
Linear Time Algorithm for Optimal Feed-link Placement

Marko Savić∗ Miloš Stojaković∗†

Abstract

Given a polygon representing a transportation network together with a point p in
its interior, we aim to extend the network by inserting a line segment, called feed-
link, which connects p to the boundary of the polygon. Once a feed link is fixed, the
geometric dilation of some point q on the boundary is the ratio between the length
of the shortest path from p to q through the extended network, and their Euclidean
distance. The utility of a feed-link is inversely proportional to the maximal dilation
over all boundary points.

We give a linear time algorithm for computing the feed-link with the minimum
overall dilation, thus improving upon the previously known algorithm of complexity
that is roughly O(n log n).

1 Introduction

For our purposes, a network P is an embedding of a connected graph into two-dimensional
Euclidean space. Given two points p and q (on edges or vertices) of P , their network
distance is defined as the length of the shortest curve contained in P connecting p and q.
We define the dilation (sometimes also called the detour, or slightly less formally the crow
flight conversion coefficient) as the ratio of the network distance between points p and q,
and their Euclidean (crow flight) distance. The geometric dilation of the network P is the
maximum detour taken over all pairs of points on the network.

Given a network P and a point p not on P , we want to extend the network by adding a
single line segment, called feed-link, connecting p with a point on P . Note that a feed-link
may have more than one point in the intersection with P , but we do not regard these
points as connection points. An optimal feed-link is the one that minimizes the maximum
dilation from the point p to a point on P .

We solve the problem of finding an optimal feed-link in polygonal networks by constructing
an algorithm which runs in linear time in the size of the polygon.

Background and related work. In applications, we often encounter networks as mod-
els to real world structures, such as road or subway networks. It happens in geographical
information systems that the locations of settlements are provided, but the data describing

∗Department of Mathematics and Informatics, University of Novi Sad, Serbia. Partly supported by Min-
istry of Education and Science, Republic of Serbia. E-mail: {marko.savic, milos.stojakovic}@dmi.uns.ac.rs
†Partly supported by Provincial Secretariat for Science, Province of Vojvodina.

1

roads is only partial (e.g., only the location of larger roads are known, while smaller roads
are missing from the database). However, in order to perform various network analysis
a network needs to be connected, i.e. every settlement needs to lie on a road, which
motivates us to find a way to extend the network so that the disconnected nodes become
attached.

Depending on the requirements, there are many ways to connect a new node to an existing
network. Probably the most straightforward one is to simply snap the location to the
closest point on the network. This may be unsuitable as the node location is modified.
Also, it can happen that two points geometrically close to each other are snapped to parts
of network that are far away, which may be undesirable. Another approach is to link all
new nodes inside a network face to the feed-node which is then connected to the network.
Alternatively, each new node can be individually attached to the network using a feed-link.
This approach was taken, e.g., in [1, 2], where the new location is simply connected to the
nearest existing location by a feed-link.

In an attempt to reduce unnecessary detours, Aronov et al. in [3] introduced a more
sophisticated way of choosing where on the existing network to attach the new feed-link,
using the dilation as the measure of feed-link quality. They presented an algorithm to
compute the feed-link achieving minimal dilation with a running time of O(λ7(n) log n),
where n is the number of vertices on the boundary of the face, and λ7(n) is the maximum
length of a Davenport-Schinzel sequence of order 7 on n symbols, a slightly superlinear
function. We consider this same setting and make an improvement by presenting an O(n)
time algorithm.

Similar criterion for choosing the feed-link is recently considered by Bose at al. in [4].
They solve the problem of finding the minimum eccentricity feed-link, which minimizes
the largest network distance from the new point to any point on the network.

Several results can be found in the literature analyzing the dilation and the stretch factor
(the largest dilation between a pair of network nodes) of a given network. First result on
that topic is given by Narasimhan and Smid in [5], where an approximate algorithm for
computing the stretch factor is given. Ebbers-Baumann at al. in [6] give an approximate
algorithm for computing the dilation of planar polygonal chains, and Agarwal at al. in [7]
give exact algorithms for computing both the dilation and the stretch factor of planar
polygonal paths, trees and cycles. For a result on how to construct a network with a small
dilation containing given points, we refer the reader to [8].

Structure and results. In the present paper, we give a linear time algorithm which
finds the optimal feed-link – the one that minimizes the maximal dilation to the points on
the boundary of the polygon. Although the initial problem statement given in [3] assumes
that p lies inside the polygon and the polygon is simple, all of our calculations work out
exactly the same for an arbitrary point p in the plane and arbitrary polygons, possibly
self-intersecting, and hence, our results hold also in that more general setting.

Our algorithm is based on the idea that finding the maximum dilation can be reduced to
finding the minimum slope of a certain line defined on the plot of the distance function
from p to the boundary of P . This idea is then employed to construct a sweep algorithm
over the points on the boundary.

2

The rest of the paper is organized as follows. In Section 2 we introduce the notation and
give a formal definition of the problem. Then we split the problem into two symmetrical
components, the left and the right dilation, so that we could perform our further analysis
only on one of them. An alternative view of the problem is given in Section 3 by plotting
the distance function from p to points on the boundary of P , and mapping feed-links to
levers – line segments defined on the plot, with slope inversely proportional to the left
dilation of a feed-link. In Section 4 we design a sweep algorithm which simulates moving
of the lever, and outputs a sequence describing different states the lever passes through
while moving. Finally, the sweep algorithm is run once for the left and once for the right
dilation, and the two produced outputs are then combined to obtain the solution for the
original problem. This merging process is described in Section 5.

2 Notation and problem statement

A polygon, which is not necessarily simple, is given as a list of its vertices v0, v1, . . . , vn−1.
We denote the boundary of that polygon by P . We are also given a point p, not necessarily
inside the polygon. A feed-link is a line segment pq, connecting p with some point q ∈ P .

For any two points q, r ∈ P dilation of r via q is defined as

δq(r) =
|pq|+ dist(q, r)

|pr|
,

where dist(q, r) is the length of the shortest route between q and r over the polygon’s
boundary, and |ab| is the Euclidean distance between points a and b, see Figure 1.

Figure 1: The concept of dilation.

For a point q ∈ P , dilation via q is defined as

δ̃q = max
r∈P

δq(r).

The problem of finding the optimal feed-link is to find q such that δ̃q is minimized.

2.1 Left and right dilation

Given two points q, r ∈ P , P [q, r] is the portion of P obtained by going from q to r around
the polygon in the positive (counterclockwise) direction, including the points q and r. Let
µ(q, r) be the length of P [q, r], and µ(P) the perimeter of P .

3

Figure 2: The left and the right portion of P observed from the point q.

For the given q ∈ P , let q′ be the point on P , for which µ(q, q′) = µ(q′, q) = µ(P)/2,
see Figure 2. By P+[q] we denote P [q, q′], and by P−[q] we denote P [q′, q]. Obviously,
P+[q] ∪ P−[q] = P and P+[q] ∩ P−[q] = {q, q′}.

For given points q ∈ P and r ∈ P+[q], the left dilation of r via q is defined as

δ+q (r) =
|pq|+ µ(q, r)

|pr|
.

On the other hand, for r ∈ P−[q], the right dilation of r via q is defined as

δ−q (r) =
|pq|+ µ(r, q)

|pr|
.

When measuring dist(q, r), the shortest path from q to r over P must lie entirely either
in P+[q] or P−[q]. This allows us to express the dilation of r via q using the left and the
right dilation of r via q

δq(r) =

{
δ+q (r), if r ∈ P+[q]

δ−q (r), if r ∈ P−[q]
.

Given point q ∈ P , the left dilation via q is defined as δ̃+q = maxr∈P+[q] δ
+
q (r), and the

right dilation via q as δ̃−q = maxr∈P−[q] δ
−
q (r). Finally, the dilation via q can be expressed

as
δ̃q = max(δ̃+q , δ̃

−
q) = max

r∈P
δq(r). (1)

In the following two sections we will be concerned only with the left dilation, as the
problem of finding the right dilation is, by definition, analogous. In Section 5 we will show
how to combine our findings about the left and the right dilation to provide the answer
to the original question. To simplify the notation, we omit the superscript + in Section 3
and Section 4, assuming that we deal with the left dilation.

3 Another view of the problem

Let us once again state the setting of our problem. Given a polygon boundary P and a
point p, we want to compute the minimum dilation. In the previous section we saw how
the dilation can be expressed in terms of the left and the right dilation. In this section,
we are going to look at the distance function from p to the points on P , and observe how
this function relates to the left dilation. These observations will enable us to work only
with the distance function, instead of working with the polygon itself.

4

First, we parametrize points on P by defining P (t), t ∈ R, to be the point on P for which
µ(v0, P (t)) ≡ t (mod µ(P)), see Figure 3.

Figure 3: Parametrization of P .

The distance of a point to the points on a straight line is known to be a hyperbolic function.
The plot of the distance function h(t) := |pP (t)| is an infinite sequence of hyperbola
segments joined at their endpoints, where (kn + r)-th hyperbola segment corresponds to
the r-th side of P , for r ∈ {0, 1, . . . , n− 1} and k ∈ Z, see Figure 4. For each i = kn+ r,

the hyperbola hi is of the form hi(t) =
√

(t−mi)2 + d2i , for some values mi and di, so that

mkn+r = mr+kµ(P), dkn+r = dr, and dr is the distance between p and the line containing
the r-th side of P . The left endpoint of the i-th hyperbola segment is Ei := (ei, h(ei)),
where ei = kµ(P)+µ(vr), and the right endpoint is at (ei+1, h(ei+1)). We will consider that
each hyperbola segment contains its left endpoint, but not the right endpoint. By H(t) we
denote the point on the plot of h corresponding to the parameter t, so H(t) := (t, h(t)).
The plot is, obviously, periodic, with the period of µ(P), that is, H(t) = H(t + kµ(P)).
We denote the i-th hyperbola segment with Hi.

Figure 4: Plot of h(t).

Let o(t) = t − h(t), and O(t) = (o(t), 0), see Figure 5. We also define oi(t) = t − hi(t),
and Oi(t) = (oi(t), 0). Given points q ∈ P and r ∈ P+[q], we have their corresponding
parameters tq and tr, such that tq ≤ tr ≤ tq + µ(P)/2. The slope of the line passing
through the points O(tq) and H(tr) is

s(tq, tr) := slope (`(O(tq), H(tr)))

=
h(tr)

tr − tq + h(tq)

=
|pP (tr)|

µ(P (tq), P (tr)) + |pP (tq)|

=
1

δ+P (tq)
(P (tr))

,

(2)

hence the slope between O(tq) and H(tr) is equal to the inverse of the left dilation of r
via q.

5

Figure 5: Dilation and slope relation.

We define s̃(tq) to be the lowest slope from O(tq) to H(tr) among all tr ∈ [tq, tq +µ(P)/2].
From the previous observation it follows that this slope equals the inverse of the left
dilation via q,

s̃(tq) := min
tr∈[tq ,tq+µ(P)/2]

s(tq, tr)

= min
tr∈[tq ,tq+µ(P)/2]

1

δ+P (tq)
(P (tr))

=
1

maxr∈P+[q] δ
+
q (r)

=
1

δ̃+q
.

(3)

Obviously, s̃(t) ∈ (0, 1] because it is strictly positive and s̃(t) ≤ s(t, t) = 1. This enables
us to estimate the dilation by looking at the slope of the line we just defined.

Lemma 1. For any two distinct values of t1 and t2,

|h(t2)− h(t1)| ≤ |t2 − t1|.

Proof. From the triangle inequality we have |h(t2) − h(t1)| ≤ |P (t1)P (t2)|, and from
the parametrization by distance along P it follows that |P (t1)P (t2)| ≤ |t2 − t1|. These
inequalities readily imply the statement of the lemma.

So far, s̃(tq) was defined as the minimum only among the slopes s(tq, tr) where tr belongs
to the interval [tq, tq + µ(P)/2]. However, from Lemma 1 follows that s(tq, tr) cannot be
less than 1 when tr ∈ [o(tq), tq], and s̃(tq) is at most 1, so this interval can be extended,
and we have

s̃(tq) = min
tr∈[o(tq),tq+µ(P)/2]

s(tq, tr).

This extension of the interval enables us to define the lever and to construct the following
sliding lever algorithm without having to worry about certain unwanted cases.

4 Sliding lever algorithm

In this section we define the lever, the central object of our analysis, as well as the possible
states that the lever can have. We want to simulate the movement of the lever, so we
analyze all the events that lead to state changes. That allows us to construct a sweep
algorithm; however, the most straightforward algorithm will not run in linear time. To fix

6

that we design an additional algorithm to precompute the set of the so-called retargeting
positions, which we use for certain helper events (jump destination change events).

4.1 Lever

For a fixed t, consider the line segment having slope s̃(t), with one endpoint at O(t) and
the other at (t+ µ(P)/2, s̃(t)(µ(P)/2 + h(t))), see Figure 6. Let us call that line segment
the lever for t. Note that the lever only touches the plot, never intersecting it properly.

Let C(t) be the leftmost point in which the lever for t touches the plot, and let c(t) be
such that H(c(t)) = C(t). Then c(t) ∈ [o(t), t+ µ(P)/2] and it is the lowest value in this
interval for which s̃(t) = s(t, c(t)). Coming back to the original setup, this means that the
left dilation via P (t) reaches its maximum for P (c(t)).

Figure 6: Lever.

We now continuously decrease parameter t and observe what is happening with the up-
dated lever. The following monotonicity lemma states that when t is decreasing o(t) and
c(t) are decreasing as well, which means that decreasing t corresponds to “dragging” the
lever in the leftward direction.

Lemma 2. For t1 < t2 we have o(t1) ≤ o(t2) and c(t1) ≤ c(t2).

Proof. Suppose t1 < t2. Using Lemma 1 we get

h(t2)− h(t1) ≤ t2 − t1,
t1 − h(t1) ≤ t2 − h(t2),

o(t1) ≤ o(t2).

To show that c(t1) ≤ c(t2), assume the opposite, that c(t1) > c(t2). Then, t1 < t2 <
c(t2) < c(t1) ≤ t1 + µ(P)/2, and c(t1) ∈ [t2, t2 + µ(P)/2].

For a contradiction, suppose first that line segments O(t1)C(t1) and O(t2)C(t2) do not
intersect, see Figure 7(a). Since o(t1) ≤ o(t2), the segment O(t2)C(t2) lies completely
underO(t1)C(t1), and becauseO(t2)C(t2) touches the plot in C(t2), the plot must intersect
O(t1)C(t1) in some point left of C(t2) and, hence, left of C(t1). That is a contradiction
since C(t1) is the leftmost point where the lever for t1 intersects the plot.

If line segments O(t1)C(t1) and O(t2)C(t2) do intersect, see Figure 7(b), then C(t1) lies
under the line O(t2)C(t2), and we we have

s(t2, c(t1)) < s(t2, c(t2)) = min
t∈[t2,t2+µ(P)/2]

s(t2, t) ≤ s(t2, c(t1)),

which again is a contradiction. This concludes the proof of the lemma.

7

(a) (b)

Figure 7: Two situations leading to a contradiction (the depicted points cannot be in this
arrangement, resulting in invalid pictures).

4.2 States

In order to be able to simulate the continuous leftward motion of the lever, we transform it
to an iteration over a discrete sequence of states. We define different lever states depending
on how the lever is positioned relative to the sequence of hyperbola segments.

When t ∈ [ei, ei+1) and c(t) ∈ [ej , ej+1), we say that the lever for t is in the phase 〈i, j〉.
The phase in which the lever is, together with the manner in which the lever touches the
plot define the state of the lever. There are three possible ways for the lever to touch the
plot, denoted by K (arc tangency), Y (endpoint sliding), and V (wedge touching).

• State 〈i, j〉K : c(t) < t+ µ(P)/2 and the lever is the tangent to Hj .
When t is decreasing, the lever is sliding to the left along hj maintaining tangency,
thus continuously decreasing its slope.

Figure 8: State 〈i, j〉K

• State 〈i, j〉Y : c(t) = t+ µ(P)/2.

Point C(t) is the right endpoint of the lever. It is the only point where the lever
touches the plot. When t is decreasing, the lever is moving to the left while keeping
its right endpoint on hj .

Figure 9: State 〈i, j〉Y

• State 〈i, j〉V : c(t) < t + µ(P)/2 and the lever is passing through the point H(ej),
the endpoint between hyperbola segments Hj−1 and Hj .
This situation occurs only if mj−1 > mj . The two neighboring hyperbola segments
then form a “wedge” pointing downwards, and when t is decreasing the lever is sliding

8

to the left while maintaining contact with the tip of the wedge, thus continuously
decreasing its slope.

Figure 10: State 〈i, j〉V

4.3 Jumping and retargeting

In the process of decreasing t and dragging the left endpoint of the lever towards left,
various events can take place. We will first devote some attention to the most challenging
kind of events, which we call jumping events. These are events in which C(t) abruptly
changes its position by switching to a different hyperbola segment. In order to efficiently
find state transition events that include jumps, we always need to know to which hyperbola
segment we can jump from the current position. There is always at most one such target
hyperbola segment, and we will show how to keep track of it.

Consider some point H(x) on the plot. Let jump(x), the jump destination for x, be the
index of the hyperbola segment which contains the rightmost point H(w) on the plot such
that w < x and the ray from H(x) through H(w) only touches the plot, but does not
intersect it properly, see Figure 11. That is, jump(x) is the index of the lowest visible
hyperbola segment when looking from the point H(x) to the left. If there is no such w,
because hyperbola segments on the left are obscured by the segment containing H(x),
then we set jump(x) to be the index of the hyperbola segment containing H(x).

Figure 11: Jump destination for x. jump(x) = i

Consider only the values of x at which jump(x) changes value. We call such values retar-
geting positions, and points H(x) retargeting points. There are two types of retargeting
points, see Figure 12. Retargeting points of the first type are the points on Hk in which
jump destination changes from i to j, where i < j < k, see Figure 12(a). Retargeting
points of the second type are the points on Hk in which jump destination changes from k
to j, where j < k, see Figure 12(b).

We construct an algorithm for finding all retargeting points. It is similar to finding lower
convex chain in Andrew’s monotone chain convex hull algorithm [9]. Our algorithm,
however, runs in linear time because the sequence of hyperbola segments is already sorted.
Before we give the algorithm, we describe the process and the supporting structure in more
detail.

Given a set A of hyperbola segments, we take a look at the convex hull of their union

9

(a) Retargeting point of the first type. (b) Retargeting point of the second type.

Figure 12: Two types of retargeting points.

and divide its boundary into the upper and lower part (i.e., the part lying above the
segments, and the one below the segments). We are interested only in those hyperbola
segments from A that have a nonempty intersection with the lower part of the convex hull
boundary, having in mind that each hyperbola segment contains its left endpoint, but not
the right one. Let us call the sequence of all such hyperbola segments, ordered from left
to right, the convex support for A, see Figure 13.

Figure 13: Convex support for all shown hyperbola segments is marked with solid lines.

We say that three hyperbola segments from the plot of h are in convex position if no line
segment connecting a point from the left and a point from the right hyperbola segment
passes completely below the middle hyperbola segment. Note that any three hyperbola
segments of any convex support are in convex position.

Let j0 be the index of a hyperbola segment that contains one of the global minima of
h. Starting from {Hj0−1,Hj0}, we process segments from left to right and maintain the
convex support for the set {Hj0−1,Hj0 , . . . ,Hk}, where k is the index of the segment being
processed.

We use a stack to represent the convex support (only the indices of hyperbola segments are
stored). Suppose the stack already contains the convex support for {Hj0−1,Hj0 , . . . ,Hk−1},
and we want to add a new segment Hk. We need to make changes to the stack so that
it now represents the convex support for the new, extended, set {Hj0−1,Hj0 , . . . ,Hk}. To
achieve this, we pop segments from the stack until the last two segments still in the stack,
together with Hk, are in convex position. (Note that Hj0 will never be popped this way,
as it contains a global minimum.) Finally, in the case where Hk belongs to the convex
support of {Hj0−1,Hj0 , . . . ,Hk}, we push it on the stack. (The intersection of Hk with
the lower part of the convex hull is possibly empty since Hk does not contain its right
endpoint.)

Let cl(X) denote the closure of a point set X, so cl(Hi) = Hi∪{Ei+1}, and let us consider
the line l touching both cl(Hi) and cl(Hj), i < j, from below. If such a line is not unique,
which can possibly happen only when j = i+ 1, we take l to be the line with the smallest
slope (that is, the line tangent to cl(Hi) in Ei+1). We call the line l the common tangent
of Hi and Hj . It can be computed in a constant time, and in the following algorithm it is
obtained as the return value of the function Tangent(i, j).

Note that if Z is a point with larger first coordinate than the point l∩ cl(Hj) (i.e., Z is to
the right of l ∩ cl(Hj)) and below the plot, then the point Z sees Hi lower than Hj if Z is

10

below l, and Hj lower than Hi if Z is above l. We will use this fact in the analysis of the
algorithm.

Now we are ready to present Algorithm 1, which shows how do we get retargeting points
as intersections of hyperbola segments and common tangents of successive segments from
the convex support.

Algorithm 1 Retargeting Points

Input: Description of a sequence of hyperbola segments.
Output: RetargetingPoints – the sequence of all retargeting points.
RetargetingPoints← []
Push(j0 − 1)
Push(j0)
for k ← j0 + 1 to j0 + n do

loop
i← Second-to-top element of the stack
j ← Top element of the stack
l1 ← Tangent(i, j)
if l1 ∩Hk 6= ∅ then

Let g be the leftmost point of l1 ∩Hk.
Append g to RetargetingPoints, and set jump destination of g to j.
Pop()

else
l2 ← Tangent(j, k)
if l2 ∩Hk 6= ∅ then

Let g be the only point of l2 ∩Hk.
Append g to RetargetingPoints, and set jump destination of g to j.
Push(k)

end if
break loop

end if
end loop

end for

Theorem 1. Algorithm 1 finds all retargeting positions, ordered from left to right, together
with jump destinations of those positions, in O(n) time.

Proof. To show the correctness of this algorithm, we first observe that each reported point
must be a retargeting point since the jump destination changes at it.

Indeed, points reported in the outer “if” branch lie on the common tangent of two succes-
sive hyperbola segments Hi and Hj from the convex support, and Hk is the first segment
to be intersected by that tangent. The point of the intersection is the boundary between
the region of Hk from which Hi is the lowest segment when looking to the left and the
region of Hk for which such lowest segment is Hj , as shown in Figure 12(a). Thus, a point
g reported in this branch has the property that points on Hk just left and just right of
the point g have Hj and Hi as their jump destinations, respectively, so it is a retargeting
point of the first type.

The inner “if” branch occurs when the segment Hk is appended to the convex support,
in which case there is a point on Hk acting as a boundary between the region of Hk from

11

which no other segment is visible (when looking to the left), and the region of Hk from
which Hj is visible, and such point lies on the common tangent of Hj and Hk, as shown in
Figure 12(b). Therefore, the point g reported in this branch has the property that points
on Hk just left and just right of the point g have Hj and Hk as their jump destinations,
respectively, so it is a retargeting point of the second type.

Next, let us make sure that no retargeting points were omitted by this algorithm. Consider
a retargeting point g lying on Hk.

If g is retargeting point of the first type, it must lie on Tangent(i, j) for some i < j < k
(Figure 12(a)). Note that there can be no Hr with r < k such that it reaches below
Tangent(i, j); otherwise r would be a jumping destination for g. That implies that both
Hi and Hj are the part of the lower convex hull of the segments left from Hk, which
further means that Hi and Hj are two consecutive elements of the convex support for
the set {Hj0−1,Hj0 , . . . ,Hk−1}. Since Tangent(i, j) intersects Hk, the same must be
true for any pair of consecutive segments Hi′ and Hj′ from the convex support, with
i < i′ < j′ < k. Otherwise, there would be three segments from the convex support not in
convex position. The algorithm starts from the last two segments in the convex support
and repeats moving to the previous pair as long as there is an intersection of the pair’s
common tangent with Hk. That guarantees g will be found and reported as the retargeting
point in the outer “if” branch.

The second case, when g is retargeting point of the second type, is treated similarly. In
this case g lies on Tangent(j, k) for some j < k Figure 12(b). There can be no Hr
with r < k such that it reaches below Tangent(j, k); otherwise r would be a jumping
destination for g. That implies that Hj is a part of the lower convex hull of the segments
left from Hk, which further means that Hj is an element of the convex support for the
set {Hj0−1,Hj0 , . . . ,Hk−1}. Since Tangent(j, k) touches Hk from below, the common
tangent of each pair of consecutive segments Hi′ and Hj′ , with j ≤ i′ < j′ < k, from the
convex support must intersect Hk. Otherwise, there would be three segments from the
convex support not in convex position. For the same reason the common tangent of Hj
and the segment immediately before it in the convex support cannot intersect Hk. The
algorithm starts from the last two segments in the convex support and repeats moving to
the previous pair as long as there is an intersection of the pair’s common tangent with
Hk. Finally, the algorithm reaches the rightmost pair of two consecutive segments from
convex support whose common tangent does not intersect Hk. The right segment from
that pair is exactly Hj . In that moment the point g is found and reported as retargeting
point in the inner “if” branch.

The running time of algorithm is O(n), since each index k ∈ {j0 + 1, . . . , j0 +n} is pushed
on the stack and popped from the stack at most once, and output of Tangent() and
intersections can be computed in a constant time. The number of retargeting points
reported is, therefore, also O(n).

Retargeting points reported by the algorithm come in sorted order, from left to right,
which is explained by following observations. Retargeting points reported in a single
iteration of the outer for-loop belong to the same hyperbola segment, and segments come
in left-to-right order. Retargeting points reported on the same hyperbola segment are also
in the same order: inside the inner loop, Hk is consecutively intersected with lines such
that each line is of lower slope than previous and lies beneath it under Hk. Hence, each
subsequent intersection point lies to the right of the previous one.

12

This algorithm finds only retargeting points from a single period of the plotted function,
but all other retargeting points can be obtained by simply translating these horizontally
by the integral number of periods µ(P).

4.4 Events

In the process of decreasing t and dragging the left endpoint of the lever towards left, the
lever state changes at certain moments. We call such events state transition events. It is
crucial for us to be able to efficiently calculate where these events can occur. If the current
lever position, tc, and the current state are known, the following event can be determined
by maintaining the set of conceivable future events of which at least one must be realized,
and proceeding to the one that is the first to take place, i.e., the one with the largest t not
larger than tc. To do that, we must know how to calculate the value of t for each event.

We list all types of events that can happen while moving the lever leftwards, and for each
we show how to calculate the value of t, the lever position at which the event occurs. We
will give a polynomial equation describing each event type, which will be solved either for
t or for oi(t). Once we have oi(t), it is easy to obtain t, as

t =
oi(t)

2 − d2i −m2
i

2(oi(t)−mi)
. (4)

In the process of determining t, we will repeatedly encounter fixed degree polynomial
equations. Solving them can be assumed to be a constant time operation, see [10].

We will also frequently use the following two utility functions, cj(o) and sj(o).

For o < mj , let cj(o) be such that H(cj(o)) := (cj(o), h(cj(o))) is the contact point of the
hyperbola hj and its tangent through the point (o, 0). Given o, the value cj(o) can be
calculated by solving the equation h′j(cj(o)) = hj(cj(o))/(cj(o)− o), which results in

cj(o) =
d2j +m2

j −mjo

mj − o
. (5)

Function sj(o) is defined as the slope of the tangent to the hyperbola hj through the point
(o, 0), that is, the line through points (o, 0) and H(cj(o)),

sj(o) =
hj(cj(o))

cj(o)− o
= 1/

√(
mj − o
dj

)2

+ 1. (6)

These functions are used when we know that the lever for t is a tangent to some hyperbola
segmentHj . Then we know that the lever touchesHj at the point with coordinate cj(o(t)),
and that its slope equals sj(o(t)).

Let us first consider jump destination change event, a type of event which is not a state
transition event. Nevertheless, it is still necessary to react to events of this kind in order
to update a parameter needed for calculating events that do change state. As we decrease
t, we keep track of jump destination for position c(t) in variable jm := jump(c(t)).

13

4.4.1 Jump destination change event

Jump destination jm changes whenever C(t) passes over some retargeting point. At that
moment it is necessary to recalculate all future events involving jumps, since jm is used
for their calculation. Let z be the next retargeting position, i.e., the rightmost one that
lies to the left of c(tc), where tc is current lever position. Depending on the lever state, we
calculate the event position in one of the following ways.

• The current state is 〈i, j〉V

The jump destination change event cannot occur before leaving this state since C(t)
stands still at the “wedge tip”, so it cannot pass over any retargeting point.

• The current state is 〈i, j〉K

Here the lever is tangent to Hj , so this event can only happen if z > mj . Otherwise,
the lever would have nonpositive slope when touching the plot at H(z). The equation
describing this event is

cj(oi(t)) = z,

and it solves to

oi(t) =
d2j − zmj +m2

j

mj − z
.

• The current state is 〈i, j〉Y

The right endpoint of the lever slides over Hj and will coincide with H(z) at

t = z − µ(P)/2.

Note that jm is not used in the description of the lever state, so, as already noted, jump
destination change event does not change the current state.

All the other events that need to be considered are state transition events.

4.4.2 State transition events

In the following list we give all possible types of state transition events, and we show how
to calculate corresponding t value for each of them. To make this enumeration easier to
follow, we group event types in four groups, depending on the resulting phase of the event:
〈i, j〉, 〈i− 1, j〉, 〈i, j − 1〉 and 〈i, jm〉.

Event types leading to 〈i, j〉 phase:

• 〈i, j〉Y → 〈i, j〉K and 〈i, j〉K → 〈i, j〉Y

In this event the lever changes from being a tangent to Hj to touching Hj with its
right endpoint, or the other way round. The corresponding equation for this event
is

cj(oi(t)) = t+ µ(P)/2,

which can be transformed into a cubic equation in t.

14

Since there can be at most three real solutions to that equation, it is possible that
this event takes place at most three times for same i and j. On each occurrence of
the event the lever switches between being a tangent and touching the plot with its
right endpoint.

• 〈i, j〉K → 〈i, j〉V

This event happens when the point in which the lever is touching Hj reaches ej .
Here, the lever is tangent to Hj , and since it must have a positive slope, this will
only happen if ej > mj . The equation for the event is

cj(oi(t)) = ej ,

which solves to

oi(t) =
d2j − ejmj +m2

j

mj − ej
.

Event types leading to 〈i− 1, j〉 phase:

• 〈i, j〉x → 〈i− 1, j〉x, where x ∈ {Y,K,V}
This is the event when the interval to which t belongs changes from [ei, ei+1) to
[ei−1, ei), so this event happens at ei,

t = ei.

Event types leading to 〈i, j − 1〉 phase:

• 〈i, j〉Y → 〈i, j − 1〉Y

Here, the right endpoint of the lever slides continuously from one hyperbola segment
to another,

t = ej − µ(P)/2.

• 〈i, j〉V → 〈i, j − 1〉Y

This event happens when the lever stops touching the tip of the wedge and starts to
slide its right endpoint over the hyperbola segment on the left of the wedge,

t = ej − µ(P)/2.

• 〈i, j〉V → 〈i, j − 1〉K

This event happens when the lever stops touching the tip of the wedge and becomes
a tangent of the hyperbola segment on the left of the wedge. This can only happen
if ej > mj−1,

cj−1(oi(t)) = ej ,

which solves to

oi(t) =
d2j−1 − ejmj−1 +m2

j−1
mj−1 − ej

.

Event types leading to 〈i, jm〉 phase:

15

• 〈i, j〉Y → 〈i, jm〉K

This event happens when the lever state changes from having an endpoint on Hj to
being a tangent to Hjm . The corresponding equation is

sjm(oi(t)) =
hj(t+ µ(P)/2)

hi(t) + µ(P)/2
,

which further transforms into a polynomial equation in t.

The line through oi(t) with slope sjm(oi(t)) touches the hyperbola hjm , but we need
to be sure that it actually touches the segment Hjm of that hyperbola. It may as
well be the case that Hjm is not wide enough to have a common point with the line.
More precisely, the first coordinate, u, of the touching point between the line and
hjm must belong to the interval [ejm , ejm+1). To get that coordinate, we solve the
equation

h′jm(u) = sjm(oi(t)).

Having in mind that oi(t) < mjm < u must hold, we get a single solution

u = mjm +
d2jm

mjm − oi(t)
.

If u /∈ [ejm , ejm+1), we do not consider this event.

Checking if the line through oi(t) with slope sjm(oi(t)) actually touches the hyperbola
segment Hjm will also be used in the calculation for the following event types, where
we will refer to it by the name collision check.

• 〈i, j〉K → 〈i, jm〉K

This event happens when the lever becomes a tangent to two hyperbola segments, Hj
and Hjm simultaneously. It can only happen if Hjm is lower than Hj , i.e., djm < dj ,

sjm(oi(t)) = sj(oi(t)).

Since oi(t) < mjm and oi(t) < mj , the only solution is

oi(t) =
djmjm − djmmj

dj − djm
.

Here we need to apply the collision check described earlier to see if the common
tangent actually touches Hjm . If the check fails, we do not consider this event.

• 〈i, j〉V → 〈i, jm〉K

This event happens when the lever stops touching the tip of the wedge and becomes
a tangent of the hyperbola segment Hjm ,

sjm(oi(t)) =
hj(ej)

ej − oi(t)
.

This can only happen if hj(ej) > djm . From that we get a quadratic equation
in oi(t). The two solutions correspond to the two tangents to hjm from the point
(ej , h(ej)), so we consider only the smaller solution, which corresponds to the left
tangent. Once again we perform the collision check to see if the tangent actually
touches Hjm , otherwise we disregard this event.

16

• 〈i, j〉Y → 〈i, jm〉V

The event when the lever state changes from having an endpoint on Hj to touching
the wedge between Hjm−1 and Hjm is described by

hjm(ejm)

ejm − oi(t)
=
hj(t+ µ(P)/2)

hi(t) + µ(P)/2
,

which again transforms into a polynomial equation in t.

• 〈i, j〉K → 〈i, jm〉V

The event in which the lever touches the wedge tip at ejm while being a tangent to
hj is represented by the following equation,

hjm(ejm)

ejm − oi(t)
= sj(oi(t)).

This can only happen if hjm(ejm) < dj . It can be transformed into a quadratic
equation in oi(t). The two solutions correspond to the two tangents to hj from the
point (ejm , h(ejm)). The smaller of the two solutions is where this event happens.

• 〈i, j〉V → 〈i, jm〉V

This event happens when the lever touches two wedges, at points Ejm and Ej simul-
taneously. This condition can be written as

hj(ej)

ej − oi(t)
=

hjm(ejm)

ejm − oi(t)
,

which is a linear equation in oi(t).

4.5 Sequence of realized states

We want to efficiently find the sequence of states through which the lever will pass on its
leftward journey, together with the positions where these state changes happen. Let the
obtained sequence be p1,S1, p2,S2, p3, . . . , pr,Sr, where p1 ≤ p2 ≤ . . . ≤ pr. Each state Sk
occurs when the lever position is exactly between pk and pk+1, where pr+1 = p1 + µ(P).
We call this sequence the sequence of realized states.

To calculate the sequence of realized states, we will start from a specific lever position that
has a known state. Let plow be any of the values for which h attains its global minimum,
and let Hj0 be the hyperbola segment above it. The algorithm starts with the lever in the
position tc = t0 = plow−µ(P)/2. This lever has its right endpoint on the plot at the point
H(plow), which means that its state is 〈i0, j0〉Y , where i0 is the index of the hyperbola
segment over t0. We note that plow must also be a retargeting position, so we also know
our initial jump destination.

The algorithm then iterates with the following operations in its main loop. It first calcu-
lates all possible events that could happen while in the current state. Among those events
let E be the one with the largest t that is not larger than tc. It is the event that must occur
next. The algorithm sets tc to t, and it either updates jump destination if E is a jump

17

destination change event, or switches to the new state if the event is a state transition
event. In the latter case, the position t and the new state are added to the sequence of
realized states. These operations are repeated until one full period of the plot is swept,
ending with tc = t0−µ(P) in the state 〈i0−n, j0−n〉Y . The procedure described is given
in Algorithm 2.

Algorithm 2 Sliding Lever Algorithm

Input: Description of a sequence of hyperbola segments.
Output: The sequence of realized states.

Find plow and j0.
t0 ← plow − µ(P)/2
Find i0.
Run Retargeting Points to find retargeting points and their jump destinations.
tc ← t0
i← i0
j ← j0
jm ← jump destination of plow
Set the current state to 〈i0, j0〉Y .
Add t0 and 〈i0, j0〉Y to the output sequence.
while tc > t0 − µ(P) do

Calculate all the events for the current state. Ignore jumping events if j = jm.
Let E be the first event to happen (the one with the largest t not larger than tc).
tc ← t of the event E.
if E is jump destination change event then

Update jm.
else

Set the current state to the destination state of E.
Add t and the current state to the output sequence.
if E is a jumping event then

jm ← j
end if

end if
end while

Theorem 2. Sliding Lever Algorithm finds the sequence of realized states in O(n)
time. The length of the produced sequence is O(n).

Proof. During the execution of the algorithm we must encounter all realized states, since
states can change only at events and by always choosing the first following possible event
to happen, we eventually consider all realized events. Realized states are encountered in
order, since tc is never increasing.

While choosing the following event we did not consider the possibility that there can
be several events with the same minimal t. However, if that happens we can choose an
arbitrary one to be the next event. This choice can influence the output sequence only by
including or excluding some states of the length zero. Importantly, such zero-length states
are irrelevant for further considerations, and no other state in the output of the algorithm
is influenced by this choice.

Each event is either a jump destination change event or a state transition event. From

18

Theorem 1 we have that there are O(n) jump destination change events, and now we will
show that there are O(n) state transition events as well.

Each state transition event transitioning from some 〈i, j〉 state decreases either i, or j or
both. The only exception are the events 〈i, j〉K → 〈i, j〉Y and 〈i, j〉Y → 〈i, j〉K, however
those events can happen at most three times in total for the same i and j. Note that
jm ≤ j, but when jm = j, we do not consider events involving jm. Variables i and j start
with values i0 and j0, and, after the loop finishes, they are decreased to i0−n and j0−n.
Hence, no more than O(n) state transition events occurred, implying the linear length of
the sequence of realized states.

Calculation of each state transition event takes a constant time, at each iteration a constant
number of potential events is considered, and loop is iterated O(n) times. To find the next
jump destination change event, we move through the sorted list of retargeting positions
until we encounter the first retargeting position not greater than tc. The total time for
calculating jump destination change events, over all iterations, is linear. Therefore, the
running time of the whole algorithm is also linear.

5 Merging the two dilations

In this section we will show how to use output of the sliding lever algorithm to give an
answer to our original question. The algorithm is run once for the left and once the right
dilation, and the obtained sequences of realized states are merged into a single sequence.
Finally, we will explain how to find the overall minimum dilation and the optimal feed-link
by iterating through the merged sequence.

Knowing the sequence of realized states is sufficient to determine the exact lever slope at
any position. Remember, the lever slope at position t is the inverse of the left dilation via
P (t), as shown in (3). But, to know the dilation via some point we need both the left and
the right dilations via that point (1).

Our sliding lever algorithm was initially designed only for the left dilation, but an analogous
algorithm can obviously be designed for the right dilation (or, we can perform the exact
same algorithm for the left dilation on the mirror image of the polygon P , and then
transform obtained results appropriately). This implies the concept of the right dilation
lever for t (as opposed to the left dilation lever, or just the lever, as we have been calling it
until now), which has negative slope and touches the plot on the left side of t. We will use
+ and − in superscript denoting relation with the left and the right dilation, respectively.

Let p+1 ,S
+
1 , p

+
2 ,S

+
2 , p

+
3 , . . . , p

+
r+
,S+

r+
and p−1 ,S

−
1 , p

−
2 ,S

−
2 , p

−
3 , . . . , p

−
r− ,S

−
r− be the sequences

of realized states for the left and the right dilation, respectively, where both sequences p+

and p− are in nondecreasing order. For simplicity, let us call them the left and the right
sequence, respectively. States for right dilation are described by 〈i, j〉 notation as well,
with the meaning analogous to the meaning of the notation for the left dilation states.
We say that the (right dilation) lever for t is in the phase 〈i, j〉, when Hi is the hyperbola
segment above t, and the (right dilation) lever touches the hyperbola segment Hj .

We now merge the two obtained sequences by overlapping them into a new sequence
p1,S1, p2,S2, p3, . . . , pr,Sr. In the merged sequence, p1 ≤ p2 ≤ . . . ≤ pr is the sorted

19

union of {p+1 , p
+
2 , . . . , p

+
r+
} and {p−1 , p

−
2 , . . . , p

−
r−}. States in the merged sequence are pairs

consisting of one state from the left sequence and one state from the right sequence. Each
state Sk = (S+

k+
,S−

k−) in the merged sequence is such that S+
k+

and S−
k− are states covering

the interval between pk and pk+1 in the left and in the right sequence, respectively.

By Theorem 2, both r+ and r− are O(n), so the length of the merged sequence is also
linear in n. Because the left and the right sequences are sorted, the merged sequence can
be computed in O(n) time.

For each state Sk = (S+
k+
,S−

k−) there is a single expression for computing the lever slope
as a function of t, when pk ≤ t ≤ pk+1, both for the left and the right dilation. To find
the minimal dilation while in that state, we want to find t which maximizes the minimum
of the two slopes for the left and the right lever. This observation readily follows from (1)
and (3), so

min
pk≤t≤pk+1

δ̃P (t) =
1

maxpk≤t≤pk+1
min{s̃+(t), s̃−(t)}

, (7)

where s̃+(t) is the slope for the left dilation lever for t, and s̃−(t) is the slope for the right
dilation lever for t.

This means that to get the final value of the optimal dilation we essentially need to compute
the minimum of the upper envelope of two functions, which is a standard procedure that
can be done efficiently. In the following, we take a closer look at the computations needed
to complete this step in our setting.

For all possible combinations of the left and the right state types in a combined state,
we show how to find the maximum of the lower envelope of the slope functions s̃+(t) and
s̃−(t) by analyzing the shape of those functions. The following lemmas help us describe
them.

Let us assume that the corresponding state to which t belongs is S = (S+,S−), and let
s+〈i,j〉K(t) be a function which maps t to the slope of a lever, assuming that the lever is in

〈i, j〉K state. Analogously we define s+〈i,j〉V (t), s+〈i,j〉Y (t), s−〈i,j〉K(t), s−〈i,j〉V (t) and s−〈i,j〉Y (t).

Lemma 3. If S+ is a 〈i, j〉K state, then s̃+(t) is a monotonically nondecreasing function.

Proof. If S+ is an 〈i, j〉K state, then, from equation (6), we have

s̃+(t) = s+〈i,j〉K(t) = sj(oi(t)) =
hj(cj(oi(t)))

cj(oi(t))− oi(t)
= 1/

√(
mj − oi(t)

dj

)2

+ 1.

We see that the function sj is monotonically increasing for parameter values less than mj .
In the specified state, oi(t) < mj holds, and since o(t) is monotonically nondecreasing
(Lemma 2), it means that s̃+(t), being the composition of sj and o(t), is monotonically
nondecreasing as well.

Lemma 4. If S+ is a 〈i, j〉V state, then s̃+(t) is a monotonically nondecreasing function.

20

Proof. If S+ is an 〈i, j〉V state, then we have

s̃+(t) = s+〈i,j〉V (t) =
hj(ej)

ej − oi(t)
.

We see that s̃+(t) is monotonically increasing in terms of oi(t) when oi(t) < ej , which holds
in the specified state. Since o(t) is monotonically nondecreasing (Lemma 2), it means that
s̃+(t) is monotonically nondecreasing in terms of t as well.

Similar observations hold for the right dilation analogues: s̃−(t) is monotonically nonin-
creasing if S−(t) is 〈i, j〉K or 〈i, j〉V state.

Lemma 5. If S− is a 〈i, j〉Y state then s̃+(t) ≤ s̃−(t).

Proof. From equation (3), using the fact that hj(t) = hj+n(t+µ(P)) holds because of the
periodicity, we have

s̃−(t) =
hj(t− µ(P)/2)

hi(t) + µ(P)/2

=
hj+n(t+ µ(P)/2)

hi(t) + µ(P)/2

= s(t, t+ µ(P)/2)

≥ min
tr∈[t,t+µ(P)/2]

s(t, tr)

= s̃+(t).

Analogously, if S+ is a 〈i, j〉Y state then s̃−(t) ≤ s̃+(t).

For equation (7) we need to calculate maxpk≤t≤pk+1
min{s̃+(t), s̃−(t)}. This calculation

depends on the types of the states S+ and S− in the specified interval. We analyze nine
possible type combinations.

• If S+ is 〈i, j+〉Y state and S− is 〈i, j−〉Y state:

Using Lemma 5 we get s̃+(t) = s̃−(t), so

max
pk≤t≤pk+1

min{s̃+(t), s̃−(t)} = max
pk≤t≤pk+1

s+〈i,j+〉Y (t).

The maximum is achieved either at interval ends or at a local maxima, if one exists,
which is found by solving a polynomial equation.

• If S+ is 〈i, j+〉K state and S− is 〈i, j−〉Y state:

Using Lemma 5 and Lemma 3 we get

max
pk≤t≤pk+1

min{s̃+(t), s̃−(t)} = max
pk≤t≤pk+1

s+〈i,j+〉K(t) = s+〈i,j+〉K(pk+1).

21

• If S+ is 〈i, j+〉K state and S− is 〈i, j−〉K state:

From Lemma 3 we know that s+〈i,j+〉K(t) is monotonically nondecreasing, and s−〈i,j−〉K(t)

is monotonically nonincreasing. The highest point of the lower envelope of these func-
tions on [pk, pk+1] is thus located either at one end of the interval, or at the point
of the intersection of the two functions, which can be found by solving a polynomial
equation.

The other six combinations of state types are not listed, but each of them is resolved in a
manner very similar to the one of the above three combinations. Cases with 〈·, ·〉V states
are resolved analogously to the cases having 〈·, ·〉K states instead by using Lemma 4 in
place of Lemma 3, and the remaining cases are analogous to the cases having “pluses” and
“minuses” swapped.

Finally, by taking the smallest of all dilation minima from [pk, pk+1] intervals for k ∈
{1, 2, . . . r} we obtain the overall minimum dilation,

δ = min
k∈{1,2,...,r}

min
pk≤t≤pk+1

δ̃P (t).

While going through calculated interval minima we maintain the value of t for which the
minimum is achieved, so we also get the point on P which is the endpoint of the optimal
feed-link.

6 Conclusion

The problem we considered asked for the optimal extension of a polygonal network by
connecting a specified point to the rest of the network via a feed-link. We gave a linear
time algorithm for solving this problem, thus improving upon the previously best known
result of Aronov et al. presented in [3].

On the way to solution, we performed several steps. First, we divided the concept of
dilation into the left and the right dilation, so that the two can be analyzed separately.
Then we transformed them into the problem which considers the plot of the distance
function and lever slopes, an gave an algorithm for event based simulation of the lever
movement. The output of the algorithm is the description of the changes in the lever slope
presented as a sequence of states, each of which can be expressed analytically. Finally, we
explained how those state sequences for the left and the right dilation can be merged and
how the optimal feed-link can be found from it.

We note that the method we used for solving the original problem can be easily adapted
to work with any network shaped as an open polygonal chain.

Aronov et al. in [3] discuss polygons with obstacles. They show how polygonal obstacles
with total number of vertices equal to b induce a partition of the polygon boundary of the
size O(nb), and how that partition can be computed in O(nb+b log b) time. Each segment
of the partition has a distance function to p similar to function hi(t), the only difference
being an additive constant. In our setting, this makes the hyperbola segments in the plot
to shift upward by that constant, which means that the problem with obstacles can also
be handled by our approach. This variation would require a more elaborate case study

22

from Section 4.4.2. The equations in respective cases would also change, but they would
still remain polynomial and thus efficiently solvable. We will not pursue the details in the
present paper.

A natural way to generalize the problem is to assume that the polygon edges are not
line segments, but curves (second order curves, for example). The abstraction behind our
method can be applied in this case provided that there is an efficient way to determine
the event times and to find optimal values in the merged sequence.

Another obvious generalization is asking for a set of k > 1 feed-links that minimize the
dilation. Aronov et al. in [3] give an approximate algorithm for computing such a set.
However, finding an efficient algorithm that solves this problem exactly is still open. One
could try to apply our approach here, but we do not see that this can be done in a
straightforward fashion.

It would also be interesting to see whether a similar method can be applied to a network
which is not necessarily polygonal, i.e., to a network whose vertices can have degree greater
than two.

Acknowledgments

We would like to thank the anonymous referees whose comments and insights improved
our paper.

References

[1] A. Dahlgren and L. Harrie. Evaluation of computational methods for connecting
points to large networks. Mapping and Image Science, (4):45–54, 2006.

[2] A. Dahlgren and L. Harrie. Development of a tool for proximity applications. In
Proceedings of AGILE, 2007.

[3] B. Aronov, K. Buchin, M. Buchin, B. Jansen, T. de Jong, M. van Kreveld, M. Löffler,
J. Luo, R.I. Silveira, and B. Speckmann. Connect the dot: Computing feed-links for
network extension. Journal of Spatial Information Science, (3):3–31, 2012.

[4] P. Bose, K. Dannies, J.L. De Carufel, C. Doell, C. Grimm, A. Maheshwari, S. Schirra,
and M. Smid. Network farthest-point diagrams and their application to feed-link
network extension. Journal of Computational Geometry, 4(1):182–211, 2013.

[5] G. Narasimhan and M. Smid. Approximating the stretch factor of euclidean graphs.
SIAM Journal on Computing, 30(3):978–989, 2000.

[6] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A fast algorithm for
approximating the detour of a polygonal chain. Computational Geometry Theory and
Applications, 27(2):123–134, 2004.

[7] P.K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, and M. Soss. Computing
the detour and spanning ratio of paths, trees and cycles in 2d and 3d. Discrete and
Computational Geometry, 39(1–3):17–37, 2008.

23

[8] A. Ebbers-Baumann, A. Grune, and R. Klein. On the geometric dilation of finite
point sets. Algorithmica, 44(2):137–149, 2006.

[9] A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Infor-
mation Processing Letters, 9(5):216–219, 1979.

[10] A. Dickenstein and I.Z. Emiris. Solving polynomial equations: Foundations, algo-
rithms, and applications, volume 14. Springer Verlag, 2005.

24

