Therefore, using Lemma 36 we immediately obtain the statement of the
proposition. 2

As we saw in the last two propositions, the size of the smallest tree
on which Maker can win the game is linear in terms of the size of the
winning set for the star game, but exponential for the path game. Even
though we cannot determine the threshold for an arbitrary tree, in the next
proposition we analyse another, more general class of trees.

Proposition 39 Let F be a rooted tree with depth l and let di, i = 1, . . . , l
be integers, such that the degree of every vertex v ∈ V (F ) on the ith level
of tree F has down-degree di.

Then, the threshold probability for the F -game is pFF
= n− t+1

t , where

2l−1 · (d0 − 1) · d1 · · · dl−1 ≤ t ≤
l∑

i=1

2i · d0 · d1 · · · di−1.

Proof. Similarly as in the proof of Lemma 36 (i), Maker can win
using a pairing strategy on a tree obtained from F by “doubling” down-
degrees on every level. That tree has size

∑l
i=1(2d0) · (2d1) · · · (2di−1) =∑l

i=1 2i · d0 · d1 · · · di−1.

On the other hand, Breaker can win on a rooted tree if he prevents
Maker from claiming (d1 − 1) · d2 · · · dl different paths of length l that are
contained in a path connecting the root and a leaf. By Theorem 5, Breaker
can do that if the total number of such paths is less than 2l−1 · (d0 − 1) ·
d1 · · · dl−1. This is true for every tree with the number of vertices less than
that, by the same argument as in Proposition 37. 2

Note that both stars and paths of even length satisfy the conditions of
the last proposition. For (2l)-paths we have

2l−1 ≤ t ≤
l∑

i=1

2i · 2 ≤ 2l+2,

and for d-stars we get d−1 ≤ t ≤ 2d. So, even though it is not as precise as
the previous two propositions, it still gives the correct order of magnitude.
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The most important question that remains unanswered is what can we
say for the probability threshold for graphs whose m2 density is outside the
intervals mentioned in Theorem 35. We know only that for some games—
like the triangle game and the tree games—the probability threshold is not
close to the inverse of the bias threshold for the game on the complete graph.
For example, for the triangle game we have n− 5

9 = pK3 ̸= (bK3)
−1

= n− 1
2 .

3.5 Open questions

More sharp thresholds? We saw that the connectivity game has a sharp
threshold, and even more. We think that both the perfect matching game
and the Hamiltonian cycle game have the same sharp threshold logn

n , and
maybe even more... It would be very interesting to decide whether the
following conjectures are true.

Conjecture 2 We have

(i) τ(Maker wins M) = τ(δ(G) ≥ 2) a.s., and

(ii) τ(Maker wins H) = τ(δ(G) ≥ 4) a.s.

Clique game/H-game. The exact determination of the threshold pKk

for the k-clique game remains outstanding.

Problem 1 Decide whether pKk
= n− 2

k+1 for k ≥ 4.

The arguments of Bednarska and  Luczak [13] could be extended to
full generality to positional games on random graphs along the lines of
Section 3.3.4. More precisely, the following is true. Let KH be the family
of subgraphs of Kn, isomorphic to H. Then for any fixed graph H there is
a constant c(H), such that

bpKH
= Θ (pbKH

) = Θ
(
pn−1/m2(H)

)
,

provided

p ≥ Ω

(
logc(H) n

n1/m2(H)

)
.
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Concerning the one-on-one game, it would be desirable to extend The-
orem 35 to determine all fixed graphs for which an extension of the low-
density Maker’s win, à la Proposition 34, exists.

Problem 2 Characterize those graphs H for which there exists a constant
ϵ(H) > 0, such that the unbiased game KH is a.s. a Maker’s win if p =
n−1/m2(H)−ϵ(H).

For such graphs the determination of the threshold pKH is a finite prob-
lem, in a way similar to the case H = K3. We saw from Theorem 35 that
these graphs must have the 2-density out of intervals (k− 1, k− 1

2 ], k ∈ N.

Relationships between thresholds. It is an intriguing task to under-
stand under what circumstances the following is true.

Problem 3 Characterize those games (X,F) for which

pF =
1

bF
.

More generally, characterize the games for which

bpF = Θ (pbF ) ,

for every p = ω
(

1
bF

)
.

This is not true in general as the triangle game shows. What is the
reason it is true for the connectivity game and the perfect matching game?
Is it because the appearance of these properties has a sharp threshold in
G(n, p)? Or because the winning sets are not of constant size?

Problem 4 Suppose pF = 1/bF . Is it true that for every p ≥ pF , b
p
F =

Θ (pbF )?

It would be very interesting to relate the thresholds bF and pF to some
thresholds of the family F in the random graph G(n, p) (or, more generally,
in the random set Xp). It seems to us that if the family Fp is quite dense
and well-distributed in X, then Maker still wins the (1: 1) game.
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Problem 5 Characterize those games (X,F) for which there exists a con-
stant K, such that for any probability p with

Pr

[
min
x∈Xp

|{F ∈ Fp : x ∈ F}| > K

]
−→ 1,

we have pF = O(p) and/or bF = Ω(1/p).
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Chapter 4

Planarity game and
k-coloring game

Homer: God, if you really are God, you’ll
get me tickets to that game!

The Simpsons, by Matt Groening

4.1 Introduction

In this chapter, we will take a closer look at the planarity game and the k-
coloring game. For both of them we consider two versions of the game—the
Maker-Breaker version and the Avoider-Forcer version.

Before we describe the games in more detail, we would like to say a few
words about the monotonicity of positional games in general. Namely, if
Maker can win the (a1 : b) biased game F , it is easy to see that he can also
win the (a2 : b) biased game F , for any a2 ≥ a1. The analog statement
holds also for Breaker’s bias—if Maker can win the (a : b1) biased game F ,
he can also win the (a : b2) biased game F , for any b2 ≤ b1. We call this
property bias-monotonicity.

Surprisingly, Avoider-Forcer games are not bias-monotone. An easy
example from [26] shows this. Let n be an integer. The board on which we
play is X = {1, 2, . . . , 2n−1, 2n}, and the winning sets are F = {{2i−1, 2i} :
i = 1, 2, . . . , n}. Now, if Forcer starts and the game is played with bias
(1 : b), then it is easy to see that for n large enough Forcer wins if and
only if b is even. Indeed, if b is odd, then Avoider can always claim an
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unclaimed element of the board whose neighbor was already claimed by
Forcer. Therefore, he will never claim a winning set. On the other hand, if
b is even, then Forcer can claim b/2 whole winning sets in every move, and
every time Avoider is forced to claim an element whose neighbor is not yet
claimed. Thus, if the board is large enough, he will lose as soon as there is
no completely unclaimed winning set.

But, there is a way to resolve this problem. If in a (a : b) biased game
we allow Avoider to claim at least a elements per move and we allow Forcer
to claim at least b elements, then Avoider-Forcer games become monotone.
Suppose that in this new setting Avoider can win (a1 : b1) game F . That
means that he has a winning strategy, a rule book that tells him which
≥ a1 edges to claim in every move, knowing the current board situation.
But he can then use the exact same strategy for (a2 : b1) game F for any
a2 ≤ a1, and win. Similarly, the same strategy would also ensure a win
for Avoider in (a1 : b2) game F for any b2 ≥ b1. Note that in this case
divisibility arguments do not decide games anymore. If the game from the
previous example is played with these rules, Forcer always wins. In this
chapter we are going to look at the bias-monotone version of the rules for
the Avoider-Forcer game.

In the Maker-Breaker case, according to the definition given before,
in (a : b) biased games Maker claims exactly a elements of the board in
each move, and Breaker claims exactly b. If we also change the rules and
allow Maker to claim at most a and Breaker at most b elements in each
move, the winner stays the same—it is not hard to show that claiming less
elements per move than the bias does not improve players’ playing power,
since claiming extra elements of the board in a move does not hurt a player.
Hence, we can change the rules in this fashion, and everything stays the
same—Maker-Breaker games remain bias-monotone.

We come back to the concrete games we want to analyze. Firstly, we
consider the planarity game. The game is played on the edges of complete
graph Kn on n vertices, and the set of winning sets contains edge-sets of all
non-planar subgraphs of Kn. In the Maker-Breaker version, Maker’s goal
is to claim a non-planar graph. We will show that Maker can do that in
the (1 : b) biased game if b < (1/2− ε)n, for any fixed ε > 0. On the other
hand, Breaker can win the game if b ≥ n/2.
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In the Avoider-Forcer version of the game, Avoider wants to avoid claim-
ing a non-planar graph. In other words, he would like to keep his graph
planar until the end of the game. We can show that he can do that in the
(1 : b) biased game if b ≥ 2n5/4, and that Forcer wins if b < (1/2− ε)n, for
any fixed ε > 0.

The other game we consider is the k-coloring game. It is played on
the edges of the complete graph Kn on n vertices and the set of winning
sets contains edge-sets of all non-k-colorable subgraphs of Kn. Maker wins
in the Maker-Breaker version of the game if he claims a non-k-colorable
graph. We show that Maker can win the (1 : b) game if b ≤ n

3k log k , and
Breaker can prevent him from winning if b ≥ skn, where sk is a constant
depending on k, satisfying sk ∼ 3

k log k as k → ∞.

In the Avoider-Forcer version, Avoider would like to keep his graph
k-colorable until the end of the game. We show that he can do this for

b ≥ 2kn1+ 1
2k−3 , whereas Forcer wins for b ≤ n

3k log k .

4.2 Planarity game

As we mentioned already, the set of winning sets F contains edge-sets of
all non-planar subgraphs of Kn.

4.2.1 Maker-Breaker planarity game

The following theorem shows that the threshold bias at which Maker’s win
changes to Breaker’s win in the planarity game is “around” n/2.

Theorem 40 If b ≥ n/2, then Breaker wins the (1 : b) planarity game and,
for any fixed ε > 0, if b ≤ ( 1

2 − ε)n then Maker wins the (1 : b) planarity
game.

Proof. Let b ≥ n/2. We will use the following result of Bednarska and
Pikhurko.

Theorem 41 [15, Corollary 10] Suppose that Maker and Breaker select
respectively 1 and b edges of Kn and Maker wants to build a cycle. Then
Maker wins the game (no matter who starts) if and only if b < ⌈n/2⌉ − 1.
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The last theorem implies that with the bias b ≥ n/2 Breaker can prevent
Maker from building a cycle. That implies that Maker’s graph is a forest
at the end of the game, which is obviously planar.

Let ε > 0 and let b ≤ ( 1
2 − ε)n. We will assume that b = ⌊( 1

2 − ε)n⌋
which is legitimate since Maker-Breaker games are monotone in the bias.
Let α > 0 be the real number satisfying the equation

(1 + α)n =

(
n
2

)
b + 1

and let k be the smallest positive integer such that(
1 +

α

2

)
>

k

k − 2

holds.

Maker’s goal is to avoid cycles of length smaller than k, which we will
call ”short cycles”, during the first (1+ α

2 )n moves. If he succeeds, Maker’s
graph will at that point of the game have

(1 +
α

2
)n >

k

k − 2
n

edges and girth at least k. But, it is well-known that a planar graph with
girth at least k cannot have more than k

k−2 (n − 2) edges. Hence, Maker’s
graph is non-planar, and he won.

It remains to show that Maker can avoid claiming a short cycle during
the first (1 + α

2 )n moves. His strategy is the following. For as long as
possible he claims edges (u, v) that satisfy the following two properties:

(a) (u, v) does not close a short cycle,

(b) the degrees of u and v in Maker’s graph are less than n1/(k+1).

It suffices to prove that when this is no longer possible, that is, every
remaining unclaimed edge violates either (a) or (b), Maker has claimed at
least (1 + α

2 )n edges.

Every edge that violates property (b) must have at least one endpoint of
degree n1/(k+1) in Maker’s graph. Since Maker’s graph at any point of the
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game contains at most (1+α)n edges, there are at most 2(1+α)n1−1/(k+1)

vertices of degree n1/(k+1). Therefore, the number of edges that violate
property (b) is at most

n · 2(1 + α)n1−1/(k+1) = o(n2).

For any fixed s < k, the number of edges adjacent to a vertex v that
close a cycle of length s is at most ∆s, where ∆ is the maximum degree in
Maker’s graph. If we assume that property (b) has not been violated, then
∆ ≤ n1/(k+1). Therefore, there are at most

n ·
k−1∑
s=3

ns/(k+1) = o(n2)

edges that close a short cycle.

The total number of edges that violate (a) or (b) if claimed by Maker,
is o(n2). On the other hand, after (1 + α

2 )n moves have been played,
the number of unplayed edges is α

2 n(b + 1) = Θ(n2). Hence, in the first
(1 + α

2 )n moves Maker can play edges that satisfy properties (a) and (b),
which means that he does not claim a short cycle. This completes the proof
of the theorem. 2

Even though the larger bias of Breaker generally makes the game for
Maker harder to win, Maker’s strategy in the proof of Theorem 40 is about
avoiding and thus works as good for the larger Breaker’s bias. Of course,
the successful avoiding of small cycles alone is not enough to prove Maker’s
win in the planarity game. We would also need that Maker claims more
than n edges during the game, and this does not hold if Breaker’s bias is
larger.

4.2.2 Avoider-Forcer planarity game

In the following theorem we give an upper bound and a lower bound for
the threshold bias at which Forcer’s win changes into Avoider’s win in the
planarity game.
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Theorem 42 If b ≥ 2n5/4, then Avoider wins the (1 : b) planarity game,
and for any fixed 1 > ε > 0, if b ≤ n

2 (1 − ε), then Forcer wins the (1 : b)
planarity game.

Proof. Assume that b ≥ 2n5/4. We divide the game in four stages, and
Avoider’s strategy is the following.

In the first stage, he builds a matching by repeatedly claiming an edge
that connects two vertices such that neither of them is adjacent to any
other edge previously claimed by Avoider. The first stage ends when no
such edge is free and Avoider cannot further extend his matching. We
denote the set of vertices that are covered by Avoider’s matching by M .

Next, in the second stage, Avoider claims edges with one endpoint in
M and the other one in V \M such that every vertex of V \M throughout
the second stage has degree at most one in Avoider’s graph. When no such
edge is available, the second stage ends.

In the third stage Avoider builds another matching on M . More pre-
cisely, he is repeatedly claiming edges that connect two vertices such that
neither of them is adjacent to any other edge previously claimed in the third
stage by Avoider. The third stage ends when no such edge is unclaimed
and Avoider cannot further extend the matching.

In the final stage, Avoider plays arbitrarily to the end of the game. If
we prove that in the final stage Avoider will play at most one edge, the
theorem is proved. Indeed, the graph that contains Avoider’s edges from
the first and the third stage is a union of two matchings, i.e., a union of
disjoint paths and cycles. Further more, if we add Avoider’s edges from
the second stage to this graph, we actually add a number of hanging edges
(edges with one vertex having degree 1). Obviously, if we now add the only
edge from the fourth stage to that graph, it remains planar.

Let e be the number of edges that Avoider claims in the whole game.
After the first stage, Forcer must have claimed all the edges on the vertices
of V \ M . Since Avoider’s matching on M has size at most e, we have
|V \M | ≥ n− 2e and therefore Forcer has already claimed at least

(
n−2e

2

)
edges. It follows that there are at most(

n

2

)
−
(
n− 2e

2

)
≤ 2en
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unclaimed edges left in the graph. Avoider will claim at most e
4
√
n

of these

edges, as b ≥ 2n5/4.

In the second stage, Avoider claims edges between M and V \M . When
this is no longer possible, every unclaimed edge between M and V \M is
adjacent to a vertex of V \M which has degree one in Avoider’s graph. It
follows that, at this point, the number of unclaimed edges between M and
V \M is at most

2e · e
4
√
n

=
2e2

4
√
n
.

In the third stage, Avoider builds his second matching on M and when
this is no longer possible the number of unclaimed edges with both end-
points in M is at most(

2e

2

)
−
(

2e− 2e/ 4
√
n

2

)
≤ 4e2

4
√
n
.

To see this, it is enough to observe that the order of the second matching
is at most 2e/ 4

√
n, and that all edges with endpoints in M that are not

adjacent to the second matching must be claimed by Forcer after the third
stage.

Putting everything together, the total number of unclaimed edges after
the third stage is at most

2e2

4
√
n

+
4e2

4
√
n

=
6e2

4
√
n
.

Since e <
(
n
2

)
/b, we have that the number of edges to be played in the

fourth stage is 6e2
4
√
n
≤ b, which means that in the fourth stage Avoider plays

at most one move.

Next, assume that b ≤ n
2 (1 − ε). Let k be the smallest positive integer

such that 1
1−ε > k

k−2 . Forcer’s goal is to prevent Avoider from claiming
a cycle of length smaller than k, which we will call “a short cycle”. That
way, Avoider’s graph at the end of the game will have(

n
2

)
b + 1

>
k

k − 2
n
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edges, and girth at least k. As we mentioned before, graph with such
properties cannot be planar.

It remains to show that Forcer can prevent Avoider from claiming a
short cycle. To do that we will use the following theorem of Bednarska and
 Luczak.

Theorem 43 [13, Theorem 1] For every graph G which contains at least
three non-isolated vertices there exist positive constants c and n0 such that,
playing the (1 : q) game on Kn, Breaker can prevent Maker from building
a copy of G provided that n > n0 and q > cn1/m2(G).

For a cycle Ci, we have m2(Ci) = i−1
i−2 . Therefore, there exist constants

ci, i = 3, . . . , k− 1 such that Forcer can prevent Avoider to claim a copy of

Ci, if the number of edges he is allowed to play in a move is cin
i−2
i−1 . Now,

since

b = ω

(
k−1∑
i=3

cin
i−2
i−1

)
Forcer can at the same time prevent Avoider from claiming any short cycle
Ci, 3 ≤ i < k, by simply playing all k−3 games in parallel. This concludes
the proof of the theorem. 2

4.3 k-coloring game

The k-coloring game is played on edge-set of Kn and the set of winning sets
F contains edge-sets of all non-k-colorable subgraphs of Kn. Throughout
this section we assume that k is a constant.

4.3.1 Maker-Breaker k-coloring game

The following theorem shows that the threshold bias at which Maker’s win
changes to Breaker’s win in the k-coloring game is of order n.

Theorem 44 For every k there exists a constant sk such that sk ∼ 3
k log k

as k → ∞, and if b ≥ skn then Breaker wins the (1 : b) k-coloring game.
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If b ≤ n
3k log k then Maker wins the (1 : b) k-coloring game.

Proof. Assume first that b ≤ n
3k log k . Maker’s goal is to prevent Breaker

from building a clique of size ⌈n/k⌉, and this is enough to ensure his win.
Indeed, Maker’s graph is surely not k-colorable if there is no independent
set of size at least ⌈n/k⌉ in it.

Let F be the hypergraph whose vertices are the edges of Kn and whose
hyperedges are the ⌈n/k⌉-cliques of Kn. We name the players of the (b : 1)
game F CliqueMaker and CliqueBreaker. As we saw, Maker will win the
k-coloring game if he claims an edge in every clique in F , and therefore he
can win by adopting a winning strategy of CliqueBreaker. Such strategy is
provided by Theorem 3, since∑

D∈F

2−|D|/b ≤
(

n

⌈n/k⌉

)
2−(⌈n/k⌉

2 )/b ≤ (ek)⌈n/k⌉2−(⌈n/k⌉
2 )/b

≤ 2
n log2 e

k +
n log2 k

k − 3n2k log k

2k2n
+n3k log k

2kn = o(1).

Hence, Maker wins the game.

Assume now that b ≥ skn, where sk is a constant depending on k that
will be specified later. We will make use of the following theorem of Kim.

Theorem 45 [29, Corollary 1.2] If G is a graph with maximum degree ∆
and girth at least 5, then

χ(G) ≤ (1 + ν(∆))
∆

log ∆
,

where ν(∆) → 0 as ∆ → ∞.

Let ∆0 be the maximal value of ∆ for which

(1 + ν(∆))
∆

log ∆
≤ k.

Since ν(∆) → 0 as ∆ → ∞, we have that ∆0 ∼ k log k as k → ∞. Breaker’s
goal is to force Maker to build a graph with maximum degree at most ∆0

and girth at least 5. By Theorem 45 Maker’s graph will then be k-colorable.
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In each move, Breaker will play c3n
1/2 of his edges to prevent Maker from

building a triangle (m2(C3) = 2), and c4n
2/3 of his edges to prevent Maker

from building a cycle of length 4 (m2(C4) = 3/2), where c3 and c4 are the
constants whose existence is guaranteed by Theorem 43. All the remaining
edges, so b′ := b − c3n

1/2 − c4n
2/3 = (1 − o(1))b edges, Breaker will use

to make sure that the maximum degree in Maker’s graph does not surpass
∆0. Hence, if uv is the last edge played by Maker, Breaker will claim 1

2b
′

edges incident with u and 1
2b

′ edges incident with v. It follows that the
maximum degree in Maker’s graph will be at most

1 +
n− 1

b′/2
≤ 2n

2
3b

≤ 3

sk
.

Therefore, if sk = ⌈ 3
∆0

⌉, then Breaker can force Maker to build a graph
with maximum degree at most ∆0 and girth at least 5, and thus he wins.
Note that sk defined in this way satisfies sk ∼ 3

k log k as k → ∞. This
concludes the proof. 2

4.3.2 Avoider-Forcer k-coloring game

In the following theorem we give an upper bound and a lower bound for
the threshold bias at which the Forcer’s win changes into the Avoider’s win
in the k-coloring game.

Theorem 46 If b ≤ n
3k log k then Forcer wins (1 : b) k-coloring game, and

if b > 2kn1+ 1
2k−3 then Avoider wins (1 : b) k-coloring game.

Proof. Assume first that b ≤ n
3k log k . Forcer’s goal is to avoid building

a clique of size ⌈n/k⌉. If he achieves this goal, Avoider’s graph will not
contain an independent set of size ⌈n/k⌉ and for that reason will not be
k-colorable, thus he will win. Let F be the hypergraph whose vertices are
the edges of Kn and whose hyperedges are the ⌈n/k⌉-cliques of Kn. We
name the players of the (b : 1) game F CliqueAvoider and CliqueForcer.
As we saw, Forcer will win the k-coloring game if he does not claim all
edges in any clique in F , and therefore he can win by adopting a winning
strategy of CliqueAvoider.
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We will use the following general criterion of Hefetz, Krivelevich and
Szabó for Avoider’s win.

Theorem 47 [26, Theorem 1.1] If

∑
D∈H

(
1 +

1

b

)−|D|

<

(
1 +

1

b

)−b

,

then Avoider wins the (1 : b) game H.

We have

∑
D∈F

(
1 +

1

b

)−|D|

≤
(

n

⌈n/k⌉

)(
1 +

1

b

)−(⌈n/k⌉
2 )

≤ (ek)⌈n/k⌉2−(⌈n/k⌉
2 )/b

≤ 2
n log2 e

k +
n log2 k

k − 3n2k log k

2k2n
+n3k log k

2kn = o(1),

applying the last theorem we conclude that there exists a winning strategy
for CliqueAvoider, and thus Forcer wins the game.

Next, let b > 2kn1+ 1
2k−3 . We will present a strategy for Avoider to

claim a (k− 1)-degenerate graph. Clearly, that would entail Avoider’s win
in the k-coloring game as every (k − 1)-degenerate graph is k-colorable.

Avoider will play several auxiliary minigames one after the other, until
all edges are claimed and the game is over. Before we describe his strategy
in detail, let us define two basic types of minigames.

Let A be a set of vertices, and let us assume that the game is in progress,
meaning that some edges may have already been claimed. When we say
that Avoider is playing the (A)-minigame, we mean that Avoider repeatedly
claims independent edges with both endpoints in A for as long as possible,
i.e., he extends a matching on A while he can. When Avoider cannot
further extend his matching, we denote the set of vertices in A incident to
the matching by A1, and let A2 = A \ A1. Note that all the edges with
both endpoints in A2 are already claimed by one of the players.

Let A and B be two disjoint sets of vertices. Again, we assume that
the game is in progress, meaning that some edges may have already been
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claimed. When we say that Avoider is playing the (A : B)-minigame, we
mean that Avoider repeatedly claims edges in the A : B cut such that no
vertex in B is incident with more than one of Avoider’s edges claimed in
this minigame. When this is no longer possible, the minigame is over. At
this point, let B1 denote the set of vertices of B that are incident with an
edge claimed by Avoider in this minigame, and let B2 = B \B1. Note that
all edges in the cut A : B2 have already been claimed by one of the players.

We say that the size of an (A)-minigame is 1
2 |A|

2, and the size of an
(A : B)-minigame is |A| · |B|. Note that the size of a minigame is an upper
bound for the number of edges it contains.

Now we can describe the way Avoider plays the game. We introduce a
minigame pool P, which is a dynamic collection of minigames that will be
updated during the game – it will contain minigames waiting to be played
by Avoider.

To each minigame in the pool, we assign an integer parameter, that will
help us keep track of the degeneracy of Avoider’s graph throughout the
game. So, instead of the (A)-minigame (or the (A : B)-minigame), we will
consider the (A)l-minigame (or the (A : B)l-minigame) for an appropriate
integer l. In the beginning of the game P contains only one minigame –
the (V (Kn))k−1-minigame.

When the game is played, Avoider repeatedly chooses a minigame of the
largest size in the pool P, removes it from the pool, plays it to its end, and
then updates P as follows. If the minigame played was an (A)l-minigame,
then he places two new minigames into P, the (A1)l−1-minigame and the
(A1 : A2)l-minigame. On the other hand, if the minigame played was an
(A : B)l-minigame, then he places only the (A : B1)l−1-minigame back into
P.

Note that at any point of the game, every unclaimed edge is in exactly
one of the minigames in P. It is easy to see that as long as the parameters
of all the minigames in P are non-negative, Avoider’s graph is (k − 1)-
degenerate. Therefore, it suffices to prove that after the first minigame
with parameter 1 is taken out of the pool to be played, Avoider plays at
most one more move before the k-coloring game ends.

As long as all the minigame parameters are non-negative, the number
of minigames in the pool P is at most k. This follows from the initial state
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of the pool and the way it is being updated.

We will prove by induction on l that any minigame in the pool which

has parameter 0 ≤ l ≤ k − 1 is of size at most n2
(

2k2n2

b2

)k−1−l

. First, for

the base step, note that the size of the (unique) minigame with parameter
l = k− 1 is less than n2. Now let us assume that the induction hypotheses
holds for all games with parameter l, where l > l0 ≥ 0. For a minigame M
in the pool with parameter l0 we consider the following three cases.

Case 1. M is an (A1)l0 -minigame that was put into the pool after the
(A)l0+1-minigame has ended. Just before Avoider started playing the
(A)l0+1-minigame there was no minigame in the pool of a larger size. Since
the total number of games in the pool was at most k, the total number of un-

played edges at that point was at most k ·|A|2 ≤ kn2
(

2k2n2

b2

)k−1−l0−1

. The

number of edges Avoider will play during the (A)l0+1-minigame is certainly
bounded from above by the total number of edges that Avoider will claim

until the end of the k-coloring game, which is at most kn2

b

(
2k2n2

b2

)k−1−l0−1

.

Avoider’s strategy for the (A)l0+1-minigame guarantees that the set A1 will
be of size at most twice this much, and hence the (A1)l0 -minigame will be
of size at most

1

2
|A1|2 ≤ 1

2

(
2kn2

b

(
2k2n2

b2

)k−1−l0−1
)2

≤ n2 ·
(

2k2 · n2

b2

)k−1−l0

.

Case 2. M is an (A1 : A2)l0 -minigame that was put into the pool after
the (A)l0-minigame has ended. The size of the (A1 : A2)l0-minigame is
obviously less than the size of the (A)l0 -minigame, which can be upper-
bounded as in Case 1.

Case 3. M is an (A : B1)l0 -minigame that was put into the pool after the
(A : B)l0+1-minigame has ended. As in Case 1, we can bound the number
of edges Avoider will play during the (A : B)l0+1-minigame from above,
by the total number of edges that Avoider will claim until the end of the
k-coloring game. Thus, knowing that the (A : B)l0+1-minigame was of
maximal size before it was played, we get

k|A||B|
b

≤ kn2

b

(
2k2n2

b2

)k−1−l0−1

.
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Therefore, the size of B1 is also at most that much. Since the size of
A is at most n2/b, the total size of the (A : B1)l0-minigame is at most

n2
(

2k2n2

b2

)k−1−l0
. This concludes the induction step.

If a minigame with parameter 1 is taken from the pool, then the total
number of edges to be played in the remainder of the game is at most

kn2
(

2k2n2

b2

)k−2

which is less than b, meaning that Avoider will play at

most one move before the game ends. 2
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Chapter 5

Balanced avoidance games
on random graphs

...već pobeže, oj nesrećo,
na kraj sveta, oj nevoljo!

Plavi zec,
čudni zec,
jedini na svetu!

Plavi zec, by Duško Radović

5.1 Introduction

The games we study in this chapter are played by a single player, whom
we call Painter. He maintains a balanced 2-coloring in the random graph
process, coloring two edges at a time in an online fashion. His goal is to
avoid creating a monochromatic copy of a fixed graph F for as long as
possible.

We now give a more precise description of the game’s setup and rules,
and of Painter’s goals. Let e1, e2, . . . , eM be the edges of Kn where M =(
n
2

)
, and let π ∈ SM be a permutation of the set [M ], chosen uniformly at

random. By Gi, i = 1, . . . ,M , we denote the graph on n vertices with the
edge-set E(Gi) = {eπ(1), eπ(2), . . . , eπ(i)}.

In the ith move of the game, Painter is presented with edges eπ(2i−1)

and eπ(2i). He then immediately and irrevocably chooses one of the two
possibilities to color one of them red and the other one blue. Therefore,
after playing the first i moves, Painter has created a balanced 2-coloring of
the graph G2i. Note that at the move i he has no knowledge of the order in
which the remaining edges will be presented to him in the moves to come.
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Let F be a fixed graph. Painter loses the game as soon as he cre-
ates a monochromatic copy of F , i.e., Painter loses in the move min{i :
G2i contains a monochromatic copy of F}. His goal is to play as long as
possible without losing. It is well-known that for n large enough every
2-coloring of edges of Kn contains a monochromatic copy of F . Therefore,
Painter cannot survive to the end of the game. Assuming that his strategy
is fixed, for every graph process there is an integer i such that Painter loses
in his ith move playing on that particular graph process. Since the graph
process on which the game is played is chosen uniformly at random, for
fixed n and i we can reason about the probability that Painter loses before
his ith move. Note that, generally speaking, Painter can lose the game in
two ways. If one of the two edges to be colored closes both red and blue
copy of F , then he obviously cannot color it. We call this a bichromatic
threat. Also, if both edges to be colored close a monochromatic copy of
F of the same color, the game is over. We refer to this as monochromatic
threat. It is easy to see that these are the only two possibilities.

Our results. In this chapter, we attempt to determine the maximal num-
ber of moves which Painter can a.s. play without losing. More precisely,
we would like to find a threshold function mF = mF (n) for which

• there exists a strategy for Painter, such that for m = o(mF ) we have
Pr[Painter loses in the first m moves] → 0,

• regardless of the strategy of Painter, for m = ω(mF ) we have
Pr[Painter loses in the first m moves] → 1,

when n → ∞. Our interests lie in determining this threshold for a number
of graph-theoretic structures. Observe that the existence of this thresh-
old is not guaranteed—there may exist a game for which there is no such
threshold.

We give a generic theorem which gives upper and lower bounds, and in
some cases the exact threshold. As a consequence of this result, the exact

threshold for cycles is determined, mCl
= n

2l
2l−1 . For the game in which

Painter’s goal is to avoid k-stars Sk we can prove that mSk
= n

2k−2
2k−1 . In

the game of avoiding k-paths Pk, we give the exact value of mPk
only for

k ≤ 3. For greater k we just exhibit some bounds.
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5.1. INTRODUCTION

Motivation and known results. In [22] Friedgut et al. introduce the
concept of an online game played on the random graph process. In this
game the player is 2-coloring edges, one at a time in an online fashion, main-
taining the balancedness of the coloring. His goal is to avoid a monochro-
matic copy of a triangle for as long as possible.

Extending this result, Marciniszyn, Spöhel, and Steger [33] analyze the
game of avoiding monochromatic cliques Kℓ of any fixed size ℓ, and they
exhibit a threshold for the number of moves at which the player loses a.s.
It turns out that the optimal strategy is to play greedily—using the first
color whenever possible, and the second one only to prevent losing im-
mediately. The colorings obtained by following this strategy are typically
unbalanced. A natural question arising is: If the player is forced to keep
his coloring balanced, how long can he survive without losing? We try to
give an answer to this question by looking at the analogous game in which
the coloring of the graph is balanced. As it turns out, several thresholds we
obtain in the balanced game are not the same as for the unbalanced game,
showing that the balancedness condition makes a difference. For instance,
applying a general criterion from [33] to cycles Cℓ of length ℓ yields the
threshold n(ℓ+1)/ℓ in the unbalanced case, whereas we derive the thresh-
old n2ℓ/(2ℓ−1) from our results for balanced online colorings. Hence, the
balanced online cycle avoidance game will end substantially earlier than
the unbalanced game.

Another motivation comes from Beck’s Chooser-Picker games on graphs
[3, 4]. During the game, the balanced coloring of the subset of edges of Kn

is maintained. In the “misère” version of the game, Chooser wins if at the
end of the game (when all edges are colored) there is no red copy of a fixed
graph F . Otherwise, Picker wins.

When Picker is playing randomly, this game is quite similar to the
balanced avoidance games that we introduce here. A balanced two coloring
of the edges of the random graph process is maintained by Chooser, and
he colors them two at a time. The only difference that in our game a
monochromatic copy of F (in any of the colors, not just red) is avoided.

In both [22] and [33], the generalizations of games in which the player
uses more than two colors are mentioned, and analyzed in some cases. We
can use the same approach for generalizing the games we introduce here.
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I.e., we can assume that the edges in a random graph process are introduced
to Painter s at a time, where s ≥ 2 is a fixed integer. He then immediately
colors them with s colors such that each edge is colored with a different
color. Painter’s goal remains the same, to avoid creating a monochromatic
copy of F for as long as possible.

5.2 Games

5.2.1 Cycle game

In this section we give two generic theorems which together give matching
upper and lower bounds for the threshold, for a class of graphs that satisfy
certain conditions. As a consequence of this result, we will prove the exact
threshold for the cycle game.

Theorem 48 For any fixed integer ℓ ≥ 3, the threshold for balanced online
avoidance game for cycles exists, and is

mCℓ
= n

2ℓ
2ℓ−1 .

Let the random variable X(Gi,H) count the number of subgraphs iso-
morphic to H in Gi, where Gi is the graph consisting of the first i edges in
the random graph process. Similarly, let X(G(n, p),H) count the number
of subgraphs isomorphic to H in the random graph G(n, p). Let Q(H,x)
denote the property that a given graph contains at least x subgraphs iso-
morphic to H. Clearly, Q(H,x) is a monotone increasing property. In
order to bound the probability of Gi ∈ Q(H,x) for H being F with one
edge removed, we need the following lemma.

Lemma 49 For p = 4m′/n2 and 0 ≤ i ≤ m′, we have

Pr[G2i ∈ Q(H,x)] ≤ Pr[G(n, p) ∈ Q(H,x)] + e−Θ(m′).

Proof. Observe that each graph G2i, 0 ≤ i ≤ m′, appearing in the
random process is distributed like G(n, 2i), the uniform random graph with
exactly 2i edges. Hence, we get

Pr[G2i ∈ Q(H,x)] ≤ Pr[G(n, 2m′) ∈ Q(H,x)] .
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Now we bound Pr[G(n, 2m′) ∈ Q(H,x)] again using the monotonicity of
Q(H,x),

Pr[G(n, p) ∈ Q(H,x)] =

(n
2)∑

m=0

Pr[Gn,m ∈ Q(H,x)] · Pr[|E(G(n, p))| = m]

≥ Pr[G(n, 2m′) ∈ Q(H,x)] · Pr[|E(G(n, p))| ≥ 2m′] .

If we set p = 4m′/n2, Chernoff bounds imply that Pr[|E(G(n, p))| ≥ 2m′] ≥
1 − eΘ(m′). Hence,

Pr[G2i ∈ Q(H,x)] ≤ Pr[G(n, p) ∈ Q(H,x)]

1 − e−Θ(m′)

≤ Pr[G(n, p) ∈ Q(H,x)] + e−Θ(m′),

and the lemma is proved. 2

Now we can give a lower bound on the number of moves Painter can
play without losing, provided that F satisfies certain conditions. For a
graph F we define

m(F ) = max

{
2eH − 1

2vH − 2
: H ⊆ F and vH ≥ 2

}
.

We say that F is strictly balanced with respect to m if

m(F ) =
2eF − 1

2vF − 2
and ∀H ( F :

2eH − 1

2vH − 2
<

2eF − 1

2vF − 2
.

Theorem 50 Let F be a graph with vF ≥ 2, and let H be a subgraph of F
such that m(F ) = m(H) and H is strictly balanced with respect to m. If
every proper subgraph of H with eH −1 edges is balanced, then Painter can
a.s. play m′(n) = o(n2−1/m(F )) moves in the balanced online game without
creating a monochromatic copy of F .

Proof. We have to argue that there exists a strategy for Painter that
enables him to a.s. succeed in avoiding monochromatic copies of F in every
step of the random process up to G2m′ . W.l.o.g. F is strictly balanced
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with respect to m(F ). We may assume this since otherwise we restrict our
attention to H. Clearly, if one can avoid H, then one can avoid F as well.

Painter’s strategy is the following. If one of the two possibilities to play
a move will lead to a monochromatic copy of F , then he chooses the other
one. Otherwise, he plays arbitrarily.

Let F− denote the family of pairwise non-isomorphic subgraphs of F
with eF − 1 edges. For F− ∈ F−, we have that v(F−) = v(F ) and
e(F−) = e(F ) − 1. Since all edges in the random graph process appear
independently uniformly at random, the probability of losing the game in
one particular step is determined by the number of edges u, v that close a
monochromatic copy of F− to F . As we already mentioned, there are two
different configurations that force Painter to create a monochromatic copy
of F . In the first case a new edge may appear as a vertex pair uv that is
covered by both a red and a blue copy of F−. But this implies the existence
of a graph F (2) in G(n, 2m′) consisting of two subgraphs isomorphic to F ,
which share one edge. It is well known [28] that this fixed subgraph F (2)

will a.s. not appear if m′ = o(n2−v(F (2))/e(F (2))). Since v(F (2)) = 2v(F )− 2
and e(F (2)) = 2e(F ) − 1 and since F is balanced with respect to m(F ),
this event will occur with probability o(1).

The other case to consider is when two edges v1v2 and v3v4 to be col-
ored are both covered by a monochromatic copy of F− of the same color.
We refer to {v1v2, v3v4} as a threat. An upper bound on the number of
threats in the graph can be computed by counting the number of sub-
graphs isomorphic to F− and taking its square. Note that not every such
threat is actually dangerous to Painter since we disregard the coloring of
the surrounding structure. In this way we overestimate the risk of losing
the game.

For all F− ∈ F−, we have

λ(F−) = E
[
X(G(n, p), F−)

]
= Θ(nvF peF−1).

Let m′ = n2−(2vF−2)/(2eF−1)/ν(n), where ν(n) tends to infinity. W.l.o.g.
we can assume that ν(n) = o(log(n)). Hence, we have

λ(F−) ≥ nvF
(
n
− 2vF −2

2eF −1 / log(n)
)eF−1

= n
vF +2eF −2

2eF −1 log(n)1−eF = Ω(nε)
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for a suitable ε = ε(F ) > 0. By Theorem 9 we have for each F− ∈ F−,

Pr
[
G(n, p) ∈ Q(F−, 2λ(F−))

]
≤ exp

(
−Ω

(
n

ε
vH−1

))
.

Let Zi be a random variable indicating that the two new edges close a
monochromatic threat in step i and let Z denote the sum over all steps.
From the previous calculations and Lemma 49, we conclude that

Pr[Z > 0] ≤
m′∑
i=1

Pr[Zi > 0]

≤
m′∑
i=1

{
Pr

[
Zi > 0

∣∣∣∣ ∧
F−∈F−

G2i−2 ̸∈ Q(F−, 2λ(F−))

]

+

( ∑
F−∈F−

Pr
[
G(n, p) ∈ Q(F−, 2λ(F−))

])
+ e−Θ(m′)

}

≤ m′

[(∑
F−∈F− 2λ(F−)

)2
1
4

((
n
2

)
− 2m′

)2 + e−Ω(nε/(vH−1)) + e−Θ(m′)

]
≤ m′

[
O
(
n−2(2eF−vF )/(2eF−1)

)
+ e−Ω(nε/(vH−1)) + e−Θ(m′)

]
= o(1),

since
m′ = ω(n2−(2vF−2)/(2eF−1)/ log(n)),

and m′ = o(n2−(2vF−2)/(2eF−1)). 2

The following theorem is a counting version of the main result of Rödl
and Ruciński.

Theorem 51 [39, Theorem 3] Let r ≥ 1, F be a non-empty graph with
vF ≥ 3 and set

m2(F ) = max

{
eH − 1

vH − 2
: H ⊆ F and vH ≥ 3

}
.

Then there exist constants C = C(F, r) and a = a(F, r) such that for

p(n) ≥ Cn−1/m2(F )
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a.s. in every r-edge-coloring of the random graph G(n, p), one color contains
at least anvF peF copies of F .

Using this result, we can give an upper bound for the number of moves
Painter can play.

Theorem 52 Let F be a graph with vF ≥ 3 such that there exists a sub-
graph F− of F with eF − 1 edges satisfying 3/2 > ε(F ) ≥ m2(F−), where

ε(F ) =
2eF − 1

2vF − 2
.

Moreover, suppose that every proper subgraph H ⊂ F with vH ≥ 2 satisfies

vF − eF
ε(F )

< vH − eH
ε(F )

. (5.1)

Then, after playing m′(n) = ω(n2−1/ε(F )) moves of balanced online game
Painter will a.s. create a monochromatic copy of F , regardless of his strat-
egy.

Proof. Let F− be fixed. We switch between the models G(n, p) and
G(n,m), exploiting their asymptotic equivalence via p = Θ(m/n2).

Claim 53 There exists C > 0 such that a.s. in every 2-edge-coloring of the
random graph G(n,m′

1), m′
1 = Cn2−(2vF−2)/(2eF−1), there are

Ω((n4/m′
1)1/2) pairs uv ∈

(
[n]
2

)
\ E(G(n,m′

1)) that complete a monochro-
matic copy of F− in the same color, say red, to F .

Proof. Set C = C(F−, 2) according to Theorem 51, and let Y denote
the number of copies of F− in G(n,m′

1). The expected number of such
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copies is

E[Y ] = Θ

(
nv(F−)

(
m′

1

n2

)e(F−)
)

= Θ

(
nv(F−)− e(F−)(2v(F )−2)

2e(F )−1

)
= Θ

(
n

2e(F )+v(F )+2
2e(F )−1

)
= Θ

(
n

1
2ε(F )

+1
)

= Θ

((
m′

1

n4

)− 1
2

)
.

Here we used that v(F−) = v(F ) and e(F−) = eF − 1. We call an edge
critical, if it completes an entirely red copy of F− to F . Theorem 51 yields
asymptotically the same number of copies of (w.l.o.g.) red monochromatic
F−, since

m′
1 = Cn2−(2vF−2)/(2eF−1) ≥ Cn2−1/m2(F

−)

due to the assumption of Theorem 52. Every such copy induces one crit-
ical edge in G(n,m′

1), but we may over-count if there are many pairs of
monochromatic copies of F− that cover the same vertex pair.

If one critical edge e = uv is induced by multiple copies of F−, then
G(n,m′

1) contains a subgraph (F−)H of the following structure: (F−)H
is the union of two graphs isomorphic to F− such that their intersection
complemented with e is a copy of a proper subgraph H ⊂ F . For any
graph (F−)H , we have

e
(
(F−)H

)
= e(F−) + e(F−) − (eH − 1) = e(F−) + eF − eH ,

and

v
(
(F−)H

)
= v(F−) + vF − vH .
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We denote the number of subgraphs isomorphic to (F−)H in G(n,m′
1) by

YH . It follows that

E[YH ] = Θ

(
nv(F−)+vF−vH

(
m′

1

n2

)e(F−)+eF−eH
)

= Θ

(
E[Y ]

nvF−eF /ε(F )

nvH−eH/ε(F )

)
(5.1)
= o(E[Y ]).

The Markov inequality now yields Pr[YH ≥ cE[Y ]] = o(1) for any c >
0. Since the number of critical edges induced by a fixed occurrence of a
graph (F−)H is bounded by a constant only depending on F , the multiply
counted copies of F are a.s. of lower order of magnitude than E[Y ] and
thus negligible. This concludes the proof of Claim 53. 2

We fix m′
1 as in Claim 53. Continuing the proof of Theorem 52, we

apply the claim to show that the game a.s. stops for any duration m′ =
ω(m′

1). Let thus R∪̇B be a coloring assigned by Painter to the first m′
1

edges. Since m′ = ω(m′
1), we have m′′

2 = m′ −m′
1 = ω(m′

1) in the second
round. By Claim 53, there are M1 = Ω

(
(n4/m′

1)1/2
)

critical edges in(
[n]
2

)
\ E(G(n,m′

1)). If two of these pairs are simultaneously presented to
Painter, he loses the game. In every step i, the probability of this event is
determined by the number of critical edges Mi. Observe that m′

1 = o(M1)
by the condition ε(F ) < 3/2 and we may choose the length of the second
phase such that m′′

2 = o(M1) as well. Hence, even if one of the critical
edges of G(n,m′

1) is closed in every step of m′′
2 properly, we are left with

at least M1/2 critical edges in the very last step. Let Xi be the random
variable indicating that the game was lost in step i of the second phase.
Then we have

Pr[Xi = 0|X1 = 0 ∧ . . . ∧Xi−1 = 0] ≤ 1 −
(
Mi

2

)
/

((n
2

)
2

)
≤ 1 − M2

1

n4
.
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Let X =
∑m′′

2
i=1 Xi. The game ends within the second round if X ≥ 1.

Hence,

Pr[X ≥ 1] = 1 − Pr[X = 0]

= 1 − Pr[X1 = 0]

m′′
2∏

i=2

Pr[Xi = 0|X1 = 0 ∧ . . . ∧Xi−1 = 0]

≥ 1 −
(

1 − M2
1

n4

)m′′
2

≥ 1 − exp

(
−m′′

2

m′
1

)
= 1 − o(1).

This concludes the proof of Theorem 52. 2

Some graphs F satisfy conditions of both Theorem 50 and Theorem 52.
In that case the lower bound obtained in Theorem 50 matches the upper
bound from Theorem 52, giving the exact threshold probability for such
graphs. In particular, we obtain the threshold for the cycle game.

Proof. (Theorem 48) Observe that for a cycle Cℓ, the only member in
the family F− is a path Pℓ with ℓ−1 edges. Clearly, this graph is balanced
with respect to m(Pℓ) and

m2(Pℓ) =
ℓ− 1 − 1

ℓ− 2
= 1.

Moreover, every proper subgraph of H ⊂ Cℓ with k ≤ ℓ vertices has at
most k − 1 edges. Hence, we have

nℓ− ℓ(2ℓ−2)
2ℓ−1

nvH− eH (2ℓ−2)

2ℓ−1

≤ nℓ− ℓ(2ℓ−2)
2ℓ−1

nk− (k−1)(2ℓ−2)
2ℓ−1

= n− l+k−2
2ℓ−1 = o(1).

Since
3

2
>

2ℓ− 1

2ℓ− 2
> 1

for all ℓ ≥ 3, and we can apply both Theorem 50 and Theorem 52. 2

Remark. Note that Theorem 48 gives the exact threshold for the trian-
gle avoidance game, but unfortunately we cannot apply Theorem 50 and
Theorem 52 to cliques with more than three vertices.
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5.2.2 Star game

In this section we consider the star game. The goal of Painter is to avoid a
monochromatic k-star Sk, for some fixed integer k, for as long as possible.
Equivalently, we can say that Painter wants to keep the maximum degree
in both red and blue graph below k. The next theorem gives more than a
threshold for this game, since at the same time it gives (the order of) the
number of k′ stars for all k′ < k.

Theorem 54 Let α > 0 be a constant, and let m = n1−α. For k0 =
⌊ 1
2

(
1
α + 1

)
⌋ we have

(i) After m′ = ω(m) moves of the balanced online game, for every integer
k ≤ k0 Painter has created ω(m2k−1n−2k+2) monochromatic stars of
size k a.s.

(ii) For m′′ = o(m), there is a strategy for Painter that enables him to
create o(m2k−1n−2k+2) monochromatic stars of size k, for all k ≤ k0,
in the first m′′ moves of the balanced online game a.s.

When we assume that m′ = ω(m) (part (i) of the statement) or that
m′′ = o(m) (part (ii)), we actually assume that m′ and m′′ are concrete
functions satisfying these conditions, fixed before the game starts.

Written down in a strict mathematical notation, the statement of the
first part of the theorem reads as follows. Let α > 0, let ν : N → N be a

function with ν(n)
n → ∞ as n tends to infinity, and let k ≤ k0. Then there

exists a function µ : N → N with µ(n)
n → ∞ as n tends to infinity, such

that for every strategy of Painter we have

lim
n→∞

Pr
[
(# monochr. k-stars after ν(n1−α) moves) ≥

µ
((

n1−α
)2k−1

n−2k+2
) ]

= 1.

All the conclusions that we draw throughout the proof about the num-
ber of certain structures appearing during the game are also concrete and
depend on the actual value of m′ and m′′, not just their asymptotics. But
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in order to make the proof more readable we just describe the most of the
values using o and ω notation.

Proof. (i) It is enough to prove the statement if m′ = o(n1−β), for some
0 < β < α. Then the order of connected components of the random graph
G(n,m′) is a.s. bounded from above by a constant c′ = c′(β) > 0.

After m′ moves of the balanced online game there are ω(m2k−1n−2k+2)
copies of (2k − 1)-stars in Gm′ a.s. No matter how Painter colored the
present edges, each of those stars has to contain a monochromatic k-
star. Since the order of connected components is bounded by c′ a.s., each

monochromatic k-star can be contained in at most
(
c′−k−1
k−1

)
(so, at most

constantly many) (2k − 1)-stars a.s. Therefore, there is ω(m2k−1n−2k+2)
monochromatic k-stars after m moves a.s.

(ii) Painter’s strategy is the following. Whenever he should color edges
v1v2 and v3v4, he spots the largest monochromatic star that is centered at
one of vertices v1,. . . ,v4 at that moment. There may be more than one star
with that property in which case he chooses one of them arbitrarily. He
colors the edge adjacent to the center of the largest monochromatic star
using the color complementary to the color of the star, in order to prevent
the monochromatic star from increasing in size. The other edge is colored
accordingly.

Let sk(m,n) being a function defined by s0(m,n) = m′′ and sk(m,n) =
m′′

n2 (sk−1(m,n))
2
. Note that sk(m,n) = o(m2k−1n−2k+2). Using induction

on k we will prove that the probability that after m′′ moves there are “too
many” different monochromatic k-star centers, for all k < k0.

More precisely, the inductive statement for k reads as follows. There
exist constants γk > 0 and n0 ∈ N, such that for every n ≥ n0 we have that

Pr[(# of k-star centers after m′′ moves) > sk(m,n)] ≤ e−nγk
.

Note that at this point we do not care about the number of monochromatic
k-stars centered at any of the vertices we count.

The statement holds for k = 1, since we have m′′ = o(m) edges and
every colored edge is a monochromatic 1-star, so there is not more than 2m′′

monochromatic 1-star centers. Hence, the probability we are interested in
is identically zero, and we can choose an arbitrary value for γ1.
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Assume that the statement is true for k − 1, k < k0. Suppose that
in a move the number of monochromatic k-star centers is increased. We
distinguish two cases.

Case 1. If one of the edges that was to be colored was not adjacent
to any monochromatic (k − 1)-star, then the other edge was adjacent to
both blue and red (k− 1)-star, meaning that in this move at least one new
subgraph of size 2(k−1)+1 = 2k−1 is created. Therefore, after m′′ moves,
we can not have more monochromatic k-star centers created in this fashion
then the total number of subgraphs of size 2k − 1. Let B be a random
variable counting the number of subgraphs of size 2k − 1 of G2m′′ . The
value of B is an upper bound for the number of moves i ≤ m′′ in which
Painter created a new monochromatic k-star center in this fashion.

Next, we show that B > 1
8sk(m,n) holds only with exponentially small

probability. For p = 4m′′/n2, from Lemma 49 we get that

Pr[B > sk(m,n)] ≤ Pr[Gn,p ∈ Q(S2k−1, sk(m,n))] + e−Θ(m′′).

The expected number of copies of S2k−1 appearing in Gn,p is p2k−1n2k. If
k < k0, then Theorem 9 implies that

Pr[Gn,p ∈ Q(S2k−1, sk(m,n))] ≤ e−nγ′
k ,

for some γ′
k > 0. Note that for k = k0 Theorem 9 gives just

Pr[Gn,p ∈ Q(S2k−1, sk(m,n))] = o(1),

but since that is the last step of the induction we do not need the expo-
nential bound.

Case 2. The other possibility is that each of the edges to be colored
is adjacent to a monochromatic (k − 1)-star of the same color. By Ci we
denote the indicator random variable which has value 1 if the number of
monochromatic k-star centers is increased in ith move, i ≤ m′′, in this way.

Next, for every move i ≤ m′′ we define the following indicator random
variables

Di = [(# monochromatic (k − 1)-star centers in G2i) > sk−1(m,n)].
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Finally, we define an auxiliary sequence of indicator random variables
C ′

i, i ≤ m′′. Our goal is to define them in such a way that, on one hand, the
value of C ′

i is less than the value of Ci only for a “reasonably small” number
of graph processes (actually, only when Di−1 = 1), and on the other hand,
they are mutually independent and we can apply Chernoff bounds on their
sum.

For every graph process we look at the set containing all possible pairs
of edges of G2i−2 that, if they appear in ith step, increase the number of
monochromatic k-star centers. Denote this set by T (G2i−2). Note that
Ci = 1 if and only if the pair of edges that is to be colored in ith move is
in T (G2i−2).

If |T (G2i−2)| ≤ (n · sk−1(m,n))2, then we construct the set T ′(G2i−2)
by starting from T (G2i−2), and adding another (n·sk−1(m,n))2−T (G2i−2)
pairs of edges from E(Kn)\E(G2i−2), by some arbitrary (but deterministic)
rule.

On the other hand, if |T (G2i−2)| > (n · sk−1(m,n))2, we construct the
set T ′(G2i−2) by starting from T (G2i−2), and removing T (G2i−2) − (n ·
sk−1(m,n))2 pairs of edges from E(Kn) \ E(G2i−2), by some arbitrary
(but deterministic) rule.

Hence, we always have |T ′(G2i−2)| = (n · sk−1(m,n))2. We define C ′
i to

be 1 if and only if the pair of edges that is to be colored in ith move is in
T ′(G2i−2). Crucially, C ′

i < Ci only when Di−1 = 1 and therefore we have

m′′∑
i=1

Ci ≤
m′′∑
i=1

(C ′
i + Di−1) .

Since we know the exact size of T ′(G2i−2), for every i we get

Pr[C ′
i = 1] =

(n · sk−1(m,n))2((n
2)−2i+2

2

) ,

and this probability does not change if we fix the value of a variable C ′
j for

any other j. Therefore, the variables {C ′
i}i are independent and we can

apply Chernoff bounds to get

m′′∑
i=1

C ′
i ≤ 8m′′ (n · sk−1(m,n))2

n4
≤ 1

12
sk(m,n),
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with probability 1 − e−nγ′′
k , for some γ′′

k > 0.

From the induction hypothesis, there is a constant γk−1 > 0 such that

the probability that Di−1 = 1 is at most e−nγk−1
. Then,

∑m′′

i=1 Di−1 ̸= 0

with probability at most m′′e−nγk−1
.

Since in one move we create at most 4 new star centers, if we denote
the total number of monochromatic k-stars after m′′ moves by A, we have

A ≤ 4B + 4
m′′∑
i=1

Ci

≤ 4B + 4
m′′∑
i=1

C ′
i + 4

m′′∑
i=1

Di−1

≤ 1

2
sk(m,n) +

1

2
sk(m,n) + 0,

with probability at least 1−
(
e−nγ′

k + e−nγ′′
k + m′′e−nγk−1

)
, and thus also

at least 1 − e−nγk for some γk > 0. This completes the induction step, if
k < k0. For k = k0, the same holds with probability 1 − o(1).

We proved that after m′′ moves the number of monochromatic k-star
centers is o(m2k−1n−2k+2) for all k ≤ k0, a.s. On the other hand, since m =
Θ(n1−α), the order of every connected component of G2m′′ is bounded by a
constant a.s. If that holds, then every vertex is center for at most constantly
many monochromatic k-stars. Therefore, after playing m′′ moves, Painter
has created at most o(m2k−1n−2k+2) monochromatic k-stars a.s. 2

As an immediate corollary we get the threshold for the star game.

Corollary 55 For any fixed integer k ≥ 2, the threshold for balanced online

avoidance game for stars exists, and is mSk
= n

2k−2
2k−1 .

Proof. We set α = 1
2k−1 and apply Theorem 54. For k0 = k we have

that n1−α = n
2k−2
2k−1 is the exact threshold in the k-star game. 2

Note that Theorem 50 cannot be applied to stars since a graph obtained
from a star by removing an edge is not balanced.
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5.2.3 Path game

In the path game, the goal of Painter is to avoid creating a monochromatic
l-path, for a fixed integer l, for as long as possible. Here, we do not manage
to give the exact threshold for arbitrary l, but just an upper bound. We
show that this upper bound is sharp for l = 2 and l = 3. On the other
hand, already in the case l = 4 we can exhibit a better upper bound.

We define sj :=
∑j

i=2 2⌊log i⌋, for all j ∈ N.

Lemma 56 For all m ∈ N, we have

(i) 4sm + 4 = s2m+1, m ≥ 1,

(ii) 2sm + 2sm−1 + 4 = s2m, m ≥ 2,

(iii) sj = Θ(j2).

Proof. (i) We prove the statement by induction on m. For m = 1, s1 = 0
and s3 = 4 and the equality is satisfied. Now suppose the statement is true
for all i ≤ m and we want to prove it for m+1. To simplify the notation, let
x denote ⌊log(m+1)⌋. Then ⌊log 2(m+1)⌋ = 1+⌊log(m+1)⌋ = 1+x. Since
2m+3 is odd, it is not a power of two and hence ⌊log(2m+3)⌋ = ⌊log(2m+
2)⌋ = 1 + x. Using the definition of sj and the induction hypothesis,
s2(m+1)+1 = s2m+1 + 21+x + 21+x = 4sm + 4 + 21+x + 21+x should be equal
to 4sm+1 + 4. Canceling 4sm + 4 on both sides gives 222x = 21+x + 21+x,
and the equality is satisfied.

(ii) We make use of (i): We know that 4sm+4 = s2m+1 and 4sm−1+4 =
s2m−1. Combining these two equalities we get 2sm−1+2sm+4 = 1

2 (s2m+1+
s2m−1). Hence we only have to show that s2m = 1

2 (s2m−1+s2m+1). Writing

out the definitions and canceling common terms we obtain 2⌊log(2m)⌋ =
2⌊log(2m+1)⌋, which is clearly true since 2m + 1 is not a power of two.

(iii) Since
j∑

i=2

2log i−1 ≤ sj ≤
j∑

i=2

2log i,

we have

1

2

(
j∑

i=2

i

)
≤ sj ≤

j∑
i=2

i = Θ(j2).
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2

Theorem 57 Using the notation from above, for all k, l ∈ N, the number

of red k-paths Painter has created after playing m′ = ω
(
n

sl
sl+1

)
edges is

ω
(
n
(sk+1)

sl
sl+1−sk

)
a.s.

Written down in a strict mathematical notation, the statement of the
theorem reads as follows. Let k, l ∈ N, and let ν : N → N be a function with
ν(n)
n → ∞ as n tends to infinity. Then there exists a function µ : N → N

with µ(n)
n → ∞ as n tends to infinity, such that for every strategy of Painter

we have

lim
n→∞

Pr
[
(# red k-paths after ν

(
n

sl
sl+1

)
moves) ≥ µ

(
n
(sk+1)

sl
sl+1−sk

)]
= 1.

Proof. It is enough to prove the statement for m′ = o(n1−α) for some
α > 0. Consider an arbitrary, but fixed l ∈ N. The proof proceeds by
induction on k.

There exists a constant C > 0 such that the random graph with m′ edges
contains a connected component of order larger than C with probability
n−2. Now we proceed similarly to the proof of Theorem 54 (ii). Namely,
if we can prove that the statement of the theorem holds with probability
1 − ν(n), ν(n) = o(1), using the assumption that there is no component of
order more than C before every move, then the statement of the theorem
holds with probability at least 1 − ν(n) − m′n−2 = 1 − o(1). Note that
the bounded component order before every move implies that addition of a
new edge creates at most constantly many new connected subgraphs. We
frequently rely on that fact throughout the proof.

We make use of the method of l-round exposure. This means that we

split the game into l rounds, where in each of the rounds ω
(
n

sl
sl+1

)
edges

are played. This is useful for the analysis, because we can lower-bound
the number of copies of a (colored) subgraph during the (i+ 1)st round by
the number of copies of this (colored) subgraph after the ith round. More
precisely, we are going to lower-bound the number of i-paths after i rounds
by the number of i-paths created during the ith round.
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In the base case, for k = 1, we have sk = 0. After playing ω
(
n

sl
sl+1

)
edges the number of red edges is ω

(
n

sl
sl+1

)
as well. Since every red edge

is a red 1-path, the statement is true. In the base case for k = 2 we have

sk = 2, and two rounds with ω
(
n

sl
sl+1

)
edges each are played. An edge

can be extended to a 2-path in 2(n − 1) ways. Therefore, throughout the

second round there is ω
(
n

sl
sl+1

)
·Θ(n) edges that are not played yet and are

adjacent to a red edge. Here we use the assumption on bounded component
order to infer that every edge can extend only constantly many red edges
to a 2-path. If both edges played in a move are adjacent to a red edge then
Painter surely creates a red 2-path. The probability for such an event to
happen in one move of the second round is

ω

(n
sl

sl+1n

n2

)2
 .

The random choice of edge to come in each move in the random process
is uniformly distributed on all free edges. Hence, using a similar coupling
argument as in Theorem 54 (ii), we can apply Chernoff bounds and get

that after ω
(
n

sl
sl+1

)
moves the number of red 2-paths will be

ω

(
n

sl
sl+1n

2
(

sl
sl+1−1

))
= ω

(
n
3

sl
sl+1−2

)
a.s.

Now, let us assume that the induction hypothesis holds for all 1 ≤ i ≤
k− 1. To prove the statement for k, we make a case analysis depending on
the parity of k.

Case k odd, k = 2m + 1, m ∈ N, m ≥ 1. If each of the edges being played
in one move of the k-th round connects endpoints of two red m-paths, then
Painter is forced to create a red k-path. Since the number of red m-paths
after the m-th round by the induction hypothesis is

ω
(
n
(sm+1)

sl
sl+1−sm

)
a.s., it clearly cannot be less after the (k− 1)-st round because the number
of red m-paths does not decrease during the course of the game. Note that
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at most constantly many of the unplayed edges that connect two m-paths
can overlap, since we assume that the component order before every move
is bounded.

Hence the probability that each of the edges in a move of the k-th round
connects endpoints of two red m-paths is

ω


(n

(sm+1)
sl

sl+1−smn

n2

)2
2
 = ω

(
n
4((sm+1)

sl
sl+1−sm−1)

)
,

since the choice of each edge in the random process is made uniformly at
random. Crucially, this lower bound on the probability holds independently
of the previous moves in the same stage, and thus, applying the same
coupling argument as before we can use Chernoff bounds to get that the

number of red k = 2m+ 1-paths after playing (k times) ω
(
n

sl
sl+1

)
edges is

ω
(
n

sl
sl+1 (4sm+5)−4sm−4

)
= ω

(
n
(s2m+1+1)

sl
sl+1−s2m+1

)
a.s., where the last equality follows from (i) of Lemma 56. This proves the
induction step in the case k odd.

Case k even, k = 2m, m ∈ N, m ≥ 2. If each of the edges being played
in a move of the k-th round connects endpoints of a red m-path and a red
(m − 1)-path, then Painter is forced to create a red k-path. By the same
argument as above, probability for such an event to happen in a move of
the k-th round is

ω

(n
(sm+1)

sl
sl+1−smn

n2

n
(sm−1+1)

sl
sl+1−sm−1n

n2

)2


= ω

(
n
2
((

sl
sl+1 (sm+sm−1+2)

)
−sm−sm−1−2

))
a.s. Hence the number of red k = (2m)-paths after playing (k rounds of)

ω
(
n

sl
sl+1

)
edges is

ω
(
n
(2sm+2sm−1+5)

sl
sl+1−2sm−2sm−1−4

)
= ω

(
n
(s2m+1)

sl
sl+1−s2m

)
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a.s., where the last equality follows from (ii) of Lemma 56. This proves the
induction step in the case k even. 2

As a corollary we obtain an upper bound for the number of edges to be
played until Painter loses the l-path game, l ∈ N, a.s.

Corollary 58 After ω
(
n

sl
sl+1

)
moves of the balanced online game, Painter

has created a monochromatic l-path a.s.

Proof. Using the last theorem with l = k, we directly obtain the
statement of the corollary. 2

Since a 2-path is also a 2-star, Theorem 54 implies that the last theorem
gives the exact value in the case l = 2. As we will see from the next theorem,
the bound is also tight for k = 3. But already for k = 4, the threshold is
not of the same order, as Theorem 61 will show.

By Pa,b we denote a colored path of length a+ b whose first a edges are
colored red, and the remaining b edges are colored blue. The vertex of Pa,b

which is adjacent to both red and blue edge is called the middle vertex of
Pa,b.

Theorem 59 For m′′ = o(n4/5), there is a strategy for Painter that en-
ables him to avoid monochromatic 3-paths in the first m′′ moves of the
balanced online game a.s.

Proof. Suppose that in ith move, i ≤ m′′, Painter should color
edges v1v2 and v3v4. If the number of the edges of G2i−2 that are in
the same connected component as one of vertices {v1, . . . , v4} is more than
3, then there is a subgraph H of G2i−2 with 8 vertices and 4 edges with
{v1, . . . , v4} ⊂ V (H). On the other hand, if this number of edges is 3 or
less, then Painter can avoid loosing the game in ith move. So, his strategy
in each move is just to avoid creating a monochromatic 3-path. If both pos-
sibilities to color the edges in a move are not dangerous, he plays arbitrarily
(according to some deterministic strategy).

We define the following indicator random variables

Ai = [Painter creates a monochromatic 3-path in move i],

Di = [# subgraphs of G2i with 4 edges and 8 vertices is ≤ n16/5],
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and we have
m′′∑
i=1

Ai ≤
m′′∑
i=1

AiDi−1 +
m′′∑
i=1

(1 −Di−1)

Since

E[# subgraphs of G2i with 4 edges and 8 vertices] = o(n16/5)

for all i ≤ m′′, Theorem 9 implies that the probability for Di = 1 is expo-

nentially small, and therefore we have
∑m′′

i=1(1−Di−1) > 0 with probability
o(1).

On the other hand, we get

E

m′′∑
i=1

AiDi−1

 = Θ

(
n16/5

n4

)
·m′′ = o(1),

and by the first moment method

m′′∑
i=1

AiDi−1 = 0

holds a.s.

Putting everything together, we get that
∑m′′

i=1 Ai = 0 a.s., which means
that Painter will not lose the balanced 3-path avoidance game in the first
m′′ moves a.s. 2

From the last Theorem and Corollary 58 for l = 3, we get

Corollary 60 mP3 = n4/5.

Next, we prove an upper bound for the 4-path game. Note that unlike
in games with 2-paths and 3-paths, this bound shows that Theorem 57 does
not give tight upper bounds in general.

Theorem 61 After m′ = ω(n7/8) moves of the balanced online game,
Painter has created a monochromatic 4-path a.s.
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Proof. There exists a constant C > 0 such that the random graph
with m′ edges contains a connected component of order larger than C
with probability n−2. Similarly to the proof of Theorem 57, if we can
prove that the statement of the theorem holds with probability 1 − ν(n),
ν(n) = o(1), using the assumption that there is no component of order
more than C before every move, then the statement of the theorem holds
with probability at least 1 − ν(n) −m′n−2 = 1 − o(1).

We split the game into five stages. In each of the first four stages n7/8

moves are played, and in the fifth stage Painter plays all the remaining
m′ − 4n7/8 moves. By Gi, i = 1, . . . , 4 we denote the (colored) graph after
the ith stage of the game.

G1 contains n7/8 red and n7/8 blue edges. If both edges to be played
in one move have a red adjacent edge, then in that move Painter has to
create one new P2,0. We claim that the density of unplayed edges of this

kind during the second stage is Ω
(

n7/8·n
n2

)
. This holds since the size of all

connected components before every move is bounded, and each new edge
can appear in at most constantly many 2-paths. Also, the total number of
edges played is asymptotically less then the number of edges that extend a
red edge to a 2-path. Therefore, almost every such edge must be unplayed.
We can use a coupling argument as in the proof of Theorem 54, to apply
Chernoff bounds. We get that in the second stage Painter creates

Ω

(
n7/8

(
n7/8 · n

n2

)2
)

= Ω(n5/8)

of P2,0 a.s. We can prove analogously that Painter creates the same number
of P0,2 a.s.

We estimated the number of edges that close a red 2-path by counting
the number of possible extensions of each red edge to a 2-path, showing that
this way each edge is counted at most constantly many times, and almost
all of such edges are unplayed. This argument can be applied analogously
in each of the following stages. We omit it from now on and just give the
estimate of expectation.

When Painter colors an edge whose one endpoint is adjacent to a red
edge and the other to a blue edge, he creates either a P1,2 or a P2,1. During
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the second stage, the density of unplayed edges of this kind is Ω
(

n7/8·n7/8

n2

)
,

implying that w.l.o.g. we can assume that G2 contains

Ω

(
n7/8n

7/8 · n7/8

n2

)
= Ω(n5/8)

of P1,2.

When Painter colors an edge adjacent to an endpoint of P2,0, he creates
either a P2,1 or a P3,0. During the third stage, the density of unplayed

edges of this kind is Ω
(

n5/8·n
n2

)
. G3 must contain

Ω

(
n7/8n

5/8 · n
n2

)
= Ω(n4/8)

of either P2,1 or P3,0 a.s. We distinguish two cases.

1. G3 contains Ω(n4/8) of P3,0. To avoid losing right away, Painter should
color blue every edge connecting an endpoint of P3,0 with a blue edge.

Unplayed edges of this kind have density Ω
(

n4/8·n7/8

n2

)
during the fourth

stage, which means that G4 contains

Ω

(
n7/8n

4/8 · n7/8

n2

)
= Ω(n2/8)

of P3,2 a.s.

In the last stage density of unplayed edges connecting the middle vertex
of a P3,2 with a blue edge is

Ω

(
n2/8 · n7/8

n2

)
= Ω(n−7/8).

As soon as Painter gets to color one of edges of this kind he loses, and that
happens in the last stage a.s. since the number of moves played is ω(n7/8).

2. G3 contains Ω(n4/8) of P2,1. Then, in the last stage density of unplayed
edges connecting the middle vertex of a P2,1 and the middle vertex of a
P1,2 is

Ω

(
n4/8 · n5/8

n2

)
= Ω(n−7/8).
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As soon as Painter gets to color one of edges of this kind he loses, and that
happens in the last stage a.s. since the number of moves played is ω(n7/8).

2
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