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Nataša Krklec Jerinkić ‡
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Abstract

Recently, an idling mechanism has been introduced in the context of
distributed first order methods for minimization of a sum of nodes’ local
convex costs over a generic, connected network. With the idling mech-
anism, each node i, at each iteration k, is active – updates its solution
estimate and exchanges messages with its network neighborhood – with
probability pk (pk increasing to one as k grows large), and it stays idle
with probability 1−pk, while the activations are independent both across
nodes and across iterations. The idling mechanism involves an increasing
number of nodes in the algorithm (on average) as the iteration counter k
grows, thus avoiding unnecessarily expensive exact updates at the initial
iterations while performing beneficial close-to-exact updates near the so-
lution. In this paper, we demonstrate that the idling mechanism can be
successfully incorporated in distributed second order methods also. Specif-
ically, we apply the idling mechanism to the recently proposed Distributed
Quasi Newton method (DQN). We first show theoretically that DQN with
idling exhibits very similar theoretical convergence and convergence rates
properties as the standard DQN method, thus achieving the same order
of convergence rate (R-linear) as the standard DQN, but with signifi-
cantly cheaper updates. Further, we demonstrate by simulation examples
significant communication and computational savings gained through in-
corporation of the idling mechanism.
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1 Introduction

Context and motivation. The problem of distributed minimization of a sum
of nodes’ local costs across a (connected) network has received a significant and
growing interest in the past decade, e.g., [17, 10, 20, 14]. Such problem arises in
various application domains, including wireless sensor networks, e.g., [23], smart
grid, e.g., [1], distributed control applications, e.g., [2], etc.

In the recent paper [4], a class of novel distributed first order methods has
been proposed, motivated by the so-termed “hybrid” methods in [6] for (cen-
tralized) minimization of a sum

∑n
i=1 fi(x) of convex component functions. The

main idea underlying a hybrid method in [6] is that it is designed as a combi-
nation of 1) an incremental or stochastic gradient method (or, more generally,
an incremental or stochastic Newton-like method) and 2) a full (standard) gra-
dient method (or a standard Newton-like method); it behaves as the stochastic
method at the initial algorithm stage, and as the standard method at a later
stage. An advantage of the hybrid method is that it potentially inherits some fa-
vorable properties of both incremental/stochastic and standard methods, while
eliminating their important drawbacks. For example, the hybrid exhibits fast
convergence at initial iterations k while having inexpensive updates, just like
incremental/stochastic methods. On the other hand, it eliminates the oscilla-
tory behavior of incremental methods around the solution for large k’s (because
for large k’s it behaves as a full/standard method). Hybrid methods calculate a
search direction at iteration k based on a subset (sample) of the fi’s, where the
sample size is small at the initial iterations (mimicking a stochastic/incremental
method), while it approaches the full sample n for large k’s (essentially matching
a full, standard method).

With distributed first order methods in [4], the sample size at iteration k
translates into the number of nodes that participate in the distributed algorithm
at k. More precisely, therein we introduce an idling mechanism where each node
in the network at iteration k is active with probability pk and stays idle with
probability 1−pk, where pk is increasing to one with k, while the activations are
independent both across nodes and through iterations. Reference [4] analyzes
convergence rates for a distributed gradient method with the idling mechanism
and demonstrates by simulation that idling brings significant communication
and computational savings.

Contributions. The purpose of this paper is to demonstrate that the idling
mechanism can be incorporated in distributed second order, i.e., Newton-like
methods also, by both 1) establishing the corresponding convergence rate an-
alytical results, and 2) showing through simulation examples that idling con-
tinues to bring significant efficiency improvements. Specifically, we incorporate
here the idling mechanism in the Distributed Quasi Newton method (DQN) [3].
(The DQN method has been proposed and analyzed in [3], only for the scenario
when all nodes are active at all times.) DQN and its extension PMM-DQN
are representative distributed second order methods that exhibit competitive
performance with respect to the current distributed second order alternatives,
e.g., [14, 22, 15].
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Our main results are as follows. Assuming that the fi’s are twice contin-
uously differentiable with bounded Hessians, we show that, as long as pk con-
verges to one at least as fast as 1− 1/k1+ζ (ζ > 0 arbitrarily small), the DQN
method with idling converges in the mean square sense and almost surely to the
same point as the standard DQN method that activates all nodes at all times.
Furthermore, when pk converges to one at a geometric rate, then the DQN al-
gorithm with idling converges to its limit at a R-linear rate in the mean square
sense. Finally, simulation examples demonstrate that idling can bring to DQN
significant improvements in computational and communication efficiencies.

From the technical side, extending the analysis of either distributed gradient
methods with idling [4] or DQN without idling [3] to the scenario considered here
is highly nontrivial. With respect to the standard DQN (without idling), here
we need to cope with inexact variants of the DQN-type second order search di-
rections. With respect to gradient methods with idling, showing boundedness of
the sequence of iterates and consequently bounding the “inexactness amounts”
of the search directions are considerably more challenging and require a different
approach.

Brief literature review. There has been a significant progress in the de-
velopment of distributed second order methods in past few years. Reference [14]
proposes a method based on a penalty-like interpretation [11] of the problem of
interest, by applying Taylor expansions of the Hessian of the involved penalty
function. In [22], the authors develop a distributed version of the Newton-
Raphson algorithm based on consensus and time-scale separation principles.
References [15] and [16] propose distributed second order methods based on
the alternating direction method of multipliers and the proximal method of
multipliers, respectively. References [24, 21] develop distributed second order
methods for the problem formulations that are related but different than what
we consider in this paper, namely they study network utility maximization type
problems. All the above works [14, 22, 3, 15, 16, 24, 21] assume that all nodes
are active across all iterations, i.e., they are not concerned with designing nor
analyzing stochastic nor asynchronous variants of the methods therein.

Related with our work are also papers that study distributed first and second
order methods with either 1) asynchronous updates or 2) random/time varying
networks. The former thread of works, e.g., [9, 8, 7], considers asynchronous
distributed schemes where, like with the idling-based methods here, a subset of
nodes is active at each iteration. However, in contrast with this paper, the sub-
sets with their methods do not eventually increase towards the full set of network
nodes. The latter thread of works on distributed consensus and optimization
under time varying or random networks, e.g., [17, 19, 13], considers “sparsified”
inter-neighbor communications across the network, as we do here. However,
differently from [17, 19, 13], our model also allows that the nodes’ computation
is “sparsified,” in the sense that a subset of nodes stays completely idle at an
iteration.

Finally, in a companion paper [5], we presented a brief preliminary version
of the current paper, wherein a subset of the results here are presented without
proofs. Specifically, [5] considers convergence of DQN with idling only when
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the activation probabilities geometrically converge to one, while here we also
consider the scenarios where the activation probability converges to one sub-
linearly; we also include here extensions where this parameter stays bounded
away from one.

A feature of the standard DQN method (and hence also of DQN with idling)
and of related methods [14] is that their convergence point is not the exact global
solution x∗ of the problem of interest, but it is a point in a neighborhood of x∗.
This drawback has been recently successfully eliminated in [16] to make the
algorithm convergent exactly to x∗, and the methodology of [16] is subsequently
applied in [3] to derive an exactly-converging extension of DQN. It is certainly
of interest to incorporate and analyze idling in the context of such exact second
order distributed methods, and this is an interesting future research direction.
Nonetheless, the analysis of idling with DQN – carried out in this paper – is a
highly nontrivial and relevant first phase towards this goal.

Paper organization. Section 2 describes the model that we assume and
gives the necessary preliminaries. Section 3 presents the DQN algorithm with
idling, while Section 4 analyzes its convergence and convergence rate. Section 5
considers DQN with idling in the presence of persisting idling, i.e., it considers
the extension when pk does not necessarily converge to one. Section 6 provides
numerical examples. Finally, we conclude in Section 7.

2 Model and preliminaries

Subsection 2.1 gives preliminaries and explains the network and optimization
models that we assume. Subsection 2.2 briefly reviews the DQN algorithm
proposed in [3].

2.1 Optimization–network model

We consider distributed optimization where n nodes in a connected network
solve the following unconstrained problem:

minx∈Rp f(x) =

n∑
i=1

fi(x). (1)

Here, fi : Rp → R is a convex function known only by node i. We impose the
following assumptions on the fi’s.
Assumption A1. Each function fi : Rp → R, i = 1, . . . , n is twice contin-
uously differentiable, and there exist constants 0 < µ ≤ L < ∞ such that for
every x ∈ Rp

µI � ∇2fi(x) � LI.

Here, I denotes the p × p identity matrix, and P � Q (where P and Q are
symmetric matrices) means that Q−P is positive semidefinite. Assumption A1
implies that each fi is strongly convex with strong convexity parameter µ, and
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it also has Lipschitz continuous gradient with Lipschitz constant L, i.e., for all
i = 1, ..., n, there holds:

fi(y) ≥ fi(x) +∇fi(x)T (y − x) +
µ

2
‖x− y‖2, x, y ∈ Rp

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖, x, y ∈ Rp.

Here, notation ‖ · ‖ stands for the Euclidean norm of its vector argument and
the spectral norm of its matrix argument. Under Assumption A1, problem (1)
is solvable and has the unique solution x∗ ∈ Rp.

Nodes i = 1, ..., n constitute an undirected network G = (V, E), where V is
the set of nodes and E is the set of edges. Denote by m the total number of
(undirected) edges (the cardinality of E). The presence of edge {i, j} ∈ E means
that the nodes i and j can directly exchange messages through a communication
link. Further, let Oi be the set of all neighbors of a node i (excluding i), and
define also Ōi = Oi

⋃
{i}.

Assumption A2. The network G = (V, E) is connected, undirected and simple
(no self-loops nor multiple links).

We associate with network G a n × n weight matrix that has the following
properties.
Assumption A3. Matrix W = WT ∈ Rn×n is stochastic, with elements wij
such that

wij > 0 if {i, j} ∈ E, wij = 0 if {i, j} /∈ E, i 6= j, and wii = 1−
∑
j∈Oi

wij ;

further, there exist constants wmin and wmax such that for i = 1, . . . , n, there
holds:

0 < wmin ≤ wii ≤ wmax < 1.

Denote by λ1 ≥ . . . ≥ λn the eigenvalues of W. Then, we have that λ1 = 1,
all the remaining eigenvalues of W are strictly less than one in modulus, and
the eigenvector that corresponds to the unit eigenvalue is e := 1√

n
(1, . . . , 1)T .

Let x = (xT1 , . . . , x
T
n )T ∈ Rnp, with xi ∈ Rp, and denote by Z ∈ Rnp×np the

Kronecker product of W and the identity I ∈ Rp×p,Z = W ⊗ I.1 We will make
use of the following penalty reformulation of (1) [11]:

minx∈RnpΦ(x) := α

n∑
i=1

fi(xi) +
1

2
xT (I− Z)x. (2)

Here, α > 0 is a constant that, as we will see ahead, plays the role of a step
size with the distributed algorithms that we consider. The rationale behind
introducing problem (2) and function Φ is that they enable one to interpret
the distributed first order method in [17] to solve (1) as the (ordinary) gradient
method applied on Φ, which in turn facilitates the development of second order

1Throughout, we shall use “blackboard bold” upper-case letters for matrices of size (np)×
(np) (e.g., Z), and standard upper-case letters for matrices of size n× n or p× p (e.g., W ).
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methods; see, e.g., [14], for details. Denote by x∗ =
(
(x∗1)T , ..., (x∗n)T

)T ∈ Rnp
the solution to (2), where x∗i ∈ Rp, for all i = 1, ..., n. It can be shown that, for
all i = 1, ..., n, ‖x∗i − x∗‖ = O(α), i.e., the distance from the desired solution x∗

of (1) and x∗i is of the order of step size α, e.g., [14]. Define also F : Rnp → R,
F (x) =

∑n
i=1 fi(xi).

We study distributed second order algorithms to minimize function Φ (and
hence, find a near optimal solution of (1)). Therein, the Hessian of function Φ
and its splitting into a diagonal and an off-diagonal part will play an important
role. Specifically, first consider the splitting:

Wd = diag(W ), Wu = W −Wd (3)

Z = Z(W ) = Zd + Zu, where

Zd = Wd ⊗ I = diag(Z), and Zu = Wu ⊗ I.

(Here, diag(P ) is the diagonal matrix with the diagonal elements equal to those
of matrix P .)

Further, decompose the Hessian of Φ as:

∇2Φ(x) = A(x)−G, (4)

with A : Rnp → R(np)×(np) given by:

A(x) = α∇2F (x) + (1 + θ)(I− Zd), (5)

and
G = G(Z, θ) = Zu + θ(I− Zd), (6)

for some θ ≥ 0.
We close this subsection with the following result that will be needed in

subsequent analysis. For claim (a), see Lemma 3.1 in [18]; for claim (b), see,
e.g., Lemma 4.2 in [12].

Lemma 2.1. Consider a deterministic sequence {ak} converging to zero, with
ak > 0, k = 0, 1, ..., and let ν ∈ (0, 1).

(a) Then, there holds:

k∑
t=1

νk−tat−1 → 0 as k →∞. (7)

(b) If, moreover, {ak} converges to zero R-linearly, then the sum in (7) also
converges to zero R-linearly.

2.2 Algorithm DQN

We will incorporate the idling mechanism in the algorithm DQN proposed in [3].
The main idea behind DQN is to approximate the Newton direction with respect
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to function Φ in (2) in such a way that distributed implementation is possible,
while the error in approximating the Newton direction is not large. For com-
pleteness, we now briefly review DQN. All nodes are assumed to be synchronized
according to a global clock and perform in parallel iterations k = 0, 1, ... The
algorithm maintains iterates xk = ( (xk1)T , ..., (xkn)T )T ∈ Rnp, over iterations
k = 0, 1, ..., where xki ∈ Rp plays the role of the solution estimate of node i,
i = 1, ..., n. DQN is presented in Algorithm 1 below. Therein, Ak := A(xk),
where A(x) is given in (5); also, notation ‖ · ‖ stands for the Euclidean norm of
its vector argument and spectral norm for its matrix argument.

Algorithm 1: DQN in vector format
Given x0 ∈ Rnp, ε, ρ, θ, α > 0. Set k = 0.

(1) Chose a diagonal matrix Lk ∈ Rnp×np such that

‖Lk‖ ≤ ρ. (8)

(2) Set
sk = −(I− LkG)A−1

k ∇Φ(xk). (9)

(3) Set
xk+1 = xk + εsk, k = k + 1. (10)

We now briefly comment on the algorithm and the involved parameters. DQN
takes the step in the direction sk scaled with a positive step size ε > 0; direc-
tion sk in (9) is an approximation of the Newton direction

skN = −
[
∇2Φ(xk)

]−1∇Φ(xk).

Unlike Newton direction skN, direction sk admits an efficient distributed imple-
mentation. Inequality (8) corresponds to a safeguarding step that is needed to
ensure that sk is a descent direction with respect to function Φ; the nonnegative
parameter ρ controls the safeguarding (see [3] for details on how to set ρ for a
given problem). The diagonal matrix Lk controls the off-diagonal part of the
Hessian inverse approximation [3]. Various choices for Lk that are easy to im-
plement and do not induce large extra computational and communication costs
have been introduced in [3]. Possible and easy-to-implement choices are Lk = 0
and Lk = −ρ I.

As it is usually the case with second order methods, step size ε should be
in general strictly smaller than one to ensure global convergence. However,
extensive numerical simulations on quadratic and logistic losses demonstrate
that both DQN and DQN with idling converge globally with the full step size
ε = 1 and choices Lk = 0, and Lk = −I.

The remaining algorithm parameters are as follows. Quantity θ ≥ 0 controls
the splitting (5); reference [3] shows by simulation that it is usually beneficial
to adopt a small positive value of θ or θ = 0. Finally, α > 0 defines the penalty
function Φ in (2) and results in the following tradeoff in the performance of DQN:
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a smaller value of α leads to a better asymptotic accuracy of the algorithm, while
it also slows down the algorithm’s convergence rate. By asymptotic accuracy, we
assume here the distance between the point of convergence of DQN x∗ (which
is actually equal to the solution of (2) – see [3]) and the solution x∗ of (1). (As
noted before, the corresponding distance is O(α) [14].)

In Algorithm 2, we present DQN from the perspective of distributed imple-
mentation. Therein, we denote by Λki and Aki , respectively, the p × p block on
the (i, i)-th position of matrices Lk and Ak. Similarly, Gij is the p× p block at
the (i, j)-th position of G.

Algorithm 2: DQN – distributed implementation
At each node i, require x0

i ∈ Rp, ε, ρ, θ, α > 0.

(1) Initialization: Each node i sets k = 0 and x0
i ∈ Rp.

(2) Each node i transmits xki to all its neighbors j ∈ Oi and receives xkj from
all j ∈ Oi.

(3) Each node i calculates

dki =
(
Aki
)−1

α∇fi(xki ) +
∑
j∈Oi

wij
(
xki − xkj

) .
(4) Each node i transmits dki to all its neighbors j ∈ Oi and receives dkj from

all j ∈ Oi.

(5) Each node i chooses a diagonal p× p matrix Λki , such that ‖Λki ‖ ≤ ρ.

(6) Each node i calculates:

ski = −dki + Λki
∑
j∈Ōi

Gij d
k
j .

(7) Each node i updates its solution estimate as:

xk+1
i = xki + ε ski .

(8) Set k = k + 1 and go to step 2.

Note that, when Λki ≡ 0, for all i, k, steps 4-6 are skipped, and the algorithm
involves a single communication round per iteration, i.e., a single transmission
of a p-dimensional vector (step 2) by each node; when Λki ≡ −ρk I, ρk 6= 0, then
two communication rounds (steps 2 and 4) per k are involved.

3 Algorithm DQN with idling

Subsection 3.1 explains the idling mechanism, while Subsection 3.2 incorporates
this mechanism in the DQN method.

8



3.1 Idling mechanism

We incorporate in DQN the following idling mechanism. Each node i, at each it-
eration k, is active with probability pk, and it is inactive with probability 1−pk.2

Active nodes perform updates of their solution estimates (xki )’s and partici-
pate in each communication round of an iteration, while inactive nodes do not
perform any computations nor communications, i.e., their solution estimates
(xki )’s remain unchanged. Denote by ξki the Bernoulli random variable that
governs the activity of node i at iteration k. Then, we have that probability
P
(
ξki = 1

)
= 1−P

(
ξki = 0

)
= pk, for all i. We furthermore assume that ξki and

ξ`j are mutually independent over all i 6= j and k 6= `. Throughout the paper,
we impose the following Assumption on sequence {pk}.
Assumption A4. Consider the sequence of activation probabilities {pk}. We
assume that pk ≥ pmin, for all k, for some pmin > 0. Further, {pk} is a non-
decreasing sequence with limk→∞ pk = 1. Moreover, we assume that

0 ≤ uk ≤
Cu

(k + 1)1+ζ
, (11)

where uk = 1− pk, Cu is a positive constant and ζ > 0 is arbitrarily small.
Assumption A4 means that, on average, an increasing number of nodes be-

comes involved in the optimization process; that is, intuitively, in a sense the
precision of the optimization process increases with the increase of the iteration
counter k. (Extensions to the scenarios when pk does not necessarily converge
to one is provided in Section 5.) We also assume that pk converges to one
sufficiently fast, where sublinear convergence 1− 1/k1+ζ is sufficient.

For future reference, we also define the diagonal (np)×(np) (random) matrix
Yk = diag(ξk1 , . . . , ξ

k
n) ⊗ I, where I is the p × p identity matrix. Also, we

define the p × p random matrix W k = [wkij ] by wkij = wijξ
k
i ξ
k
j for i 6= j, and

wkii = 1−
∑
i 6=j w

k
ij . Further, we let Zk := W k ⊗ I, and, analogously to (3) and

(6), we let:

W k
d = diag(W k), W k

u = W k −W k
d (12)

Zk = Z(W k) = Zkd + Zku, where

Zkd = W k
d ⊗ I = diag(Zk), and Zku = W k

u ⊗ I.
Gk = G(Zk, θ) = Zku + θ(I− Zkd). (13)

Notice that wkii = 1−
∑
i 6=j wijξ

k
i ξ
k
j ≥ 1−

∑
i6=j wij = wii ≥ wmin. Further,

recall A : Rnp → R(np)×(np) in (5). Using results from [3], we obtain the

2We continue to assume that all nodes are synchronized according to a global iteration
counter k = 0, 1, ...
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following important bounds:3

‖A−1(x)‖ ≤ (αµ+ (1 + θ)(1− wmax))−1 := CA, x ∈ Rnp (14)

‖Gk‖ ≤ (1 + θ)(1− wmin) := CG, k = 0, 1, ... (15)∥∥GkA−1(x)
∥∥ ≤ (1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmin)
, x ∈ Rnp, k = 0, 1, ... (16)

More generally, for A(x) there holds:

(αµ+ (1 + θ)(1−wmax))I � A(x) � (αL+ (1 + θ)(1−wmin))I, x ∈ Rnp. (17)

Also, notice that ‖Yk‖ ≤ 1, and Zk � I, for every k.

3.2 DQN with idling

We now incorporate the idling mechanism in the DQN method. To avoid nota-

tional clutter, we continue to denote by xk =
(
(xk1)T , ..., (xkn)T

)T
the algorithm

iterates, k = 0, 1, ..., where xki is node i’s estimate of the solution to (1) at iter-
ation k. DQN with idling operates as follows. If the activation variable ξki = 1,
node i performs an update; else, if ξki = 0, node i stays idle and lets xk+1

i = xki .
The algorithm is presented in Algorithm 3 below. Therein, Ak := A(xk), and
Aki is the p× p block at the (i, i)-th position in Ak, while Gkij is the p× p block

of Gk at the (i, j)-th position.

Algorithm 3: DQN with idling – distributed implementation
At each node i, require x0

i ∈ Rp, ε, ρ, θ, α > 0, {pk}.

(1) Initialization: Node i sets k = 0 and x0
i ∈ Rp.

(2) Each node i generates ξki ; if ξki = 0, node i is idle, and goes to step 9; else,
if ξki = 1, node i is active and goes to step 3; all active nodes do steps 3-8
below in parallel.

(3) (Active) node i transmits xki to all its active neighbors j ∈ Oi and receives
xkj from all active j ∈ Oi.

(4) Node i calculates

dki =
(
Aki
)−1

 α

pk
∇fi(xki ) +

∑
j∈Oi

wkij
(
xki − xkj

) .
3Throughout subsequent analysis, we shall state several relations (equalities and inequali-

ties) that involve random variables. These relations hold either surely (for every outcome), or
in expectation. E.g., relation (15) holds surely. It is clear from notation which of the two cases
is in force. Also, auxiliary constants that arise from the analysis will be frequently denoted
by the capital calligraphic letter C with a subscript that indicates a quantity related with the
constant in question; e.g., see CA in (14).
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(5) Node i transmits dki to all its active neighbors j ∈ Oi and receives dkj from
all the active j ∈ Oi.

(6) Node i chooses a diagonal p× p matrix Λki , such that ‖Λki ‖ ≤ ρ.

(7) Node i calculates:

ski = −dki + Λki
∑
j∈Ōi

Gkij d
k
j .

(8) Node i updates its solution estimate as:

xk+1
i = xki + ε ski .

(9) Set k = k + 1 and go to step 2.

We make a few remarks on Algorithm 3. First, note that, unlike Algorithm 2,
the iterates xki with Algorithm 3 are random variables. (The initial iterates x0

i ,
i = 1, ..., n, in Algorithm 3 are assumed deterministic.) Next, note that we
implicitly assume that all nodes have agreed beforehand on scalar parameters
ε, ρ, θ, α; this can actually be achieved in a distributed way with a low communi-
cation and computational overhead (see Subsection 4.2 in [3]). Nodes also agree
beforehand on the sequence of activation probabilities {pk}. In other words, se-
quence {pk} is assumed to be available at all nodes. For example, as discussed
in more detail in Sections 4 and 6, we can let pk = 1− σk+1, k = 0, 1, ..., where
σ ∈ (0, 1) is a scalar parameter known by all nodes. As each node is aware of
the global iteration counter k, each node is then able to implement the latter
formula for pk. The nodes’ beforehand agreement on σ can be achieved similarly
to the agreement on other parameters ε, ρ, θ, α [3]. Tuning of parameter σ is
discussed in Remark 3 further ahead.

Parameters ε, ρ, and α, and the diagonal matrices Λki play the same role
as in DQN. An important difference with respect to standard DQN appears in
step 4, where the local active node i’s gradient contribution is α

pk
∇fi(xki ) =

α
pk
ξki ∇fi(xki ), while with standard DQN this contribution equals α∇fi(xki ).

Note that the division by pk for DQN with idling makes the terms of the two
algorithms balanced on average, because E[ξki ] = pk.

Using notation (12), we represent DQN with idling in Algorithm 4 in a vector
format. (Therein, Lk = diag

(
Λk1 , ...,Λ

k
n

)
.)

Algorithm 4: DQN with idling in vector format
Given x0 ∈ Rnp, ε, ρ, θ, α > 0, {pk}. Set k = 0.

(1) Chose a diagonal matrix Lk ∈ Rnp×np such that

‖Lk‖ ≤ ρ.

(2) Set

sk = −(I− LkGk)A−1
k

(
α

pk
Yk∇F (xk) + (I− Zk)xk

)
.
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(3) Set
xk+1 = xk + εsk, k = k + 1.

4 Convergence analysis

In this Section, we carry out convergence and convergence rate analysis of DQN
with idling. We have two main results, Theorems 4.4 and 4.5. The former re-
sult states that, under Assumptions A1-A4, DQN with idling converges to the
solution x∗ of (2) in the mean square sense and almost surely. We then show
that, when activation probability pk converges to one at a geometric rate, the
mean square convergence towards x∗ occurs at a R-linear rate. Therefore, the
order of convergence (R-linear rate) of the DQN method is preserved despite
the idling. We note that the above result does not explicitly establish computa-
tional and communication savings with respect to standard DQN. An explicit
quantification of these savings is very challenging even for distributed first or-
der methods [4], and even more so here. However, the theoretical results in the
current section are complemented in Section 6 with numerical examples; they
demonstrate that communication and computational savings usually occur in
practice.

The analysis is organized as follows. In Subsection 4.1, we relate the search
direction of DQN with idling and the search direction of DQN, where the former
is viewed as an inexact version of the latter. Subsection 4.2 establishes the mean
square boundedness of the iterates of DQN with idling and its implications on
the “inexactness” of search directions. Finally, Subsection 4.3 makes use of the
results in Subsections 4.1 and 4.2 to prove the main results on the convergence
and convergence rate of DQN with idling.

4.1 Quantifying inexactness of search directions

We now analyze how “inexact” is the search direction of the DQN with idling
with respect to the search direction of the standard DQN. For xk the iterate of
DQN with idling, denote by ŝk the search direction as with the standard DQN
evaluated at xk, i.e.:

ŝk = −(I− LkG)A−1
k (α∇F (xk) + (I− Z)xk). (18)

Then, the search direction sk of DQN with idling can be viewed as an ap-
proximation, i.e., an inexact version, of ŝk. We will show ahead that the error
of this approximation is controlled by the activation probability pk. In order to
simplify notation in the analysis, we introduce the following quantities:

Hk = I− LkGk

Ĥk = I− LkG
gk = A−1

k (
α

pk
Yk∇F (xk) + (I− Zk)xk)

ĝk = A−1
k (α∇F (xk) + (I− Z)xk).

12



Therefore, ŝk = −Ĥkĝk and sk = −Hkgk. Notice that ‖Hk‖ ≤ 1 + ρCG := CH
and that the same is true for Ĥk. We have the following result on the error in
approximating ŝk with sk. In the following, we denote by either ai or [a]i the
i-th p× 1 block of a (np)-dimensional vector a; for example, we write gki for the
i-th p-dimensional block of gk.

In the following Theorem, claims (20) and (21) are from Theorem 3.2 in [3];
claim (19) is a straightforward generalization of (20), mimicking the proof steps
of Theorem 3.2 in [3]; hence, proof details are omitted.

Theorem 4.1. [3] Let assumptions A1-A3 hold. Further, let, ρ ∈ [0, ρDQN ]
where

ρDQN =
αµ+ (1 + θ)(1− wmax)

(1− wmin)(1 + θ)

(
1

αL+ (1 + θ)(1− wmin)
− δ
)
,

for some constant δ ∈ (0, 1/(αL + (1 + θ)(1 − wmin))). Consider matrices

Rk := 1
2

(
HkA−1

k + A−1
k Hk

)
and R̂k := 1

2

(
ĤkA−1

k + A−1
k Ĥk

)
. Then, for their

minimal eigenvalues, there holds:

λmin (Rk) ≥ δ (19)

λmin

(
R̂k
)
≥ δ. (20)

Moreover, quantity ŝk in (18) satisfies the following bounds:

∇TΦ(xk)ŝk ≤ −δ‖∇Φ(xk)‖2 and ‖ŝk‖ ≤ β‖∇Φ(xk)‖, (21)

where constant β = 1+ρ(1+θ)(1−wmin)
αµ+(1+θ)(1−wmax) .

Moreover, it was shown in [3] that δ < β, which we use in the proof of the
subsequent result. Furthermore, using the Mean value theorem and Lipschitz
continuity of ∇Φ we obtain (see the proof of Theorem 3.3 in [3] for instance):

Φ
(
xk + ε sk

)
− Φ(x∗) ≤ Φ(xk)− Φ(x∗) +

1

2
ε2LΦ‖sk‖2 + ε∇TΦ(xk)sk, (22)

where we recall that x∗ is the (unique) solution of (2) and LΦ is a Lipschitz
gradient continuity parameter of Φ, which equals LΦ = αL + 2(1 − wmin).
Next, we prove that DQN with idling exhibits a kind of nonmonotone behavior
where the “nonmonotonicity” term depends on the difference between the search
directions sk and ŝk.

Theorem 4.2. Let assumptions A1-A3 hold, ρ ∈ [0, ρDQN ] and ε ≤ εDQN ,
where

εDQN =
δ − q

2LΦ(β2 + q2)
, q ∈ (0, δ). (23)

Then
Φ(xk+1)− Φ(x∗) ≤ (Φ(xk)− Φ(x∗))ν(ε) + ek,

where ν(ε) ∈ (0, 1) is a constant, and ek = (ε2LΦ + ε/q)‖sk − ŝk‖2.
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Proof. We start by considering sk in (22) and using the bounds from Theo-
rem 4.1, i.e.:

Φ(xk+1)− Φ(x∗) ≤ Φ(xk)− Φ(x∗) +
1

2
ε2LΦ‖sk ± ŝk‖2 + ε∇TΦ(xk)(sk ± ŝk)

≤ Φ(xk)− Φ(x∗) + ε2LΦ‖sk − ŝk‖2 + ε2LΦ‖ŝk‖2 +

+ ε∇TΦ(xk)(sk − ŝk) + ε∇TΦ(xk)ŝk

≤ Φ(xk)− Φ(x∗) + ε2LΦ‖sk − ŝk‖2 + ε2LΦβ
2‖∇Φ(xk)‖2 +

+ ε‖∇Φ(xk)‖‖(sk − ŝk)‖ − εδ‖∇Φ(xk)‖2 (24)

We distinguish two cases. First, assume that ‖sk − ŝk‖ ≤ q‖∇Φ(xk)‖. In this
case, (24) implies that

Φ(xk+1)− Φ(x∗) ≤ Φ(xk)− Φ(x∗) + ϕ(ε)‖∇Φ(xk)‖2

where ϕ(ε) = ε2LΦ(β2 + q2) − ε(δ − q). Notice that ϕ is convex, ϕ(0) = 0
and it attains its minimum at εDQN given in (23) with ϕ(εDQN ) = −((δ −
q)2)/(4LΦ(β2+q2)). This also implies that ϕ(ε) is negative for all ε ∈ (0, εDQN ].
Moreover, Φ is strongly convex and there holds Φ(xk)−Φ(x∗) ≤ 1

µΦ
‖∇Φ(xk)‖2

where µΦ = αµ is the strong convexity parameter. Putting all together we
obtain

Φ(xk+1)− Φ(x∗) ≤ (Φ(xk)− Φ(x∗))ν(ε) (25)

where ν(ε) = 1 + µΦϕ(ε). Notice that ν(ε) < 1 for all ε ∈ (0, εDQN ]. Moreover,

ν(ε) ≥ 1 + µΦϕ(εDQN ) = 1− µΦ(δ − q)2

4LΦ(β2 + q2)
.

As µΦ = αµ < αL < LΦ and (δ − q)2 < δ2 < β2 < β2 + q2 we conclude that
ν(ε) is positive. Therefore, for all ε ∈ (0, εDQN ], (25) holds with ν(ε) ∈ (0, 1).

Now, assume that ‖sk − ŝk‖ > q‖∇Φ(xk)‖, i.e. ‖∇Φ(xk)‖ < ‖sk − ŝk‖/q.
Together with (24), this implies

Φ(xk+1)− Φ(x∗) ≤ Φ(xk)− Φ(x∗) + ϕ̂(ε)‖∇Φ(xk)‖2 + ek (26)

where ϕ̂(ε) = ε2LΦβ
2−εδ and ek = (ε2LΦ +ε/q)‖sk− ŝk‖2. The function ϕ̂ has

similar characteristics as ϕ and it retains its minimum at ε′ = δ/(2LΦβ
2) with

ϕ̂(ε′) = −δ2/(4LΦβ
2). Since εDQN ≤ ε′, ϕ̂(ε) < 0 holds for all ε ∈ (0, εDQN ].

Again, strong convexity of Φ and (26) imply that for all ε ∈ (0, εDQN ]

Φ(xk+1)−Φ(x∗) ≤ (Φ(xk)−Φ(x∗))(1+µΦϕ̂(ε))+ek ≤ (Φ(xk)−Φ(x∗))ν(ε)+ek

where we recall µΦ = αµ, and where the last inequality comes from the fact
that ϕ̂(ε) ≤ ϕ(ε) for every ε > 0.

Finally, taking into account both cases and the fact that ek is nonnegative,
we conclude that the following inequality holds with ν(ε) ∈ (0, 1) for all ε ∈
(0, εDQN ]

Φ(xk+1)− Φ(x∗) ≤ (Φ(xk)− Φ(x∗))ν(ε) + ek.

2
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4.2 Mean square boundedness of the iterates and search
directions

We next show that the iterates xk of DQN with idling are uniformly bounded
in the mean square sense. Below, E(·) denotes the expectation operator.

Lemma 4.1. Let the sequence of random variables {xk} be generated by Algo-
rithm 4, and let assumptions A1-A4 hold. Then, there exist positive constants ρ
and ε depending on α, µ, L, θ, wmin, wmax and pmin, such that, for all ρ ∈ [0, ρ]
and ε ∈ (0, ε), there holds: E

(
‖xk‖2

)
≤ Cx, k = 0, 1, ..., for some positive

constant Cx.

Proof. It suffices to prove that E
(
Φ(xk)

)
is uniformly bounded for all k =

0, 1, ..., since Φ is strongly convex and therefore it holds that Φ(x) ≥ Φ(x∗) +
µΦ

2 ‖x − x
∗‖2, x ∈ Rnp. Further, for the sake of proving boundedness, without

loss of generality we can assume that fi(x) ≥ 0, for all x ∈ Rp, for every
i = 1, ..., n.4 For k = 0, 1, ..., define function Φk : Rnp → R, by

Φk(x) =
α

pk
F (x) +

1

2
xT (I− Z)x =

α

pk

n∑
i=1

fi(xi) +
1

2

∑
{i,j}∈E,i<j

wij‖xi − xj‖2.

Notice that Φk(x) = Φ(x), x ∈ Rnp, if pk = 1. Also note that, for every
k = 0, 1, ..., we have:

Φ(x) ≤ Φk+1(x) ≤ Φk(x) ≤ Φ0(x),

since pk is assumed to be non-decreasing. The core of the proof is to upper
bound Φk+1

(
xk+1

)
with a quantity involving Φk

(
xk
)

(see ahead (34)), and
after that to “unwind” the resulting recursion.

To start, notice that Φk is strongly convex and has Lipschitz continuous
gradient for every k. More precisely, for every k = 0, 1, ..., and for every x ∈ Rnp,
we have that

µ̄I � ∇2Φk(x) � L̄I,

where µ̄ = αµ and L̄ = αL/pmin + 1. Denote by

yk = ∇Φk(xk) =
α

pk
∇F (xk) + (I− Z)xk.

Further, let us define two more auxiliary maps, as follows. Let Φ̂k : Rnp ×
4Otherwise, since each of the fi’s is lower bounded, we can re-define each fi as f̂i(x) =

fi(x) + c, where c is a constant larger than or equal maxi=1,...,n |infx∈Rp fi(x)|, and work

with the f̂i’s throughout the proof.
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{0, 1}m → R, and Φ̃k : Rnp × {0, 1}m → R, be given by:

Φ̂k(x; ξ) =
α

pk

n∑
i=1

ξifi(xi) +
1

2

∑
{i,j}∈E,i<j

wijξiξj‖xi − xj‖2

Φ̃k(x; ξ) = Φk(x)− Φ̂k(x) =
α

pk

n∑
i=1

(1− ξi)fi(xi)

+
1

2

∑
{i,j}∈E,i<j

wij(1− ξiξj)‖xi − xj‖2,

where {0, 1}m denotes the set of all m-dimensional vectors with the entries from
set {0, 1}. Introduce also the short-hand notation

Φ̂k(x) = Φ̂k(x; ξk) =
α

pk

n∑
i=1

ξki fi(xi) +
1

2

∑
{i,j}∈E,i<j

wijξ
k
i ξ
k
j ‖xi − xj‖2

Φ̃k(x) = Φ̃k(x; ξk) = Φk(x)− Φ̂k(x) =
α

pk

n∑
i=1

(1− ξki )fi(xi)

+
1

2

∑
{i,j}∈E,i<j

wij(1− ξki ξkj )‖xi − xj‖2,

where we recall that ξk = (ξk1 , ..., ξ
k
n)T is the node activation vector at iteration k.

Hence, note that, for any fixed x ∈ Rnp, Φ̂k(x) is a random variable, measurable
with respect to the σ-algebra generated by ξk. On the other hand, for any
fixed value that variable ξk takes, x 7→ Φ̂k(x) is a (deterministic) function,
mapping Rnp to R; analogous observations hold for Φ̂k as well. We will be
interested in quantities Φ̂k(xk), Φ̃k(xk) Φ̂k(xk+1), and Φ̃k(xk+1). Note that they
are all random variables, measurable with respect to the σ-algebra generated by
{ξs}s=0,1,...,k. We will also work with the gradients of Φ̂k and Φ̃k with respect
to x, evaluated at xk, that we denote by

ŷk = ∇Φ̂k(xk) =
α

pk
Yk∇F (xk) + (I− Zk)xk

and
ỹk = yk − ŷk = ∇Φ̃k(xk).

These quantities are also valid random variables, measurable with respect to
the σ-algebra generated by {ξs}s=0,1,...,k.

Now, recall that, for each fixed i, ξki , k = 0, 1, ..., are independent identi-
cally distributed (i.i.d.) Bernoulli random variables. The same is true for the
minimum and the maximum

ξkmin = min
i=1,...,n

ξki , ξkmax = max
i=1,...,n

ξki .

Also, notice that E(ξkmin) = pnk and√
1− ξkmin = 1− ξkmin, 1− ξki ≤ 1− ξkmin 1− ξki ξkj ≤ 1− ξkmin.
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Consider now Φ̂k and ŷk, regarded as functions of x ∈ Rnp. If ξkmax = 1 then

Φ̂k is strongly convex (with respect to x) with the same parameters as Φk, i.e.,

µ̄I � ∇2Φ̂k(x) � L̄I.

Now, denote by x̂∗k = x̂∗k(ξk) the minimizer of Φ̂k with respect to x; using the

fact that Φ̂k is nonnegative, and that it has a Lipschitz continuous gradient and
is strongly convex, we obtain

‖ŷk‖2 ≤ L̄2‖xk − x̂∗k‖2 ≤
2L̄2

µ̄
(Φ̂k(xk)− Φ̂k(x̂∗k)) ≤ 2L̄2

µ̄
Φ̂k(xk).

Using the fact that Φ̂k(x) ≤ Φk(x), for all x, the previous inequality yields

‖ŷk‖ ≤ L̄
√

2/µ̄
√

Φk(xk). (27)

On the other hand, if ξkmax = 0 then Yk = 0 and Zk = I which implies ŷk = 0
and the previous inequality obviously holds.

We perform a similar analysis considering Φ̃k and ỹk. First, notice that Φ̃k
is also non-negative. Furthermore, if ξkmin = 0 then Φ̃k is strongly convex with

the same parameters as Φ̂k and the following holds

‖ỹk‖ ≤ L̄
√

2/µ̄

√
Φ̃k(xk).

Moreover, notice that

Φ̃k(xk) ≤ (1− ξkmin)Φk(xk)

and thus

‖ỹk‖ ≤ L̄
√

2/µ̄
√

(1− ξkmin)Φk(xk) = (1− ξkmin)L̄
√

2/µ̄
√

Φk(xk). (28)

Let us return to Φk. This function also satisfies (22), i.e.,

Φk
(
xk + ε sk

)
≤ Φk(xk) +

1

2
ε2L̄‖sk‖2 + εyTk s

k. (29)

For the search direction sk in step 2 of Algorithm 4, and recalling Rk = (I −
LkGk)A−1

k from Theorem 4.1, we obtain that

sk = −Rkŷk.

Using the bounds (14) and (15) we conclude that ‖Rk‖ ≤ (1 + ρCG)CA := CR
and therefore

‖sk‖ ≤ CR‖ŷk‖. (30)

Also, by Theorem 4.1, the following holds for ε ≤ εDQN , and ρ ≤ ρDQN (where
ρDQN and εDQN are given in Theorems 4.1 and 4.2, respectively):

ŷTk Rkŷk = ŷTk

(
Rk + RTk

2

)
ŷk ≥ δ‖ŷk‖2. (31)
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From now on, we assume that ε ≤ εDQN , and ρ ≤ ρDQN . Substituting (30)
and (31) into (29) we obtain

Φk(xk+1) ≤ Φk(xk) +
1

2
ε2L̄R2‖ŷk‖2 − ε(ŷk + ỹk)TRkŷk

≤ Φk(xk) +
1

2
ε2L̄R2‖ŷk‖2 − εδ‖ŷk‖2 + εCR‖ŷk‖‖ỹk‖

= Φk(xk) + (
1

2
ε2L̄C2

R − εδ)‖ŷk‖2 + εCR‖ŷk‖‖ỹk‖ (32)

Since ( 1
2ε

2L̄C2
R − εδ) ≤ 0 for ε ≤ 2δ

L̄C2
R

, we conclude that

Φk(xk+1) ≤ Φk(xk) + εCR‖ŷk‖‖ỹk‖ ≤ Φk(xk) +
2εL̄C2

R

µ̄
(1− ξkmin)Φk(xk),

for

ε ≤ min

{
2δ

L̄C2
R

, εDQN

}
, ρ ≤ ρDQN , (33)

where εDQN and ρDQN are given in Theorems 4.1 and 4.2. Denoting B =
2εL̄C2

R

µ̄ ,

and using the fact that Φk+1(x) ≤ Φk(x), for all x ∈ Rnp, we obtain

Φk+1(xk+1) ≤ (1 +B(1− ξkmin))Φk(xk). (34)

Applying expectation we obtain

E(Φk+1(xk+1)) ≤ (1 +B(1− pnk ))E(Φk(xk)),

where we use independence between ξkmin and xk. Furthermore, recall that
uk = 1 − pk and notice that 1 − pnk ≤ nuk. Moreover, 1 + t ≤ et for t > 0 and
thus

E(Φk+1(xk+1)) ≤ enBukE(Φk(xk)).

Next, by unwinding the recursion, we obtain

E(Φk(xk)) ≤ enB
∑k−1

j=0 ujΦ0(x0) := CΦ,2.

By assumption, {uk} is summable, and since Φ(x) ≤ Φk(x), for all x, we con-
clude that

E(Φ(xk)) ≤ CΦ,2.

Finally, since Φ is strongly convex, the desired result holds. 2

Notice that an immediate consequence of Lemma 4.1 is that the gradients
are uniformly bounded in the mean square sense. Indeed,

E
(
‖∇F (xk)‖2

)
= E

(
‖∇F (xk)−∇F (x̃∗)‖2

)
≤ E

(
L2‖xk − x̃∗‖2

)
≤ 2L2(E

(
‖xk‖2

)
+ ‖x̃∗‖2)

≤ 2L2(Cx + ‖x̃∗‖2) := CF, (35)
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where we recall Cx in Lemma 4.1.
Next, we show that the “inexactness” of the search directions of DQN with

idling are “controlled” by the activation probabilities pk’s.

Theorem 4.3. Let assumptions A1-A4 hold, and consider ρ and ε as in Lemma 4.1.
Then, for all ρ ∈ [0, ρ] and ε ∈ (0, ε), the following inequality holds for every k
and some positive constant Cs:

E(‖sk − ŝk‖2) ≤ (1− pk)Cs. (36)

Proof. We first split the error as follows:

E
(
‖sk − ŝk‖2

)
= E

(
‖Hkgk − Ĥkĝk + Ĥkgk − Ĥkgk‖2

)
≤ 2

(
E
(
‖Ĥk‖2‖(gk − ĝk)‖2

)
+ E

(
‖(Hk − Ĥk)gk‖2

))
≤ 2

(
(CH)2E

(
‖(ĝk − gk)‖2

)
+ E

(
‖(Hk − Ĥk)gk‖2

))
.(37)

We will estimate the expectations above separately. Start by observing that:

ĝki − gki = −(Aki )−1

α∇fi(xki ) +
∑
j∈Oi

wij(x
k
i − xkj )

+

+ ξki (Aki )−1

 α

pk
∇fi(xki ) +

∑
j∈Oi

wijξ
k
j (xki − xkj )


= (

ξki
pk
− 1)α(Aki )−1∇fi(xki ) + (Aki )−1

∑
j∈Oi

wij(ξ
k
i ξ
k
j − 1)(xki − xkj ).

Notice that (14) implies ‖( ξ
k
i

pk
−1)α(Aki )−1∇fi(xki )‖2 ≤ 2(

ξki
pk
−1)2α2(CA)2‖∇fi(xki )‖2,

with CA defined in (14). Also, the assumptions on the wij ’s (Assumption A3)
and convexity of the scalar quadratic function V(µ) = µ2 yield:

‖
∑
j∈Oi

wij(ξ
k
i ξ
k
j − 1)(xki − xkj )‖2 ≤

∑
j∈Oi

wij(1− ξki ξkj )‖xki − xkj ‖

2

≤
∑
j∈Oi

wij(1− ξki ξkj )2‖xki − xkj ‖2.

Therefore,

‖ĝki −gki ‖2 ≤ 2(
ξki
pk
−1)2α2(CA)2‖∇fi(xki )‖2+2(CA)2

∑
j∈Oi

wij(1−ξki ξkj )2‖xki−xkj ‖2.

Applying the expectation and using the fact that ξki ’s are independent, identi-
cally distributed (i.i.d.) across i and across iterations, the fact that

E((
ξki
pk
− 1)2) = (1− pk)/pk ≤ (1− pk)/pmin,
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and
E((1− ξki ξkj )2) = 1− p2

k = (1− pk)(1 + pk) ≤ 2(1− pk)

we obtain the following inequality

E(‖ĝki −gki ‖2) ≤ 2(CA)2(1−pk)(
α2

pmin
E(‖∇fi(xki )‖2)+2

∑
j∈Oi

wijE(‖xki −xkj ‖2)).

Further, note that E(‖ĝk − gk‖2) =
∑n
i=1E(‖ĝki − gki ‖2). Moreover, as a con-

sequence of Lemma 4.1 we have
∑n
i=1E(‖∇fi(xki )‖2) = E(‖∇F (xk)‖2) ≤ CF,

and

n∑
i=1

∑
j∈Oi

wijE(‖xki − xkj ‖2) ≤
n∑
i=1

∑
j∈Oi

wij 2E(‖xki ‖2 + ‖xkj ‖2)

= 2(E(

n∑
i=1

‖xki ‖2
∑
j∈Oi

wij) + E(
∑
j∈Oi

‖xkj ‖2
n∑
i=1

wij))

≤ 2(E(‖xk‖2 + E(‖xk‖2))

≤ 4Cx, (38)

where Cx is given in Lemma 4.1. Combining the bounds above, we conclude

E(‖ĝk − gk‖2) ≤ (1− pk)2(CA)2(
α2

pmin
CF + 8Cx) := (1− pk)Cg. (39)

Now, we will estimate the second expectation term in (37). Again, consider an
arbitrary block i of the vector under expectation. We obtain the following.

[(Hk − Ĥk)gk]i = [Lk(G−Gk)gk]i = [Lk(Zu − Zku + θ(Zkd − Zd))gk]i

= Λki
∑
j∈Oi

(wij − wkij)gkj + Λki θ(w
k
ii − wii)gki

= Λki
∑
j∈Oi

wij(1− ξki ξkj )gkj + Λki θ
∑
j∈Oi

(wij − wkij)gki

= Λki
∑
j∈Oi

wij(1− ξki ξkj )(gkj + θgki ).

Moreover, applying the norm and the convexity argument like above we get

‖[(Hk − Ĥk)gk]i‖2 ≤ ‖Λki ‖2‖
∑
j∈Oi

wij(1− ξki ξkj )(gkj + θgki )‖2

≤ ρ2
∑
j∈Oi

wij(1− ξki ξkj )2‖gkj + θgki ‖2 (40)

Therefore, E(‖[(Hk − Ĥk)gk]i‖2) ≤ ρ2
∑
j∈Oi

wij2(1 − pk)E‖gkj + θgki ‖2) and
using the steps similar to the ones in (38) we obtain the inequality

E(‖(Hk − Ĥk)gk‖2) ≤ (1− pk)ρ24(1 + θ2)E(‖gk‖2).
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Moreover,

E(‖gk‖2) = E(‖A−1
k (

α

pk
Yk∇F (xk) + (I− Zk)xk)‖2)

≤ (CA)22

(
α2

p2
min

E(‖Yk‖2)E(‖∇F (xk)‖2) + E(‖I− Zk‖2)E(‖xk‖2))

)
≤ (CA)22(

α2

p2
min

CF + Cx) := Cg,2 (41)

and thus
E(‖(Hk − Ĥk)gk‖2) ≤ (1− pk)ρ24(1 + θ2)Cg,2.

Finally, returning to (37), the previous inequality and (39) imply

E
(
‖sk − ŝk‖2

)
≤ (1− pk)2((CH)2Cg + ρ2Cg,2) := (1− pk)Cs.

2

4.3 Main results

The next result – first main result – follows from the theorems stated above.
Let us define constants ρidl = min{ρ, ρDQN} and εidl = min{ε, εDQN} where ρ
and ε are as in Theorem 4.3 and ρDQN and εDQN are as in Theorem 4.2.

Theorem 4.4. Let {xk} be the sequence of random variables generated by Al-
gorithm 4. Further, let assumptions A1-A4 hold. In addition, let ρ ∈ [0, ρidl]
and ε ∈ (0, εidl]. Then:

E
(
Φ(xk+1)− Φ(x∗)

)
≤ E

(
Φ(xk)− Φ(x∗)

)
ν + CΦ(1− pk), (42)

where ν ∈ (0, 1) is a constant, and CΦ is a positive constant. Moreover, the
iterate sequence {xk} converges to the solution x∗ of (2) in the mean square
sense and almost surely.

Proof. Claim (42) follows by taking expectation in Theorem 4.3. The re-
maining two claims follow similarly to the proof of Theorem 2 in [4]. We briefly
demonstrate the main arguments for completeness. Namely, unwinding the re-
cursion (42), we obtain for k = 1, 2, ...:

E
(
Φ(xk)− Φ(x∗)

)
≤
(
Φ(x0)− Φ(x∗)

)
νk + CΦ

k∑
t=1

νk−t(1− pt−1). (43)

Now, we apply Lemma 2.1. From this result and (43), it follows directly that
E
(
Φ(xk)− Φ(x∗)

)
→ 0 as k → ∞, because it is assumed that pk → 1. Fur-

thermore, using inequality Φ(xk) − Φ(x∗) ≥ µΦ

2 ‖x
k − x∗‖2, the mean square

convergence of xk towards x∗ follows. It remains to show that xk → x∗ almost
surely, as well. Using condition (11), inequality (43) implies that:

E
(
Φ(xk)− Φ(x∗)

)
≤
(
Φ(x0)− Φ(x∗)

)
νk + CΦ Cu

k∑
t=1

νk−t

t1+ζ
. (44)
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It can be shown that (44) implies (see, e.g., [4]): E
(
Φ(xk)− Φ(x∗)

)
= O

(
1/k1+ζ

)
,

which further implies:

E
(
‖xk − x∗‖2

)
= O

(
1/k1+ζ

)
. (45)

Applying the Markov inequality for the random variable ‖xk−x∗‖2, we obtain,
for any κ > 0:

P
(
‖xk − x∗‖2 > κ

)
≤ 1

κ
E
(
‖xk − x∗‖2

)
= O

(
1/k1+ζ

)
. (46)

Inequality (46) implies that:

∞∑
k=0

P
(
‖xk − x∗‖2 > κ

)
<∞,

and so, by the first Borel-Cantelli lemma, we get P
(
‖xk − x∗‖2 > κ, infinitely often

)
=

0, which implies that xk → x∗, almost surely. 2

Next, we state and prove our second main result.

Theorem 4.5. Let {xk} be the sequence of random variables generated by Al-
gorithm 4. Further, let assumptions of Theorem 4.4 hold, and let pk = 1−σk+1,
with σ ∈ (0, 1). Then, {xk} converges to the solution x∗ of problem (2) in the
mean square sense at an R-linear rate.

Proof. Denote zk = CΦ(1− pk). For the specific choice of pk we obtain zk =
CΦσk+1 which obviously converges to zero R-linearly. Furthermore, repeatedly
applying the relation (42) we obtain

E
(
Φ(xk)− Φ(x∗)

)
≤ (Φ(x0)− Φ(x∗))νk + ak

where ak =
∑k
j=1 ν

j−1zk−j . Moreover, it can be shown (see Lemma 2.1) that
ak also converges to zero R-linearly which implies the R-linear convergence of
E
(
Φ(xk)− Φ(x∗)

)
. Now, using the strong convexity of Φ (with strong convexity

constant µΦ = αµ), we get: ‖xk − x∗‖2 ≤ (Φ(xk)− Φ(x∗))2/µΦ, which in turn
implies:

E
(
‖xk − x∗‖2

)
≤ E

(
Φ(xk)− Φ(x∗)

)
2/µΦ.

The last inequality means that E
(
‖xk − x∗‖2

)
also converges to zero R-linearly.

2

Theorem 4.5 shows that the DQN method with idling converges at an R-
linear rate when pk = 1 − σk+1. Parameter σ plays an important role in the
practical performance of the method. We recommend the tuning σ = 1− c αµ,
with c ∈ [30, 80], for α < 1/(80L). 5 The rationale for the tuning above
comes from distributed first order methods with idling [4], where we showed
analytically that it is optimal (in an appropriate sense) to set σ• = (1−αµ)2 ≈

5Condition α < 1/(80L) is not restrictive, as we observed experimentally that usually one
needs to take an α smaller than 1/(80L) in order to achieve a satisfactory limiting accuracy.
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1− 2αµ. The value σ• is set to balance 1) the linear convergence factor of the
method without idling and 2) the convergence factor of the convergence of pk
to one. As DQN has a better (smaller) convergence factor than the distributed
first order method (due to incorporation of the second order information), one
has to adjust the rule 1−2αµ, replacing 2 with a larger constant c; experimental
studies suggest values for c on the order 30-80. In addition, for very small values
of αµ, in order to prevent very small pk’s at initial iterations on the one hand
and the σ’s very close to one on the other hand, we can utilize a “safeguarding”
and modify pk to pk = max

{
p, 1− (min{σ, σ})k+1

}
, where p can be taken, e.g.,

as 0.2, and σ as 0.9999.

5 Extensions: DQN under persisting idling

This section investigates DQN with idling when activation probability pk does
not converge to one asymptotically, i.e., the algorithm is subject to persisting
idling. This scenario is of interest when activation probability pk is not in full
control of the algorithm designer (and the networked nodes during execution).
For example, in applications like wireless sensor networks, inter-node messages
may be lost, due to, e.g., random packet dropouts. In addition, an active node
may fail to perform its solution estimate update at a certain iteration, because
the actual calculation may take longer than the time slot allocated for one
iteration, or simply due to unavailability of sufficient computational resources.

Henceforth, consider the scenario when pk may not converge to one. In
other words, regarding Assumption A4, we only keep the requirement that the
sequence {pk} is uniformly bounded from below. We make here an additional as-
sumption that the iterates are bounded in the mean square sense, i.e., E

(
‖xk‖2

)
is uniformly bounded from above by a positive constant.6 Now, consider rela-
tion (42); it continues to hold under the assumptions of the Theorem 4.4, i.e.,
we have

E
(
Φ(xk)− Φ(x∗)

)
≤ (Φ(x0)− Φ(x∗))νk +

k∑
j=1

νj−1CΦ(1− pk−j).

Therefore, using the previous inequality we obtain

E
(
Φ(xk)− Φ(x∗)

)
≤ (Φ(x0)− Φ(x∗))νk +

CΦ(1− pmin)

1− ν
.

Using strong convexity of Φ (with strong convexity constant µΦ) and letting k
go to infinity we obtain

lim sup
k→∞

E
(
‖xk − x∗‖2

)
≤ 2CΦ(1− pmin)

µΦ(1− ν)
:= E .

6The boundedness proof of Lemma 4.1 in Section 4 does not generalize to the setting
considered here. Henceforth, the mean square boundedness of the iterates is here stated
formally as an assumption. Our conjecture is that the mean square boundedness of the
iterates holds under the setting in Section 5 as well.
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Therefore, the proposed algorithm converges (in the mean square sense) to a
neighborhood of the solution x∗ of (2). Hence, an additional limiting error (in
addition to the error due to the difference between the solutions of (1) and (2))
is introduced with respect to the case pk → 1. In order to analyze further
quantity E , we unfold CΦ to get

E = (1− pmin)h(ε)l(ρ),

where

h(ε) =
ε2LΦ + ε/q

1− ν(ε)
and l(ρ) =

4

µΦ
((1 + ρCG)2Cg + ρ2Cg,2);

and ν(ε) is as in the proof of Theorem 4.2. (Recall CG, Cg, and Cg,2 in (15),
(39), and (41), respectively.) It can be shown that h(ε) is an increasing function
of ε so taking smaller step size ε brings us closer to the solution. However,
the convergence factor ν(ε) is also increasing with ε; thus, there is a tradeoff
between the precision and the convergence rate. Furthermore, considering l(ρ),
we can see that it is also an increasing function. However, as it is expected,
l(0) is strictly positive. In other words, the error remains positive when the
safeguarding parameter ρ = 0. Finally, the size of the error is proportional to
(1−pmin) – the closer pmin to one, the smaller the error. Simulation examples in
Section 6 demonstrate that the error is only moderately increased (with respect
to the case pk → 1), even in the presence of very strong persisting idling.

6 Numerical results

This section demonstrates by simulation significant computational and commu-
nication savings incurred through the idling mechanism within DQN. It also
shows that persisting idling (pk not converging to one) induces only a moderate
additional limiting error, i.e., the method continues to converge to a solution
neighborhood even under persisting idling.

We consider the problem with strongly convex local quadratic costs; that
is, for each i = 1, ..., n, we let fi : Rp → R, fi(x) = 1

2 (x − bi)
TAi(x − bi),

p = 10, where bi ∈ Rp and Ai ∈ Rp×p is a symmetric positive definite matrix.
The data pairs Ai, bi are generated at random, independently across nodes, as
follows. Each bi’s entry is generated mutually independently from the uniform
distribution on [1, 31]. Each Bi is generated as Bi = QiDiQ

T
i ; here, Qi is the

matrix of orthonormal eigenvectors of 1
2 (B̂i + B̂Ti ), and B̂i is a matrix with

independent, identically distributed (i.i.d.) standard Gaussian entries; and Di

is a diagonal matrix with the diagonal entries drawn in an i.i.d. fashion from
the uniform distribution on [1, 31].

The network is a n = 100-node instance of the random geometric graph

model with the communication radius r =
√

ln(n)
n , and it is connected. The

weight matrix W is set as follows: for {i, j} ∈ E, i 6= j, wij = 1
2(1+max{di,dj}) ,
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where di is the node i’s degree; for {i, j} /∈ E, i 6= j, wij = 0; and wii =
1−

∑
j 6=i wij , for all i = 1, ..., n.

We compare the standard DQN method and the DQN method with incorpo-
rated idling mechanism. Specifically, we study how the relative error (averaged
across nodes):

1

n

n∑
i=1

‖xi − x∗‖
‖x∗‖

, x∗ 6= 0,

evolves with the elapsed total number of activations per node. Note that the
number of activations relates directly to both the communication and compu-
tational costs of the algorithm.

The parameters for both algorithms are set in the same way, and the only
difference is in the activation schedule. For the method with idling, we set
pk = 1 − σk+1, k = 0, 1, ... We set σ = 1 − c αµ, with c = 40. (Clearly, for the
method without idling, pk ≡ 1, for all k.) The remaining algorithm parameters
are as follows. We set α = 1/(100L), where L is the Lipschitz constant of the
gradients of the fi’s that we take as maxi=1,...,n ‖Ai‖. Further, we let θ = 0, and
ε = 1 (full step size). We consider two choices for Λki in step 6 of Algorithm 3:
Λki = 0, for all i, k; and Λki = −I, for all i, k. (We apply no safeguarding on the
above choices of Λki , i.e., we let ρ = 1.) Note that the former choice corresponds
to the algorithms with a single communication round per iteration k, while the
latter corresponds to the algorithms with two communication rounds per k.

Figure 1 (a) plots the relative error versus total cost (equal to total number of
activations per node up to the current iteration) for one sample path realization,
for Λki = 0. We can see that incorporating the idling mechanism significantly
improves the efficiency of the algorithm: for the method to achieve the limiting
accuracy of approximately 0.025, the method without idling takes about 410
activations per node, while the method with idling takes about 310 activations.
Hence, the idling mechanism reduces total cost by approximately 24%. Figure 1
(b) repeats the plots for Λki = −I, still showing clear gains of idling, though
smaller than with Λki = 0.

To account for randomness of the DQN method with idling that arises due
to the random nodes’ activation schedule, we include histograms of the total
cost needed to achieve a fixed level of relative error. Specifically, in Figure 2
we plot histograms of the total cost (corresponding to 50 generated sample
paths – 50 different realizations of the ξki ’s along iterations) needed to reach the
relative error equal 0.04; Figure 2 (a) corresponds to Λki = 0, while Figure 2 (b)
corresponds to Λki = −I. The Figures also indicate with arrows the total cost
needed by standard DQN to achieve the same accuracy. The results confirm the
gains of idling. Also, the variability of total cost across different sample paths
is small relative to the gain with respect to standard DQN.

Figures 3 and 4 investigate the scenarios when the activation probability pk
may not asymptotically converge to one. The network is a (connected) random

geometric graph instance with n = 40 and r =
√

ln(n)
n ; step size α = 1/(200L);

the remaining system and algorithmic parameters are the same as with the pre-
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vious simulation example. We consider the following choices for pk: 1) pk ≡ 1
(standard DQN); 2) pk = 1− σk+1; 3) pk = pmax

(
1− σk+1

)
; and 4) pk = pmax,

for all k. With the third and fourth choices, the presence of pmax models ex-
ternal effects on the pk (out of control of the networked nodes), e.g., due to
link failures and unavailability of computing resources at certain iterations; it
is varied within the set {0.5, 0.7, 0.9}. Figure 3 (a) compares the methods for
one sample path realization with the four choices of pk above, with pmax = 0.7,
for Λki = 0. Figure 3 (b) compares for the same experiment the standard DQN
(pk ≡ 1), pk = 1− σk+1, and pk = pmax

(
1− σk+1

)
, with pmax ∈ {0.5, 0.7, 0.9}.

Several important observations stand out from the experiments. First, we can
see that the limiting error increases when pk does not converge to one with
respect to the case when it converges to one. However, this increase (deteriora-
tion) is moderate, and the algorithm still manages to converge to a good solution
neighborhood despite the persisting idling. In particular, from Figure 3 (b), we
can see that the limiting relative error increases from about 10−2 (with pk → 1)
to about 3.5 · 10−2 with pmax = 0.5–a case with a strong persisting idling. This
corroborates that DQN with idling is an effective method even when activation
probability pk is not in full control of the algorithm designer. Second, the limit-
ing error decreases when pmax increases, as it is expected – see Figure 3 (b). Fi-
nally, from Figure 3 (a), we can see that the method with pk = pmax

(
1− σk+1

)
performs significantly better than the method with pk = pmax, for all k. In par-
ticular, the methods have the same limiting error (approximately 2·10−2), while
the former approaches this error much faster. This confirms that the proposed
judicious design of increasing pk’s, as opposed to just keeping them constant,
significantly improves the algorithm performance. Figure 4 repeats the same
experiment for Λki = −I. We can see that the analogous conclusions can be
drawn.

7 Conclusion

We incorporated an idling mechanism, recently proposed in the context of dis-
tributed first order methods [4], into distributed second order methods. Specif-
ically, we study the DQN algorithm [3] with idling. The idling mechanism
involves an increasing number of nodes in the optimization process as the iter-
ation counter k grows, so that, on average, n pk nodes (out of n nodes in total)
participate at iteration k, where pk is the per-node activation probability. We
showed that, as long as pk converges to one at least as fast as 1/k1+ζ , ζ > 0
arbitrarily small, the DQN algorithm with idling converges in the mean square
sense and almost surely to the same point as the standard DQN method that
activates all nodes at all iterations. Furthermore, when pk grows to one at a
geometric rate, DQN with idling converges at a R-linear rate in the mean square
sense. Therefore, DQN with idling achieves the same order of convergence (R-
linear) as standard DQN, but with significantly cheaper iterations. Simulation
examples corroborate communication and computational savings incurred by
incorporating the idling mechanism.
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Figure 1: Relative error versus total cost (number of activations per node) for
quadratic costs and n = 100-node network; Figure (a): Λki = 0; Figure (b):
Λki = −I. The solid lines correspond to all nodes working at all iterations;
the dashed lines correspond to the method with idling (increasing number of
working nodes).
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Figure 2: Total cost (number of activations per node) to reach relative error 0.04
for quadratic costs and n = 100-node network; Figure (a): Λki = 0; Figure (b):
Λki = −I. The histograms corresponds to the DQN algorithm with idling; the
arrow indicates the total cost needed by standard DQN.
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Figure 3: Relative error versus total cost (number of activations per node) for
strongly convex quadratic costs, n = 40-node network, and Λki = 0. The Figures
compare the following scenarios: 1) pk ≡ 1 (standard DQN); 2) pk = 1− σk+1;
3) pk = pmax

(
1− σk+1

)
; and 4) pk = pmax, for all k.
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Figure 4: Relative error versus total cost (number of activations per node) for
strongly convex quadratic costs, n = 40-node network, and Λki = −I. The
Figures compare the following scenarios: 1) pk ≡ 1 (standard DQN); 2) pk =
1− σk+1; 3) pk = pmax

(
1− σk+1

)
; and 4) pk = pmax, for all k.
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