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Introduction

The problem of finding optimal solution is a well known problem
which takes place in various areas of life. Therefore, the optimization
is recognized and developed as a special part of science for many years.
It takes place in many different fields such as economy, engineering,
social sciences etc. Roughly speaking, scientific approach of finding
optimal solution often involves two phases. The first one consists of
building a model and defining the objective function. The next phase
is to find the decision variable which provides the optimal value of the
objective function. However, building a model is not that easy task.
If we include large number of factors, the problem may be very hard
or even impossible to solve. On the other hand, excluding too many
factors can result in poor approximation of the real problem.

Obtaining a good model that has relatively modest number of vari-
ables is a problem itself. Development of the probability theory some-
what facilitates this difficulty. Random variables are often used to col-
lect all the remaining factors and that way the model becomes more
complete. Moreover, the problems that involve some future outcomes
are the subject of many research efforts. Since the future outcomes are
usually not deterministic, random variables are used to describe the
uncertainty. That way, stochastic optimization problems are devel-
oped. In general, they can be viewed as optimization problems where
the objective function is a random variable. However, finding the op-
timal solution that covers all the scenarios for the future outcomes is
often impossible. Therefore, the common approach is to try to find
the optimal solution at least for the expected outcome. That way we
obtain the problems where the objective function is in the form of
mathematical expectation. Moreover, if we assume that there are no
constraints on the decision variables, we obtain the problems that are
considered within this thesis.
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Mathematical expectation with respect to random variable yields
a deterministic value. Therefore, the problems that we consider are
in fact deterministic optimization problems. However, finding the an-
alytical form of the objective function can be very difficult or even
impossible. This is the reason why the sample average is often used to
approximate the objective function. Under some mild conditions, this
can bring us close enough to the original objective function. More-
over, if we assume that the sample is generated at the beginning of
the optimization process, we can consider this sample average function
as the deterministic one and therefore the deterministic optimization
methods are applicable.

In order to obtain a reasonably good approximation of the objec-
tive function, we have to use a relatively large sample size. Since the
evaluation of the function under expectation is usually very expensive,
the number of these evaluations is a common way of measuring the
cost of an algorithm and applying some deterministic method on the
sample average function from the start can be very costly. Therefore,
methods that vary the sample size throughout the optimization pro-
cess are developed. Roughly speaking, they can be divided into two
classes. The methods from the first class are dealing with to deter-
mining the optimal dynamics of increasing the sample size, while the
methods from the second class allow decrease of the sample size at
some iterations.

The main goal of this thesis is to develop the class of methods that
can decrease the cost of an algorithm by decreasing the number of
function evaluations. The idea is to decrease the sample size when-
ever it seems to be reasonable - roughly speaking, we do not want
to impose a large precision, i.e. to use a large sample size when we
are far away from the solution that we are searching for. The detailed
description of the new method is presented in Chapter 4 together with
the convergence analysis.

Another important characteristic of the methods that are proposed
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here is the line search technique which is used for obtaining the sub-
sequent iterates. The idea is to find a suitable direction and to search
along it until we obtain a sufficient decrease in the function value.
The sufficient decrease is determined throughout a line search rule. In
Chapter 4, that rule is supposed to be monotone, i.e. we are imposing
a strict decrease of the function value. In order to decrease the cost
of the algorithm even more and to enlarge the set of suitable search
directions, we use nonmonotone line search rules in Chapter 5. Within
that chapter, these rules are modified to fit the variable sample size
framework. Moreover, the convergence analysis is presented and the
convergence rate is also discussed.

In Chapter 6, numerical results are presented. The test problems
are various - some of them are academic and some of them are real
world problems. The academic problems are here to give us more
insight into the behavior of the algorithms. On the other hand, data
that comes from the real world problems are here to test the real
applicability of the proposed algorithms. In the first part of that
chapter, the focus is on the variable sample size techniques. Different
implementations of the proposed algorithm are compared to each other
and to the other sample schemes as well. The second part is mostly
devoted to the comparison of the various line search rules combined
with different search directions in the variable sample size framework.
The overall numerical results show that using the variable sample size
can improve the performance of the algorithms significantly, especially
when a nonmonotone line search rules are used.

The following chapter provides the background material for the
subsequent chapters. In Chapter 2, basics of the nonlinear optimiza-
tion are presented and the focus is on the line search, while Chapter 3
deals with the relevant stochastic optimization methods. These chap-
ters provide a review of the relevant known results, while the rest of
the thesis represent the original contribution.
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metodi u stohastičkom okruženju. . . . . . . . . . . . . 198



List of Tables

6.1 Stationary points for Aluffi-Pentini’s problem. Sta-
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Chapter 1

Overview of the background
material

1.1 Functional analysis and linear alge-

bra

We start this section by introducing the basic notation that is used
within this thesis. N represents the set of positive integers, R denotes
the set of real numbers, while Rn stands for n-dimensional space of
real numbers and Rn×m represents the space of real valued matrices
with n rows and m columns. Vector x ∈ Rn is considered as a column
vector and it will be represented by x = (x1, x2, . . . , xn)T . The norm
‖x‖ will represent the Euclidean norm ‖x‖2 , i.e.

‖x‖2 =
n∑
i=1

x2
i
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and the scalar product is

xTy =
n∑
i=1

xiyi.

In general, we denote by x ≥ 0 the vectors whose components are
nonnegative and the space of such vectors by Rn+.

Since we are working only with the real number spaces, we can
define a compact set as a subset of Rn which is closed and bounded.

Definition 1 The set X is bounded if there exists a positive constant
M such that for every x ∈ X ‖x‖ ≤M.

Neighborhood of a point x, i.e. any open subset of Rn that con-
tains x, is denoted by O(x). Next, we give the definition of convex
combination and convex set.

Definition 2 A convex combination of vectors v1, v2, . . . , vk is given
by
∑k

i=1 αivi where α1, α2, . . . , αk are nonnegative real numbers such

that
∑k

i=1 αi = 1.

Definition 3 Set K is a convex set if every convex combination of its
elements remains in K.

We define the distance between two vectors x and y by d(x, y) =
‖x−y‖. Moreover, the distance of a vector x from a set B is d(x,B) =
infy∈Bd(x, y). Finally, we define the distance between two sets as
follows.

Definition 4 Distance between sets A and B is defined by
Dev(A,B) = supx∈Ad(x,B)
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Now, consider the space of squared matrices Rn×n. The element
in the ith row and jth column of the matrix A is denoted by Ai,j.
The identity matrix is denoted by I. Notation A = 0 means that
every component of the matrix is zero. The determinant of the matrix
A is denoted by |A|. The inverse of A will be denoted by A−1 if it
exists and in that case we say that A is nonsingular. If the matrix is
positive definite, then we know that it is nonsingular. We state the
definition of positive definite and positive semidefinite matrix. We say
that vector x = 0 if every component of that vector is zero.

Definition 5 Matrix A ∈ Rn×n is positive semidefinite if for every
x ∈ Rn we have that xTAx ≥ 0. Matrix A ∈ Rn×n is positive definite
if for every x ∈ Rn, x 6= 0 the inequality is strict, that is xTAx > 0.

We denote the Frobenius norm by ‖ · ‖F , i.e.

‖A‖2
F =

n∑
i=1

n∑
j=1

A2
i,j.

The weighted Frobenius norm is given by

‖A‖W = ‖W
1
2AW

1
2‖F

where W ∈ Rn×n. Next, we state the Sherman-Morrison-Woodbury
formula.

Theorem 1.1.1 Suppose that a, b ∈ Rn and B = A + abT where
A ∈ Rn×n is nonsingular. Then, if B is nonsingular, its inverse is
given by

B−1 = A−1 − A−1abTA−1

1 + bTA−1a
.
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Within this thesis, we work with real valued functions. In gen-
eral, we consider functions f : D → Rm where D ⊆ Rn. The set of
functions which are continuous on D is denoted by C (D). The set
of functions that have continuous first derivatives on D is denoted
by C1 (D). Functions that belong to that set are often referred to as
continuously-differentiable or smooth functions. C2 (D) represents the
set of functions that have continuous second derivatives and so on.

Lipschitz continuous function are very important for the analysis
in this thesis and therefore we give the following definition.

Definition 6 Function f : D → Rm, D ⊆ Rn is Lipschitz continuous
on the set D ⊆ D if there exists a constant L ≥ 0 such that for every
x, y ∈ D

‖f(x)− f(y)‖ ≤ L‖x− y‖.

The first derivative of the function f(x) = (f1(x), . . . , fm(x))T is
often referred to as the Jacobian and it is denoted by J(x). Its com-
ponents are

(J(x))i,j =
∂fi(x)

∂xj
.

We state an important property of the Jacobian throughout Mean
Value Theorem.

Theorem 1.1.2 Suppose that the function f : D → Rm, D ⊆ Rn
is continuously-differentiable on the set D. Then, for every x, y ∈ D
there exists t ∈ (0, 1) such that

f(y)− f(x) = J(x+ t(y − x))(y − x).

Moreover,

f(y)− f(x) =

∫ 1

0

J(x+ t(y − x))(y − x)dt.
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We are especially interested in the case where m = 1 that is when
f : D → R. In that case, we denote the first derivative of the function
f by ∇f and call it the gradient. The gradient is assumed to be a
column vector,

∇f(x) =

(
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)T
.

Moreover, we denote the second derivative by∇2f . The second deriva-
tive is often called the Hessian. Its elements are(

∇2f(x)
)
i,j

=
∂2f

∂xi∂xj
.

The following result holds for this special case when it comes to deriva-
tives.

Theorem 1.1.3 Suppose that f ∈ C1 (D), f : D → R, D ⊆ Rn.
Then, for every x, y ∈ D there exists t ∈ (0, 1) such that

f(y)− f(x) = ∇Tf(x+ t(y − x))(y − x).

Moreover,

f(y)− f(x) =

∫ 1

0

∇Tf(x+ t(y − x))(y − x)dt.

If the function is twice continuously-differentiable, then we can apply
the second order Taylor’s series to obtain the following result.

Theorem 1.1.4 If f ∈ C2 (D), f : D → R, then for every x, y ∈ D
there exists t ∈ (0, 1) such that

f(y) = f(x) +∇Tf(x)(y − x) +
1

2
(y − x)T∇2f(x+ t(y − x))(y − x).
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Next, we provide the definition of the directional derivative.

Definition 7 The directional derivative of the function f : D → R,
D ⊆ Rn at the point x in the direction d is given by

lim
h→0

f(x+ hd)− f(x)

h
.

If the gradient exists, then the directional derivative is of the fol-
lowing form.

Theorem 1.1.5 Suppose that f ∈ C1 (D), f : D → R, D ⊆ Rn.
Then the directional derivative of the function f at the point x in the
direction d is given by ∇Tf(x)d.

The class of convex function is a very important class which is going
to be considered within this thesis. Therefore, we give the definition
of convex function.

Definition 8 Function f : D → R, D ⊆ Rn is convex if for every
x, y ∈ D and every α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

The function is strongly convex if for every x, y ∈ D and every α ∈
(0, 1)

f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

We also give the following characterizations of convex functions.

Theorem 1.1.6 Suppose that f : D → R, D ⊆ Rn and f ∈ C1 (D).
Then the function f is convex if and only if for every x, y ∈ D

f(x) ≥ f(y) +∇Tf(y)(x− y).

Furthermore, the function is strongly convex if and only if there exists
a positive constant γ such that for every x, y ∈ D

f(x) ≥ f(y) +∇Tf(y)(x− y) +
1

2γ
‖x− y‖2.
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Theorem 1.1.7 Suppose that f : D → R, D ⊆ Rn and f ∈ C2 (D).
Then the function f is convex if and only if the Hessian matrix ∇2f(x)
is positive semidefinite for every x ∈ D. The function is strongly
convex if and only if the Hessian ∇2f(x) is positive definite for every
x ∈ D.

Within this thesis, we are particularly interested in conditions that
yield convergence. However, almost equally important is the rate of
convergence. Therefore, we state the following definition.

Definition 9 Suppose that the sequence {xk}k∈N converges to x∗.
The convergence is Q-linear if there is a constant ρ ∈ (0, 1) such that
for all k sufficiently large

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖.

The convergence is Q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

The convergence is Q-quadratic if there exists a positive constant M
such that for all k sufficiently large

‖xk+1 − x∗‖ ≤M‖xk − x∗‖2.

The convergence is R-linear if for all k sufficiently large

‖xk − x∗‖ ≤ ak

where {ak}k∈N is a sequence which converges to zero Q-linearly.

We conclude this subsection by stating Taylor’s expansion in the
case where n = m = 1. In that case, the derivative of order k is
denoted by f (k). Especially, the first and the second derivative are
usually denoted by f ′ and f ′′, respectively.
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Theorem 1.1.8 Suppose that the function f : D → R, D ⊆ R is
k times continuously-differentiable, i.e. f ∈ Ck (D). Then for every
x, y ∈ D there exists θ ∈ [0, 1] such that

f(y) = f(x) +
k−1∑
j=1

f (j)(x)

j!
(y − x)j +

f (k)(x+ θ(y − x))

k!
(y − x)k.

1.2 Probability theory

In this thesis, we deal only with real valued random variables. The
set of all possible outcomes is denoted by Ω. Then any subset of Ω is
called an event. In order to define a random variable, we need to state
the definition of a σ-field. We denote the partitive set of Ω by P (Ω),
while the complementary set of the set A is Ā = Ω \ A.

Definition 10 Suppose that F ⊆ P (Ω). Then F is a σ-field on Ω if
the following conditions are satisfied:

• Ω ∈ F,

• if A ∈ F, then Ā ∈ F,

• if {Ak}k∈N ⊆ F, then
⋃∞
k=1 Ak ∈ F.

Now, we can define the probability function. The empty set if denoted
by ∅.

Definition 11 The function P : F → [0, 1] is called the probability
function on a space (Ω,F) if it satisfies the following conditions:

• P (Ω) = 1,
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• if {Ak}k∈N ⊆ F and Ai
⋂
Aj = ∅ for i 6= j then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P (Ak) .

It can be shown that this definition yields P (∅) = 0. This furthermore
implies that the second condition of the definition also holds for any
finite number of events. In general, we have that
P (A1 ∪ . . . ∪ Ak) is given by

k∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩ Aj) + . . .+ (−1)k+1P (Ak|A1 ∩ . . . ∩ Ak).

One of the properties that is often used is

P (Ā) = 1− P (A).

If P (B) > 0, then we can define the conditional probability by

P (A|B) =
P (A

⋂
B)

P (B)
.

Moreover, the following holds

P (A1 ∩ . . . ∩ Ak) = P (A1)P (A2|A1) · · ·P (Ak|A1 ∩ . . . ∩ Ak−1).

We also state an important definition of independent events.

Definition 12 The sequence of events A1, A2, . . . from F is indepen-
dent if for every finite sequence of indices k1 < . . . < ks the following
equality holds

P (Ak1 ∩ . . . ∩ Aks) = P (Ak1) · · ·P (Aks)
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The space (Ω,F, P ) is called the probability space. Next, we define
Borel’s σ-field.

Definition 13 Borel’s σ-field B in topological space (R, τ) is the
smallest σ-field that contains τ .

Now, we can define random variable.

Definition 14 Mapping X : Ω→ R is a random variable on the space
(Ω,F, P ) if X−1(S) ∈ F for every S ∈ B.

The cumulative distribution function FX : R → [0, 1] for the random
variable X is given by

FX(x) = P (X < x) .

Furthermore, we define the quantile zα as follows.

zα = inf
FX(t)≥α

t.

In many cases it can be viewed as the number which satisfies

α = FX(zα).

Random variables can be discrete or continuous. A discrete random
variable may take only countable many different values. For example,
indicator function is of that kind. We denote it by IA, i.e.

IA(ω) =

{
1, ω ∈ A
0, ω ∈ Ā .

Random variable X is continuous if there exists a nonnegative function
ϕX such that for every S ∈ B

P (S) =

∫
S

ϕX(x)dx.



1.2 Probability theory 23

In that case, we call ϕX the probability density function or just density.
One of the most important random variable from this class is the one
with the normal distribution N. If X is normally distributed random
variable with the mean m and the variance σ2, i.e. if X : N(m,σ2),
then its density function is

ϕX(x) =
1√

2πσ2
e−

(x−m)2

2σ2 .

Especially important case is when m = 0 and σ2 = 1. Then we say
that X has the standard normal distribution. Moreover, if X : N(0, 1)
we can define the Laplace function Φ which satisfies

Φ(x) = FX(x)− 0.5

for every x ≥ 0 and Φ(x) = −Φ(−x) for x < 0.
We also state the cumulative distribution function for the Gumbel

distribution with the location parameter µ and the scale parameter β

FX(x) = e−e
−(x−µ)/β

.

We say that X = (X1, . . . , Xn) : Ω → Rn is a random vector if
every component Xi is a random variable. The cumulative distribution
function for the random vector is defined by

FX(x1, . . . , xn) = P (X1 < x1 ∩ . . . ∩Xn < xn).

Random vector X is continuous if and only if there exists density
function ϕX ≥ 0 such that for every S ∈ B (Rn)

P (X ∈ S) =

∫
. . .

∫
S

ϕX(x1, . . . , xn)dx1 . . . dxn

Multidimensional normal distribution N(m,V ) is given by the den-
sity function

ϕX(x) =
1√

(2π)n|V |
e−

1
2

(x−m)TV −1(x−m).
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where m = (m1, . . . ,mn) and V is a matrix which is usually called
the covariance matrix. We state an important result regarding this
distribution.

Theorem 1.2.1 If a random vector has multidimensional normal dis-
tribution, then every component of that vector has one-dimensional
normal distribution.

If we are dealing with more that one random variable, an important
question is whether they are independent.

Definition 15 Random variables X1, X2, . . . are independent if the
events X−1

1 (S1), X−1
2 (S2) . . .are independent for all Si ∈ B(R), i =

1, 2, . . ..

Suppose that (X, Y ) is a random vector. If the components of that
vector are discrete, then X and Y are independent if and only if for
every xi and every yj

P (X = xi ∩ Y = yj) = P (X = xi)P (Y = yj).

On the other hand, if they are continuous, X and Y are independent
if and only if for every (x, y) ∈ R2

ϕ(X,Y )(x, y) = ϕX(x)ϕY (y).

If random variables are independent and they have the same dis-
tribution we say that they are i.i.d. (independent and identically dis-
tributed). Suppose that Z1, . . . , Zn are i.i.d. with standard normal
distribution N(0, 1). Then we say that the random variable

χ2
n = Z2

1 + . . .+ Z2
n

has the chi-squared distribution with n degrees of freedom. The den-
sity function is given by

ϕχ2
n
(x) =

{ 1
2n/2Γ(n/2)

xn/2−1e−x/2, x > 0

0, x ≤ 0
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where Γ is the gamma function defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Moreover, if we define

tn =
Z√
χ2
n

n

where Z : N(0, 1), we obtain Student’s t-distribution with n degrees
of freedom. The relevant density function is

ϕtn(x) =
Γ(n+1

2
)

Γ(n
2
)
√
nπ

(
1 +

x2

n

)− k+1
2

.

Moreover, it can be shown that for every x ∈ R

lim
n→∞

ϕtn(x) =
1√
2π
e−

x2

2

and therefore Student’s t-distribution is often approximated with the
standard normal distribution.

Let us consider some numerical characteristics of random variables.
We define the mathematical expectation as follows.

Definition 16 If X is a discrete random variable, then the mathemat-
ical expectation E(X) exists if and only if

∑∞
k=1 |xk|P (X = xk) < ∞

where x1, x2, . . . are the values that X may take and it is given by

E(X) =
∞∑
k=1

xkP (X = xk).

If X is continuous, the mathematical expectation exists if∫∞
−∞ |x|ϕX(x)dx <∞ and it is defined by

E(X) =

∫ ∞
−∞

xϕX(x)dx.
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Now, we state some characteristics of the mathematical expectation.
We say that an event happens almost surely if it happens with prob-
ability 1.

Theorem 1.2.2 Let X1, X2, . . . , Xn be random variables that poses
the mathematical expectations and c ∈ R. Then the following holds.

• |E(Xk)| ≤ E(|Xk|).

• E(c) = 0.

• E(cXk) = cE(Xk).

• E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn).

• If Xk ≥ 0 almost surely, then E(Xk) ≥ 0.

• If X1, X2, . . . , Xn are independent, then

E

(
n∏
k=1

Xk

)
=

n∏
k=1

E(Xk).

• If X = (X1, X2, . . . , Xn) is a random vector, then

E(X) = (E(X1), . . . , E(Xn)) .

• If X is continuous and x represents n dimensional vector, then

E(X) =

∫
Rn

xϕX(x)dx.

Before we state one more important feature of mathematical ex-
pectation, we need to define Borel’s function.
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Definition 17 f : Rn → Rm is a Borel’s function if for every S from
Borel’s σ field B(Rm) the inverse f−1(S) belongs to Borel’s σ field
B(Rn).

Theorem 1.2.3 Let f : R → R be a Borel’s function. Then, if X is
discrete the mathematical expectation of f(X) is

E(f(X)) =
∞∑
k=1

f(xk)P (X = xk)

and if X is continuous

E(f(X)) =

∫ ∞
−∞

f(x)ϕX(x)dx.

The variance is also a very important feature of random variables.
We denote it by D(X), but it is also common to use the notation
V ar(X) or σ2(X). Before we define the variance, we give the defini-
tions of the moments and the central moments.

Definition 18 Let X be a random variable and k ∈ N. Then the
moment of order k of X is given by E(Xk), while the central moment

of order k is E
(

(X − E(X))k
)

.

Definition 19 The variance of a random variable X is the second
order central moment of that random variable, i.e.

D(X) = E
(
(X − E(X))2) .

However, the variance if more often calculated by using the following
formula which can easily be obtained from the definition

D(X) = E(X2)− E2(X).

The standard deviation is usually denoted by σ(X) and it is equal to√
D(X).
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Theorem 1.2.4 Let X1, X2, . . . , Xn be random variables with the
variances D(X1), D(X2), . . . , D(Xn) and c ∈ R. Then the following
holds.

• D(Xk) ≥ 0.

• D(Xk) = 0 if and only if Xk is a constant almost surely.

• D(cXk) = c2D(Xk).

• D(Xk + c) = D(Xk).

• If X1, X2, . . . , Xn are independent, then

D

(
n∑
k=1

Xk

)
=

n∑
k=1

D(Xk).

• If X = (X1, X2, . . . , Xn) is a random vector, then

D(X) = (D(X1), . . . , D(Xn)) .

Now, let X be a random variable. The random variable of the
following form

X∗ =
X − E(X)√

D(X)

is called the standardized random variable. Moreover, we obtain from
the characteristics of the mathematical expectation and the variance
that E(X∗) = 0 and D(X∗) = 1. Especially, for a normally distributed
random variable X : N(m,σ2) we have that E(X) = m, D(X) = σ2

and X∗ : N(0, 1).
Finally, we define the covariance and the correlation.
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Definition 20 Let X and Y be some random variables. The covari-
ance of these variables is given by

cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) .

The covariance is often calculated as

cov(X, Y ) = E(XY )− E(X)E(Y ).

Moreover, the following equality holds

D(X − Y ) = D(X) +D(Y )− 2cov(X, Y ).

Definition 21 The correlation between random variables X and Y is
given by

ρX,Y =
cov(X, Y )√
D(X)D(Y )

.

Now, we define four basic types of convergence concerning random
variables.

Definition 22 A sequence of random variables X1, X2, . . . converges
in probability towards random variable X if for every ε > 0

lim
k→∞

P (|Xk −X| ≥ ε) = 0.

Definition 23 A sequence of random variables X1, X2, . . . converges
almost surely towards random variable X if

P ( lim
k→∞

Xk = X) = 1.

Definition 24 A sequence of random variables X1, X2, . . . converges
in mean square towards random variable X if the following conditions
hold
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• E(X2
k) <∞ for every k ∈ N

• limk→∞E((Xk −X)2) = 0.

Definition 25 A sequence of random variables X1, X2, . . . converges
in distribution towards random variable X if, for every x ∈ R ∪
{−∞,∞} such that FX(x) is continuous, the following holds

lim
k→∞

FXk(x) = FX(x).

Convergence in mean square implies convergence in probability. Also,
almost sure convergence implies convergence in probability. Conver-
gence in probability furthermore implies convergence in distribution.
Moreover, if a sequence of random variables converges to a constant,
then convergence in distribution implies convergence in probability.

Let us consider a sequence of independent random variables
X1, X2, . . . and define

Yn =
1

n

n∑
k=1

Xk, Sn = Yn − E(Yn).

We state the conditions under which the sequence {Sn}n∈N converges
to zero. Convergence in probability is stated in the so called weak
laws of large numbers, while the strong laws of large numbers consider
almost sure convergence.

Theorem 1.2.5 If there exists a constant C such that D(Xk) ≤ C
for every k ∈ N, then the sequence {Sn}n∈N converges in probability
towards zero.

Theorem 1.2.6 If the random variables X1, X2, . . . have a same dis-
tribution and a finite mathematical expectation E(Xk) = a, then the
sequence {Sn}n∈N converges in probability towards zero, or equivalently
the sequence {Yn}n∈N converges in probability towards a.
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Theorem 1.2.7 If the random variables X1, X2, . . . have a same dis-
tribution and finite variance, then the sequence {Sn}n∈N converges al-
most surely towards zero.

If we denote the mathematical expectation in the previous theorem
by a, then we obtain that the sequence {Yn}n∈N converges to a almost
surely. Finally, we state the Central limit theorem.

Theorem 1.2.8 If the random variables X1, X2, . . . have a same dis-
tribution and a finite variance, then for every x

lim
n→∞

P

(
Sn√
D(Yn)

< x

)
=

1√
2π

∫ x

−∞
e−

t2

2 dt.



Chapter 2

Nonlinear optimization

Within this chapter we are going to set the deterministic framework
for algorithms described in chapters 5 and 6. In order to do that, we
will provide some basics for unconstrained continuous optimization.
Mainly, there are two basic approaches used to solve the nonlinear
optimization problems - the line search and the trust region. The
latter ones are not going to be described in detail since our algorithms
relay on the line search only. Special class within the line search
framework is represented by nonmonotone line search methods. They
are especially useful in stochastic environment as we will see in chapter
6. Therefore, we will present various nonmonotone techniques at the
end of this chapter.

2.1 Unconstrained optimization

Let us begin by introducing the optimization problem in a frequently
used general form. Consider a real valued function f : D → R where D
is a subset of finite dimensional space Rn. This function may represent
some quantitative measure of the state of the system under consider-
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ation. It is called the objective function since it is the value that we
are trying to control. In optimization problems, controlling this func-
tion means finding a value where it attains minimum or maximum.
However, finding a maximum of function f is an equivalent problem
to finding a minimum of −f . Therefore, without loss of generality,
we will consider only the minimization problems. The argument of
function f will usually be denoted by x. It can be considered as a
tool for controlling the value of the system output. For example, if
we are dealing with finance and we want to maximize the profit, the
objective function f to be minimized would be the loss (the nega-
tive profit) and x would be the vector with components representing
the share of wealth (capital) invested in each of n different finan-
cial assets. This example may seem more suitable for illustrating the
stochastic optimization problem since the outcome of the system is
highly uncertain. However, if we decide to maximize the expected
profit, the problem could formally be considered as a deterministic
one. Moreover, it is convenient for introducing the concept of con-
strained optimization because most naturally imposed conditions on
vector x are nonnegativity of the components that have to sum up to
1. In that case, the set where we are locking for a potential solution
is D = {x ∈ Rn| x ≥ 0,

∑n
i=1 xi = 1}.

In general, the optimization problem can be stated as

min
x∈D

f(x). (2.1)

The set D is often called the feasible set and it is usually represented
in the form

D = {x ∈ Rn| gi(x) ≤ 0, i = 1, . . . , s, hi(x) = 0, i = 1, . . . ,m},
(2.2)

where g1, . . . , gs, h1, . . . , hm are real valued functions that represent
inequality and equality constraints. Usually, these functions, together
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with the objective function f are supposed to be at least continuous. In
opposite to continuous optimization, discrete optimization deals with
the feasible set which contains only countable many points. However,
these kind of problems will not be considered here.

An important special case of problem (2.1) is when D = Rn. This
is exactly the formulation of unconstrained optimization problems. In
order to make this problem solvable, the objective function f has to
be bounded from below. Constrained problems can be converted to
unconstrained using a penalty function. For example, we can incor-
porate the constraint functions in the objective function which yields
the new merit function to be minimized. One way of doing that is

Φ(x;µ) = f(x) + µ
m∑
i=1

|hi(x)|+ µ
s∑
i=1

[gi(x)]+,

where µ is called the penalty parameter and [z]+ = max{z, 0}. Penalty
parameter is a positive constant. Increasing this parameter means
that we are more rigorous when constraints are violated. This par-
ticular penalty function has the property of being exact which means
that for penalty parameter which is large enough, any local solution
of constrained optimization problem is a local minimizer of penalty
function. However, the function presented above is not that conve-
nient because it does not have the property of being differentiable.
But there are penalty functions that posses that property. Suppose
that we have only the equality constraints and that h1, . . . , hm and f
are smooth. Then we can form the smooth penalty function

Φ(x;µ) = f(x) + µ‖h(x)‖2,

where h(x) = (h1(x), . . . , hm(x))T . If there are inequality constraints
also, we can introduce a slack variable y ∈ Rs+ and form the new set
of equality constraints g(x) + y = 0 where g(x) = (g1(x), . . . , gs(x))T .



2.1 Unconstrained optimization 35

Then we obtain the problem of minimizing the function

Φ(x, y;µ) = f(x) + µ

m∑
i=1

h2
i (x) + µ

s∑
i=1

(gi(x) + yi)
2,

subject to y ≥ 0. Although this is not exactly the unconstrained op-
timization problem, it is close enough to an unconstrained problem
since nonnegativity constraints can easily be incorporated in almost
any algorithm for unconstrained optimization. There are also merit
functions that are both smooth and exact. For example, Fletcher’s
augmented Lagrangian can have that property but it also requires
higher derivative information which makes the practical implementa-
tion more expensive. For further references on this topic see Nocedal,
Wright [46].

Now, let us formally state the unconstrained optimization problem
that we will consider in the sequel

min
x∈Rn

f(x). (2.3)

Function f is nonlinear in general and it is assumed to be continuously-
differentiable and bounded from below. As one can see, the goal of
optimization is to find the argument that provides the lowest value of
function f , i.e. we are looking for

x∗ = argminf(x), x ∈ Rn.

Unfortunately, this is often too much to ask for. Global solution - a
point x∗ which satisfies f(x∗) ≤ f(x) for every x ∈ Rn, frequently
remains unreachable even if it exists. A local solution is the one that
we settle for in most cases. By definition, x∗ is a local solution (min-
imizer) if there exists some neighborhood O(x∗) such that for every
x ∈ O(x∗), f(x∗) ≤ f(x). If the previous inequality is strict, then we
say that x∗ is a strict local minimizer. Analogous definition stands for
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a strict global minimizer. However, if the function f is smooth there
are more practical ways of characterizing the solution. We will state
the theorem that provides the first-order necessary conditions for a
local solution.

Theorem 2.1.1 [46] If x∗ is a local minimizer of function f and f is
continuously differentiable on O(x∗), then ∇f(x∗) = 0.

The point x∗ that satisfies condition ∇f(x∗) = 0 is called a sta-
tionary point of function f . Therefore, every local minimizer must be
a stationary point. If the objective function is two times continuously
differentiable, then we can state the second-order necessary conditions
for a local minimizer.

Theorem 2.1.2 [46] If x∗ is a local minimizer of function f and f ∈
C2 (O(x∗)) then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Previous two theorems give us conditions for local solutions. If
∇f(x∗) 6= 0 or if there is some vector h such that hT∇2f(x∗)h <
0, then we know that x∗ is not a local minimizer. Next theorem
provides the second-order sufficient conditions. It means that if these
conditions are satisfied, we can say that the point under consideration
is at least local solution. Moreover, it is a strict local minimizer.
However, the following conditions require the positive definitness of
the Hessian ∇2f(x∗).

Theorem 2.1.3 [46] Suppose that f ∈ C2 (O(x∗)). Moreover, sup-
pose that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then x∗ is a
strict local minimizer of function f .

The important special case of optimization problem (2.3) is when
the objective function is convex. Then any local minimizer is in fact a
global minimizer and therefore every stationary point of the function
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f is a solution that we are searching for. Furthermore, this will be an
assumption that is necessary for proving the convergence rate result
of our algorithm.

2.2 Line search methods

In order to clarify the concept of the line search methods, we have to
take in consideration iterative way of solving the optimization prob-
lems. That means that we want to construct the sequence of points
that will (hopefully) converge towards a solution of the problem (2.3).
These points are called iterates and the sequence of iterates is usu-
ally denoted by {xk}k∈N. If we want to construct this sequence, we
have to provide the starting point - the initial iterate x0. Sometimes
we are able to localize the solution, i.e. to find a subset of Rn which
contains it. Then the starting point is chosen from that subset. This
localization plays an important role in optimization because there are
iterative methods that are only locally convergent. This means that
the sequence of iterates will converge in the right direction (towards
a solution) only if the starting point is close enough to a minimizer.
Unfortunately, the region around the solution where we should start
is usually given by some theoretical means and it is hardly detectable
in practice.

When we choose the starting point, we need a rule which gives us
the following iterate. Suppose that we are at the iteration k, i.e. at
the iterate xk and we need to find a step sk such that

xk+1 = xk + sk.

Two important features of sk are the direction and the length of that
step. Both of them need to be determined in some way. The question is
what will be determined first. The choice yields two different concepts
that were already mentioned. If we choose to put the boundary on
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the length of sk and then find the best possible direction, we are using
the trust region method. More precisely, the idea is to make a model
function mk which approximates the behavior of the objective function
f in a region around xk. The model function is usually quadratic in a
form of

mk(s) = f(xk) + sT∇f(xk) +
1

2
sTBks,

where Bk is some approximation of the Hessian ∇2f(xk). The region
around xk is called the trust region because it is the region in which
we believe that the model function is a good representation of the
objective function f . It is given by the so called trust region radius
usually denoted by ∆k. Therefore, the problem that we are solving in
the iteration k (at least approximately) is

min
s
mk(s) subject to ‖s‖ ≤ ∆k.

This is the concept that has been the subject of interest for many
researchers. Comprehensive material on this topic can be found in
Conn et al. [13].

While the trust region method puts the step length first, the line
search starts iteration by choosing a direction that points to the next
iterate. Let us denote this direction by pk. After that, we are trying
to find the optimal length of pk, i.e. we search along this direction for
the point that has the lowest function value. Therefore, the following
problem is solved exactly or approximately

min
α>0

f(xk + αpk). (2.4)

The positive number α is often called the step size. The step size that
(approximately) solves the problem (2.4) at iteration k is denoted by
αk. The next iteration is then defined as

xk+1 = xk + αkpk.
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Now, the question is how to choose the search direction and how to
solve the problem (2.4). First, we will see what kind of a search
direction is desirable and what are the most common choices for pk.

2.2.1 Search directions

Recall that the objective function is assumed to be smooth. Therefore
the Taylor series yields

f(xk + αpk) = f(xk) + αpTk∇f(xk) +O(α2).

Our primary goal at every iteration is to obtain a point that is better
than the current one. If we look at the previous equality, we can
conclude that negativity of pTk∇f(xk) implies the existence of a small
enough step size such that f(xk + αkpk) < f(xk). Therefore, the
condition that the search direction should satisfy is

pTk∇f(xk) < 0. (2.5)

Direction that satisfies previous inequality is called descent search di-
rection for the function f at the iteration k.

One of the choices for a descent search direction is the negative
gradient. The method that uses pk = −∇f(xk) is called the steepest
descent method. Notice that the only case when negative gradient
does not satisfy the condition (2.5) is when ∇f(xk) = 0, i.e. when
xk is a stationary point of function f . This method is appealing since
it is cheep in the sense that it does not require any second order
information. Therefore, it is widely applicable. However, this method
can be very slow - the convergence rate is at most linear. Moreover, it
is sensitive to poor scaling. Poor scaling happens when the objective
function is much more sensitive in some components of the argument
than the others.
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Another important method is the Newton method. In some sense it
is opposite to the steepest descent method. While the steepest descent
is cheep and slow, the Newton method is expensive and fast. Assume
that the objective function is in C2(Rn) and consider the following
model function at the iteration k

mk(p) = f(xk) + pT∇f(xk) +
1

2
pT∇2f(xk)p.

This model function is an approximation of f(xk + p) and therefore
our goal is to minimize it. If we assume that the Hessian ∇2f(xk) is
positive definite, then the unique minimizer of the function mk is

pk = −(∇2f(xk))
−1∇f(xk).

This direction is called the Newton direction and it is descent if the
Hessian is positive definite. If we are in a neighborhood of a strict local
minimizer where ∇2f(x∗) is sufficiently positive definite, the Hessian
matrices will also be positive definite and the Newton method will
perform very well yielding the potential to achieve quadratic local con-
vergence. The problem arises if the Hessian at x∗ is nearly singular or
if we are far away from a solution. Then, the method can be unstable
or even undefined and the modifications that make the Hessian matri-
ces sufficiently positive definite are needed. The modifications can be,
for instance, adding a multiple of the identity matrix or applying the
modified Cholesky factorization [46]. The idea is to obtain a positive
definite approximation of the Hessian matrix which can be written in
the form Bk = ∇2f(xk)+Ek, where Ek is the correction matrix. After
that, we define the search direction as

pk = −B−1
k ∇f(xk). (2.6)

For this kind of methods, convergence result of the form
limk→∞∇f(xk) = 0 can be obtained under the assumption of uni-
formly bounded conditional numbers ‖Bk‖‖B−1

k ‖. The rate of conver-
gence depends on the ∇2f(x∗). If the Hessian is sufficiently positive
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definite, the correction matrix will eventually became Ek = 0 and
the method transforms to pure Newton’s method which yields the
quadratic convergence. On the other hand, the rate is no more than
linear if the Hessian is nearly singular.

Although the Newton method has many nice properties, it can be
too expensive since it requires the computation of the second deriva-
tives at every iteration. To avoid this, quasi-Newton methods are
developed. The idea is to construct a matrix that approximates the
Hessian matrix by updating the previous approximation and using the
first order information. The rate of convergence is no more than super-
linear, but the cost is significantly smaller then in Newton’s method.

Quasi-Newton method provides the search direction in the form
of (2.6) where Bk is an approximation of the Hessian. Define the
discrepancy between the gradients in two neighboring iterations by

yk = ∇f(xk+1)−∇f(xk).

This difference together with the difference between two iterates

sk = xk+1 − xk
is used to obtain the approximation of the second order derivative.
Now, the question is how do we choose Bk or more precisely, how
do we update the current approximation to obtain Bk+1? The main
condition that Bk+1 should satisfy is the secant equation

Bk+1sk = yk. (2.7)

This comes from approximating Bk+1 ≈ ∇2f(xk + tksk) in Taylor’s
expansion

∇f(xk+1) = ∇f(xk) +∇2f(xk + tksk)sk

where tk ∈ (0, 1). Another way of viewing this condition is to construct
the model function

mk+1(s) = f(xk+1) + (∇f(xk+1))T s+
1

2
sTBk+1s
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that approximates f(xk+1+s) and to require the match of the gradient
at points xk and xk+1, i.e. to demand ∇mk+1(0) = ∇f(xk+1) and
∇mk+1(−sk) = ∇f(xk). The first condition is already satisfied while
the second one yields the secant equation (2.7). However, the secant
equation does not provide an unique solution for Bk+1. Therefore,
other conditions are imposed such as low rank of Bk+1 − Bk and the
symmetry of Bk+1. Therefore, we can set Bk+1 to be the solution of
the problem

min ‖B −Bk‖ subject to BT = B, Bsk = yk. (2.8)

Different norms provide different updating formulas. If we use the
weighted Frobenius norm [46], we obtain the DFP (Davidon-Fletcher-
Powell) formula

Bk+1 = (I − 1

yTk sk
yks

T
k )Bk(I −

1

yTk sk
yks

T
k ) +

1

yTk sk
yky

T
k

where I is the identity matrix. Since we have to solve the sys-
tem of linear equations to obtain the search direction, it is some-
times more effective to work with the inverse Hessian approximations
Hk ≈ (∇2f(xk))

−1. Sherman-Morrison-Woodbury formula provides
the updating formula that correspond to the DFP update

Hk+1 = Hk −
Hkyky

T
kHk

yTkHkyk
+
sks

T
k

yTk sk
.

Since this is an approximation of the inverse Hessian, i.e. Hk = B−1
k ,

the secant equation becomes

Hk+1yk = sk. (2.9)

The other approach is to use the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) formula

Hk+1 = (I − 1

yTk sk
sky

T
k )Hk(I −

1

yTk sk
yks

T
k ) +

1

yTk sk
sks

T
k . (2.10)
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We obtain this formula by solving the problem

min ‖H −Hk‖ subject to HT = H, sk = Hyk (2.11)

with the weighted Frobenius norm just like in (2.8).
In order to obtain a descent search direction, we need Hk (and

therefore Bk) to be positive definite matrix. This is possible only if
the curvature condition is satisfied, i.e. if

sTk yk > 0.

It can be shown that if Hk > 0 and the previous inequality holds,
then the subsequent BFGS approximation Hk+1 will also be positive
definite. The same holds for Bk. Therefore, we can start with a
positive definite initial approximation and use the updating formula
only if the curvature condition holds. Else, we can skip the updating
and put Hk+1 = Hk. The initial approximation is often defined as
H0 = I. There are some other possibilities, of course, but this one
is not so bad because BFGS approximation tends to correct itself in
just a few iterations if the correct line search is applied. It is also
considered as more successful in practice than DFP [46].

BFGS and DFP are rank-2 updating formulas, i.e. the difference
Bk+1 − Bk is a rank-2 matrix. The method that represents rank-1
updating formulas is the SR1 (Symmetric-rank-1) method defined by

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)Tyk
. (2.12)

It produces a sequence of symmetric matrices that satisfy the secant
equation. Unlike the previously stated BFGS updating, this method
does not guaranty positive definiteness of the approximation matrix
and therefore there is no guaranty for descent search direction of the
form (2.6). Moreover, it does not have the superlinear convergence
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result as BFGS has. However, SR1 approximation of the (inverse)
Hessian is often better in practice than BFGS approximation and good
numerical results made this method very popular [46].

Notice that the SR1 update is not well defined if the denominator
(sk − Hkyk)

Tyk is zero. This problem can be solved by leaving the
approximation unchanged if, for example, the following holds

|(sk −Hkyk)
Tyk| < 10−8‖sk −Hkyk‖‖yk‖.

Such update provides a sequence of good approximations because the
previous inequality usually does not happen very often. One more
nice property of this method is that it finds the solution in at most n
iterations when the objective function is strongly convex and the line
search is appropriate. The main difference between SR1 and the other
two methods is that the search direction obtained by the SR1 might be
nondescent. Therefore, nonmonotone line search is more appropriate
for this kind of search directions as we will see in a sequel.

In Chapter 6, we l present some numerical results that use slightly
modified versions of the quasi-Newton search directions. The methods
that are also considered here are the so called spectral gradient meth-
ods. They are constructed by Barzilai and Borwein [2] and therefore
they are often referred as BB methods. In [2] the global convergence
for convex quadratic objective function is considered without any line
search. The spectral gradient idea is developed for several optimiza-
tion problems by Birgin et al. (see [9] for example). Again, the central
issue is the secant equation. More precisely, we want to find a diagonal
matrix of the special form

Dk = γkI, γk ∈ R
that best fits the secant equation (2.9). This matrix will be considered
as an approximation of the inverse Hessian (∇2f(xk))

−1 and the search
direction will be parallel to negative gradients direction, i.e.

pk = −γkI∇f(xk) = −γk∇f(xk).



2.2 Line search methods 45

The quotient γk that contains the second order information is obtained
as the solution of the problem

min
γ∈R
‖γyk−1 − sk−1‖2

where sk−1 and yk−1 are defined as above. This problem can be solved
analytically and the solution is given by

γk =
sTk−1yk−1

‖yk−1‖2
. (2.13)

The other possibility is to put

γk =
‖sk−1‖2

sTk−1yk−1

. (2.14)

This quotient is obtained by observing the secant equation (2.7) and
solving the problem

min
γ∈R
‖yk−1 − γsk−1‖2.

Since the solution of the previous problem yields an approximation of
the Hessian and not its inverse, the search direction is pk = −γk∇f(xk)
with γk given by (2.14). Either way, this is the method that incor-
porates the information of the second order while the computation is
very easy. It was originally constructed to accelerate the steepest de-
scent method that sometimes tend to converge in zigzag fashion if the
Hessian is nearly singular at the solution (Forsythe [25]). Notice that
if the curvature condition sTk−1yk−1 > 0 does not hold, then γk can be
negative and the search direction is not the descent one. However, if
we use the safeguard (Tavakoli, Zhang [63])

γ̄k = min{γmax,max{γk, γmin}}
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and set pk = −γ̄k∇f(xk), then we are sure that the direction is de-
scent and numerical stability can be controlled. The parameters are
proposed to be 0 < γmin << 1 << γmax <∞.

The spectral gradient method is proposed to be combined with
nonmonotone line search which is not that strict on decreasing the
function value. The main reason for this proposal is that the mono-
tone line search may reduce the spectral gradient method to the ordi-
nary steepest descent and destroy its good performance regarding the
rate of convergence. For example, Raydan [53] used the nonmonotone
technique from Grippo et al. [30] to obtain the globally convergent BB
method. Using the safeguard rule which prohibits nondescent search
directions, he proved the convergence for the class of continuously-
differentiable objective functions with bounded level sets. Nonmono-
tone techniques are presented in the following section in more details.

Another approach for obtaining the search direction that is widely
known is given by the conjugate gradient method that was originally
constructed for solving systems of linear equations. However, it will
not be the subject of our research and we will not make any more
comments on it. For more details, see [46] for instance.

At all of the previously stated methods, an approximation of a
gradient can be used. There are many examples where the true gra-
dient is not known or it is very hard to calculate it. In that case, the
function evaluations at different points are used in order to obtain the
gradient approximation. For example, interpolation techniques can be
applied where the focus is on the optimal choice of the interpolation
points. On the other hand, there are finite difference methods. For
example, if we use the centered finite difference estimator, then the
ith component of the gradient approximation is

(∇f(x))i ≈
f(x+ hei)− f(x− hei)

2h

where ei represents the ith column of the identity matrix. If the ap-
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proximation is used in a framework of an iterative method, then the
parameter h can be substituted by the sequence of parameters {hk}k∈N
which usually tends to zero. That way, more and more accurate ap-
proximation if obtained. For more insight in derivative-free optimiza-
tion in general, one can see Conn et al. [16] for example.

2.2.2 Step size

After reviewing the methods for obtaining the search direction, we l
describe the basics for finding the step length. Of course, the best
thing would be if we solve (2.4) exactly and take the full advantage of
direction pk. However, this can be too hard and it can take too much
time. More importantly, it is not necessary to solve this problem ex-
actly, but it is desirable to find an approximate solution that decreases
the value of the objective function. Therefore, we are searching for αk
such that f(xk + αkpk) < f(xk). However, requiring arbitrary small
decrease is not enough. In order to ensure the convergence, we impose
the sufficient decrease condition

f(xk + αkpk) ≤ f(xk) + ηαk(∇f(xk))
Tpk, (2.15)

where η is some constant that belongs to the interval (0, 1), usually
set to η = 10−4. This condition is often called the Armijo condition.

In order to obtain a reasonable reduction in the objective function,
we need to ensure that the step length is not too short. This can be
done by imposing the curvature condition

(∇f(xk + αkpk))
Tpk ≥ c (∇f(xk))

T pk (2.16)

where c is some constant that satisfies 0 < η < c < 1. This condition,
together with (2.15) makes the Wolfe conditions. Let us define the
function Φ(α) = f(xk + αpk). Previous condition is then equivalent
to Φ′(αk) ≥ Φ′(0). This means that increasing the step size would
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probably not be beneficial for decreasing the objective function value.
However, there is no guaranty that αk is the local minimum of function
Φ(α). If we want to obtain the step size that is at least in a broad
neighborhood of the stationary point of function Φ, we can impose the
strong Wolfe conditions. They consist of the Armijo condition (2.15)
and

|(∇f(xk + αkpk))
Tpk| ≤ c|(∇f(xk))

Tpk|

instead of (2.16). Now, we will state the important result that gives the
conditions for the existence of the step size that satisfies the (strong)
Wolfe conditions.

Lemma 2.2.1 [46] Suppose that the function f : Rn → R is continu-
ously differentiable and let pk be a descent direction for function f at
point xk. Also, suppose that f is bounded below on {xk + αpk|α > 0}.
Then if 0 < η < c < 1, there exist intervals of step lengths satisfying
the (strong) Wolfe conditions.

Another alternative for the Wolfe conditions are the Goldstein con-
ditions given by

f(xk)+(1−c)αk(∇f(xk))
Tpk ≤ f(xk+αkpk) ≤ f(xk)+cαk(∇f(xk))

Tpk

where c is a positive constant smaller than 0.5. Bad side of imposing
these conditions is that they may exclude all the minimizers of function
Φ. Moreover, there are indications that the Goldstein conditions are
not well suited for quasi-Newton methods [46].

Notice that if we want to check whether the (strong) Wolfe condi-
tions are satisfied, we have to evaluate the gradient at every candidate
point. There are many situations when evaluating the derivatives is
much more expensive than evaluating the objective function. In that
sense, less expensive would be the technique which is called backtrack-
ing. If our goal is to find a step size that satisfies the Armijo condition,
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backtracking would start with some initial value α0
k and check if (2.15)

holds for αk = α0
k. If it holds, we have found the suitable step size.

If not, we decrease the initial step size by multiplying it with some
constant β ∈ (0, 1) and check the same condition with αk = βα0

k. If
the Armijo condition still does not hold, we repeat the procedure of
decreasing the step size until a suitable step length is found. If the
conditions of Lemma 2.2.1 are satisfied, we will find the step length
that satisfies (2.15) after a finite number of trials. Therefore, under
the standard assumptions on the objective function f and the search
direction pk the backtracking technique is well defined.

Sometimes interpolation is used in order to enhance the backtrack-
ing approach. The idea is to use the points that we have obtained
to approximate the function Φ(α) with a polynomial function Φq(α).
This approximating function is usually quadratic or cubic and there-
fore easy to work with, i.e. we can find its exact minimum which
is further used to approximate the solution of problem (2.4). For
example, we can require the match of these two functions and their
derivatives at α = 0 as well as the match of the functions at the last
one or two points that did not satisfy the Armijo condition.

Interpolation can also be used for obtaining the initial step size
at every iteration. For example, we can use the data that we have
already obtained, construct the quadratic function of α and set the
initial guess α0

k to be the minimizer of that quadratic function. An-
other popular approach is to require the match between the first-order
change at the current iteration and the previous one, i.e. to impose
α0
k(∇f(xk))

Tpk = αk−1(∇f(xk−1))Tpk−1. After obtaining the starting
step size, we can continue with the standard backtracking. This in-
terpolation approach for finding the starting point is suitable for the
steepest descent method for instance. However, if the Newton-like
method is used, we should always start with α0

k = 1 because the full
step sk = pk has some nice properties such as positive influence on the
convergence rate. See [46].
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We will conclude this section by stating the famous Zoutendijk’s
result regarding the global convergence of the line search methods. It
will be stated for the Wolfe conditions, but similar results can be ob-
tained for the strong Wolfe or the Goldstein conditions. This theorem
reveals the importance of the angle between the search direction pk
and the negative gradient direction. Let us denote this angle by θk,
i.e. we define

cos θk =
−(∇f(xk))

Tpk
‖∇f(xk)‖‖pk‖

.

Then, the following holds.

Theorem 2.2.1 [46] Suppose that the function f : Rn → R is con-
tinuously differentiable on an open set N containing the level set
L = {x ∈ Rn| f(x) ≤ f(x0)} where x0 is the initial iterate. Further-
more, suppose that the gradient ∇f is Lipschitz continuous on N and
that pk is a descent search direction. Also, suppose that f is bounded
below on Rn and that the step size αk satisfies the Wolfe conditions.
Then ∑

k≥0

cos2 θk‖∇f(xk)‖2 <∞.

This result implies that limk→∞ cos2 θk‖∇f(xk)‖2 = 0 and there-
fore, if we have the sequence of search directions {pk}k∈N that are
close enough to the negative gradient, or more precisely, if there exists
a positive constant δ such that cos θk ≥ δ for every k sufficiently large,
then we have limk→∞ ‖∇f(xk)‖ = 0. In other words, we obtain the
global convergence. This is obviously true for the negative gradient
search direction where cos θk = 1 for all k. On the other hand, if we
consider the Newton-like method with pk = −Hk∇f(xk) and Hk > 0,
then cos θk will be bounded from below if the conditional number of
the matrix Hk is uniformly bounded from above. More precisely, if
‖Hk‖‖H−1

k ‖ ≤M for some positive constant M and every k, then one
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can show that cos θk ≥ 1
M

and obtain the global convergence result
under the stated assumptions.

Until now, we have seen what are the main targets concerning the
search directions and the step sizes. The Armijo condition has been
playing the most important role in imposing the sufficient decrease in
the objective function. In the following section, we will review the line
search strategies that do not require that strong descent. Moreover,
they even allow an increase in function value at some iterations in order
to obtain faster convergence in practice and to increase the chances of
finding the global solution.

2.3 Nonmonotone strategy

2.3.1 Descent search directions

There are various reasons that have lead researchers to introduce the
nonmonotone strategies. The first line search technique for uncon-
strained optimization is proposed by Grippo et al. [30]. They consid-
ered Newton’s method and notice that imposing the standard Armijo
condition on the step size can severely slow down the convergence,
especially if the objective function has narrow curved valleys. If the
iterate of the algorithm comes in such kind of valley, it remains trapped
and algorithm starts to crawl. This happens because, in that case, the
Armijo rule is satisfied only for small step sizes and therefore the full
step is not accepted. On the other hand, it is known that the full step
is highly desirable when we use the quasi-Newton or Newton meth-
ods because it brings the potential for superlinear or even quadratic
convergence. Therefore, line search rules that give more chances for
full step to be accepted are developed. The same basic idea has been
proposed earlier in Chamberlain et al. [11] but for the constrained op-
timization problems. The first attempt for unconstrained optimization



52 Nonlinear optimization

[30] has been to search for the step size that satisfies

f(xk + αkpk) ≤ max
0≤j≤m(k)

f(xk−j) + ηαk(∇f(xk))
Tpk (2.17)

where m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1,M} for k ≥ 1,
η ∈ (0, 1) and M is a nonnegative integer. In other words, we want
to find the point where function value is sufficiently smaller than the
maximum of the previous M (or less at the beginning) function values.
This strategy can be viewed as a generalization of the standard Armijo
rule. The important fact about this first nonmonotone line search
is that it requires the descent search direction. More precisely, the
authors assume that search directions satisfy the following conditions
for some positive constants c1 and c2

(∇f(xk))
Tpk ≤ −c1‖∇f(xk)‖2 (2.18)

‖pk‖ ≤ c2‖∇f(xk)‖. (2.19)

Under the assumption of bounded level set and twice continuously-
differentiable objective function, they have proved that every accumu-
lation point of the algorithm is a stationary point of f . However, they
modify the Newton step every time the Hessian is singular by using the
negative gradient direction in that iterations. Moreover, they suggest
that the standard Armijo rule should be used at the beginning of opti-
mization process leaving the nonmonotone strategy for the remaining
part. Their numerical study shows that using M = 10 provides some
significant savings in number of function evaluations when compared
to M = 0. It indicates the advantage of the nonmonotone rule over
the standard Armijo since the number of function evaluations is often
the important criterion for evaluating the algorithms.

In [31], Grippo et al. relax the line search even more. Roughly
speaking, they allow some directions to be automatically accepted
and they are checking whether the sufficient decrease is made only
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occasionally. This modification improved the performance of their al-
gorithm. This is confirmed by Toint [64] who tested two algorithms
of Grippo et al. and compared them to the standard line search al-
gorithm on the CUTE collection Bongratz et al. [10]. Toint also
proposes the new modification of this nonmonotone strategy which
made some savings in the number of function evaluations for some
of the tested problems. The advantage of nonmonotone strategies is
clear, especially for modified algorithm [31]. It is visible in the num-
ber of function evaluations as well as in CPU time since the modified
algorithm performs the best in most of the tested problems. It is also
addressed that using the monotone strategy at the beginning of the
process appears to be beneficial.

In [17] Dai provides some basic analysis of the nonmonotone scheme
(2.17). He proposes that one should try to put through the full step
by applying the nonmonotone rule and if it does not work, standard
Armijo should be applied. Moreover, if the objective function is not
strongly nonlinear one should prefer monotone scheme. He considers
the descent search direction and gives the necessary conditions for the
global convergence. Under the standard assumptions such as Lipschitz
continuity of the gradient and boundedness of the objective function
from below, he proves that the sequence {max1≤i≤M f(xMk+i)}k∈N is
strictly monotonically decreasing. Furthermore, under the additional
assumptions (2.18) and (2.19) on the search directions, he proves that
every accumulation point of the algorithm is stationary. A weaker
result can be obtained by imposing a weaker assumption instead of
(2.19). More precisely, if we assume the existence of some positive
constants β and γ such that for every k

‖pk‖2 ≤ β + γk (2.20)

we can obtain that lim infk→∞ ‖∇f(xk)‖ = 0.
Dai also proves R-linear rate of convergence when the algorithm

is applied on a continuously-differentiable objective function which is
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uniformly convex. Under the assumptions (2.18) and (2.19), he proves
the existence of the constants c4 > 0 and c5 ∈ (0, 1) such that for
every k

f(xk)− f(x∗) ≤ c4c
k
5(f(x1)− f(x∗))

where x∗ is a strict global minimizer.
It is noticed that the performance of the algorithms based on the

line search rule (2.17) is very dependent on the choice of M which
is considered as one of the drawbacks. Another nonmonotone line
search method is proposed in Zhang, Hager [71] where it is pointed
out that the likelihood of finding global optimum is increased by using
nonmonotone rules. The authors conclude that their method provides
some savings in number of function and gradient evaluations compared
to monotone technique. Moreover, the savings are noted compared
to the nonmonotone line search (2.17) as well. Instead of using the
maximum of previous function values, it is suggested in [71] that a
convex combination of previously computed function values should be
used. The algorithm is constructed to find a step size αk that satisfies
the condition

f(xk + αkpk) ≤ Ck + ηαk(∇f(xk))
Tpk, (2.21)

where Ck is defined recursively. More precisely, C0 = f(x0) and

Ck+1 =
ηkQk

Qk+1

Ck +
1

Qk+1

f(xk+1), (2.22)

where Q0 = 1 and
Qk+1 = ηkQk + 1 (2.23)

with ηk ∈ [ηmin, ηmax] and 0 ≤ ηmin ≤ ηmax ≤ 1. Parameter ηk
determines the level of monotonicity. If we put ηk = 1 for every k,
algorithm treats all previous function values equally, i.e.

Ck =
1

k + 1

k∑
i=0

f(xi), (2.24)
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while ηk = 0 yields standard Armijo rule. The authors say that the
best numerical results are obtained if we let ηk be close to 1 far from the
solution and closer to 0 when we achieve a neighborhood of the mini-
mizer. However, they report only the results for ηk = 0.85 since it pro-
vides satisfactory performance. The convergence analysis is conducted
for the descent search directions and it is shown that Ck ≥ f(xk) which
makes the line search rule well defined. Under the similar assumptions
as in [17], the global convergence is proved. However, the result de-
pends on ηmax. In general, lim infk→∞ ‖∇f(xk)‖ = 0 but if ηmax < 1
then the stronger result holds, i.e. every accumulation point is station-
ary for function f . Also, the R-linear convergence for strongly convex
functions is obtained.

2.3.2 General search directions

Notice that all the above stated line search rules require descent search
directions in order to be well defined. However, this requirement is
not always satisfied. There are many applications where derivatives
of the objective function are not available. Moreover, there are also
quasi-Newton methods that do not guaranty descent search directions.
These methods have very nice local properties but making them glob-
ally convergent has been a challenge. In order to overcome this diffi-
culty and to obtain globally and superlinearly convergent algorithm,
Li and Fukushima [41] introduced a new line search. They consider
the problem of solving the system of nonlinear equations F (x) = 0,
F : Rn → Rn which is equivalent to the problem of minimizing
f(x) = ‖F (x)‖ or f(x) = ‖F (x)‖2. The line search rule is of the
form

‖F (xk + αkpk)‖ ≤ ‖F (xk)‖ − σ1‖αkpk‖2 + εk‖F (xk)‖ (2.25)
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where σ1 is some positive constant and {εk}k∈N is a sequence of positive
numbers which satisfies the following condition

∞∑
k=0

εk <∞. (2.26)

Notice that under the standard assumptions about F , positivity of
εk yields acceptance of any kind of direction providing that the step
size is small enough. This kind of sequence is used, for example in
Birgin et al. [7] where inexact quasi-Newton methods are considered
and therefore the search direction is not descent in general.

Probably the earliest derivative-free line search was introduced by
Griewank in [29], but some difficulties were discovered concerning the
line search. Therefore, the (2.25) is considered as one of the first well
defined derivative-free line search rules (Cheng, Li [12]). The work
that combines the ideas from [30], [41] and Lucidi, Sciandrone [42] is
presented by Diniz-Ehrhardt et al. in [23]. The idea was to construct
a method that accepts nondescent search directions, tolerates the non-
monotone behavior and explores several search directions simultane-
ously. More precisely, before reducing the step size, all directions from
a finite set are checked for satisfying the following line search rule

f(xk + αpk) ≤ max{f(xk), . . . , f(xmax{k−M+1,0})}+ εk − α2βk (2.27)

where βk belongs to the sequence that satisfies the following assump-
tion.

P 1 {βk}k∈N is a bounded sequence of positive numbers with the prop-
erty

lim
k∈K

βk = 0⇒ lim
k∈K
∇f(xk) = 0,

for every infinite subset of indices K ⊆ N.
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What are the choices for this sequence? For example, it can be
defined as βk = min{δ, ‖∇f(xk)‖τ} where δ and τ are some positive
constants. Actually, the choice βk = δ is also valid. Moreover, some
approximation of the gradient’s norm which tends to be exact can also

be used. For instance, we can use βk = ‖
(
gk1 , . . . , g

k
n

)T ‖ where

gki =
f(xk + hke

i)− f(xk − hkei)
2hk

if we ensure that limk→∞ hk = 0.

In order to demonstrate the power of the line search (2.27), the
authors even used random search directions. Their numerical results
suggest that some amount of random search directions can be benefi-
cial, especially for the large dimension problems. Namely, increasing
the percentage of random directions yielded the increase of number
of iterations but also of the number of successfully solved problems.
The sequence (2.26) was defined as εk = |f(x0)|/k1.1. They also con-
sider the algorithm that uses the SR1 directions which can be nonde-
scent. Convergence analysis rely exclusively on the line search tech-
nique. First, assuming that the objective function is bounded from
below, it is proved that there exists a subsequence of iterations K
such that limk∈K α

2
kβk = 0. Furthermore, if (x∗, p∗) is a limit point of

{(xk, pk)}k∈K then it satisfies the inequality (∇f(x∗))Tp∗ ≥ 0. How-
ever, for proving the existence of an accumulation point which is sta-
tionary for f , descent search directions are required.

Line search (2.21) has also been modified in order to accept non-
descent directions which makes it applicable to derivative-free opti-
mization problems. The modified line search proposed in [12] is of the
form

f(xk + αkpk) ≤ Ck + εk − γα2
kf(xk) (2.28)

where γ ∈ (0, 1) and Ck is defined as in [71] with the slight modification
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concerning εk

Ck+1 =
ηkQk

Qk+1

(Ck + εk) +
1

Qk+1

f(xk+1). (2.29)

Here, f(xk) plays the role of βk from (2.27) since the problem under
consideration is solving the system of nonlinear equations F (x) = 0
and the objective function is defined as f(x) = 1

2
‖F (x)‖2. This line

search is combined with the spectral residual method proposed by La
Cruz et al. [40] and it yielded promising results which support the
idea that spectral methods should be combined with nonmonotone
line search. Convergence results again distinguish the case where ηmax
is smaller than 1. In that case, it is proved that every limit point x∗

of sequence of iterates satisfies (F (x∗))TJ(x∗)F (x∗) = 0 where J(x) is
the Jacobian of F (x).



Chapter 3

Stochastic optimization

3.1 Stochastic in optimization

Let us begin this section by distinguishing two main types of stochas-
tic optimization. The key difference between them can be expressed
through the role of noise in optimization. In the first case, the noise is
inevitable. It appears as a random variable in the objective function
or within constraints. This can be a consequence of uncertainty or
errors in measuring output or input data. For example, uncertainty
is present if we are observing a system whose performance is going to
be known in future, but it depends on many factors that can not be
considered while making the model. Therefore, they are considered
as random variables. The measuring errors can also be considered as
random variables. For instance, if we are trying to optimize the tem-
perature of some gas, objective function - the temperature is obtained
only with finite number of decimals and rounding errors appear. They
can be considered as noise in measuring.

These were examples where randomness is present whether we like
it or not. On the other hand, stochastic optimization can represent
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the algorithms where some noise is intentionally introduced. This is
usually done by using random points or random search directions like
in direct search methods [62]. They are especially convenient when
there is lack of information about the derivatives and the objective
function itself. Even if that is not the case, random directions are used
to explore the regions where standard directions would not enter. This
can speedup the convergence or increase the likelihood of finding global
optimizer. Moreover, random vectors are used in approximations of
derivatives within simultaneous perturbation techniques that will be
described latter. The main idea is to decrease the number of function
evaluations when the dimension of the problem is large.

Finally, let us point out that noisy data does not have to mean that
the problem that we are observing contains explicit noise. The typical
example is a well known problem of finding maximum likelihood esti-
mators. This is the problem of parameter estimation. Suppose that
the type of distribution of a random variable is known, but it is not
fully determined because we do not know the values of parameters of
that distribution. For example, suppose that the variable is normally
distributed, but the mean and the variance are unknown. Further-
more, suppose that we have some realization of a random sample from
that distribution which is i.i.d. and let us denote that realization by
ξ1, . . . , ξN . Then, we are searching for the parameters that maximize
the likelihood of that particular sample realization. If we denote the
relevant probability distribution function by fp(x) the problem be-

comes maxx
∏N

i=1 fp(ξi) or equivalently

min
x
−

N∑
i=1

ln fp(ξi) (3.1)

where x represents the vector of parameters to be estimated. For
example, if the underlying distribution is N(µ, σ2), then the problem is

minµ,σ−
∑N

i=1 ln( 1√
(2πσ2)

e−
(ξi−µ)

2

2σ2 ). The key issue here is that formally,
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the objective function is random since it depends on random sample.
However, once the sample realization is known, we can consider the
objective function as deterministic. Another important example of
”vanishing noise” is regression problem. Although the data represents
random variables, we obtain only the input-output pairs (ai, yi), i =
1, . . . , N and the problem is in the least squares form

min
x

N∑
i=1

(g(x, ai)− yi)2, (3.2)

where g is a model function. Specifically, in the case of linear regression
it is in the form of g(x, a) = aTx. In general, many data fitting
problems are in a form of least squares

min
x

N∑
i=1

f 2
i (x). (3.3)

For further references one can consult Friedlander, Schmidt [26] for
instance.

We will consider the stochastic optimization problems with un-
derlying randomness rather than the stochastic algorithms with in-
tentionally imposed noise. The considered problems have various
forms. First, we can consider objective function which is random,
i.e. minx F (x, ξ) where ξ represents the noise and x is the decision
variable. For example, this problem can appear when we have to
make the decision now but the full information about the problem
parameters is going to be known at some future moment. The lack
of information in that case is introduced by the random vector ξ. In
the investment world ξ may represent the return of different financial
assets and the decision variable can represent the portion of wealth to
be invested in each one of those assets. If, for example, the distribu-
tion of ξ is discrete and known, one can make different problems by
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observing different scenarios and maybe try to solve the one which is
most probable. However, this approach can result in great amount of
risk. The most common way of dealing with these kind of problems
is to introduce the mathematical expectation, i.e. to try to minimize
the mean of the random function

min
x
E(F (x, ξ)). (3.4)

Although this way the noise is technically removed, these kind of prob-
lems are hard to solve. Even if the distribution of the random vector
ξ is known the expectation can be hard to evaluate, i.e. to find its
analytical form.

Of course, all the problems that we mentioned so far can be a
part of constrained or unconstrained optimization. Moreover, the
constraints can also be defined by random variables. For example,
if F (x, ξ) represents the loss of a portfolio then one can try to min-
imize the loss but at the same time to make sure that the loss will
not exceed certain value. Furthermore, one can choose to put the con-
straint D(x, ξ) ≤ c which means that the variance of the loss should
be bounded with some constant c or in other words, the risk should be
controlled. Notice that these kind of problems can also be considered
in a form of unconstrained mathematical expectation optimization by
using the merit function approach.

Now, suppose that we want to minimize the function E(F (x, ξ))
so that G(x, ξ) ≤ 0 is satisfied for (almost) every ξ. This can easily
become unfeasible, i.e. we can obtain the problem with empty feasible
set. These constraints can be relaxed if we choose to satisfyG(x, ξ) ≤ 0
with some high probability, but smaller than 1. In that case, we obtain
the problem

minE(F (x, ξ)) subject to P (G(x, ξ) ≤ 0) ≥ 1− α,

where α is some small positive number, very often set to 0.05. The
problems with this kind of constraints are called chance constrained



3.2 Stochastic approximation methods 63

problems. Notice that P (G(x, ξ) ≤ 0) = E(I(−∞,0)(G(x, ξ))) where
I stands for the indicator function, so the constraint can be approx-
imated as any other expectation function - by sample average for in-
stance. However, this function is usually discontinuous and therefore
hard to work with. Another way of approaching this problem is

minE(F (x, ξ)) subject to G(x, ξi) ≤ 0, i = 1, . . . , N

where ξ1, . . . , ξN is some generated sample. The question is how large
should N be so that an optimal solution of the previously stated prob-
lem satisfies originally stated chance constraint. This is another tough
problem. However, some fairly sharp bounds are developed in the case
of convex problems - where the objective function and the function G
are convex with respect to the decision variable x. For further refer-
ence on this topic one can consult Shapiro [59].

In the next few sections we will mainly consider problems of the
form (3.4) in the unconstrained optimization framework. These prob-
lems have been the subject of many research efforts and two main
approaches have been developed. The first one is called Stochastic
Approximation (SA) and its main advantage is solid convergence the-
ory. It deals directly with the noisy data and adopts the steepest de-
scent or Newton-like methods in stochastic framework. On the other
hand, Sample Average Approximation (SAA) method transforms the
problem into deterministic one which allows the application of the de-
terministic tools. However, the sample usually has to be very large
which can be very expensive if the function evaluations are the main
cost at every iteration.

3.2 Stochastic approximation methods

Let us begin by referring to ”No free lunch theorems” established in
Wolpert, Macready [68]. Basically the theorems state that no algo-
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rithm is universally the best one. One algorithm can suite ”perfectly”
to one class of problems, while it performs poor on some other classes
of problems. Moreover, there are some algorithms that are very suc-
cessful in practice although there is no underlying convergence theory.
This is not the case with Stochastic Approximation (SA) method.
There is strongly developed convergence theory. Usually, the almost
sure convergence is achievable. However, convergence assumptions are
sometimes hard to verify or satisfy. The good thing about SA is even
if the convergence assumptions are not verified, it can perform well in
practise.

We will start by considering the SA algorithm for solving the sys-
tems of nonlinear equations. This approach is strongly related to
unconstrained optimization problems. Since we are usually satisfied if
we find a stationary point of the objective function f , the optimiza-
tion problem can be viewed as the problem of solving ∇f(x) = 0. SA
algorithm is often referred to as the Robbins-Monro algorithm if the
information about the derivatives is available. It is applicable on con-
strained problems, but we consider only the unconstrained case. The
only difference is in adding the projection function which is applied on
iterates in order to maintain the feasibility. Moreover, the convergence
theory can be conducted throughout differential equations but we will
not consider this kind of approach (see [62] for further references).

Consider the system of nonlinear equations

g(x) = 0, g : Rn → Rn. (3.5)

Suppose that we are able to obtain only the measurements with noise
that depends on iteration as well as on decision variable

ĝk(x) = g(x) + ξk(x). (3.6)

Then the SA is defined by

x̂k+1 = x̂k − akĝk(x̂k). (3.7)
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The iterates are denoted by x̂k instead of xk in order to emphasize
their randomness which is the consequence of using random samples
throughout the iteration process. The sequence of step sizes {ak}k∈N
is also called the gain sequence and its influence on the convergence is
huge. Therefore, the first assumption is the following.

S 1 The gain sequence satisfies: ak > 0, limk→∞ ak = 0,
∑∞

k=0 ak =
∞ and

∑∞
k=0 a

2
k <∞.

The assumption that step sizes converge to zero is standard in stochas-
tic algorithms [62]. The condition

∑∞
k=0 ak =∞ is imposed in order to

avoid inefficiently small step sizes. On the other hand, we do not want
to have unstable behavior and that is why the summability condition
on a2

k is here. Its role is to decrease the influence of the noise when
the iterates come into a region around the solution. The example of a
sequence that satisfies the previous assumption is

ak =
a

(k + 1)α
(3.8)

where α ∈ (0.5, 1] and a is some positive constant. Assumptions S1 -
S4 are applicable only when x∗ is the unique solution of the considered
system.

S 2 For some symmetric, positive definite matrix B and for every
η ∈ (0, 1),

inf
η<‖x−x∗‖< 1

η

(x− x∗)TBg(x) > 0.

S 3 For all x and k, E(ξk(x)) = 0.

The condition of zero mean is also standard in stochastic optimization.
Its implication is that ĝk(x) is unbiased estimator of g(x).
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S 4 There exist constant c > 0 such that for all x and k,

‖g(x)‖2 + E(‖ξk(x)‖2) ≤ c(1 + ‖x‖2).

Notice that under the assumption S3, the previous condition is equal
to E(‖ĝk(x)‖2) ≤ c(1 + ‖x‖2) because

E(‖ĝk(x)‖2) = E(‖g(x)‖2 + 2(g(x))T ξk(x) + ‖ξk(x)‖2)

= E(‖g(x)‖2) + 2g(x)TE(ξk(x)) + E(‖ξk(x)‖2)

= ‖g(x)‖2 + E(‖ξk(x)‖2)

Therefore, the mean of ‖ĝk(x)‖2 can not grow faster than a quadratic
function of x. Under these assumptions, we can establish almost sure
convergence of the SA algorithm.

Theorem 3.2.1 [62] Consider the SA algorithm defined by (3.7).
Suppose that the assumptions S1 - S4 hold and that x∗ is a unique
solution of the system (3.5). Then x̂k converges almost surely to x∗ as
k tends to infinity.

Recall that the gain sequence is mentioned as the key player in
this algorithm. It has impact on stability as well as on convergence
rate. Therefore, it is very important to estimate the best choice for
step sizes. The result that helps is the asymptotic normality of x̂k.
Under some regularity conditions (Fabian [21]), it can be shown that

k
α
2 (x̂k − x∗)→d N(0,Σ), k →∞

where→d denotes the convergence in distribution, α refers to (3.8) and
Σ is some covariance matrix that depends on the gain sequence and on
the Jacobian of g. Therefore, for large k the iterate x̂k approximately
has the normal distribution N(x∗, k−

α
2 Σ). Because of the assumption

S1, the maximal convergence rate is obtained for α = 1. However,
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this reasoning is based on asymptotic result. Since the algorithms are
finite in practice, it is often desirable to set α < 1 because α = 1
yields smaller steps. Moreover, if we want to minimize ‖Σ‖, the ideal
sequence would be ak = 1

k+1
J(x∗)−1 where J(x) denotes the Jacobian

matrix of g (Benveniste et al. [6]). Even though this result is purely
theoretical, sometimes the Jacobian at x∗ can be approximated by
J(x̂k) and that way we can enhance the rate of convergence.

If we look at (3.8), we see that large constant a may speedup the
convergence by making larger steps, but it can have negative influence
on the stability. One way to improve the stability is to put the so
called stability constant A > 0 and obtain ak = a/(k + 1 + A)α.
Another way of maintaining the stability when the dimension of x is
1 is to use the idea from Kesten [36] and to decrease the step size
when x̂k+1− x̂k starts to change the sign frequently. This is the signal
that we are in the domain of noise, i.e. we are probably close to
the solution and therefore we need small steeps to avoid oscillations.
The idea from [36] is generalized in Delyon, Juditsky [18] to fit the
larger dimensions. Furthermore, the way of dealing with oscillations
is to consider the sequence of averaged iterates 1

k+1

∑k
i=0 x̂i. However,

this is recommended only if the noise is strong. If the sequence of
x̂k already converges more or less monotonically towards the solution,
then the averaging can only slow it down.

The important choice for gain sequence is a constant sequence.
Although this sequence does not satisfy the assumption S1, it can
be shown that constant step size can conduct us to a region that
contains the solution. This result initiated development of a cascading
steplength SA scheme by Nedic et al. [20] where the fixed step size is
used until some neighborhood of the solution is reached. After that,
in order to come closer to the solution, the step size is decreased and
again the fixed step size is used until the ring around the solution is
sufficiently tighten up. That way, the sequence of iterates is guided
towards the solution.
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Since our main concern is the problem of the form

min
x∈Rn

f(x) = E(F (x, ξ)),

we will consider the special case of the SA algorithm which is referred
to as the SA for stochastic gradient. We have already commented that
the previous problem can be viewed as a problem of solving the system
of nonlinear equations g(x) = 0 where

g(x) = ∇f(x) = ∇E(F (x, ξ)).

Recall that the assumption S3 in fact says that ĝ(x) has to be unbiased
estimator of g(x). Therefore, we are interested in the case where
∂
∂x
F (x, ξ) can be used to approximate the gradient g(x). In other

words, it is important to know when

∂

∂x
E(F (x, ξ)) = E(

∂

∂x
F (x, ξ)). (3.9)

We will state the relevant theorems at the end of this section. Now,
suppose that (3.9) is true and that ∂

∂x
F (x, ξ) is known. Then there

are at least two options for an unbiased estimator ĝk(x̂k). The first
one is called the instantaneous gradient and it uses

ĝk(x̂k) =
∂

∂x
F (x̂k, ξk)

where ξk is a realization of the random variable ξ. The other basic
form uses

ĝk(x̂k) =
1

N

N∑
i=1

∂

∂x
F (x̂k, ξi)

where ξ1, . . . , ξN is a fixed sample realization that is used throughout
the whole optimization process. This approach is highly related to
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sample path methods that are going to be considered later. Of course,
there are other approaches that may combine these two extremes. For
further reference see [62] for instance.

The Robbins-Monro algorithm can only achieve the convergence
rate of k−

1
2 . In general, if the objective function has more than one

optimum then the SA converges only to a local solution (Fu [27], An-
dradottir [1]). Therefore, in some applications random search direc-
tions are used to enhance the chances of finding the global optimum
[62].

Now, we state the conditions which imply the equality (3.9).

Theorem 3.2.2 [62] Suppose that Ω is the domain of the random
vector ξ which has the probability density function ϕξ(ξ̃) and that
F (x, ξ̃)ϕξ(ξ̃) and ∂

∂x
F (x, ξ̃)ϕξ(ξ̃) are continuous on Rn × Ω. Further-

more, suppose that there exist nonnegative functions q0(ξ̃) and q1(ξ̃)
such that

|F (x, ξ̃)ϕξ(ξ̃)| ≤ q0(ξ̃)

and

‖ ∂
∂x
F (x, ξ̃)ϕξ(ξ̃)‖ ≤ q1(ξ̃)

for all (x, ξ̃) ∈ Rn × Ω and
∫

Ω
qi(ξ̃)dξ̃ <∞ for i = 0, 1. Then

∂

∂x

∫
Ω

F (x, ξ̃)ϕξ(ξ̃)dξ̃ =

∫
Ω

∂

∂x
F (x, ξ̃)ϕξ(ξ̃)dξ̃,

i.e. (3.9) holds.

Notice that if the function F is continuously-differentiable with
respect to x, the functions F and ϕξ are continuous with respect to ξ̃
and the function and its gradient are bounded, i.e. there exist positive
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constants M0 and M1 such that |F (x, ξ̃)| ≤M0 and ‖ ∂
∂x
F (x, ξ̃)‖ ≤M1

for all ξ̃, then the result holds with qi = Miϕξ(ξ̃), i = 0, 1 because∫
Ω

Miϕξ(ξ̃)dξ̃ = Mi

∫
Ω

ϕξ(ξ̃)dξ̃ = Mi.

Now we state another set of conditions from [59].

Theorem 3.2.3 [59] Suppose that F (·, ξ) is differentiable at x̄ for
almost every ξ and the expectation E(F (x̄, ξ)) is well defined and fi-
nite valued. Furthermore, suppose that there exists a positive valued
random variable C(ξ) such that E(C(ξ)) < ∞ and for all x, y in a
neighborhood of x̄ and almost every ξ the following inequality holds

|F (x, ξ)− F (y, ξ)| ≤ C(ξ)‖x− y‖.

Then
∂

∂x
E(F (x̄, ξ)) = E(

∂

∂x
F (x̄, ξ)).

In order to make this analysis complete, we state the conditions
for well defined expectation function.

Theorem 3.2.4 [59] Suppose that F (·, ξ) is continuous at x̄ for al-
most every ξ and there exists function Z(ξ) such that |F (x, ξ)| ≤ Z(ξ)
for almost every ξ and all x in a neighborhood of x̄. Furthermore,
assume that there exists E(Z(ξ)) and it is finite. Then the expectation
E(F (x, ξ)) is well defined for all x in a neighborhood of x̄. Moreover,
f(x) = E(F (x, ξ)) is continuous at x̄.

If we take a look at this set of conditions, then we can conclude
that (3.9) holds if for example the function F (·, ξ) is continuously-
differentiable and bounded. Suppose that |F (x, ξ)| ≤ M for every ξ
whereM is some positive constant. Then Z(ξ) from Theorem 3.2.4 can
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be identified with M since E(M) = M . Therefore, f(x) = E(F (x, ξ))
is well defined and also finite valued because

|f(x)| ≤ E(|F (x, ξ)|) ≤ E(M) = M.

Moreover, the differentiability of F (·, ξ) implies the Lipschitz-
continuity, i.e there exists some positive constant L such that

|F (x, ξ)− F (y, ξ)| ≤ L‖x− y‖

for all x, y. Therefore, L can be identified with C(ξ) from Theorem
3.2.3 and (3.9) holds for all x.

Previous results assume that the random vector ξ has probability
density function and therefore the expectation is defined in the inte-
gral form. If the noise has discrete distribution, then the existence of
both expectations in (3.9) implies the equality between them if the
expectations are finite valued.

3.3 Derivative-free stochastic approxi-

mation

One of the assumptions in the previous section is that the informa-
tion on the gradient ∇xF (x, ξ) is available. Even if the gradient came
with the noise, we could use it to construct the search direction. How-
ever, this assumption is not too realistic because, often, the gradient
is unattainable. This is the case, for example, when we are dealing
with a so called ”black box” mechanisms. In that case, we only have
input-output information. In other words, we can only obtain the
value of the objective function without knowing its analytical form.
Moreover, there are examples where even if the gradient is known, it
is very expensive to evaluate it. In order to overcome this difficulties,
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the methods that approximate the derivatives using only the objec-
tive function evaluations are developed. The algorithms that use that
methods are called derivative-free algorithms. Specially, if they are
considered in the SA framework, they are referred to as the Kiefer-
Wolfowitz type algorithms.

We start the review of derivative-free algorithms with the Finite
Difference SA method (FDSA). This method uses the SA iterative rule
(3.7) combined with the finite difference approximation of the gradient.
Two variants of finite differences are the most common. One of them
is central (two-sided symmetric) difference gradient estimator whose
ith component is defined as

(ĝk)i(x̂k) =
f̂(x̂k + ckei)− f̂(x̂k − ckei)

2ck
, (3.10)

where ei is the ith column of the identity matrix. The sequence of
positive numbers {ck}k∈N is playing an important role in the conver-
gence theory. Before stating the needed assumptions, we define the
alternative which is called one-sided finite difference gradient estima-
tor.

(ĝk)i(x̂k) =
f̂(x̂k + ckei)− f̂(x̂k)

ck
. (3.11)

Notice that the first estimator (FDC) uses 2n evaluations of func-
tion, while the later one (FDF) uses n + 1 evaluations, where n is
the dimension of the decision variable. However, FDC often provides
better approximations. When it comes to ck, it is intuitive to think
that the small values of that parameter would provide better approx-
imations. Indeed, smaller parameter ck yields the smaller bias. On
the other hand, small ck can have very bad influence on the variance.
Since the sequence {ak}k∈N also controls the influence of noise in some
way, the following assumption is stated.
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S 5 The {ak}k∈N and {ck}k∈N are sequences of positive numbers that
converge to zero and satisfy the following conditions

∞∑
k=0

ak =∞,
∞∑
k=0

akck <∞,
∞∑
k=0

a2
kc
−2
k <∞.

Notice that ck should tend to zero, but slower that ak. The choice for
the sequence ck can be of the form ck = c/(k + 1)γ with c, γ > 0. Of
course, γ is chosen in a way to satisfy the needed assumption.

The second condition is on the form of the objective function.

S 6 There is a unique minimizer x∗ such that for every η > 0,

inf
‖x−x∗‖>η

‖g(x)‖ > 0 and inf
‖x−x∗‖>η

(f(x)− f(x∗)) > 0.

For the next assumption we need to define the objective function
in the following form

f̂k(x) = f(x) + εk(x) (3.12)

where εk represents the noise. Moreover, define Ik = {x̂0, . . . , x̂k}.
This means that Ik contains the information about the history of the
algorithm until the iteration k.

S 7 For all i and k, E(εk(x̂k + ckei) − εk(x̂k − ckei)|Ik) = 0 almost
surely and E((εk(x̂k ± ckei))2|Ik) ≤ C almost surely for some C > 0
that is independent of k and x.

Finally, although the derivatives are not known, we suppose that they
do exist and we state the following assumption.

S 8 The Hessian matrix ∇2f(x) exists for all x and it is uniformly
bounded.
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Now we can state the convergence result.

Theorem 3.3.1 [62] Consider the SA algorithm defined by (3.7) and
(3.10). Suppose that the assumptions S5 - S8 hold. Then x̂k converges
almost surely to x∗ as k tends to infinity.

Asymptotic normality of the iterates (under some additional con-
ditions [56], [21]) is also attainable for FDSA, i.e. we have

k
β
2 (x̂k − x∗)→d N(µFD,ΣFD), k →∞ (3.13)

where β = α − 2γ. Unlike in the Robbins-Monro type, FDSA in
general does not have µFD = 0. This is the consequence of having
the bias in gradient estimation. While in the derivative-based SA we
can obtain unbiased estimators, the finite difference can provide only
asymptotically unbiased estimator. Furthermore, the convergence as-
sumptions imply that the best asymptotic convergence rate is k−

1
3 .

However, this rate can be improved in some special cases when com-
mon random numbers (CRN) are used. The CRN concept can be
viewed as a tool for reducing the variance of the estimators, but it
will be described latter in more details (see page 82). However, it was
suggested that the CRN concept is not that effective in practise [27].

Selection of a good gain sequence is a difficult task. Asymptotic
results can be useless sometimes because the optimization processes
are finite in practice. Although there are some semiautomatic methods
[62], it is not a rare situation where the sequences are being tuned by
using trial and error technique. Badly tuned parameters can result in
very bad performance of the algorithm. Moreover, finite differences
can yield poor approximations if the noise is strong [62].

One of the flaws of FD is its cost. If the dimension of the problem is
large, evaluating the objective function in 2n points can be inefficient.
To overcome this difficulty, methods that use only few evaluations per
iteration regardless of the dimension are developed. We will present
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the method of this kind which is called the Simultaneous Perturba-
tions (SP) method (Fu [27], Spall [62]). It usually takes only two
function evaluations, but there are even cases where only one evalua-
tion is needed. Asymptotically, SPSA methods provide similar results
as FDSA, but they are more efficient if the dimension of the prob-
lem is larger than 2. However, it is suggested in [27] that one should
probably prefer FD if the function evaluations are not too expensive.

The idea behind SP is to perturb all the components at the same
time by using one vector which is random in general. Denote this
vector by ∆k = (∆k,1, ...,∆k,n)T . Then, the approximation of the
gradient needed for SA iteration (3.7) is obtain by

(ĝk)i(x̂k) =
f̂(x̂k + ck∆k)− f̂(x̂k − ck∆k)

2ck∆k,i

. (3.14)

In order to obtain almost sure convergence, it is assumed that random
vectors ∆k, k = 0, 1, 2 . . . are i.i.d. and the components of that vector
are independent random variables with mean zero and finite inverse
second moment. This means that E(∆k,i) = 0 and there exists the
constant C such that E((∆k,i)

−2) ≤ C. Moreover, it is usually as-
sumed that the distribution is symmetric around zero. For example,
a valid distribution for ∆k,i is the symmetric Bernoulli. In that case,
∆k,i can take only values 1 and -1, both with probability 0.5. The
uniform distribution is not valid and the same is true for the normal
distribution. The SP approximation that allows the standard normal
distribution for perturbation sequence is slightly different [27]. It is of
the form

(ĝk)i(x̂k) =
f̂(x̂k + ck∆k)− f̂(x̂k − ck∆k)

2ck
∆k,i. (3.15)

In this case, the second moment is assumed to be bounded instead
of its inverse. Although these variants of SP seem similar, the corre-
sponding results can be significantly different [27].
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Asymptotic normality like in the FD case (3.13) can be achieved
under some additional conditions. Also, the almost sure convergence
is proved with an enlarged set of assumption when compared to FD.
The sequence {ck}k∈N retains the important role as in the previously
stated methods. For more detailed convergence analysis one can see
[62] for instance.

Notice that the methods stated in this section do not need infor-
mation about the underlying distribution of the noise term. How-
ever, if we have some additional information we should use it. Sup-
pose that the cumulative distribution function for F (x, ξ) is known
and denote it by Gx. Recall that the objective function is defined as
f(x) = E(F (x, ξ)). Furthermore, using the ideas of the Monte Carlo
sampling techniques [59], we can say that F (x, ξ) = G−1

x (U) where U is
Uniformly distributed on interval (0, 1). Suppose that the interchange
of the gradient and expectation operator is valid, i.e. the equality
(3.9) holds. Then we have ∇f(x) = ∇E(F (x, ξ)) = E(∇G−1

x (U)) and
we can use the sample realization from the uniform (0, 1) distribution
u1, . . . , uN to obtain the estimation

ĝk(x̂k) =
1

N

N∑
i=1

∇G−1
x̂k

(ui).

This method belongs to the class of direct gradient estimation and it
is called Infinitesimal Perturbation Analysis (IPA). Another method
of this kind is the Likelihood Ratio method (LR). It is also called the
Score Function method. The basic idea is to use the density function
of F (x, ξ) (denote it by hx) and find some suitable density function ψ
such that hx/ψ is well defined. Then under certain conditions such as
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(3.9) we obtain

∇f(x) =

∫
∇F (x, ξ)hx(ξ)dξ

=

∫ (
∇F (x, ξ)

hx(ξ)

ψ(ξ)

)
ψ(ξ)dξ

= E

(
∇F (x, Z)

hx(Z)

ψ(Z)

)
where the expectation is with respect to the random variable Z with
the density function ψ. Therefore, we can use the sample z1, . . . , zN
from the distribution ψ to make the approximation

ĝk(x̂k) =
1

N

N∑
i=1

∇F (x̂k, zi)
hx̂k(zi)

ψ(zi)
.

This method is very unstable because bad choice for ψ can result
in poor gradient approximation. Moreover, this is not exactly the
derivative-free method because it uses the information about the gra-
dient function. However, this method usually provides unbiased and
strongly consistent estimators [1]. For more information about direct
methods one can see [59], [27],[1].

Simultaneous perturbations can also be used to obtain the Hessian
approximations like in Adaptive SPSA algorithm Spall [62], [61]. This
method adopts Newton-like steps in stochastic framework to obtain
the iterative rule

x̂k+1 = x̂k − akH̃−1
k ĝk(x̂k)

where H̃k is a positive definite approximation of the Hessian ∇2f(x̂k).
In particular, H̃k = p(H̄k) where p is the projection operator on the
space of positive definite matrices. Furthermore,

H̄k =
k

k + 1
H̄k−1 +

1

k + 1
Ĥk
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where Ĥk = 1
2
(Ak + ATk ) and

Ak =
ĝk(x̂k + c̃k∆̃k)− ĝk(x̂k − c̃k∆̃k)

2c̃k
(∆̃−1

k,1, ..., ∆̃
−1
k,n).

Here, the random vector ∆̃k and c̃k have the same role as in the gradi-
ent approximation and they are defined in the same manner as before.
Moreover, if the simultaneous perturbations are used to obtain the
gradient estimators as well, then ∆̃k should have the same distribu-
tion as ∆k, but they should be generated independently. Notice that
definition of H̄k is semi recursive in the sense that it uses the approxi-
mation of the Hessian at the previous iteration and the approximation
obtained at the current one represented by the symmetric matrix Ĥk.
As the algorithm proceeds, more weight is put on the previous estima-
tor in order to obtain the stability when the noise is strong. Almost
sure convergence and asymptotic normality is also attainable in this
approach [62].

There are other algorithms that use Newton-like directions in
stochastic environment. For example, see Kao et al. [35], [34] where
the BFGS formula is used to update the inverse Hessian approxima-
tion. At the end of this section, we give references for derivative-free
methods in the trust region framework (Conn et al. [13], [14], [15])
where the derivatives are usually approximated by means of interpo-
lation.

3.4 Sample average approximation

Sample average approximation (SAA) is a widely used technique for
approaching the problems where the objective function is in the form
of mathematical expectation (3.4). The basic idea is to approximate
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the objective function with the sample mean

f̂N(x) =
1

N

N∑
i=1

F (x, ξi) (3.16)

where N is the size of a sample represented by random vectors
ξ1, . . . , ξN . The usual approach is to generate the sample at the be-
ginning of the optimization process. That way we can consider the
function f̂N as deterministic which allows us to use standard (deter-
ministic) tools for optimization. Therefore, the problem to be solved
is the deterministic optimization problem

min
x
f̂N(x) (3.17)

whereN is some substantially large but finite number. There are many
problems of this form. Some of them are described at the beginning
of this chapter: maximum likelihood estimation (3.1), regression (3.2)
and data fitting least squares problems (3.3). They have been the
issue of many research efforts. The following few chapters analyze
the methods for solving this particular kind of problems. In the next
section, we will describe some of the known methods that deal with
the problem (3.17). We also consider the methods that deal with the
sequence of problems of that form where the sample size N is chang-
ing. The later ones are sometimes referred to as the Variable Number
Sample Path (VNSP) methods, while the first ones are usually called
just Sample Path methods. The name is obtained from viewing the
realization of noise terms ξ1, . . . , ξN as the path (trajectory) that sam-
ple follows. One should distinguish two very similar names: Variable
Number Sample Path and Variable Sample. Variable Number Sample
Path implies only that the size of a sample N is allowed to change and
it usually means that we are dealing with priory realized sample. So,
the sample is cumulative. On the other hand, Variable Sample usually
denotes the method that uses different sample realizations.
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In this section we will focus on the quality of the solution of the
SAA problem (3.17). In other words, our main concern is how does
the SAA problem approximates the original problem (3.4) and what
are the directions for choosing N such that the solution of the SAA
problem provides a good approximation of the original problem solu-
tion.

Suppose that f(x) = E(F (x, ξ)) is well defined and finite. Fur-
thermore, suppose that ξ1, . . . , ξN are random variables with the same
distribution as ξ. Then, the function f̂N(x) defined by (3.16) is also
a random variable since it depends on a random sample. Moreover,
if ξ1, . . . , ξN are independent, i.e. if the sample is i.i.d., then by the
(strong) Law of Large Numbers we obtain the almost sure convergence
of f̂N(x). More precisely, for every x we have that

lim
N→∞

f̂N(x) = f(x) (3.18)

with probability 1. However, this is only the pointwise convergence.
Sometimes, the uniform convergence is needed, i.e. we want to know
when the following results holds almost surely

lim
N→∞

sup
x∈X
|f̂N(x)− f(x)| = 0. (3.19)

If this is true, then we say that f̂N almost surely converges to f uni-
formly on the set X. Moreover, we say that the function F (x, ξ), x ∈
X is dominated by an integrable function if there exists a nonnegative
function M(ξ) such that E(M(ξ)) < ∞ and P(|F (x, ξ)| ≤ M(ξ))=1
for every x ∈ X. Notice that this condition holds if the function F is
bounded with some finite constant M , i.e. if |F (x, ξ)| ≤ M for every
x ∈ X and almost every ξ. We state the relevant theorem.

Theorem 3.4.1 [59] Suppose that X is nonempty, compact subset of
Rn and that for any x ∈ X the function F (·, ξ) is continuous at x
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for almost every ξ. Furthermore, suppose that the sample ξ1, . . . , ξN
is i.i.d. and that the function F (x, ξ), x ∈ X is dominated by an
integrable function. Then f(x) = E(F (x, ξ)) is finite valued and con-
tinuous on X and f̂N almost surely converges to f uniformly on X.

Now, let us consider the constrained optimization problem

min
x∈X

f(x) = E(F (x, ξ)) (3.20)

where X is nonempty, closed subset of Rn which is determined by
deterministic constraints and denote by X∗ the set of optimal solutions
of that problem. Also, let f ∗ be the optimal value of the objective
function, i.e. f ∗ = f(x∗) where x∗ ∈ X∗. Furthermore, denote by X̂∗N
and f̂ ∗N the set of optimal solutions and the corresponding optimal
values, respectively, of the following problem

min
x∈X

f̂N(x) (3.21)

where f̂N is the sample average function (3.16). Notice that X̂∗N and

f̂ ∗N are random since they also depend on the sample. The following
result holds.

Theorem 3.4.2 [59] Suppose that f̂N almost surely converges to f
uniformly on X when N tends to infinity. Then f̂ ∗N almost surely
converges to f ∗ as N →∞.

Stronger assumptions are needed if we want to establish the conver-
gence of the relevant optimal solutions.

Theorem 3.4.3 [59] Suppose that there exists a compact set C ⊂ Rn
such that X∗ is nonempty and X∗ ⊂ C. Assume that the function f is
finite valued and continuous on C and that f̂N converges to f almost
surely, uniformly on C. Also, suppose that for N large enough the set
X̂∗N is nonempty and X̂∗N ⊂ C. Then f̂ ∗N → f ∗ and Dev(X̂∗N , X

∗)→ 0
almost surely as N →∞.
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In the previous theorem, Dev(A,B) denotes the distance between sets
A and B. Moreover, recall that the previous two theorems consider the
constrained optimization problem with the closed feasible set. Since
our primary interest is in unconstrained optimization problems, we
will shortly analyze the way of dealing with this gap. Namely, suppose
that the assumptions of Theorem 3.4.3 are true, but for X from (3.20)
and (3.21) equal to Rn. Since C is assumed to be compact, we know
that there exists a compact set D such that C is a true subset of
D. That means that no solution of (3.17) for N large enough lies on
the boundary of D. Furthermore, since the constraints are irrelevant
unless they are active at the solution, the unconstrained optimization
problem minx∈Rn f(x) is equivalent to minx∈D f(x) and for every N
large enough the corresponding SAA problems are also equivalent,
i.e minx∈Rn f̂N(x) is equivalent to minx∈D f̂N(x). Therefore, under
the same conditions as in the previous theorem, we can obtain the
convergence for the corresponding unconstrained problem. Moreover,
the conditions can be relaxed if the problem is convex [59].

Now, let us fix x (for example, x can be a candidate solution) and
suppose that f̂N(x) converges to f(x) almost surely. The important
issue here is how fast does it converge. In other words, we want to
estimate the error that we make by approximating the expectation
function with the sample mean. Assume that the sample is i.i.d. Then
f̂N(x) is unbiased estimator of f(x), i.e.

E(f̂N(x)) = f(x).

Moreover, we have that the variance of the estimator is given by

D(f̂N(x)) =
1

N
σ2(x)

where σ2(x) = D(F (x, ξ)) is assumed to be finite. Now, we can find
the confidence interval, i.e. the error bound cN(x) such that inequality
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|f̂N(x)−f(x)| ≤ cN(x) is true with some high probability smaller than
1. Define δ ∈ (0, 1). Our aim is to find cN(x) such that

P
(
|f̂N(x)− f(x)| ≤ cN(x)

)
= δ.

Under the stated conditions, the Central Limit Theorem yields that
the random variable f̂N(x) is asymptotically normally distributed with
N(f(x), 1

N
σ2(x)). Equivalently,

YN(x) =
f̂N(x)− f(x)√

σ2(x)
N

asymptotically has standard normal distribution. Let Z : N(0, 1).
This means that for large N it makes sense to approximate ΦYN (x)(z)
with ΦZ(z) where ΦW (z) denotes the cumulative distribution function
of the relevant random variable W . In other words, we can make the
following approximation

P (a ≤ YN(x) ≤ b) ≈ P (a ≤ Z ≤ b)

and we have

δ = P
(
−cN(x) ≤ f̂N(x)− f(x) ≤ cN(x)

)
= P

−cN(x)√
σ2(x)
N

≤ YN(x) ≤ cN(x)√
σ2(x)
N


≈ P

−cN(x)√
σ2(x)
N

≤ Z ≤ cN(x)√
σ2(x)
N

 .

Therefore we can approximate
√
NcN(x)/σ(x) with the quantile of

standard normal distribution, or more precisely with z 1+δ
2

such that
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ΦZ(z 1+δ
2

) = 1+δ
2

. Furthermore, if we approximate σ2(x) with the sam-

ple variance

σ̂2
N(x) =

1

N − 1

N∑
i=1

(F (x, ξi)− f̂N(x))2 (3.22)

we obtain the error bound estimation

ĉN(x) =
σ̂N(x)√
N

z 1+δ
2
. (3.23)

Therefore, if we obtain a point x̄ as the approximate solution of (3.17),
we can use f̂N(x̄)+ ĉN(x̄) to estimate the upper bound of the objective
function value f(x̄). Notice that for fixed x the error bound ĉN(x) in-
creases if δ increases. Furthermore, ĉN(x) is also directly proportional
to the variance of the estimator D(f̂N(x)). Therefore, some techniques
for reducing that variance are developed. Some of them are the quasi-
Monte Carlo and Latin hypercube sampling, as well as the likelihood
ratio method mentioned earlier [59].

There are situations where we just want to compare two points
and decide which one is better. For example, these two points can
be the neighboring iterates of an algorithm x̂k and x̂k+1 and we want
to decide whether to accept the next iterate or not by estimating
f(x̂k) − f(x̂k+1). In these kind of situations, the concept of common
random numbers (CRN), i.e. using the same sample can be very useful
especially if the iterates are close to each other. In that case, the
sample average estimators are usually strongly positively correlated,
i.e. the covariance Cov(f̂N(x̂k), f̂N(x̂k+1)) is significantly larger than
zero and therefore

D(f̂N(x̂k)− f̂N(x̂k+1)) = D(f̂N(x̂k)) +D(f̂N(x̂k+1))

− 2Cov(f̂N(x̂k), f̂N(x̂k+1))

< D(f̂N(x̂k)) +D(f̂N(x̂k+1)).
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On the other hand, if we use two independent samples to estimate
f̂N(x̂k) and f̂N(x̂k+1) we obtain

D(f̂N(x̂k)− f̂N(x̂k+1)) = D(f̂N(x̂k)) +D(f̂N(x̂k+1)).

Therefore, f̂N(x̂k)−f̂N(x̂k+1) probably provides more reliable informa-
tion for choosing the better point if the CRN concept is used. Although
there are many advantages of the CRN approach, using different sam-
ples can still be beneficial sometimes (Homem-de-Mello [33]).

Now, suppose that we have some candidate solution point x̄ and
we want not only to estimate the difference f̂N(x̄)− f(x̄) but also the
gap defined by

g(x̄) = f(x̄)− f(x∗)

where x∗ is the solution of the original unconstrained problem. Of
course, g(x) ≥ 0 for every x and our interest is in finding the upper
bound. As before, denote by X∗ and X̂∗N the sets of optimal solutions

and by f ∗ and f̂ ∗N the optimal values of the problems (3.20) and (3.21)
with X = Rn, respectively. Then, for every x′ we have that

f̂N(x′) ≥ min
x∈Rn

f̂N(x) = f̂ ∗N .

Suppose that the sample is i.i.d.. Then the previous inequality implies

f(x′) = E(f̂N(x′)) ≥ E(f̂ ∗N).

Since this is true for every x′, we have that

min
x′∈Rn

f(x′) ≥ E(f̂ ∗N).

The left hand side of the above inequality is equal to f ∗ and therefore
we obtain that

E(f̂ ∗N) ≤ f ∗. (3.24)
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It can be shown [59] that E(f̂ ∗N) is increasing with respect to sample

size and that, under some additional conditions, f̂ ∗N is asymptotically
normally distributed with mean f ∗ and variance σ2(x∗)/

√
N where

X∗ = {x∗}. However, if X∗ is not a singleton, the estimator f̂ ∗N is

asymptotically biased in general. More precisely, E(f̂ ∗N) is typically
smaller than f ∗. Now, the idea is to find the confidence interval for the
gap g(x̄) by finding the confidence lower bound for E(f̂ ∗N) and upper
bound for f(x̄).

Suppose that we have M independent samples of size N , i.e. we
have i.i.d. sample ξm1 , . . . , ξ

m
N , m = 1, . . . ,M . Denote by f̂m∗N the

relevant optimal values. Then we can form an unbiased estimator of
the expectation E(f̂ ∗N) by defining

f̂ ∗N,M =
1

M

M∑
m=1

f̂m∗N .

Therefore, this estimator has the mean E(f̂ ∗N,M) = E(f̂ ∗N) and the

variance D(f̂ ∗N,M) = D(f̂ ∗N)/M which we can estimate by

σ̂2
N,M =

1

M

(
1

M − 1

M∑
m=1

(
f̂m∗N − f̂ ∗N,M

)2
)
.

By the Central Limit Theorem, f̂ ∗N,M has approximately normal dis-
tribution for large M . However, this approach indicates that we have
to solve the optimization problem (3.21) M times and therefore M is
usually rather modest. Therefore, we use Student’s t-distribution to
make the approximation. Denote by TM−1 the random variable that
has the Student’s distribution with M − 1 degrees of freedom. Then
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we have

δ = P
(
E(f̂ ∗N) > LN,M

)
= P

 f̂ ∗N,M − E(f̂ ∗N)√
D(f̂ ∗N,M)

<
f̂ ∗N,M − LN,M√

D(f̂ ∗N,M)


= P

 f̂ ∗N,M − E(f̂ ∗N,M)√
D(f̂ ∗N,M)

<
f̂ ∗N,M − LN,M√

D(f̂ ∗N,M)


≈ P

TM−1 <
f̂ ∗N,M − LN,M√

D(f̂ ∗N,M)

 .

Therefore, we can approximate the lower bound of the δ confidence
interval by

L̂N,M = f̂ ∗N,M − tM−1,δσ̂N,M (3.25)

where tM−1,δ is the quantile of Student’s TM−1 distribution.

We can approximate f(x̄) by using sample average f̂N ′(x̄) with
some large enough sample size N ′. Therefore, we can use the normal
distribution to approximate the upper bound for one-sided confidence
interval as follows.

δ = P
(
f(x̄) ≤ f̂N ′(x̄) + UN ′(x̄)

)
= P

 f̂N ′(x̄)− f(x̄)√
D(f̂N ′(x̄))

>
−UN ′(x̄)√
D(f̂N ′(x̄))


≈ P

Z >
−UN ′(x̄)√
D(f̂N ′(x̄))

 .

Here, Z represents standard normal distribution. If we denote its
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quantile by zδ, we obtain the upper bound estimate

f̂N ′(x̄) + ÛN ′(x̄) = f̂N ′(x̄) + zδ
σ̂N ′(x̄)√
N ′

(3.26)

where σ̂N ′(x̄) is defined by (3.22). Finally, the confidence interval
upper bound for the gap g(x̄) is approximated by

f̂N ′(x̄) + zδ
σ̂N ′(x̄)√
N ′
− f̂ ∗N,M + tM−1,δσ̂N,M .

This bound can be used, for example, as the stopping criterion in
algorithms. In [59], the bounds for sample sizes such that the solutions
of an approximate problem are nearly optimal for the true problem
with some high probability are developed. However, they are mainly
too conservative for practical applications in general. At the end, we
mention that if the problem is constrained, then one may consider
Stochastic Generalized Equations approach [59].

3.5 Variable number sample path meth-

ods

In this section we focus on methods that use variable sample sizes
in order to solve the optimization problem (3.4). Roughly speaking,
there are two approaches. The first one deals with unbounded sample
size and the main issue is how to increase it during the optimization
process. The second type of algorithms deals with finite sample size
which is assumed to be determined before the process of optimization
starts. It also contains methods that are applied on regression, max-
imum likelihood or least squares problems stated in the first section
of this chapter. As we have seen, these kind of problems do not as-
sume explicit or even implicit noise. Moreover, problems of the form
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(3.17) can also be considered as ”noise-free” if we adopt the approach
of generating the sample at the beginning and observing the sample
average objective function as deterministic one.

First, we review the relevant methods that deal with the un-
bounded sample size and use the so called diagonalization scheme.
This scheme approximately solves the sequence of problems of the
form (3.17). The sequence of problems is determined by the sequence
of a sample sizes which yield different objective functions. The main
issue is when to increase the sample size and switch to the next level.

For example, in Royset [54], the optimality function is used to de-
termine when to switch to the larger sample size. It is defined by
mapping θ : Rn → (−∞, 0] which , under some conditions, satisfies
θ(x) = 0 if and only if x is a solution in some sense. Fritz-John
optimality conditions are considered instead of KKT conditions be-
cause they alow generalization, i.e. constraint qualifications are not
required. The focus is on the constraints, but in the unconstrained case
the optimality function reduces to θ(x) = −1

2
‖∇f(x)‖2. In general,

optimality function is approximated by the sample average function
θN and almost sure convergence of θN towards θ is stated together
with asymptotic normality. The algorithm increases the sample size
when θN ≥ −δ1∆(N), where δ1 is some positive constant and ∆ is
a function that maps N into (0,∞) and satisfies limN→∞∆(N) = 0.
However, the dynamics of increasing the sample size is not specified.

Guidance for the optimal relation between the sample size and the
error tolerance sequences is considered in [48]. Error tolerance is rep-
resented by the deviation of an approximate solution of problem (3.17)
from a real solution of that problem. The measure of effectiveness is
defined as the product of the deviation and the number of simulation
calls. It is stated that the error tolerance should not be decreased
faster than the sample size is increased. The dynamics of change de-
pends on the convergence rate of numerical procedures used to solve
the problems (3.17). Moreover, specific recommendations are given
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for linear, sublinear and polynomial rates. For example, if the applied
algorithm is linearly convergent, then the linear growth of a sample
size is recommended, i.e. it can be set Nk+1 = d1.1Nke for example.
Also, in that case, polynomial (for example Nk+1 = dN1.1

k e) or expo-
nential (Nk+1 = deN1.1

k e) growth are not recommended. Furthermore,
it is implied that the error tolerance sequence should be of the form
K/
√
Nk where K is some positive constant.

Recall that almost sure convergence of f̂N(x) towards f(x) is
achieved if the sample is i.i.d. and the considered functions are well de-
fined and finite. However, if the sample is not i.i.d. or we do not have
cumulative sample, the almost sure convergence is achievable only if
the sample size N increases at the certain rate. This is the main issue
of the paper [33]. It is stated that the sample size sequence {Nk}k∈N
should satisfy

∑∞
k=1 α

Nk for every α ∈ (0, 1). Then, if the function

F (x, ξ) is bounded in some sense and f̂N(x) is asymptotically unbi-
ased estimator of f(x), the almost sure convergence mentioned above
is achieved. For example, Nk ≥

√
k satisfies the considered condition.

However, too fast increase of the sample size can result in an inefficient
algorithm. Therefore, it is suggested that statistical t-test should be
applied in order to decide when to go up to the next level, i.e. to
increase the sample size. Namely, after every K iterations the test is
applied to show if the significant improvement in f is achieved when
comparing the subsequent iterates. If this is true, N is not increased.
On the other hand, if the algorithm starts to crawl then the sample
should probably get bigger. Besides the possibility of using the rele-
vant statistical tools, different samples in different iterations can also
help algorithm to overcome the trap of a single sample path.

In Polak, Royset [50] the focus is on the finite sample size N al-
though the almost sure convergence is addressed. The problem under
consideration is with constraints, but penalty function is used to trans-
form it into an unconstrained optimization problem. The idea is to
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vary the sample size during the process, or more precisely, to approx-
imately solve the sequence of problems in a form (3.17) with N = Ni,
i = 1, . . . , s applying ni iterations at every stage i. The sample size is
nondecreasing. Before starting to solve this sequence of problems, an
additional problem is solved in order to find the optimal sequence of
sample sizes Ni and iterations ni, as well as the number of stages s.
This is done by minimizing the overall cost

∑s
i=1 niw(Ni) where w(N)

is the estimated cost of one iteration of the algorithm applied on f̂N .
The constraint for this problem is motivated by the stopping criterion
f(xk) − f ∗ ≤ ε(f(x0) − f ∗) where f ∗ is the optimal value of the ob-
jective function. The left-hand side of this inequality is estimated by
using the confidence interval bound for f(x) and parameter θ ∈ (0, 1)
that determines the linear rate of convergence which is assumed for
algorithm applied on f̂N .

Now, we refer to the relevant methods that focus on updating the
sample size at every iteration. Therefore, these methods may deal
with different function at every iteration of the optimization process.
The first one described below deals with an unbounded sample size in
general, while the remaining two focus mainly on solving the problem
(3.17) with some large but finite N .

In Deng, Ferris [22] the unconstrained optimization problem is con-
sidered, but the derivatives are assumed to be unavailable. Therefore,
a quadratic model function QN

k is used to approximate the function

f̂Nk at every iteration in some region determined by the trust region
radius ∆k. This is done by using the interpolation proposed by Pow-
ell [51]. The candidate iterate is found within the trust region and
therefore the trust region framework is applied. The points used for
interpolation y1, . . . , yL are also used to estimate the posterior distri-
butions of the gradient g∞k of the model function for f . More precisely,
if we denote by XN the matrix that contains F (yi, ξj), i = 1, . . . , L,
j = 1, . . . , N , then the posterior distribution of the gradient, i.e. the
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distribution of g∞k |XN , is approximated by the normal distribution.
It is known that the candidate point xk+1 satisfies

QNk
k (xk)−QNk

k (xk+1) ≥ h(‖gNkk ‖)

where the function h is known but we will not specify it here. The
candidate point is obtain by observing the function f̂Nk and the ques-
tion is whether that point is also good for the original function model.
This is examined by observing the event

ENk
k : QNk

k (xk)−QNk
k (xk+1) < h(‖g∞k ‖).

If the probability of that event P (ENk
k ) is sufficiently small, then there

is no need to increase the sample size. On the other hand, the sample
size should be increased until this is satisfied. The trial sample sizes
are updated with some incremental factor. The probability P (ENk

k ) is
approximated by the so called Bayes risk P (ENk

k |XNk), i.e

P (ENk
k ) ≈ P (QNk

k (xk)−QNk
k (xk+1) < h(‖g∞k |XNk‖)).

Furthermore, the simulations from the approximated posterior distri-
bution are used to obtain the relative frequency approximation of the
Bayes risk. Almost sure convergence is analyzed and the sample size is
unbounded in general. Moreover, the authors constructed an example
where the sample size remains bounded during the whole optimization
process and almost sure convergence is still obtained.

Data fitting applications are considered in [26] where the objective
function can be considered as the sample average function in the form

f(x) = f̂N(x) =
1

N

N∑
i=1

fi(x).

The authors consider quasi-Newton methods and therefore the gra-
dient information is needed. In order to combine two diametral ap-
proaches: using the full gradient ∇f(x) and using ∇fi(x) for some
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i ∈ {1, 2, . . . , N} as an approximation of the gradient, they con-
structed the hybrid algorithm that increases the number of functions fi
whose gradients are evaluated in order to obtain the gradient approx-
imation. This hybrid algorithm can be considered as the increasing
sample size method where the sample size is bounded by N . The
main concern is the rate of convergence and the convergence anal-
ysis is done with the assumption of a constant step size. Two ap-
proaches are considered: deterministic and stochastic sampling. The
deterministic sampling assumes that if the sample size is Nk then the
gradients to be evaluated ∇fi(xk) are determined in advance. For
example, we can use first Nk functions to obtain the gradient approxi-
mation gk = 1

Nk

∑Nk
i=1∇fi(xk). On the other hand, the stochastic sam-

pling assumes that the gradients to be evaluated are chosen randomly.
It is stated that R-linear convergence can be achieved if the sample

sizes satisfy
(
N−Nk
N

)2
= O(γk) in deterministic and N−Nk

NNk
= O(γk) in

stochastic case for some γ ∈ (0, 1). Moreover, q-linear convergence
is also analyzed but under stronger conditions. In numerical experi-
ments for instance, the dynamics of Nk+1 = dmin{1.1Nk + 1, N}e is
used.

Finally, we refer to the algorithm which uses the trust region frame-
work and focuses on the finite sample size problem (3.17). The im-
portant characteristic of that approach is that it allows the sample
size Nk to decrease during the optimization process (Bastin et al. [4],
[3]). The model function for f̂Nk is formed at every iteration and the
basic idea for updating the sample size is to compare the decrease in
the model function with the confidence interval bound approximation
of the form (3.23). Roughly speaking, the sample size is determined
in a way that provides good agreement of these two measures. More
details about this reasoning are to be presented in the next chapter.



Chapter 4

Line search methods with
variable sample size

In this chapter, we introduce the optimization method that uses the
line search technique described in Chapter 2. The line search frame-
work is one of the two most important features of the considered
method and it will be further developed in the direction of nonmono-
tone line search within the following chapter. The other important
characteristic is allowing the sample size to oscillate (Krejić, Krklec
[37]) which complicates the convergence analysis since we are working
with a different functions during the optimization process. This part
of the thesis represents the original contribution. But let us start by
defining the problem.

The problem under consideration is

min
x∈Rn

f(x). (4.1)

Function f : Rn → R is assumed to be in the form of mathematical
expectation

f(x) = E(F (x, ξ)),
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where F : Rn × Rm → R, ξ is a random vector ξ : Ω → Rm and
(Ω,F, P ) is a probability space. The form of mathematical expectation
makes this problem difficult to solve as very often one can not find its
analytical form. This is the case even if the analytical form of F is
known, which is assumed in this chapter.

One way of dealing with this kind of problem is to use sample
averaging in order to approximate the original objective function as
follows

f(x) ≈ f̂N(x) =
1

N

N∑
i=1

F (x, ξi). (4.2)

Here N represents the size of sample that is used to make approxi-
mation (4.2). An important assumption is that we form the sample
by random vectors ξ1, . . . , ξN that are independent and identically dis-
tributed. If F is bounded then the Law of Large Numbers [59] implies
that for every x almost surely

lim
N→∞

f̂N(x) = f(x). (4.3)

In practical applications one can not have an unbounded sample size
but can get close to the original function by choosing a sample size
that is large enough but still finite. So, we will focus on finding an
optimal solution of

min
x∈Rn

f̂N(x), (4.4)

where N is a fixed integer and ξ1, . . . , ξN is a sample realization that
is generated at the beginning of the optimization process. Thus the
problem we are considering is in fact deterministic and standard op-
timization tools are applicable. As we have seen, this approach is
called the sample path method or the stochastic average approxima-
tion (SAA) method and it is the subject of many research efforts ([59],
[62]). The main disadvantage of the SAA method is the need to calcu-
late the expensive objective function defined by (4.2) in each iteration.



96 Line search methods with variable sample size

As N in (4.4) needs to be large, the evaluations of f̂N become very
costly. That is particularly true in the practical applications where
the output parameters of models are expensive to calculate. Given
that almost all optimization methods include some kind of gradient
information, or even second order information, the cost becomes even
higher.

As one can see in Chapter 3, various attempts to reduce the costs
of SAA methods are presented in the literature. Roughly speaking,
the main idea is to use some kind of variable sample size strategy and
work with smaller samples whenever possible, at least at the beginning
of the optimization process. One can distinguish two types of variable
sample size results. The first type deals with unbounded samples and
seeks convergence in stochastic sense not allowing the sample size to
decrease ([22],[33],[50], Pasuphaty [47] and [48]). The second type of
algorithm deals directly with problems of type (4.4) and seeks con-
vergence towards stationary points of that problem. The algorithms
proposed in [3] and [4] introduce a variable sample size strategy that
allows a decrease of the sample size as well as an increase during
the optimization process. Roughly speaking, the main idea is to use
the decrease of the function value and a measure of the width of the
confidence interval to determine the change in sample size. The opti-
mization process is conducted in the trust region framework. We will
adopt these ideas to the line search framework and propose an algo-
rithm that allows both an increase and decrease of sample size during
the optimization process. Given that the final goal is to make the
overall process less costly, we also introduce an additional safeguard
rule that prohibits unproductive sample decreases [37]. As common
for this kind of problems, the measure of cost is the number of function
evaluations (Moré, Wild [45]).
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4.1 Preliminaries

In order to solve (4.4) we will assume that we know the analytical form
of a gradient ∇xF (x, ξ). This implies that we are able to calculate the
true gradient of the function f̂N , that is

∇f̂N(x) =
1

N

N∑
i=1

∇xF (x, ξi).

Once the sample is generated, we consider the function f̂N and the
problem (4.4) as deterministic (Fu [28]). This approach simplifies the
definition of stationary points which is much more complicated in a
stochastic environment. It also provides the standard optimization
tools described in Chapter 2. The key issue is the variable sample
scheme.

Suppose that we are at the iteration k, i.e. at the point xk. Every
iteration has its own sample size Nk, therefore we are considering the
function

f̂Nk(x) =
1

Nk

Nk∑
i=1

F (x, ξi).

We perform line search along the direction pk which is decreasing for
the considered function, i.e. it satisfies the condition

pTk∇f̂Nk(xk) < 0. (4.5)

In order to obtain a sufficient decrease of the objective function, we
use the backtracking technique to find a step size αk which satisfies
the Armijo condition

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkp
T
k∇f̂Nk(xk), (4.6)

for some η ∈ (0, 1). More precisely, starting from α = 1, we decrease
α by multiplying it with β ∈ (0, 1) until the Armijo condition (4.6) is
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satisfied. This can be done in a finite number of trials if the iteration
xk is not a stationary point of f̂Nk assuming that this function is
continuously differentiable and bounded from below.

After the suitable step size αk is found, we define the next iterate as
xk+1 = xk +αkpk. Now, the main issue is how to determine a suitable
sample size Nk+1 for the following iteration. In the algorithm that we
propose the rule for determining Nk+1 is based on three parameters:
the decrease measure dmk, the lack of precision denoted by εNkδ (xk)
and the safeguard rule parameter ρk. The two measures of progress,
dmk and εNkδ (xk) are taken from [4] and [3] and adopted to suit the line
search methods while the third parameter is introduced to avoid an
unproductive decrease of the sample size as will be explained below.

The decrease measure is defined as

dmk = −αkpTk∇f̂Nk(xk). (4.7)

This is exactly the decrease in the linear model function, i.e.

dmk = mNk
k (xk)−mNk

k (xk+1),

where
mNk
k (xk + s) = f̂Nk(xk) + sT∇f̂Nk(xk).

The lack of precision represents an approximate measure of the
width of confidence interval for the original objective function f , i.e.

εNkδ (xk) ≈ c,

where
P (f(xk) ∈ [f̂Nk(xk)− c, f̂Nk(xk) + c]) ≈ δ.

The confidence level δ is usually equal to 0.9, 0.95 or 0.99. It will be an
input parameter of our algorithm. We know that c = σ(xk)αδ/

√
Nk,

where σ(xk) is the standard deviation of random variable F (xk, ξ) and
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αδ is the quantile of the normal distribution, i.e. P (−αδ ≤ X ≤ αδ) =
δ, where X : N(0, 1). Usually we can not find σ(xk) so we use the
centered sample variance estimator

σ̂2
Nk

(xk) =
1

Nk − 1

Nk∑
i=1

(F (xk, ξi)− f̂Nk(xk))2.

Finally, we define the lack of precision as

εNkδ (xk) = σ̂Nk(xk)
αδ√
Nk

. (4.8)

The algorithm that provides a candidate N+
k for the next sample

size will be described in more detail in the following section. The
main idea is to compare the previously defined lack of precision and
the decrease measure. Roughly speaking if the decrease in function’s
value is large compared to the width of the confidence interval then
we decrease the sample size in the next iteration. In the opposite case,
when the decrease is relatively small in comparison with the precision
then we increase the sample size. Furthermore, if the candidate sample
size is lower than the current one, that is if N+

k < Nk, one more test
is applied before making the final decision about the sample size to
be used in the next iteration. In that case, we calculate the safeguard
parameter ρk. It is defined throughout the ratio between the decrease
in the candidate function and the function that has been used to obtain
the next iteration, that is

ρk =

∣∣∣∣∣ f̂N+
k

(xk)− f̂N+
k

(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)
− 1

∣∣∣∣∣ . (4.9)

The role of ρk is to prevent an unproductive sample size decrease i.e.
we calculate the progress made by the new point and the candidate
sample size and compare it with the progress achieved with Nk. Ideally,
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the ratio is equal to 1 and ρk = 0. However, if ρk is relatively large
then these two decrease measures are too different and we do not allow
a decrease of the sample size.

Now, we present the assumptions needed for the further analysis.

C 1 Random vectors ξ1, . . . , ξN are independent and identically dis-
tributed.

A 1 For every ξ, F (·, ξ) ∈ C1(Rn).

A 2 There exists a constant M1 > 0 such that for every ξ, x
‖∇xF (x, ξ)‖ ≤M1.

A 3 There exists constant MF such that for every ξ, x, MF ≤ F (x, ξ).

A 4 There exists constant MFF such that for every ξ, x, F (x, ξ) ≤
MFF .

The role of the first assumption is already clear. It ensures that
our approximation function f̂Nk is, in fact, a centered estimator of
the function f at each point. This is not a fundamental assumption
that makes the upcoming algorithm convergent, but it is important for
making the problem (4.4) close to the original one for N large enough.

The assumption A1 ensures the continuity and differentiability of
F as well as of f̂N . More formally, we have the following lemma.

Lemma 4.1.1 If the assumption A1 is satisfied, then for every N ∈ N
the function f̂N is in C1(Rn).

One of the crucial assumptions for proving the convergence result
is A3. Moreover, the assumption A3 makes our problem solvable since
it implies the following result.
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Lemma 4.1.2 If the assumption A3 holds, then MF ≤ f̂N(x) is true
for all x ∈ Rn and every N ∈ N.

An analogous result can be obtained if the function F is bounded
from above. Both results can be proved just by using the fact that the
sample average function is a linear combination of functions F (·, ξi),
i = 1, . . . , N .

Lemma 4.1.3 If the assumption A4 holds, then f̂N(x) ≤MFF is true
for all x ∈ Rn and every N ∈ N.

Moreover, the previously stated assumptions imply the bounded-
ness of the sample average function’s gradient as stated below.

Lemma 4.1.4 If the assumptions A1 and A2 hold, then for every
x ∈ Rn and every N ∈ N holds ‖∇f̂N(x)‖ ≤M1.

Proof. Let N be an arbitrary positive integer. Then for every
x ∈ Rn we have

‖∇f̂N(x)‖ = ‖ 1

N

N∑
i=1

∇xF (x, ξi)‖ ≤
1

N

N∑
i=1

‖∇xF (x, ξi)‖ ≤M1.

�

An important consequence of the previous assumptions is that the
interchange between the mathematical expectation and the gradient
operator is allowed [59], i.e. the following is true

∇xE(F (x, ξ)) = E(∇xF (x, ξ)). (4.10)

Having this in mind, we can use the Law of Large Numbers again, and
conclude that for every x almost surely

lim
N→∞

∇f̂N(x) = ∇f(x).
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This justifies using ∇f̂N(x) as an approximation of the measure of
stationarity for problem (4.1). We have influence on that approxima-
tion because we can change the sample size N and, hopefully, make
problem (4.4) closer to problem (4.1). Therefore (4.10), together with
assumption C1, helps us measure the performance of our algorithm re-
garding (4.1). Finally, previously stated results together with Lemma
2.2.1 will guaranty that the considered line search is well defined.

4.2 The algorithms

The method that we are going to present is constructed to solve the
problem (4.4) with the sample size N equal to some Nmax which is
considered as an input parameter. We assume that the suitable max-
imal sample size Nmax can be determined without entering into the
details of such a process (some guidance is given in Chapter 3). More
precisely, we are searching for a stationary point of the function f̂Nmax .
The sample realization that defines the objective function f̂Nmax is gen-
erated at the beginning of the optimization process. Therefore, we can
say that the aim of the algorithm is to find a point x which satisfies

‖∇f̂Nmax(x)‖ = 0.

As already stated, the algorithm is constructed to let the sample size
vary across the iterations and to let it decrease if appropriate. More-
over, under some mild conditions, the maximal sample size is eventu-
ally reached. Let us state the main algorithm here leaving the addi-
tional ones to be stated later.

ALGORITHM 1

S0 Input parameters: Nmax, N
min
0 ∈ N, x0 ∈ Rn, δ, η, β, ν1, d ∈

(0, 1).
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S1 Generate the sample realization: ξ1, . . . , ξNmax .

Set k = 0, Nk = Nmin
0 .

S2 Compute f̂Nk(xk) and εNkδ (xk) using (4.2) and (4.8).

S3 Test

If ‖∇f̂Nk(xk)‖ = 0 and Nk = Nmax then STOP.

If ‖∇f̂Nk(xk)‖ = 0, Nk < Nmax and εNkδ (xk) > 0 put
Nk = Nmax and Nmin

k = Nmax and go to step S2.

If ‖∇f̂Nk(xk)‖ = 0, Nk < Nmax and εNkδ (xk) = 0 put
Nk = Nk + 1 and Nmin

k = Nmin
k + 1 and go to step S2.

If ‖∇f̂Nk(xk)‖ > 0 go to step S4.

S4 Determine pk such that pTk∇f̂Nk(xk) < 0.

S5 Find the smallest nonnegative integer j such that αk = βj sat-
isfies

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkp
T
k∇f̂Nk(xk).

S6 Set sk = αkpk, xk+1 = xk + sk and compute dmk using (4.7).

S7 Determine the candidate sample size N+
k using Algorithm 2.

S8 Determine the sample size Nk+1 using Algorithm 3.

S9 Determine the lower bound of the sample size Nmin
k+1 .

S10 Set k = k + 1 and go to step S2.
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Before stating the auxiliary algorithms, let us briefly comment on
this one. The point x0 is an arbitrary starting point. The sample
realization generated in step S1 is the one that is used during the
whole optimization process. For simplicity, if the required sample size
is Nk < Nmax, we can take the first Nk realizations in order to calculate
all relevant values. On the other hand, Nmin

0 is the lowest sample size
that is going to be used in the algorithm. The role of the lower sample
bound Nmin

k will be clear after we state the remaining algorithms. The
same is true for parameters d and ν1.

Notice that the algorithm terminates after a finite number of iter-
ations only if xk is a stationary point of the function f̂Nmax . Moreover,
step S3 guarantees that we have a decreasing search direction in step
S5, therefore the backtracking is well defined.

As we already mentioned, one of the main issues is how to deter-
mine the sample size that is going to be used in the next iteration.
Algorithms 2 and 3 stated below provide details. Algorithm 2 leads us
to the candidate sample size N+

k . Acceptance of that candidate is de-
cided within Algorithm 3. We will explain latter how to update Nmin

k .
For now, the important thing is that the lower bound is determined
before we get to step S7 and it is considered as an input parameter in
the algorithm described below. Notice that the following algorithm is
constructed to provide

Nmin
k ≤ N+

k ≤ Nmax.

ALGORITHM 2

S0 Input parameters: dmk, N
min
k , εNkδ (xk), ν1 ∈ (0, 1), d ∈ (0, 1].

S1 Determine N+
k

1) dmk = d εNkδ (xk) → N+
k = Nk.
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2) dmk > d εNkδ (xk)
Starting with N = Nk, while dmk > d εNδ (xk) and N >
Nmin
k , decrease N by 1 and calculate εNδ (xk) → N+

k .

3) dmk < d εNkδ (xk)

i) dmk ≥ ν1d ε
Nk
δ (xk)

Starting with N = Nk, while dmk < d εNδ (xk) and
N < Nmax, increase N by 1 and calculate εNδ (xk) →
N+
k .

ii) dmk < ν1d ε
Nk
δ (xk) → N+

k = Nmax.

The basic idea for this kind of reasoning can be found in [3] and
[4]. The main idea is to compare two main measures of the progress,
dmk and εNkδ (xk), and to keep them close to each other.

Let us consider dmk as the benchmark. If dmk < d εNkδ (xk), we
say that εNkδ (xk) is too large or that we have a lack of precision. That
implies that the confidence interval is too wide and we are trying to
narrow it down by increasing the sample size and therefore reducing
the error made by approximation (4.2). On the other hand, in order
to work with a sample size as small as possible, if dmk > d εNkδ (xk)
we deduce that it is not necessary to have that much precision and we
are trying to reduce the sample size.

On the other hand, if we set the lack of precision as the benchmark,
we have the following reasoning. If the reduction measure dmk is too
small in comparison with εNkδ (xk), we say that there is not much that

can be done for the function f̂Nk in the sense of decreasing its value
and we move on to the next level, trying to get closer to the final
objective function f̂Nmax if possible.

The previously described mechanism provides us with the candi-
date for the upcoming sample size. Before accepting it, we have one
more test. First of all, if the precision is increased, that is if Nk ≤ N+

k ,
we continue with Nk+1 = N+

k . However, if we have the signal that we
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should decrease the sample size, i.e. if N+
k < Nk, then we compare

the reduction that is already obtained using the current step sk and
the sample size Nk with the reduction this step would provide if the
sample size was N+

k . In order to do that, we compute ρk using (4.9).
If ρk is relatively large, we do not approve the reduction because these
two functions are too different and we choose to work with more pre-
cision and therefore put Nk+1 = Nk. More formally, the algorithm is
described as follows. Notice that it provides

Nk+1 ≥ N+
k .

ALGORITHM 3

S0 Input parameters: N+
k , Nk, xk, xk+1.

S1 Determine Nk+1

1) If N+
k > Nk then Nk+1 = N+

k .

2) If N+
k < Nk compute

ρk =

∣∣∣∣∣ f̂N+
k

(xk)− f̂N+
k

(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)
− 1

∣∣∣∣∣ .
i) If ρk <

Nk−N+
k

Nk
put Nk+1 = N+

k .

ii) If ρk ≥
Nk−N+

k

Nk
put Nk+1 = Nk.

As it was already explained, this safeguard algorithm is supposed
to prohibit an unproductive decrease in the sample size. However, the
right-hand side of the previous inequality implies that if the proposed
decrease Nk − N+

k is relatively large, then the chances for accepting
the smaller sample size are larger. This reasoning is supported by
numerical testings because the large decrease in the sample size was
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almost always productive. On the other hand, we are more rigorous
if, for example, Nk = Nmax and N+

k = Nmax − 1.

Various other reasonings are possible. As it will be clear after the
convergence analysis in chapters 5 and 6, the only thing that matters
is that the relation Nk+1 ≥ N+

k is satisfied. For example, instead of
(4.9) we could compare the sample variance, i.e.

ρk =

∣∣∣∣∣ σ̂
2
N+
k

(xk+1)

σ̂2
Nk

(xk+1)
− 1

∣∣∣∣∣ .
However, this definition was not that successful in practical implemen-
tations that we considered. The one that provided good results was
the following. Instead of (4.9), we can define

ρk =
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)

and forbid the decrease if ρk < η0 where η0 is a fixed parameter smaller
than 1. Although the reasoning is not that clear as for Algorithm 3,
the results were highly competitive.

Now we will describe how to update the lower bound Nmin
k .

• If Nk+1 ≤ Nk then Nmin
k+1 = Nmin

k .

• If Nk+1 > Nk and

– Nk+1 is a sample size which has not been used so far then
Nmin
k+1 = Nmin

k .

– Nk+1 is a sample size which had been used and we have
made a big enough decrease of the function f̂Nk+1

, then
Nmin
k+1 = Nmin

k .
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– Nk+1 is a sample size which had been used and we have
not made a big enough decrease of the function f̂Nk+1

, then
Nmin
k+1 = Nk+1.

We say that we have not made big enough decrease of the function
f̂Nk+1

if the following inequality is true

f̂Nk+1
(xh(k))− f̂Nk+1

(xk+1) <
Nk+1

Nmax

(k + 1− h(k))ε
Nk+1

δ (xk+1),

where h(k) is the iteration at which we started to use the sample size
Nk+1 for the last time. For example, if k = 7 and (N0, ..., N8) =
(3, 6, 6, 4,6, 6, 3, 3, 6), then Nk = 3, Nk+1 = 6 and h(k) = 4. So, the
idea is that if we come back to some sample size Nk+1 that we had
already used and if, since then, we have not done much in order to
decrease the value of f̂Nk+1

we choose not to go below that sample
size anymore, i.e. we put it as the lower bound. Notice that if we
rearrange the previous inequality, we obtain the average decrease of
the function f̂Nk+1

since the iteration h(k) on the left-hand side

f̂Nk+1
(xh(k))− f̂Nk+1

(xk+1)

(k + 1− h(k))
<
Nk+1

Nmax

ε
Nk+1

δ (xk+1).

The decrease is compared to the lack of precision throughout the ratio
Nk+1/Nmax. This means that we are requesting the stronger decrease
if the function f̂Nk+1

is closer to f̂Nmax . That way we point out that
we are not that interested in what is happening with the function
that is far away from the objective one. However, using some positive
constant instead of the ratio Nk+1/Nmax is also an option [3]. At
the end, notice that the sequence of the sample size lower bounds is
nondecreasing.
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4.3 Convergence analysis

This section is devoted to the convergence results for Algorithm 1.
The following important lemma states that after a finite number of
iterations the sample size Nmax is reached and kept until the end.

Lemma 4.3.1 Suppose that the assumptions A1 and A3 are true.
Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1. Then, either Algo-
rithm 1 terminates after a finite number of iterations with Nk = Nmax

or there exists q ∈ N such that for every k ≥ q the sample size is
Nk = Nmax.

Proof. First of all, recall that Algorithm 1 terminates only if
‖∇f̂Nk(xk)‖ = 0 and Nk = Nmax. Therefore, we will consider the
case where the number of iterations is infinite. Again, notice that Al-
gorithm 3 implies that Nk+1 ≥ N+

k is true for every k. Now, let us
prove that sample size can not be stacked at a size that is lower than
the maximal one.

Suppose that there exists ñ > n1 such that for every k ≥ ñ
Nk = N1 < Nmax. We have already explained that step S3 of Algo-
rithm 1 provides the decreasing search direction pk at every iteration.
Therefore, denoting gNkk = ∇f̂Nk(xk), we know that for every k ≥ ñ

f̂N1(xk+1) ≤ f̂N1(xk) + ηαk(g
N1

k )Tpk,

i.e., for every s ∈ N

f̂N1(xñ+s) ≤ f̂N1(xñ+s−1) + ηαñ+s−1(gN
1

ñ+s−1)Tpñ+s−1 ≤ ...

≤ f̂N1(xñ) + η

s−1∑
j=0

αñ+j(g
N1

ñ+j)
Tpñ+j. (4.11)
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Now, from (4.11) and Lemma 4.1.2 we know that

−η
s−1∑
j=0

αñ+j(g
N1

ñ+j)
Tpñ+j ≤ f̂N1(xñ)− f̂N1(xñ+s) ≤ f̂N1(xñ)−MF .

(4.12)
The inequality (4.12) is true for every s so

0 ≤
∞∑
j=0

−αñ+j(g
N1

ñ+j)
Tpñ+j ≤

f̂N1(xñ)−MF

η
:= C.

Therefore

lim
j→∞
−αñ+j(∇f̂N1(xñ+j))

Tpñ+j = 0. (4.13)

Let us consider the Algorithm 2 and iterations k > ñ. The possible
scenarios are the following.

1) dmk = d εNkδ (xk). This implies

−αk(gNkk )Tpk = d εNkδ (xk) ≥ d κ

2) dmk > d εNkδ (xk). This implies

−αk(gNkk )Tpk > d εNkδ (xk) ≥ d κ

3) dmk < d εNkδ (xk) and dmk ≥ ν1d ε
Nk
δ (xk). In this case we

have

−αk(gNkk )Tpk ≥ ν1d ε
Nk
δ (xk) ≥ ν1d κ

4) The case dmk < ν1d ε
Nk
δ (xk) is impossible because it would yield

Nk+1 ≥ N+
k = Nmax > N1.
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Therefore, in every possible case we know that for every k > ñ

−αk(gN
1

k )Tpk ≥ κd ν1 := C̃ > 0

and therefore
lim inf
k→∞

−αk(gN
1

k )Tpk ≥ C̃ > 0,

which is in contradiction with (4.13).
We have just proved that sample size can not stay on N1 < Nmax.

Therefore, the remaining two possible scenarios are as follows:

L1 There exists ñ such that Nk = Nmax for every k ≥ ñ.

L2 The sequence of sample sizes oscillates.

Let us consider the scenario L2. Suppose that there exists k̄ such
that Nmin

k̄
= Nmax. Since the sequence of sample size lower bounds

{Nmin
k }k∈N is nondecreasing, this would imply that Nmin

k = Nmax for
every k ≥ k̄. But this implies Nk = Nmax for every k > k̄, i.e.
we obtain the scenario L1 where the sample size can not oscillate.
Therefore, if we consider the scenario L2, we know that for every k

Nmin
k < Nmax.

This means thatNmin
k increases only at finitely many iterations. Recall

that the sample size lower bound increases only when Nmin
k+1 = Nk+1.

Then we have

Nmin
k+1 = Nk+1 > Nk ≥ N+

k−1 ≥ Nmin
k−1 .

Notice that, according to the proposed mechanism for updating Nmin
k ,

updating form Nmin
k+1 = Nk+1 happens only if Nk+1 is the sample size

which had been used already, Nk+1 > Nk and the obtained decrease in
f̂Nk+1

was not good enough. Therefore, we conclude that there exists
an iteration r1 such that for every k ≥ r1 we have one of the following
scenarios:
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M1 Nk+1 ≤ Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1

M3 Nk+1 > Nk and we did not use the sample size Nk+1 before

Now, let N̄ be the maximal sample size that is used at infinitely
many iterations. Furthermore, define the set of iterations K̄0 at which
sample size changes to N̄ . The definition of N̄ implies that there
exists iteration r2 such that for every k ∈ K̄0, k ≥ r2 the sample size
is increased to N̄ , i.e.

Nk < Nk+1 = N̄ .

Define r = max{r1, r2} and set K̄ = K̄0

⋂
{r, r + 1, . . .}. Clearly, each

iteration in K̄ excludes the scenario M1. Moreover, taking out the
first member of a sequence K̄ and retaining the same notation for
the remaining sequence we can exclude the scenario M3 as well. This
leaves us with M2 as the only possible scenario for iterations in K̄.
Therefore, for every k ∈ K̄ the following is true

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ Nk+1

Nmax

(k + 1− h(k))εN̄δ (xk+1).

Now, defining the set of iterations K1 = K̄
⋂
{n1, n1 + 1, . . .} we can

say that for every k ∈ K1 we have

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ Nk+1

Nmax

κ ≥ 1

Nmax

κ = C̄ > 0.

Recall that h(k) defines the iteration at which we started to use the
sample size N̄ for the last time before the iteration k+1. Therefore, the
previous inequality implies that we have reduced the function f̂N̄ for
the positive constant C̄ infinitely many times, which is in contradiction
with Lemma 4.1.2. From everything above, we conclude that the only
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possible scenario is in fact L1, i.e. there exists iteration ñ such that
for every k ≥ ñ, Nk = Nmax. �

Now, we prove the main result. Before we state the theorem, we
will make one more assumption about the search direction.

B 1 The sequence of directions pk is bounded and satisfies the follow-
ing implication:

lim
k∈K

pTk∇f̂Nk(xk) = 0 ⇒ lim
k∈K
∇f̂Nk(xk) = 0,

for any subset of iterations K.

This assumption allow us to consider the general descent direc-
tion but it is obviously satisfied for pk = −∇f̂Nk(xk). Furthermore
quasi-Newton directions also satisfy the assumption under the stan-
dard conditions for such methods such as uniform boundedness of the
inverse Hessian approximation.

Theorem 4.3.1 Suppose that the assumptions A1, A3 and B1 are
true. Furthermore, suppose that there exist a positive constant κ and
number n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1 and that
the sequence {xk}k∈N generated by Algorithm 1 is bounded. Then,
either Algorithm 1 terminates after a finite number of iterations at a
stationary point of function f̂Nmax or every accumulation point of the
sequence {xk}k∈N is a stationary point of f̂Nmax.

Proof. First of all, recall that Algorithm 1 terminates only if
‖∇f̂Nmax(xk)‖ = 0, that is if the point xk is stationary for the function
f̂Nmax . Therefore, we consider the case where the number of iterations
is infinite. In that case, the construction of Algorithm 1 provides a
decreasing search direction at every iteration. Furthermore, Lemma
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4.3.1 implies the existence of iteration n̂ such that for every k ≥ n̂
Nk = Nmax and

f̂Nmax(xk+1) ≤ f̂Nmax(xk) + ηαk(g
Nmax
k )Tpk,

where gNmaxk = ∇f̂Nmax(xk). Equivalently, for every s ∈ N

f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂+s−1) + ηαn̂+s−1(gNmaxn̂+s−1)Tpn̂+s−1 ≤ ...

≤ f̂Nmax(xn̂) + η
s−1∑
j=0

αn̂+j(g
Nmax
n̂+j )Tpn̂+j.

Again, this inequality and Lemma 4.1.2 imply

−η
s−1∑
j=0

αn̂+j(g
Nmax
n̂+j )Tpn̂+j ≤ f̂Nmax(xn̂)−f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂)−MF .

This is true for every s ∈ N, therefore

0 ≤
∞∑
j=0

−αn̂+j(g
Nmax
n̂+j )Tpn̂+j ≤

f̂Nmax(xn̂)−MF

η
:= C.

This inequality implies

lim
k→∞

αk(∇f̂Nmax(xk))Tpk = 0. (4.14)

Now, let x∗ be an arbitrary accumulation point of sequence of itera-
tions {xk}k∈N, i.e. let K be the subset K ⊆ N such that

lim
k∈K

xk = x∗.

If the sequence of step sizes {αk}k∈K is bounded from below, i.e. if
there exists α̂ > 0 such that αk ≥ α̂ for every k ∈ K sufficiently large,
then (4.14) implies

lim
k∈K

(∇f̂Nmax(xk))Tpk = 0.
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This result, together with assumption B1 and Lemma 4.1.1, implies

∇f̂Nmax(x∗) = lim
k∈K
∇f̂Nmax(xk) = 0.

Now, suppose that there exists a subset K1 ⊆ K such that
limk∈K1 αk = 0. This implies the existence of k̂ such that for every
k ∈ K2 = K1 ∩ {max{n̂, k̂},max{n̂, k̂} + 1, ...} the step size αk that
satisfies the Armijo condition (4.6) is smaller than 1. That means that
for every k ∈ K2 there exists α′k such that αk = βα′k and

f̂Nmax(xk + α′kpk) > f̂Nmax(xk) + ηα′k(∇f̂Nmax(xk))Tpk,

which is equivalent to

f̂Nmax(xk + α′kpk)− f̂Nmax(xk)
α′k

> η(∇f̂Nmax(xk))Tpk.

By Mean Value Theorem there exists tk ∈ [0, 1] such that previous
inequality is equivalent to

pTk∇f̂Nmax(xk + tkα
′
kpk) > η(∇f̂Nmax(xk))Tpk. (4.15)

Notice that limk∈K2 α
′
k = 0 and recall that the sequence of search

directions is assumed to be bounded. Therefore, there exists p∗ and
subset K3 ⊆ K2 such that limk∈K3 pk = p∗. Now, taking limit in (4.15)
and using Lemma 4.1.1, we obtain

(∇f̂Nmax(x∗))Tp∗ ≥ η(∇f̂Nmax(x∗))Tp∗. (4.16)

On the other hand, we know that η ∈ (0, 1) and pk is the descent
search direction, i.e. (∇f̂Nmax(xk))Tpk < 0 for every k ∈ K3. This
implies that

(∇f̂Nmax(x∗))Tp∗ ≤ 0.
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The previous inequality and (4.16) imply that

lim
k∈K3

(∇f̂Nmax(xk))Tpk = (∇f̂Nmax(x∗))Tp∗ = 0.

Finally, according to assumption B1,

∇f̂Nmax(x∗) = lim
k∈K3

∇f̂Nmax(xk) = 0.

which completes the proof. �



Chapter 5

Nonmonotone line search
with variable sample size

In the previous chapter we introduced the strategy that allows us to
vary the sample size during the optimization process. The main goal
of this strategy is to save some function evaluations and make the op-
timization process less expensive. The Armijo rule has been the main
tool for providing the decrease that ensures the global convergence
under few additional conditions. Backtracking technique has been
proposed in order to impose the condition of sufficient decrease. More
precisely, the step size has been decreased until a sufficient decrease
is attained and every trial cost us the number of function evaluations
which is equal to the current sample size. The question is: Can we
reduce the number of trials and still provide global convergence of the
algorithm? The answer lies in nonmonotone line search techniques.
The idea is strongly correlated to the variable sample size philoso-
phy - we do not want to impose strict conditions in early iterations
when we are, most probably, far away from a solution which we are
searching for. Another strong motivation for using the nonmonotone
line search is coming from an environment where the search direc-
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tion is not necessary the descent one. This happens, for instance,
when derivatives are not affordable. This scenario is very realistic in
stochastic optimization framework where input-output information is
very often the only thing we can count on. In this case, it is use-
ful to consider nonmonotone rules which do not require the decrease
in objective function at every iteration. Moreover, when it comes to
global convergence, there is at least one more thing that goes in favor
of nonmonotone techniques. Namely, numerical results suggest that
nonmonotone techniques have more chances of finding global optimum
than their monotone counterparts [71], [17], [53].

Having all this in mind, we will introduce algorithms that use non-
monotone line search rules which are adopted into the variable sample
size framework. The main difference regarding the previously stated
Algorithm 1 is in the step where the line search is performed. The
nonmonotone line search rules we use here are described in section
5.1. Section 5.2 is devoted to the convergence analysis with a gen-
eral (possibly nondescent) search direction. Section 5.3 deals with the
descent search direction convergence analysis and the R-linear conver-
gence rate (Krejić, Krklec Jerinkić [38]).

5.1 The algorithm and the line search

The problem that we are observing is the same as in the monotone
line search framework. We consider

min
x∈Rn

f̂Nmax(x),

where Nmax is some substantially large but finite positive integer. Just
like in the previous chapter, the sample size is allowed to vary across
iterations and therefore we are observing different functions f̂Nk during
the optimization process. Recall that in Chapter 4 the search direction
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pk is assumed to be decreasing for f̂Nk and the line search was in the
form of the standard Armijo rule

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkp
T
k∇f̂Nk(xk).

In order to enlarge the set of problems on which Algorithm 1 can be
applied, we will generalize the previously stated condition and write
it in a slightly different manner.

Consider the line search that seeks for a step size αk that satisfies
the condition

f̂Nk(xk + αkpk) ≤ C̃k + εk − ηdmk(αk), (5.1)

where the parameters C̃k, εk and η and function dmk(αk) are to be
explained as follows.

Let us first consider the measure of decrease represented by the
function dmk(α). The main property that dmk has to posses is posi-
tivity. Considering this function, we will consider two main cases. The
first one is

dmk(α) = −αpTk∇f̂Nk(xk). (5.2)

This definition is used only if pTk∇f̂Nk(xk) < 0, i.e. if the search
direction is decreasing one. Only if this is true, we will have the
desired property dmk(α) > 0 for every α > 0. This definition of dmk

will usually be used with parameter η ∈ (0, 1) like in the standard
Armijo line search. The second option is to put

dmk(α) = α2βk, (5.3)

where βk is a positive number which belongs to a sequence that satisfies
the following assumption.

C 2 {βk}k∈N is a bounded sequence of positive numbers with the prop-
erty

lim
k∈K

βk = 0⇒ lim
k∈K
∇f̂Nmax(xk) = 0,

for every infinite subset of indices K ⊆ N.
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This kind of sequence is introduced in [23] and it is described in
more detail in section 2.3. The previous assumption is crucial for
proving the convergence result. Recall that besides some increasingly
accurate approximation of ‖∇f̂Nmax(xk)‖, a suitable choice for βk can
even be some positive constant, for example βk = 1. Moreover, for
simplicity and without loss of generality we can set η = 1 when the
definition (5.3) is considered. In that case, any positive constant is also
a valid choice for η since it can be viewed as the part of the sequence
of βk. More precisely, we can consider ηβk instead of βk because it
does not affect the previously stated assumption.

One of the main things that makes line search (5.1) well defined
even for nondescent search direction is the parameter εk. This param-
eter is given by the sequence {εk}k∈N usually defined at the beginning
of the optimization process. We state the following assumption with a
remark that if we are not able to ensure the descent search direction,
εk is assumed to be be positive.

C 3 {εk}k∈N is a sequence of nonnegative numbers such that∑∞
k=0 εk = ε <∞.
Finally, let us comment the parameters C̃k mentioned in the line

search (5.1). The motivation for introducing this parameter comes
from Zhang, Hager [71] where Ck is a convex combination of objective
function values in the previous iterations. In that paper, the descent
search directions are considered and the line search

f(xk + αkpk) ≤ Ck + ηαkp
T
k∇f(xk)

is well defined since it is proved that Ck ≥ f(xk) for every k where
f is the objective function. However, we are dealing with a different
function at every iteration and Ck ≥ f̂Nk(xk) needs not to be true.
In order to make our algorithm well defined, we need an additional
safeguard. We define

C̃k = max{Ck, f̂Nk(xk)}. (5.4)
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That way we ensure C̃k ≥ f̂Nk(xk). Definition of Ck is conceptually
the same like in the deterministic case but it is slightly modified to fit
the variable sample size scheme. Therefore, we define Ck recursively
with

Ck+1 =
η̃kQk

Qk+1

Ck +
1

Qk+1

f̂Nk+1
(xk+1), C0 = f̂N0(x0), (5.5)

where

Qk+1 = η̃kQk + 1, Q0 = 1, η̃k ∈ [0, 1]. (5.6)

Parameter η̃k determines the level of monotonicity regarding Ck. No-
tice that η̃k−1 = 0 yields C̃k = Ck = f̂Nk(xk). On the other hand,
η̃k = 1 for every k treats all previous function values equally yielding
the average

Ck =
1

k + 1

k∑
i=0

f̂Ni(xi). (5.7)

In order to cover all the relevant nonmonotone line search rules,
we will let C̃k be defined in the following manner as well. Instead of
(5.4), we can consider

C̃k = max{f̂Nk(xk), . . . , f̂Nmax{k−M+1,0}(xmax{k−M+1,0})}, (5.8)

where M ∈ N is arbitrary but fixed. This way, we are trying to
decrease the maximal value of the response function in the previous
M iterations. The similar rule can be found in [23] for example.

Now, we will state lemmas considering Qk and Ck. The following
result can also be found in [71].

Lemma 5.1.1 Suppose that Qk is defined by (5.6). Then for every
k ∈ N0

1 ≤ Qk ≤ k + 1. (5.9)
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Proof. The proof will be conducted by induction. Since Q0 = 1
by definition, (5.9) is true for k = 0. Furthermore, since η̃0 ∈ [0, 1] it
follows η̃0Q0 ≥ 0 and it is easy to see that Q1 ≥ 1. On the other hand,
Q1 = η̃0Q0 + 1 ≤ Q0 + 1 = 2. Now, suppose that 1 ≤ Qk ≤ k + 1
is true. This inequality together with η̃k ∈ [0, 1] imply that Qk+1 =
η̃kQk +1 ≤ Qk +1 ≤ k+2. Moreover, assumptions η̃k ≥ 0 and Qk ≥ 1
also imply that Qk+1 ≥ 1. �

It is stated in [71] that Ck is a convex combination of previous func-
tion values where a fixed, deterministic function is considered through-
out the iterations. The next lemma is a generalization of that result
since we have the sequence of different functions f̂Nk .

Lemma 5.1.2 Suppose that Ck is defined by (5.5) and Qk is defined
by (5.6). Then for every k ∈ N0, Ck is a convex combination of
f̂N0(x0), ..., f̂Nk(xk).

Proof. For k = 0, the statement obviously holds. Further, the
definition of C0 and previous lemma imply

C1 =
η̃0Q0

Q1

C0 +
1

Q1

f̂N1(x1) =
η̃0Q0

η̃0Q0 + 1
f̂N0(x0) +

1

η̃0Q0 + 1
f̂N1(x1)

which is a convex combination of f̂N0(x0) and f̂N1(x1). Now, sup-
pose that Ck =

∑k
i=0 α

k
i f̂Ni(xi) where

∑k
i=0 α

k
i = 1 and αki ≥ 0 for

i = 0, 1, ..., k. Let us prove that this implies that Ck+1 is a convex
combination of f̂N0(x0), ..., f̂Nk+1

(xk+1). By definition (5.5) we have

Ck+1 =
η̃kQk

Qk+1

k∑
i=0

αki f̂Ni(xi) +
1

Qk+1

f̂Nk+1
(xk+1) =

k+1∑
i=0

αk+1
i f̂Ni(xi),

where

αk+1
k+1 =

1

Qk+1

and αk+1
i =

η̃kQk

Qk+1

αki for i = 0, 1, ..., k.
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Obviously, αk+1
i ≥ 0 for i = 0, 1, ..., k + 1. Since Qk+1 = η̃kQk + 1 we

have

k+1∑
i=0

αk+1
i =

k∑
i=0

η̃kQk

Qk+1

αki +
1

Qk+1

=
η̃kQk

Qk+1

k∑
i=0

αki +
1

Qk+1

=
η̃kQk

Qk+1

+
1

Qk+1

= 1.

Finally, by induction we conclude that Ck is a convex combination of
f̂N0(x0), ..., f̂Nk(xk) for every k ∈ N0. �

Lemma 5.1.3 Suppose that the assumptions of Lemma 5.1.2 hold.
Then for every k ∈ N0

1) if the assumption A3 holds, MF ≤ Ck.

2) if the assumption A4 holds, Ck ≤MFF .

Proof. According to Lemma 5.1.2, we know that Ck =∑k
i=0 α

k
i f̂Ni(xi) where

∑k
i=0 α

k
i = 1 and αki ≥ 0 for i = 0, 1, ..., k. If the

assumption A3 holds, then Lemma 4.1.2 implies that MF ≤ f̂Ni(xi)
for every i and

Ck ≥
k∑
i=0

αkiMF = MF .

On the other hand, if assumption A4 holds Lemma 4.1.3 imply that
f̂Ni(xi) ≤MFF for every i. Therefore,

Ck ≤
k∑
i=0

αkiMFF = MFF .

�

The following technical lemma is significant for the convergence
analysis. It distinguishes two cases regarding Ck or more precisely
regarding η̃k. It turns out that average (5.7) is the special case in terms
of the convergence analysis too. The consequence of the following
lemma is that we obtain a stronger result by excluding η̃k = 1.
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Lemma 5.1.4 Suppose that η̃k ∈ [ηmin, ηmax] for every k where 0 ≤
ηmin ≤ ηmax ≤ 1 and Qk is defined by (5.6).

1) If ηmin = 1, then limk→∞Q
−1
k = 0.

2) If ηmax < 1, then limk→∞Q
−1
k > 0.

Proof. In the case where ηmin = 1, it follows that Qk = k + 1
for every k ∈ N and therefore limk→∞Q

−1
k = 0, thus the result holds.

Now, let us consider the second case, i.e. let us suppose that ηmax < 1.
First, we will show that

0 ≤ Qk ≤
k∑
i=0

ηimax (5.10)

for every k ∈ N0. Nonnegativity of Qk has already been discussed. The
other inequality needs to be proved. This will be done by induction.
Of course, Q0 = 1 = η0

max and Q1 = η̃0Q0 + 1 ≤ ηmax + η0
max. If we

suppose Qk ≤
∑k

i=0 η
i
max is true, then

Qk+1 = η̃kQk + 1 ≤ η̃k

k∑
i=0

ηimax + 1 ≤
k∑
i=0

ηi+1
max + η0

max =
k+1∑
i=0

ηimax.

Therefore, (5.10) is true for every k ∈ N0.
Now, since ηmax < 1, we know that for every k ∈ N0

0 ≤ Qk ≤
k∑
i=0

ηimax ≤
∞∑
i=0

ηimax =
1

1− ηmax

which furthermore implies

lim
k→∞

Q−1
k ≥ 1− ηmax > 0.
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�

Now, we can state the main algorithm of this chapter. The addi-
tional algorithms are already stated in the previous chapter and they
are not going to be changed. The main modifications are in steps S4-S6
of Algorithm 1. As it is mentioned at the beginning of this chapter,
search direction needs not to be decreasing in general and the line
search rule is changed. Consequently, the definition of dmk is altered
and therefore the input parameter of Algorithm 2 is modified, but the
mechanism for searching N+

k remains the same. Another important
difference between Algorithm 1 and Algorithm 4 is that the new one
does not have a stopping criterion. This is because, in general, we do
not have the exact gradient of the function f̂Nmax .

ALGORITHM 4

S0 Input parameters: M,Nmax, N
min
0 ∈ N, x0 ∈ Rn, δ, β, ν1 ∈

(0, 1), η ∈ (0, 1], 0 ≤ ηmin ≤ ηmax ≤ 1, {εk}k∈N satisfying
assumption C3.

S1 Generate the sample realization: ξ1, . . . , ξNmax .

Set N0 = Nmin
0 , C0 = f̂N0(x0), Q0 = 1, C̃0 = C0, k = 0.

S2 Compute f̂Nk(xk) using (4.2).

S3 Compute εNkδ (xk) using (4.8).

S4 Determine the search direction pk.

S5 Find the smallest nonnegative integer j such that αk = βj sat-
isfies

f̂Nk(xk + αkpk) ≤ C̃k + εk − ηdmk(αk).

S6 Set sk = αkpk and xk+1 = xk + sk.
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S7 Determine the candidate sample size N+
k using Algorithm 2 and

dmk = dmk(αk).

S8 Determine the sample size Nk+1 using Algorithm 3.

S9 Determine the lower bound of sample size Nmin
k+1 .

S10 Determine C̃k+1 using (5.4) or (5.8).

S11 Set k = k + 1 and go to step S2.

5.2 General search direction

In this section, we analyze the case where the search direction might be
nondescent. Just like in the previous chapter, the convergence analysis
is conducted in two main stages. First, we prove that Algorithm 4 uses
Nk = Nmax for every k large enough. The second part then relies on
the deterministic algorithm analysis applied on the function f̂Nmax . In
order to prove that the sample size eventually becomes Nmax, we need
to prove that a subsequence of {dmk(αk)}k∈N tends to zero. This is
done by considering two definitions of C̃k separately. Results regarding
the line search with C̃k = max{Ck, f̂Nk(xk)} are stated in the following
two lemmas.

Lemma 5.2.1 Consider the Algorithm 4 with C̃k defined by (5.4).
Suppose that the assumptions A1 and A3 are satisfied and there exists
ñ ∈ N such that Nk = N for every k ≥ ñ. Then for every k ≥ ñ

C̃k+1 ≤ C̃k + εk − η
dmk

Qk+1

(5.11)

and for every s ∈ N

C̃ñ+s ≤ C̃ñ +
s−1∑
j=0

εñ+j − η
s−1∑
j=0

dmñ+j

Qñ+j+1

. (5.12)



5.2 General search direction 127

Proof. First of all, recall that the line search implies that for every
k ≥ ñ

f̂N(xk+1) ≤ C̃k + εk − ηdmk (5.13)

where dmk = dmk(αk). Furthermore, Ck ≤ max{Ck, f̂Nk(xk)} = C̃k.
Therefore, the following is true for every k ≥ ñ

Ck+1 =
η̃kQk

Qk+1

Ck +
1

Qk+1

f̂N(xk+1)

≤ η̃kQk

Qk+1

C̃k +
1

Qk+1

(C̃k + εk − ηdmk)

= C̃k +
εk
Qk+1

− η dmk

Qk+1

The last equality is a consequence of the definition Qk+1 = η̃kQk + 1.
Moreover, Lemma 5.1.1 implies that Qk+1 ≥ 1 and we obtain

Ck+1 ≤ C̃k + εk − η
dmk

Qk+1

. (5.14)

Now, (5.13) and (5.14) imply

C̃k+1 = max{Ck+1, f̂N(xk+1)}

≤ max{C̃k + εk − η
dmk

Qk+1

, C̃k + εk − ηdmk}

= C̃k + εk − η
dmk

Qk+1

.

Furthermore, by using the induction argument we can conclude that
the previous inequality implies that (5.12) holds for every s ∈ N. �

Lemma 5.2.2 Suppose that the assumptions A1 and A3 are satisfied
and there exists ñ ∈ N such that Nk = N for every k ≥ ñ. Then
Algorithm 4 with C̃k defined by (5.4) satisfies

lim inf
k→∞

dmk(αk) = 0.
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Moreover, if ηmax < 1 it follows that

lim
k→∞

dmk(αk) = 0.

Proof. The assumptions of the previous lemma are satisfied, there-
fore we know that (5.12) holds for every s ∈ N. Recall that the se-
quence {εk}k∈N satisfies the assumption C3 by definition of Algorithm
4. Furthermore, by using the result of Lemma 4.1.2 we obtain

0 ≤ η
s−1∑
j=0

dmñ+j

Qñ+j+1

≤ C̃ñ −MF + ε := C.

Now, letting s tend to infinity we obtain

0 ≤
∞∑
j=0

dmñ+j

Qñ+j+1

≤ C

η
<∞. (5.15)

If we suppose that dmk ≥ d̄ > 0 for all k sufficiently large, we would
obtain the contradiction with (5.15) because Lemma 5.1.1 would imply

∞∑
j=0

dmñ+j

Qñ+j+1

≥
∞∑
j=0

d̄

ñ+ j + 2
=∞.

Therefore, there must exist a subset of iterations K such that
limk∈K dmk = 0 and the statement follows.

Finally, assume that ηmax < 1. From (5.15) we conclude that
limk→∞Q

−1
k dmk = 0. Since Lemma 5.1.4 implies that limk→∞Q

−1
k > 0

it follows that limk→∞ dmk = 0. This completes the proof. �
Next, we consider an analogous statement for

C̃k = max{f̂Nk(xk), . . . , f̂Nmax{k−M+1,0}(xmax{k−M+1,0})}.
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The result stated in previous lemma concerning ηmax < 1 is attainable
in this case as well, but under stronger assumptions on the search
directions and the objective function. However, the existence of a
subsequence of {dmk(αk)}k∈N that vanishes will be enough to prove
the first stage result in the convergence analysis. The proof of the
following lemma relies on the proof of the Proposition 1 from [23].

Lemma 5.2.3 Suppose that the assumptions A1 and A3 are satisfied
and there exists ñ ∈ N such that Nk = N for every k ≥ ñ. Then
Algorithm 4 with C̃k defined by (5.8) satisfies

lim inf
k→∞

dmk(αk) = 0.

Proof. The assumptions of this lemma imply the existence of ñ
such that Nk = N for every k ≥ ñ. Without loss of generality, we
can assume that ñ ≥ M where M defines the number of previous
iterations that are considered in (5.8). Therefore, after a finite number
of iterations the function f̂N is considered. If we define dmk = dmk(αk)
then the line search rule implies that for every k ≥ ñ

f̂N(xk+1) ≤ C̃k + εk − ηdmk.

Furthermore, if we define s(k) = ñ+ kM then by the definition of C̃k
we have

C̃s(k) = max{f̂N(xs(k)), . . . , f̂N(xs(k)−M+1)}.

Finally, let v(k) be the index such that C̃s(k) = f̂N(xv(k)) and notice
that v(k) ∈ {s(k − 1) + 1, . . . , s(k − 1) +M}.

The next step is to prove that for every k ∈ N and every j ∈
{1, 2, . . . ,M} the following holds

f̂N(xs(k)+j) ≤ C̃s(k) +

j−1∑
i=0

εs(k)+i − ηdms(k)+j−1. (5.16)
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This will be proved by induction. For j = 1 the result follows from
the line search rule directly

f̂N(xs(k)+1) ≤ C̃s(k) + εs(k) − ηdms(k).

Suppose that (5.16) holds for every 1 < j < M . Since εk and ηdmk

are nonnegative it follows that

f̂N(xs(k)+j) ≤ C̃s(k) +

j−1∑
i=0

εs(k)+i ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i

for every 1 ≤ j < M . Finally, for j + 1 we obtain

f̂N(xs(k)+j+1) ≤ C̃s(k)+j + εs(k)+j − ηdms(k)+j

≤ max{f̂N(xs(k)+j), . . . , f̂N(xs(k)+1), C̃s(k)}
+ εs(k)+j − ηdms(k)+j

≤ C̃s(k) +

j−1∑
i=0

εs(k)+i + εs(k)+j − ηdms(k)+j

= C̃s(k) +

j∑
i=0

εs(k)+i − ηdms(k)+j.

Therefore, (5.16) holds. Moreover,

f̂N(xs(k)+j) ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i − ηdms(k)+j−1. (5.17)

For C̃s(k+1) we have

C̃s(k+1) = max{f̂N(xs(k)+M), . . . , f̂N(xs(k)+1)} = f̂N(xv(k+1)).
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Furthermore, using the previous equality and (5.17) we conclude that

C̃s(k+1) ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i − ηdmv(k+1)−1. (5.18)

The previous inequality holds for every k ∈ N. If we sum up these
inequalities, for arbitrary m ∈ N we obtain

C̃s(m+1) ≤ C̃s(1) +
m∑
k=1

M−1∑
i=0

εs(k)+i − η
m∑
k=1

dmv(k+1)−1. (5.19)

By definition of C̃k and Lemma 4.1.2 it follows that C̃k ≥MF for every
k ∈ N. Moreover, assumption C3 implies that the following inequality
holds for every m ∈ N

m∑
k=1

M−1∑
i=0

εs(k)+i ≤ ε <∞. (5.20)

Having all this in mind, from (5.19) follows that for every m ∈ N

0 ≤ η

m∑
k=1

dmv(k+1)−1 ≤ C̃s(1) + ε−MF <∞.

Finally, letting m tend to infinity we obtain

lim
k→∞

dmv(k)−1 = 0,

which is equivalent to lim infk→∞ dmk(αk) = 0. �

The previous two lemmas imply the following result concerning
Algorithm 4.
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Corollary 5.2.1 Suppose that the assumptions A1 and A3 are sat-
isfied and there exists ñ ∈ N such that Nk = N for every k ≥ ñ.
Then

lim inf
k→∞

dmk(αk) = 0.

Lemma 5.2.4 Suppose that the assumptions A1 and A3 are satisfied.
Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1. Then there exists
q ∈ N such that for every k ≥ q the sample size used by Algorithm 4
is maximal, i.e. Nk = Nmax.

Proof. First of all, recall that Algorithm 4 does not have a stopping
criterion and the number of iterations is infinite by default. Notice
that Algorithm 3 implies that Nk+1 ≥ N+

k is true for every k. Now,
let us prove that sample size can not be stacked at a size that is lower
than the maximal one.

Suppose that there exists ñ > n1 such that for every k ≥ ñ Nk =
N1 < Nmax and define dmk = dmk(αk). In that case, Corollary 5.2.1
implies that lim infk→∞ dmk = 0. On the other hand, we have that
εN

1

δ (xk) ≥ κ > 0 for every k ≥ ñ which means that ν1d ε
Nk
δ (xk) is

bounded from below for every k sufficiently large. Therefore, there
exists at least one p ≥ ñ such that dmp < ν1d εN

1

δ (xp). However,
the construction of Algorithm 2 would then imply N+

p = Nmax and
we would have Np+1 = Nmax > N1 which is in contradiction with the
current assumption that sample size stays at N1.

We have just proved that sample size can not stay on N1 < Nmax.
Therefore, the remaining two possible scenarios are as follows:

L1 There exists ñ such that Nk = Nmax for every k ≥ ñ.

L2 The sequence of sample sizes oscillates.
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Let us consider the scenario L2. Suppose that there exists k̄ such
that Nmin

k̄
= Nmax. Since the sequence of sample size lower bounds

{Nmin
k }k∈N is nondecreasing, this would imply that Nmin

k = Nmax for
every k ≥ k̄. But this implies Nk = Nmax for every k > k̄, i.e.
we obtain the scenario L1 where the sample size can not oscillate.
Therefore, if we consider the scenario L2, we know that for every k

Nmin
k < Nmax.

This means thatNmin
k increases only at finitely many iterations. Recall

that the sample size lower bound increases only when Nmin
k+1 = Nk+1.

Then we have

Nmin
k+1 = Nk+1 > Nk ≥ N+

k−1 ≥ Nmin
k−1 .

Notice that, according to the proposed mechanism for updating Nmin
k ,

updating form Nmin
k+1 = Nk+1 happens only if Nk+1 is the sample size

which had been used already, Nk+1 > Nk and the obtained decrease in
f̂Nk+1

was not good enough. Therefore, we conclude that there exists
an iteration r1 such that for every k ≥ r1 we have one of the following
scenarios:

M1 Nk+1 ≤ Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1

M3 Nk+1 > Nk and we did not use the sample size Nk+1 before

Now, let N̄ be the maximal sample size that is used at infinitely
many iterations. Furthermore, define the set of iterations K̄0 at which
sample size changes to N̄ . The definition of N̄ implies that there
exists iteration r2 such that for every k ∈ K̄0, k ≥ r2 the sample size
is increased to N̄ , i.e.

Nk < Nk+1 = N̄ .
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Define r = max{r1, r2} and set K̄ = K̄0

⋂
{r, r + 1, . . .}. Clearly, each

iteration in K̄ excludes the scenario M1. Moreover, taking out the
first member of a sequence K̄ and retaining the same notation for
the remaining sequence we can exclude the scenario M3 as well. This
leaves us with M2 as the only possible scenario for iterations in K̄.
Therefore, for every k ∈ K̄ the following is true

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ Nk+1

Nmax

(k + 1− h(k))εN̄δ (xk+1).

Now, defining the set of iterations K1 = K̄
⋂
{n1, n1 + 1, . . .} we can

say that for every k ∈ K1 we have

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ Nk+1

Nmax

κ ≥ 1

Nmax

κ = C̄ > 0.

Recall that h(k) defines the iteration at which we started to use the
sample size N̄ for the last time before the iteration k + 1. Therefore,
previous inequality implies that we have reduced the function f̂N̄ for
the positive constant C̄ infinitely many times, which is in contradiction
with Lemma 4.1.2. From everything above, we conclude that the only
possible scenario is in fact L1, i.e. there exists iteration ñ such that
for every k ≥ ñ, Nk = Nmax. �

At the beginning of this chapter we introduced two possibilities
for dmk. In this section general search direction is considered. There-
fore, we consider the case where dmk is defined by (5.3), i.e. where
dmk(α) = α2βk and the line search is

f̂Nk(xk + αkpk) ≤ C̃k + εk − α2
kβk. (5.21)

In the following theorems we state the convergence result concerning
Algorithm 4 with this line search rule.
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Theorem 5.2.1 Suppose that the assumptions A1, A3 and C2 are
satisfied. Furthermore, suppose that there exist a positive constant κ
and n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1 and that the se-
quences of search directions {pk}k∈N and iterates {xk}k∈N of Algorithm
4 with the line search rule (5.21) are bounded. Then there exists an
accumulation point (x∗, p∗) of the sequence {(xk, pk)}k∈N that satisfies
the following inequality

p∗T∇f̂Nmax(x∗) ≥ 0.

Proof. Notice that under these assumptions, Lemma 5.2.4 implies
the existence of ñ ∈ N such that Nk = Nmax for every k ≥ ñ. More-
over, Corollary 5.2.1 then implies that there exists a subset K0 ⊆ N
such that limk∈K0 dmk(αk) = limk∈K0 α

2
kβk = 0. Furthermore, since

{(xk, pk)}k∈N is bounded, there exists at least one subset K ⊆ K0

and points x∗ and p∗ such that limk∈K xk = x∗ and limk∈K pk = p∗.
Therefore it follows that

lim
k∈K

α2
kβk = 0. (5.22)

Suppose that a subsequence of the step sizes {αk}k∈K is bounded
from below. In that case (5.22) implies limk∈K βk = 0 which together
with the assumption C2 yields limk∈K ∇f̂Nmax(xk) = 0. Furthermore,
Lemma 4.1.1 implies ∇f̂Nmax(x∗) = 0 which is even stronger result
than the one we want to prove.

Now, let us consider the remaining case. Suppose that there exists
a subset K1 ⊆ K such that limk∈K1 αk = 0. This and the backtracking
rule that we use in our algorithm imply the existence of k̂ ∈ N such
that for every k ≥ k̂, k ∈ K1 the step size αk that satisfies condition
(5.21) is smaller than 1. That means that for every k ≥ max{k̂, ñ}, k ∈
K1 there exists α′k such that αk = βα′k and

f̂Nmax(xk + α′kpk) > C̃k + εk − (α′k)
2βk ≥ f̂Nmax(xk)− (α′k)

2βk,
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which is equivalent to

f̂Nmax(xk + α′kpk)− f̂Nmax(xk)
α′k

> −α′kβk.

By the Mean Value Theorem there exists tk ∈ [0, 1] such that

pTk∇f̂Nmax(xk + tkα
′
kpk) > −α′kβk,

Now,

−α′kβk < pTk∇f̂Nmax(xk + tkα
′
kpk)

= pTk (∇f̂Nmax(xk + tkα
′
kpk)−∇f̂Nmax(xk)) + pTk∇f̂Nmax(xk)

≤ ‖pk‖‖∇f̂Nmax(xk + tkα
′
kpk)−∇f̂Nmax(xk)‖+ pTk∇f̂Nmax(xk).

Assumptions of this theorem imply that the sequences {pk}k∈N
and {βk}k∈N are bounded. Furthermore, limk∈K1 αk = 0 implies
limk∈K1 α

′
k = 0 and Lemma 4.1.1 implies the continuity of the gra-

dient ∇f̂Nmax . Therefore the previous inequality obviously yields

lim
k∈K1

pTk∇f̂Nmax(xk) ≥ 0,

which together with the fact that K1 ⊆ K implies the result

p∗T∇f̂Nmax(x∗) ≥ 0.

�

The following theorem provides a bit stronger result since under
the stated assumptions we are able to prove that the whole sequence
of dmk(αk) tends to zero.

Theorem 5.2.2 Suppose that the assumptions of Theorem 5.2.1 are
satisfied and that the line search rule uses C̃k defined by (5.4) with
ηmax < 1. Then every accumulation point (x∗, p∗) of the sequence
{(xk, pk)}k∈N satisfies the following inequality

p∗T∇f̂Nmax(x∗) ≥ 0.
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Proof. First of all, we know that under these assumptions Lemma
5.2.4 implies the existence of ñ ∈ N such that Nk = Nmax for every
k ≥ ñ. Furthermore, since we have that ηmax < 1, Lemma 5.2.2
implies

lim
k→∞

α2
kβk = 0.

Now, let (x∗, p∗) be an arbitrary accumulation point of the sequence
{(xk, pk)}k∈N and define K ⊆ N such that limk∈K(xk, pk) = (x∗, p∗).
Then (5.22) is true and the rest of the proof is as in Theorem 5.2.1.
�

Roughly speaking, the previous two theorems give the conditions
under which we would encounter the point where descent search di-
rection is unattainable. In order to make these points stationary for
function f̂Nmax , we need additional assumptions considering search di-
rections pk. One of them is already stated in previous chapter and the
other one is as follows.

B 2 Search directions pk satisfy the following condition

lim
k→∞

pTk∇f̂Nmax(xk) ≤ 0.

Notice that this assumption is satisfied if we are able to produce
descent search directions eventually. For example, it will be satisfied
if increasingly accurate finite differences are used to approximate the
gradient, or more precisely if

(pk)i = − f̂Nk(xk + hkei)− f̂Nk(xk − hkei)
2hk

, i = 1, . . . n

with hk → 0 when k →∞.

Theorem 5.2.3 Suppose that the assumptions of Theorem 5.2.1 are
satisfied and that the search directions satisfy the assumptions B1 and
B2. Then there exists an accumulation point of {xk}k∈N which is sta-
tionary for the function f̂Nmax.
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Proof. Theorem 5.2.1 implies the existence of an accumulation point
(x∗, p∗) of the sequence {(xk, pk)}k∈N that satisfies

p∗T∇f̂Nmax(x∗) ≥ 0. (5.23)

Let K ⊆ N be the subset of indices such that limk∈K(xk, pk) = (x∗, p∗).
Since the search directions are bounded by assumption B1 and∇f̂Nmax
is continuous as a consequence of Lemma 4.1.1, assumption B2 implies
that

p∗T∇f̂Nmax(x∗) = lim
k∈K

pTk∇f̂Nmax(xk) ≤ 0

which together with (5.23) gives the following result

p∗T∇f̂Nmax(x∗) = 0. (5.24)

Finally, assumption B1 implies that ∇f̂Nmax(x∗) = 0. �
The assumptions B1 and B2 in combination with the assumptions

of Theorem 5.2.2 provide a stronger result.

Theorem 5.2.4 Suppose that the assumptions of Theorem 5.2.2 are
satisfied and that the search directions satisfy the assumptions B1 and
B2. Then every accumulation point of the sequence {xk}k∈N is sta-
tionary for f̂Nmax.

Proof. Let x∗ be an arbitrary accumulation point of the sequence
{xk}k∈N and let K be the subset of indices such that limk∈K(xk, pk) =
(x∗, p∗). Then Theorem 5.2.2 implies that

p∗T∇f̂Nmax(x∗) ≥ 0. (5.25)

Since the search directions are bounded, we can always find such sub-
set K. The rest of the proof is as in Theorem 5.2.3. We obtain
∇f̂Nmax(x∗) = 0 and since x∗ is arbitrary, the result follows. �
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Notice that nonmonotone line search rules proposed in this section
yield the same result regarding achievement of the maximal sample
size Nmax as in the previous chapter. Therefore, the convergence re-
sults again rely on the deterministic analysis applied to the function
f̂Nmax . The main result is the existence of an accumulation point
which is stationary for f̂Nmax without imposing the assumption of de-
scent search directions. Moreover, if the parameter C̃k is defined by
(5.4) with ηmax < 1, every accumulation point is stationary under the
same assumptions.

5.3 Descent search direction

This section is devoted to the case where the exact gradient of func-
tion f̂Nk is available and the descent search direction is used at every
iteration. In that case, εk needs not to be positive to ensure that the
line search is well defined. However, setting εk > 0 can be beneficial
for the algorithm performance since it increases the chances for larger
step sizes. Furthermore, we define dmk(α) by (5.2) as it is proposed
earlier. Two possibilities for C̃k divide the analysis in two parts.

First, we consider C̃k defined by (5.4). This leads us to the line
search defined by

f̂Nk(xk + αkpk) ≤ C̃k + εk + ηαkp
T
k∇f̂Nk(xk),

C̃k = max{Ck, f̂Nk(xk)}. (5.26)

This framework yields the possibility for obtaining the convergence
result where every accumulation point is stationary for the relevant
objective function. Moreover, the R-linear rate of convergence is at-
tainable if we assume that εk tends to zero R-linearly.

The conditions for the global convergence are stated in the follow-
ing theorem. The convergence result again depends on the choice of
parameter ηmax, i.e. eliminating ηmax = 1 provides a stronger result.
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Theorem 5.3.1 Suppose that the assumptions A1, A3 and B1 hold.
Furthermore, suppose that there exist a positive constant κ and num-
ber n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1 and that the
sequence {xk}k∈N generated by Algorithm 4 with the line search (5.26)
and descent search directions {pk}k∈N is bounded. Then, there exist
a subsequence of iterates {xk}k∈N that tends to a stationary point of
f̂Nmax. Moreover, if ηmax < 1 then every accumulation point of the
sequence {xk}k∈N is a stationary point of f̂Nmax.

Proof. First, notice that under the previously stated assumptions
Lemma 5.2.4 implies the existence of n̂ ∈ N such that Nk = Nmax

for every k ≥ n̂. Furthermore, Lemma 5.2.2 implies that there exists
K0 ⊆ N such that

lim
k∈K0

αkp
T
k∇f̂Nmax(xk) = lim inf

k→∞
−dmk(αk) = 0. (5.27)

Since the iterates of Algorithm 4 are assumed to be bounded, there
exists at least one accumulation point x∗ of sequence {xk}k∈K0 . There-
fore, there exists K ⊆ K0 such that

lim
k∈K

xk = x∗.

If the sequence of step sizes is bounded from below, then the result
follows from Theorem 5.2.3 and Theorem 5.2.4 because this is the
special case of the line search considered in the previous section with

βk = −ηp
T
k∇f̂Nmax(xk)

αk
.

Notice that this sequence satisfies the assumption C2 if αk is bounded
from below since pk and ∇f̂Nmax(xk) are bounded by the assumptions
of this theorem. More precisely, search directions are bounded by
the assumption B1 and the boundedness of the gradient follows from
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boundedness of {xk}k∈N and the assumptions A1. Moreover, the as-
sumption B2 is obviously satisfied for the descent search directions.

Now, suppose that there exists a subset K1 ⊆ K such that
limk∈K1 αk = 0. This implies the existence of k̂ such that for ev-
ery k ∈ K2 = K1 ∩ {max{n̂, k̂},max{n̂, k̂} + 1, ...} the step size αk
that satisfies the condition (5.26) is smaller than 1. That means that
for every k ∈ K2 there exists α′k such that αk = βα′k and

f̂Nmax(xk + α′kpk) > C̃k + εk + ηα′k(∇f̂Nmax(xk))Tpk.

Since C̃k ≥ f̂Nk(xk) by definition and εk ≥ 0, we have that for every
k ∈ K2

f̂Nmax(xk + α′kpk) > f̂Nmax(xk) + ηα′k(∇f̂Nmax(xk))Tpk,

which is equivalent to

f̂Nmax(xk + α′kpk)− f̂Nmax(xk)
α′k

> η(∇f̂Nmax(xk))Tpk.

By the Mean Value Theorem there exists tk ∈ [0, 1] such that previous
inequality is equivalent to

pTk∇f̂Nmax(xk + tkα
′
kpk) > η(∇f̂Nmax(xk))Tpk. (5.28)

Notice that limk∈K2 α
′
k = 0 and recall that the sequence of search

directions is assumed to be bounded. Therefore, there exist p∗ and a
subset K3 ⊆ K2 such that limk∈K3 pk = p∗. Now, taking limit in (5.28)
and using Lemma 4.1.1, we obtain

(∇f̂Nmax(x∗))Tp∗ ≥ η(∇f̂Nmax(x∗))Tp∗. (5.29)

On the other hand, we know that η ∈ (0, 1) and pk is a descent di-
rection, i.e. (∇f̂Nmax(xk))Tpk < 0 for every k ∈ K3. This implies
that

(∇f̂Nmax(x∗))Tp∗ ≤ 0.



142 Nonmonotone line search with variable sample size

Previous inequality and (5.29) imply that

lim
k∈K3

(∇f̂Nmax(xk))Tpk = (∇f̂Nmax(x∗))Tp∗ = 0.

Again, according to assumption B1,

∇f̂Nmax(x∗) = lim
k∈K3

∇f̂Nmax(xk) = 0.

which completes this part of the proof.
At the end, let us consider the case where ηmax < 1. Under this

assumption the result of Lemma 5.2.2 implies

lim
k→∞

αk(∇f̂Nmax(xk))Tpk = lim
k→∞
−dmk = 0

instead of (5.27). Now, if we define x∗ to be an arbitrary accumulation
point of the sequence of iterates {xk}k∈N, the rest of the proof is the
same as in the first part and we obtain ∇f̂Nmax(x∗) = 0. Therefore, if
ηmax < 1 every accumulation point is stationary for f̂Nmax . �

After proving the global convergence result, we will analyze the
convergence rate. Following the ideas from [71] and [17], we will prove
that R-linear convergence for strongly convex functions can be ob-
tained. Of course, some additional assumptions are needed. The first
one is the strong convexity of the objective function.

A 5 For every ξ, F (·, ξ) is a strongly convex function.

The consequence of this assumption is that for every sample size N ,
f̂N is a strongly convex function since it is defined by (4.2). Therefore,
there exists γ > 0 such that for every N and every x, y ∈ Rn

f̂N(x) ≥ f̂N(y) + (∇f̂N(y))T (x− y) +
1

2γ
‖x− y‖2. (5.30)

We continue with the analysis by proving the following lemma.
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Lemma 5.3.1 Suppose that the assumptions A1 and A5 are satisfied
and x∗ is an unique minimizer of the function f̂N . Then there exists
positive constant γ such that for every x ∈ Rn

1

2γ
‖x− x∗‖2 ≤ f̂N(x)− f̂N(x∗) ≤ γ‖∇f̂N(x)‖2

Proof. Since the function f̂N is strongly convex, it has an unique
minimizer x∗ and we know that ∇f̂N(x∗) = 0. Now, from (5.30)
follows the existence of γ > 0 such that

1

2γ
‖x− x∗‖2 ≤ f̂N(x∗)− f̂N(x)− (∇f̂N(x))T (x∗ − x)

and
1

2γ
‖x− x∗‖2 ≤ f̂N(x)− f̂N(x∗).

If we sum up the previous two inequalities we obtain

1

γ
‖x− x∗‖2 ≤ (∇f̂N(x))T (x− x∗).

Furthermore, since (∇f̂N(x))T (x − x∗) ≤ ‖∇f̂N(x)‖‖x − x∗‖, there
follows

‖x− x∗‖ ≤ γ‖∇f̂N(x)‖. (5.31)

Now, define x(t) = x∗ + t(x− x∗) for t ∈ [0, 1] and let us consider the
function g(t) = f̂N(x(t)). The function g(t) is convex on [0, 1] with the
derivative g′(t) = (∇f̂N(x(t)))T (x − x∗). It has the unique minimizer
t = 0 since g′(0) = (∇f̂N(x∗))T (x − x∗) = 0. Furthermore, g′(t) is
increasing on [0, 1] and

g′(t) ≤ g′(1) = (∇f̂N(x))T (x− x∗) ≤ ‖∇f̂N(x)‖‖(x− x∗)‖.
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Now,

f̂N(x)− f̂N(x∗) =

∫ 1

0

(∇f̂N(x∗ + t(x− x∗)))T (x− x∗)dt

=

∫ 1

0

g′(t)dt ≤ ‖∇f̂N(x)‖‖x− x∗‖

≤ γ‖∇f̂N(x)‖2,

where the last inequality comes from (5.40). �
Now, we will prove that after a finite number of iterations, all

the remaining iterates of the considered algorithm belong to a level
set. This level set will not depend on the starting point x0 as it is
usual in deterministic framework, but on the point where the sample
size becomes maximal and remains unchanged until the end of the
optimization process.

Lemma 5.3.2 Suppose that the assumptions of Lemma 5.2.4 are sat-
isfied. Then there exists q ∈ N such that for every k ≥ q the iterate
xk belongs to the level set

L = {x ∈ Rn | f̂Nmax(x) ≤ C̃q + ε}. (5.32)

Proof. Recall that Lemma 5.2.4 implies the existence of a finite
number ñ such that Nk = Nmax for every k ≥ ñ. In that case, the
assumptions of Lemma 5.2.1 are satisfied and we have that for every
s ∈ N inequality (5.12) is true. Therefore, we conclude that for every
s ∈ N

C̃ñ+s ≤ C̃ñ +
s−1∑
j=0

εñ+j − η
s−1∑
j=0

dmñ+j

Qñ+j+1

≤ C̃ñ + ε.

Since f̂Nmax(xñ+s) ≤ C̃ñ+s by definition, we obtain that for every k ≥ ñ

f̂Nmax(xk) ≤ C̃ñ + ε
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which completes the proof. �
This result is especially useful when a strongly convex function is

considered. It is known that level sets of strongly convex functions
are bounded. Therefore, we will have a bounded sequence of iterates
which was the assumption in the previous analysis. In order to ob-
tain R-linear convergence, we assume the Lipschitz continuity of the
gradient function and impose the additional assumption on the search
directions and on the sequence {εk}k∈N.

A 6 Gradient ∇xF (·, ξ) is Lipschitz continuous on any bounded set.

This assumption implies the Lipschitz continuity of the sample average
function gradient ∇f̂N since

‖∇f̂N(x)−∇f̂N(y)‖ ≤ 1

N

N∑
i=1

‖∇xF (x, ξi)−∇xF (y, ξi)‖

≤ 1

N

N∑
i=1

L‖x− y‖

= L‖x− y‖,

where L is the Lipschitz constant of∇xF (x, ξ) on the relevant bounded
set.

The following assumption on the directions is used in the deter-
ministic case as a tool for proving the global convergence results [17],
[71].

B 3 There are positive constants c1 and c2 such that the search direc-
tions pk satisfy

pTk∇f̂Nk(xk) ≤ −c1‖∇f̂Nk(xk)‖2

and
‖pk‖ ≤ c2‖∇f̂Nk(xk)‖

for all k sufficiently large.
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Under these assumptions, we can prove the following.

Theorem 5.3.2 Suppose that the assumptions A1, A3, A5, A6, B1
and B3 are satisfied. Furthermore, suppose that there exist n1 ∈ N and
a positive constant κ such that εNkδ (xk) ≥ κ for every k ≥ n1 and that
the sequence {xk}k∈N is generated by Algorithm 4 with the line search
(5.26) and ηmax < 1. Then there exist a constant θ ∈ (0, 1), a finite
number q and an unique minimizer x∗ of the function f̂Nmax such that
for every k ∈ N

f̂Nmax(xq+k)− f̂Nmax(x∗) ≤ θk(C̃q − f̂Nmax(x∗)) +
k∑
j=1

θj−1εq+k−j.

Proof. First, notice that the assumptions of this theorem imply
the existence of a finite number ñ such that Nk = Nmax for every
k ≥ ñ. Moreover, it follows that there exists a finite integer q ≥ ñ
such that for every k ≥ q the iterate xk belongs to the level set (5.32),
i.e. f̂Nmax(xk) ≤ C̃q + ε. Furthermore, strong convexity of the func-

tion f̂Nmax implies the boundedness and convexity of that level set.
Therefore, there exists at least one accumulation point of the sequence
{xk}k∈N. Under the assumption ηmax < 1, Theorem 5.3.1 implies that
every accumulation point of the iterative sequence is stationary for the
function f̂Nmax . On the other hand, strong convexity of the objective
function implies that there is only one minimizer of the function f̂Nmax
which is also the unique stationary point. Therefore, we can conclude
that the whole sequence of iterates converges towards the unique sta-
tionary point of the function f̂Nmax . Denoting that point by x∗, we
have

lim
k→∞

xk = x∗.

The assumptions of Lemma 5.2.1 are also satisfied and we know
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that for every k ≥ q

C̃k+1 ≤ C̃k + εk − η
dmk(αk)

Qk+1

.

Since we are assuming the descent search directions, we have

dmk(αk) = −αkpTk∇f̂Nmax(xk)

for every k ≥ q. Moreover, we have proved in Lemma 5.1.4 that
0 ≤ Qk ≤ (1− ηmax)−1 for every k. Therefore

C̃k+1 ≤ C̃k + εk − η(1− ηmax)dmk(αk) (5.33)

for every k ≥ q.

The next step of this proof is to obtain the lower bound for the line
search step size αk for k ≥ q. In order to do that, we will distinguish
two types of iterations. The first type is when the full step is accepted,
i.e. when αk = 1. The second one is when αk < 1. Then there exists
α′k = αk/β such that

f̂Nmax(xk + α′kpk) > C̃k + εk + ηα′kp
T
k∇f̂Nmax(xk)

≥ f̂Nmax(xk) + ηα′kp
T
k∇f̂Nmax(xk).

On the other hand, the assumption A6 implies the Lipschitz continu-
ity of the gradient ∇f̂Nmax on {x ∈ Rn|x = xk + tpk, t ∈ [0, 1], k ≥ q}.
Therefore, there exists a Lipschitz constant L > 0 such that the fol-
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lowing holds

f̂Nmax(xk + α′kpk) = f̂Nmax(xk) +

∫ 1

0

(∇f̂Nmax(xk + tα′kpk))
Tα′kpkdt

=

∫ 1

0

(∇f̂Nmax(xk + tα′kpk)−∇f̂Nmax(xk))Tα′kpkdt

+ f̂Nmax(xk) + α′k(∇f̂Nmax(xk))Tpk

≤
∫ 1

0

Lt(α′k)
2‖pk‖2dt

+ f̂Nmax(xk) + α′k(∇f̂Nmax(xk))Tpk

=
L

2
(α′k)

2‖pk‖2 + f̂Nmax(xk) + α′k(∇f̂Nmax(xk))Tpk.

Combining the previous two inequalities we obtain

ηα′kp
T
k∇f̂Nmax(xk) <

L

2
(α′k)

2‖pk‖2 + α′k(∇f̂Nmax(xk))Tpk.

Dividing by α′k and using the fact that αk = βα′k, by rearranging
previous inequality we obtain

αk ≥
−(∇f̂Nmax(xk))Tpk2β(1− η)

L‖pk‖2
. (5.34)

Furthermore, the assumption B3 implies the existence of a constant
c1 > 0 such that

−(∇f̂Nmax(xk))Tpk ≥ c1‖∇f̂Nmax(xk)‖2 (5.35)

and we obtain

αk ≥
c1‖∇f̂Nmax(xk)‖22β(1− η)

L‖pk‖2
. (5.36)
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The assumption B3 implies the existence of a constant c2 > 0 such
that

‖∇f̂Nmax(xk)‖2

‖pk‖2
≥ 1

c2
2

.

Putting the previous inequality in (5.36) we conclude that for every
k ≥ q

αk ≥ min{1, c12β(1− η)

Lc2
2

}. (5.37)

After obtaining the lower bound for the step size, we will prove
that for every k ≥ q

dmk(αk) ≥ β̄0‖∇f̂Nmax(xk)‖2 (5.38)

where β̄0 = min{c1,
c212β(1−η)

c22L
}. If αk = 1, it follows from (5.35) that

dmk(αk) ≥ c1‖∇f̂Nmax(xk)‖2.

On the other hand, if αk < 1

dmk(αk) = −αkpTk∇f̂Nmax(xk)

≥ c1‖∇f̂Nmax(xk)‖2 c12β(1− η)

Lc2
2

= ‖∇f̂Nmax(xk)‖2 c
2
12β(1− η)

Lc2
2

.

Therefore, (5.38) holds and subtracting f̂Nmax(x
∗) on both sides of

inequality (5.33) we obtain

C̃k+1 − f̂Nmax(x∗) ≤ C̃k − f̂Nmax(x∗) + εk − β̄1‖∇f̂Nmax(xk)‖2 (5.39)
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where β̄1 = η(1 − ηmax)β̄0. Before proving the main result, we need
one more inequality. Having

‖∇f̂Nmax(xk+1)‖ − ‖∇f̂Nmax(xk)‖ ≤ ‖∇f̂Nmax(xk+1)−∇f̂Nmax(xk)‖
≤ L‖xk+1 − xk‖
= Lαk‖pk‖
≤ Lc2‖∇f̂Nmax(xk)‖

we obtain

‖∇f̂Nmax(xk+1)‖ ≤ (1 + Lc2)‖∇f̂Nmax(xk)‖. (5.40)

Now, we want to prove that there exists θ ∈ (0, 1) such that for
every k ≥ q

C̃k+1 − f̂Nmax(x∗) < θ(C̃k − f̂Nmax(x∗)) + εk.

Define

b =
1

β̄1 + γ(Lc2 + 1)2
.

Again, we will have two types of iterations for k ≥ q but this time
regarding ‖∇f̂Nmax(xk)‖. First, assume that

‖∇f̂Nmax(xk)‖2 < b(C̃k − f̂Nmax(x∗)).

In that case, Lemma 5.3.1 and inequality (5.40) imply

f̂Nmax(xk+1)− f̂Nmax(x∗) ≤ γ‖∇f̂Nmax(xk+1)‖2

≤ γ((1 + Lc2)‖∇f̂Nmax(xk)‖)2

< γ(1 + Lc2)2b(C̃k − f̂Nmax(x∗)).

Setting θ1 = γ(1 + Lc2)2b we obtain

f̂Nmax(xk+1)− f̂Nmax(x∗) < θ1(C̃k − f̂Nmax(x∗)). (5.41)



5.3 Descent search direction 151

Notice that θ1 ∈ (0, 1) since

θ1 =
γ(1 + Lc2)2

β̄1 + γ(Lc2 + 1)2
.

If C̃k+1 = f̂Nmax(xk+1), then (5.41) obviously implies

C̃k+1 − f̂Nmax(x∗) < θ1(C̃k − f̂Nmax(x∗)).

If C̃k+1 = Ck+1, then

C̃k+1 − f̂Nmax(x∗) = Ck+1 − f̂Nmax(x∗)

=
η̃kQk

Qk+1

Ck +
f̂Nmax(xk+1)

Qk+1

− η̃kQk + 1

Qk+1

f̂Nmax(x
∗)

≤ η̃kQk

Qk+1

(C̃k − f̂Nmax(x∗))

+
f̂Nmax(xk+1)− f̂Nmax(x∗)

Qk+1

≤ (1− 1

Qk+1

)(C̃k − f̂Nmax(x∗))

+
θ1(C̃k − f̂Nmax(x∗))

Qk+1

= (1− 1− θ1

Qk+1

)(C̃k − f̂Nmax(x∗))

≤ (1− (1− ηmax)(1− θ1))(C̃k − f̂Nmax(x∗)).

In the last inequality, we used the fact that Qk+1 ≤ (1 − ηmax)
−1.

Therefore, we conclude that

C̃k+1 − f̂Nmax(x∗) ≤ θ̄1(C̃k − f̂Nmax(x∗)) (5.42)

where θ̄1 = max{θ1, 1− (1− ηmax)(1− θ1)} ∈ (0, 1).
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On the other hand, if

‖∇f̂Nmax(xk)‖2 ≥ b(C̃k − f̂Nmax(x∗)),

inequality (5.39) implies

C̃k+1 − f̂Nmax(x∗) ≤ C̃k − f̂Nmax(x∗) + εk − β̄1b(C̃k − f̂Nmax(x∗))
= θ̄2(C̃k − f̂Nmax(x∗)) + εk

where θ̄2 = 1− bβ̄1 and therefore θ̄2 ∈ (0, 1) since

θ̄2 = 1− β̄1

β̄1 + γ(Lc2 + 1)2
.

Gathering all the types of iterations, we conclude that for every k ∈ N0

C̃q+k+1 − f̂Nmax(x∗) ≤ θ(C̃q+k − f̂Nmax(x∗)) + εq+k

where θ = max{θ̄1, θ̄2} and therefore θ ∈ (0, 1). By the induction
argument, the previous inequality implies that for every k ∈ N the
following holds

C̃q+k − f̂Nmax(x∗) ≤ θk(C̃q − f̂Nmax(x∗)) +
k∑
j=1

θj−1εq+k−j.

Finally, recalling that f̂Nk(xk) ≤ C̃k by definition, we obtain

f̂Nmax(xq+k)− f̂Nmax(x∗) ≤ θk(C̃q − f̂Nmax(x∗)) +
k∑
j=1

θj−1εq+k−j.

At the end, notice that C̃q − f̂Nmax(x∗) ≥ 0 since

C̃q = max{f̂Nmax(xq), Cq} ≥ f̂Nmax(xq) ≥ f̂Nmax(x
∗).
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�

In order to prove R-linear convergence, we impose a stronger as-
sumption on the sequence {εk}k∈N. Recall that Algorithm 4 assumes
that this sequence satisfies assumption C3. Notice that the following
assumption implies C3.

C 4 The sequence of nonnegative numbers {εk}k∈N converges to zero
R-linearly.

Under this assumption, we can prove the following result.

Lemma 5.3.3 If the assumption C4 is satisfied, then for every θ ∈
(0, 1) and q ∈ N

sk =
k∑
j=1

θj−1εq+k−j

converges to zero R-linearly.

Proof. Assumption C4 implies the existence of a constant ρ ∈ (0, 1)
and a constant C > 0 such that εk ≤ Cρk for every k ∈ N. Now, since
ρ, θ ∈ (0, 1), we can define γ = max{ρ, θ} < 1 such that for every
k ∈ N

sk =
k∑
j=1

θj−1εq+k−j ≤
k∑
j=1

θj−1Cρq+k−j

≤
k∑
j=1

Cγq+k−1 ≤ Cγq−1

k∑
j=1

γk

= C1ak

where C1 = Cγq−1 and ak = kγk. Now we want to prove that the
sequence {ak}k∈N converges to zero R-linearly. Define

s =
1 + γ

2γ
.
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Since γ < 1 we have that s > 1. Furthermore, we define a sequence
{ck}k∈N as follows

c1 =
(
s(ln s)−1−1 ln s

)−1

,

ck+1 = ck
ks

k + 1
.

This sequence can also be presented as

ck = c1
sk−1

k
.

In order to prove that ck ≥ 1 for every k ∈ N, we define the function

f(x) =
sx−1

x

and search for its minimum on the interval (0,∞). As

f ′(x) =
sx−1

x2
(x ln s− 1) ,

the stationary point is x∗ = (ln s)−1 > 0, i.e. it satisfies x∗ ln s = 1.
Since

f ′′(x∗) =
sx
∗

ln s

sx∗2
> 0,

f attains its minimum at x∗ and there follows that for every k ∈ N

sk−1

k
= f(k) ≥ f(x∗) = s(ln s)−1−1 ln s.

Therefore,

ck = c1
sk−1

k
≥
(
s(ln s)−1−1 ln s

)−1 (
s(ln s)−1−1 ln s

)
= 1.
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Now, let us define the sequence bk = akck. Notice that ak ≤ bk.
Moreover, we have that

bk+1 = ak+1ck+1 = (k + 1)γk+1cks
k

k + 1
= sγkγkck = tbk

where t = sγ = 1+γ
2

and therefore t ∈ (0, 1). Thus, there exists B > 0
such that bk ≤ Btk. Finally, we obtain

sk ≤ C1ak ≤ C1bk ≤ C1Bt
k,

i.e. we can conclude that the sequence {sk}k∈N converges to zero R-
linearly. �

Finally, we state the conditions under which R-linear convergence
can be achieved.

Theorem 5.3.3 Suppose that the assumptions of Theorem 5.3.2 are
satisfied together with the assumption C4. Then there are constants
θ3 ∈ (0, 1), q ∈ N and Mq > 0 such that for every k ∈ N

‖xq+k − x∗‖ ≤ θk3Mq.

Proof. Theorem 5.3.2 implies the existence of θ ∈ (0, 1) and q ∈ N
such that for every k ∈ N

f̂Nmax(xq+k)− f̂Nmax(x∗) ≤ θkM +
k∑
j=1

θj−1εq+k−j

where M = C̃q − f̂Nmax(x∗) ≥ 0. Moreover, Lemma 5.3.3 implies that
there exists t ∈ (0, 1) and a positive constant S such that

k∑
j=1

θj−1εq+k−j ≤ Stk.
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Therefore, if we define G = M +S and θ2 = max{θ, t} we obtain that
θ2 < 1 and

f̂Nmax(xq+k)− f̂Nmax(x∗) ≤ θk2G.

Furthermore, Lemma 5.3.1 implies the existence of a positive constant
γ such that for every k ∈ N

1

2γ
‖xq+k − x∗‖2 ≤ f̂Nmax(xq+k)− f̂Nmax(x∗).

Therefore,
‖xq+k − x∗‖2 ≤ θk2G2γ

and

‖xq+k − x∗‖ ≤
(√

θ2

)k√
G2γ.

Defining θ3 =
√
θ2 and Mq =

√
G2γ we obtain the result. �

The rest of this section is devoted to the line search with C̃k being
the maximum of the previous M function values (5.8). In the pre-
vious section, where the general search direction was considered and
dmk(α) = α2βk, we have managed to prove the existence of an accu-
mulation point of the sequence of iterates which is stationary for the
function f̂Nmax . However, under some auxiliary assumptions we are
able to obtain the result where every accumulation point is stationary
for f̂Nmax . The descent search directions are assumed and therefore
the line search is defined by

f̂Nk(xk + αkpk) ≤ C̃k + εk + ηαkp
T
k∇f̂Nk(xk),

C̃k = max{f̂Nk(xk), . . . , f̂Nmax{k−M+1,0}(xmax{k−M+1,0})}. (5.43)

Similar line search rule was observed by Dai [17], but with εk = 0. A
more detailed description of that paper is given in section 2.3. We will
begin the analysis by proving the existence of a level set that contains
all the iterates xk for k sufficiently large.
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Lemma 5.3.4 Suppose that the assumptions A1 and A3 are satisfied.
Furthermore, suppose that there exist a positive constant κ and number
n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1 and that the sequence
{xk}k∈N is generated by Algorithm 4 with the line search (5.43). Then
there exists a finite iteration ñ such that for every k > ñ the iterate
xk belongs to the level set

L = {x ∈ Rn | f̂Nmax(x) ≤ C̃ñ+M + ε}. (5.44)

Proof. Lemma 5.2.4 implies the existence of ñ such that for every
k ≥ ñ the sample size is Nk = Nmax. Therefore, the conditions of
Lemma 5.2.3 are satisfied. Since the proof of that lemma is conducted
for unspecified decrease measure dmk ≥ 0, we can conclude that the
inequality (5.19) is true for every m ∈ N, i.e.

C̃s(m+1) ≤ C̃s(1) +
m∑
k=1

M−1∑
i=0

εs(k)+i − η
m∑
k=1

dmv(k+1)−1 ≤ C̃s(1) + ε

where s(m) = ñ + mM and f̂Nmax(xv(m)) = C̃s(m). In fact, we obtain
that for every k ∈ N

C̃s(k) ≤ C̃s(1) + ε. (5.45)

Moreover, since C̃s(k) = max{f̂Nmax(xs(k−1)+1), . . . , f̂Nmax(xs(k−1)+M)}
we have that for every j ∈ {1, . . . ,M} and every k ∈ N

f̂Nmax(xs(k−1)+j) ≤ C̃s(k).

Notice that C̃s(1) = max{f̂Nmax(xñ+1), . . . , f̂Nmax(xñ+M)}. Therefore,
for every k > ñ

f̂Nmax(xk) ≤ C̃s(1) + ε = C̃ñ+M + ε

which completes the proof. �
Next, we prove the convergence result.
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Theorem 5.3.4 Suppose that the assumptions A1, A3, A6 and B3
are satisfied and that the level set (5.44) is bounded. Furthermore,
suppose that there exist a positive constant κ and number n1 ∈ N such
that εNkδ (xk) ≥ κ for every k ≥ n1 and that the sequence {xk}k∈N is
generated by Algorithm 4 with the line search (5.43). Then every accu-
mulation point of the sequence {xk}k∈N is stationary for the function
f̂Nmax.

Proof. Under these assumptions, Lemma 5.2.4 implies the existence
of ñ such that for every k ≥ ñ the sample size is Nk = Nmax. Then,
Lemma 5.2.3 implies that lim infk→∞ dmk(αk) = 0. More precisely,
the subset K such that

lim
k∈K

dmk(αk) = 0 (5.46)

is defined as K = {v(k)− 1}k∈N where v(k) is the iteration where the
maximum was obtained. More precisely, f̂Nmax(xv(k)) = C̃s(k) where

C̃s(k) = max{f̂Nmax(xs(k)), . . . , f̂Nmax(xs(k)−M+1)} and s(k) = ñ + kM .
Notice that

v(k) ∈ {ñ+ (k − 1)M + 1, . . . , ñ+ kM}

and
v(k + 1) ∈ {ñ+ kM + 1, . . . , ñ+ (k + 1)M}.

Therefore
v(k + 1)− v(k) ≤ 2M − 1.

Moreover, this result implies that for every k ∈ N, k ≥ ñ there exists
k̃ ≥ k, k̃ ∈ K such that

k̃ − k ≤ 2M − 2. (5.47)

Notice that Lemma 5.3.4 implies that all the iterates xk, k > ñ
belong to the level set (5.44) which is assumed to be bounded. As it
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was derived in the proof of Theorem 5.3.2, assumption B3 together
with the Lipschitz continuity assumption A6 implies the existence of
the constants c3 = 1 + c2L and β̄0 such that for every k > ñ

‖∇f̂Nmax(xk+1)‖ ≤ c3‖∇f̂Nmax(xk)‖ (5.48)

and
dmk(αk) ≥ β̄0‖∇f̂Nmax(xk)‖2.

The last inequality and (5.46) together imply

lim
k∈K
‖∇f̂Nmax(xk)‖ = 0. (5.49)

Furthermore, (5.47) and (5.48) imply that for every k ∈ N, k > ñ
there exists k̃ ≥ k, k̃ ∈ K such that

‖∇f̂Nmax(xk)‖ ≤ c2M−2
3 ‖∇f̂Nmax(xk̃)‖.

Letting k →∞ in the previous inequality and using (5.49) we obtain

lim
k→∞
‖∇f̂Nmax(xk)‖ ≤ lim

k̃→∞,k̃∈K
‖∇f̂Nmax(xk̃)‖ = 0,

i.e. limk→∞ ‖∇f̂Nmax(xk)‖ = 0. Finally, if x∗ is an arbitrary accumu-
lation point of the sequence {xk}k∈N, i.e. if limk∈K1 xk = x∗ for some
subset K1 ∈ N, then the assumption A1 implies

‖∇f̂Nmax(x∗)‖ = lim
k∈K1

‖∇f̂Nmax(xk)‖ = lim
k→∞
‖∇f̂Nmax(xk)‖ = 0.

Therefore, every accumulation point of the sequence {xk}k∈N is sta-
tionary for the function f̂Nmax . �

At the end of this section, we will show that R-linear rate of con-
vergence is also attainable for the line search (5.43). In order to abbre-
viate the proof, we will use the parts of the previously stated proofs.
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Theorem 5.3.5 Suppose that the assumptions A1, A3, A5, A6, B3
and C4 are satisfied. Furthermore, suppose that there exist a positive
constant κ and number n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1

and that the sequence {xk}k∈N is generated by Algorithm 4 with the line
search (5.43). Then there exist constants θ4 ∈ (0, 1), Mm > 0, finite
number ñ and an unique minimizer x∗ of the function f̂Nmax such that
for every s ≥M

‖xñ+s − x∗‖ ≤ θs4Mm.

Proof. Again, we will start by noticing that Lemma 5.2.4 implies the
existence of a finite number ñ such that Nk = Nmax for every k ≥ ñ.
Lemma 5.3.4 implies that for every k > ñ the iterate xk belongs to
the level set (5.44). Strong convexity of the function f̂Nmax implies
the boundedness and convexity of that level set and the existence
of an unique minimizer of f̂Nmax . Therefore, there exists at least one
accumulation point of the sequence {xk}k∈N. Moreover, Theorem 5.3.4
implies that every accumulation point of that sequence is stationary
for the function f̂Nmax and therefore limk→∞ xk = x∗ where x∗ is the
unique stationary point of f̂Nmax .

Since the assumptions of Lemma 5.2.3 are satisfied, (5.18) holds
and we obtain that for every k ∈ N

C̃s(k+1) ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i − ηdmv(k+1)−1 (5.50)

where s(k) = ñ + kM and f̂Nmax(xv(k)) = C̃s(k). Moreover, as in the
proof of Theorem 5.3.4, we conclude that there are constants c3 =
1 + c2L and β̄0 such that for every k > ñ

‖∇f̂Nmax(xk+1)‖ ≤ c3‖∇f̂Nmax(xk)‖

and
dmk(αk) ≥ β̄0‖∇f̂Nmax(xk)‖2.
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From the previous inequality and (5.50) we obtain

C̃s(k+1) − f̂Nmax(x∗) ≤ C̃s(k) − f̂Nmax(x∗)− ηβ̄0‖∇f̂Nmax(xv(k+1)−1)‖2

+
M−1∑
i=0

εs(k)+i.

Define a constant

b =
1

β̄0 + γc2
3

.

If ‖∇f̂Nmax(xv(k+1)−1)‖2 ≥ b(C̃s(k) − f̂Nmax(x∗)) then we have

C̃s(k+1) − f̂Nmax(x∗) ≤ C̃s(k) − f̂Nmax(x∗)− ηβ̄0‖∇f̂Nmax(xv(k+1)−1)‖2

+
M−1∑
i=0

εs(k)+i

≤ C̃s(k) − f̂Nmax(x∗)− ηβ̄0b(C̃s(k) − f̂Nmax(x∗))

+
M−1∑
i=0

εs(k)+i

= θ1(C̃s(k) − f̂Nmax(x∗))

+
M−1∑
i=0

εs(k)+i

where θ1 = 1 − ηβ̄0b and therefore θ1 ∈ (0, 1) by definition of b and
η. On the other hand, if ‖∇f̂Nmax(xv(k+1)−1)‖2 < b(C̃s(k)− f̂Nmax(x∗)),
using the result of Lemma 5.3.1 we obtain

C̃s(k+1) − f̂Nmax(x∗) = f̂Nmax(xv(k+1))− f̂Nmax(x∗)
≤ γ‖∇f̂Nmax(xv(k+1))‖2

≤ γc2
3‖∇f̂Nmax(xv(k+1)−1)‖2

< θ2(C̃s(k) − f̂Nmax(x∗))
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where θ2 = γc2
3b and θ2 ∈ (0, 1) by definition of b. Therefore, for

θ = max{θ1, θ2} ∈ (0, 1) and for every k ∈ N

C̃s(k+1) − f̂Nmax(x∗) ≤ θ(C̃s(k) − f̂Nmax(x∗)) +
M−1∑
i=0

εs(k)+i.

Using the induction argument, we obtain

C̃s(k+1) − f̂Nmax(x∗) ≤ θk(C̃s(1) − f̂Nmax(x∗)) +
k∑
j=1

M−1∑
i=0

θj−1εs(k+1−j)+i

Moreover, for every j ∈ {1, . . . ,M} and every k ∈ N

f̂Nmax(xs(k)+j) ≤ C̃s(k+1)

and therefore

f̂Nmax(xs(k)+j)− f̂Nmax(x∗) ≤ θkV + rk (5.51)

where V = C̃s(1) − f̂Nmax(x∗) ≥ 0 and

rk =
k∑
j=1

M−1∑
i=0

θj−1εs(k+1−j)+i.

Now, assumption C4 implies the existence of ρ ∈ (0, 1) and C > 0 such
that εk ≤ Cρk for every k. Defining C1 = MCρñ and γ1 = max{ρM , θ}
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we obtain γ1 < 1 and

rk ≤
k∑
j=1

M−1∑
i=0

θj−1Cρs(k+1−j)+i ≤ C

k∑
j=1

M−1∑
i=0

θj−1ρs(k+1−j)

= C
k∑
j=1

θj−1Mρ(k+1−j)M+ñ = MC
k∑
j=1

θj−1
(
ρM
)(k+1−j)

ρñ

≤ MCρñ
k∑
j=1

γj−1
1 γk+1−j

1 = C1

k∑
j=1

γk1

= C1kγ
k
1 .

Following the ideas from the proof of Lemma 5.3.3, we conclude that
there exist t ∈ (0, 1) and S > 0 such that rk ≤ Stk. Furthermore,
defining D = V +S and θ̄ = max{θ, t} < 1 and using (5.51) we obtain

f̂Nmax(xs(k)+j)− f̂Nmax(x∗) ≤ θ̄kD.

The previous inequality and Lemma 5.3.1 imply the existence of

the constants θ3 =
(
θ̄
)1/2 ∈ (0, 1) and Mh =

√
2γD > 0 such that for

every j ∈ {1, . . . ,M} and every k ∈ N

‖xñ+kM+j − x∗‖ ≤ θk3Mh

or equivalently for every j ∈ {1, . . . ,M} and every s ∈ N, s ≥M

‖xñ+s − x∗‖ ≤ θ
s−j
M

3 Mh.

Since θ3 ∈ (0, 1) and j ≤M we obtain

‖xñ+s − x∗‖ ≤ θ
s−j
M

3 Mh ≤ θ
s
M
−1

3 Mh = θs4Mm

where θ4 = θ
1
M
3 and Mm = Mh

θ3
. �



Chapter 6

Numerical results

In the previous two chapters we established the convergence theory
for the proposed algorithms. Assuming that the lack of precision is
bounded away from zero and imposing the standard assumptions that
come from the well known deterministic optimization theory yielded
the convergence results. However, equally important issue in numer-
ical optimization is practical implementation of the considered algo-
rithms. This chapter is devoted to the performance evaluation of the
proposed methods.

The chapter is divided into two parts. In the first section we con-
sider the variable sample size method proposed in Chapter 4 where
the monotone line search rule is used. The goal of this testing was
to see whether the variable sample size scheme does have a positive
effect on the performance of the algorithm. The method proposed in
Chapter 4 is compared with the other variable sample size techniques.
Also, the role of the safeguard parameter ρk is examined. Recall that
the idea of imposing this safeguard check is to prohibit the potentially
unproductive decrease in the sample size. The second section is pri-
mary devoted to the comparison of the different line search rules in the
variable sample size framework. Therefore, the algorithm proposed in
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Chapter 5 is considered.
All the proposed methods have the goal of decreasing the number

of function evaluations needed for obtaining reasonably good approx-
imation of a solution. Therefore, the number of function evaluations
represents the main criterion for comparing the algorithms within this
chapter.

6.1 Variable sample size methods

In this section we present some numerical results obtained by Algo-
rithm 1 and compare them with the results obtained by two other
methods. The first subsection contains the results obtained on a set
of academic test examples while the second subsection deals with the
discrete choice problem that is relevant in many applications. The
test examples presented in 6.1.1 consist of two different sets. The
first one includes Aluffi-Pentini’s problem (Montaz Ali et al. [44]) and
Rosenbrock problem [22] in noisy environments. Both of them are
convenient for initial testing purposes as one can solve them analyti-
cally and thus we can actually compute some quality indicators of the
approximate solutions obtained by the presented variable sample size
line search methods. The second set of examples consists of five larger
dimension problems in noisy environments taken from [44]. The Mixed
Logit problem is slightly different than the problem (4.4). Given the
practical importance of this problem we introduce some minor adjust-
ments of Algorithm 1 and report the results in 6.1.2. This problem is
solved by all considered methods.

As common in numerical testing of noisy problems we are measur-
ing the cost by the number of function evaluations needed for achieving
the exit criteria. In all presented examples we say that the exit criteria
is satisfied if we reach the point xk such that

‖∇f̂Nmax(xk)‖ < 10−2. (6.1)
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As the exit criteria implies that the approximate solutions obtained by
all methods are of the same quality, the number of function evaluations
is a relevant measure for comparison of the considered methods.

Except for the Rosenbrock function, all problems are solved by
four different implementations of Algorithm 1, two different heuristic
methods and two different implementations of the SAA. Let us state
the details of their implementation. We start by defining the search
directions.

Algorithm 1 uses an unspecified descent direction pk at step S4. We
report the results for two possible directions, the negative gradient

pk = −∇f̂Nk(xk), (6.2)

and the second order direction obtained by

pk = −Hk∇f̂Nk(xk), (6.3)

where Hk is a positive definite matrix that approximates the inverse
Hessian matrix (∇2f̂Nk(xk))

−1. Among many options for Hk we have
chosen the BFGS approach with H0 = I where I denotes the identity
matrix. The inverse Hessian approximation is updated by the BFGS
formula

Hk+1 = (I − sky
T
k

yTk sk
)Hk(I −

yks
T
k

yTk sk
) +

sks
T
k

yTk sk
.

where sk = xk+1 − xk and

yk = ∇f̂Nk+1
(xk+1)−∇f̂Nk(xk).

The condition yTk sk > 0 ensures positive definiteness of the next BFGS
update. We enforced this condition or otherwise takeHk+1 = Hk. This
way the approximation matrix remains positive definite and provides
the decreasing search direction (6.3).

Notice also that the assumption B1 is satisfied for both direction
(6.2) or (6.3), but in the case of (6.3) we need to assume that F (·, ξ) ∈
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C2 instead of A1. Furthermore, some kind of boundedness for Hk is
also necessary.

We implemented the safeguard rule presented in section 4.2 where
the decrease of a sample size is declined if ρk < η0 where

ρk =
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)
.

Therefore, if we choose to apply the safeguard rule we set the input
parameter η0 to be some finite number. On the other hand, if we set
η0 = −∞ the safeguard rule is not applied and thus the algorithm
accepts the candidate sample size for the next iteration. In other
words, for every iteration k we have that Nk+1 = N+

k .
Based on the descent direction choice and the safeguard rule appli-

cation, four different implementations of Algorithm 1 are tested here.
As all considered methods are implemented with both descent direc-
tions, NG and BFGS are used to denote the negative gradient search
direction and BFGS search direction in general. The implementations
of Algorithm 1 that do not use the safeguard rule i.e. with η0 = −∞
are denoted by ρ = −∞ , while ρ = η0 stands for the implementations
that use the safeguard rule with the value η0. The input parameters
of Algorithm 2 is ν1 = 1/

√
Nmax.

In this implementation, the step S3 of Algorithm 1 is slightly al-
tered. Namely, the condition ‖∇f̂Nk(xk)‖ = 0 is replaced by

‖∇f̂Nk(xk)‖ ≤ max{0, 10−2 − ε̃Nkδ (xk)}

where ε̃Nkδ (xk) is the measure of the confidence interval for ‖∇f̂Nk(xk)‖
around ‖∇f(xk)‖. Recall that we are interested in finding the station-
ary point of the function f which is assumed to be well approximated
by the function f̂Nmax . Moreover, we are assuming that the inter-
change of the gradient and the expectation is allowed and therefore
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∇fNmax is a relevant estimator of ∇f . Suppose that ‖∇f̂Nk(xk)‖ ≤
10−2 − ε̃Nkδ (xk). This means that ‖∇f(xk)‖ ≤ 10−2 with some high
probability which further implies that we are probably close to the
stationary point of the original objective function. The parameter
ε̃Nkδ (xk) is set to be of the form of previously defined lack of preci-
sion, but with σ̂2(xk) being the sample variance of ‖∇F (xk, ξ)‖. As
the gradient ∇f̂Nk(xk) is already available, this measure for the confi-
dence interval is obtained without additional costs in terms of function
evaluations.

The heuristic is motivated by the following scheme: conduct first
10% of iterations with the sample size 0.1Nmax, then the following 10%
with the sample size 0.2Nmax and so on. We implemented this scheme
for both descent directions as for Algorithm 1 - the negative gradient
and the BFGS direction. The scheme suggested is slightly adjusted
to allow us to compare the results with other methods i.e. to ensure
that we get the approximate solution with the same exit criteria as in
all other tested methods. We consider the number of iterations used
by the corresponding Algorithm 1 (negative gradient or BFGS) with
ρ = η0 as the reference number of iterations, say K. Then we perform
0.1K iterations (rounded if necessary) with the sample size 0.1Nmax,
another 0.1K iterations with the sample size 0.2Nmax and so on until
(6.1) is reached. This way we ensured that the solutions obtained by
this scheme are comparable with those obtained by other methods.

Sample Average Approximation method works directly with the
function f̂Nmax . We tested SAA methods here with both negative
gradient and BFGS direction. The line search used for all of the above-
described methods is the one defined in step S5 of Algorithm 1 with
the value for the Armijo parameter η = 10−4. The backtracking is
performed with β = 0.5.
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σ2 global minimizer - x∗ local minimizer maximizer f(x∗)
0.01 (−1.02217, 0) (0.922107, 0) (0.100062, 0) -0.340482
0.1 (−0.863645, 0) (0.771579, 0) (0.092065, 0) -0.269891
1 (−0.470382, 0) (0.419732, 0) (0.05065, 0) -0.145908

Table 6.1: Stationary points for Aluffi-Pentini’s problem. Stacionarne
tačke za Aluffi-Pentini problem.

6.1.1 Noisy problems

First, we present the numerical results obtained for Aluffi-Pentini’s
problem which can be found in [44]. Originally, this is a deterministic
problem with box constraints. Following the ideas from [22], some
noise is added to the first component of the decision variable and the
constraints are removed, so the objective function becomes

f(x) = E(0.25(x1ξ)
4 − 0.5(x1ξ)

2 + 0.1ξx1 + 0.5x2
2),

where ξ represents a random variable with the normal distribution

ξ : N(1, σ2). (6.4)

This problem is solved with three different levels of variance. As we
are able to calculate the real objective function and its gradient, we
can actually see how close are the approximate and the true stationary
points. Table 6.1 contains the stationary points for various levels of
noise and the global minimums of the relevant objective functions.

We conducted 50 independent runs of each algorithm with x0 =
(1, 1)T and Nmin

0 = 3. The sample of size Nmax is generated for each
run and all algorithms are tested with that same sample realization.
The results in the following tables are the average values obtained
from these 50 runs. Columns ‖∇f̂Nmax‖ and ‖∇f‖ give, respectively,
the average values of the gradient norm at the final iterations for
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the approximate problem and for the original problem while φ rep-
resents the average number of function evaluations with one gradient
evaluation being counted as n function evaluations. The last column
is added to facilitate comparison and represents the percentage in-
crease/decrease in the number of function evaluations for different
methods with ρ = 0.7 being the benchmark method. So if the num-
ber of function evaluations is φρ for the benchmark method and φi
is the number of function evaluations for any other method then the
reported number is (φi − φρ)/φρ.

The methods generated by Algorithm 1 clearly outperform the
straightforward SAA method as expected. The heuristic approach
is fairly competitive in this example, in particular for problems with
smaller variance. The safeguard rule with η0 = 0.7 is beneficial in all
cases, except for the BFGS direction and σ = 0.1 where it does not
make significant difference in comparison to ρ = −∞. The decrease
in the sample size is proposed in approximately 20% of iterations and
the safeguard rule is active in approximately half of these iterations.

Given that the considered problems have more than one stationary
point we report the distribution of the approximate stationary points
in Table 6.3. Columns global, local and max count the numbers of
replicants converging to the global minimizer, local minimizer and
maximizer respectively. Columns fgm and flm represent the average
values of function f in the runs that converged to the global minimizer
and local minimizer, respectively.

All methods behave more or less similarly. Notice that as the vari-
ance increases, the number of replications that are converging towards
the global minimizers increases as well. However, we also registered
convergence towards maximizers when the variance is increased. The
only exception from this relatively similar behavior of all methods
appears to happen for σ = 0.1 where SAA strongly favors the local
minimizers while all other methods converge to the global minimizers
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NG
σ2 = 0.01, Nmax = 100

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.00747 0.01501 1308 9.01
ρ = 0.7 0.00767 0.01496 1200 0.00
Heur 0.00618 0.01480 1250 4.24
SAA 0.00844 0.01378 1832 52.73

σ2 = 0.1, Nmax = 200

Algorithm ‖∇f̂Nmax‖ ‖∇f‖ φ %
ρ = −∞ 0.00722 0.03499 3452 7.84
ρ = 0.7 0.00718 0.03435 3201 0.00
Heur 0.00658 0.03531 3556 11.09
SAA 0.00793 0.03005 4264 33.23 5

σ2 = 1, Nmax = 600

Algorithm ‖∇f̂Nmax‖ ‖∇f‖ φ %
ρ = −∞ 0.00540 0.06061 13401 17.78
ρ = 0.7 0.00528 0.06071 11378 0.00
Heur 0.00492 0.05843 13775 21.07
SAA 0.00593 0.05734 15852 39.32

BFGS
σ2 = 0.01, Nmax = 100

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.00389 0.01208 811 6.64
ρ = 0.7 0.00365 0.01279 761 0.00
Heur 0.00407 0.01383 852 12.04
SAA 0.00527 0.01398 940 23.55

σ2 = 0.1, Nmax = 200

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.00363 0.03530 1948 -0.38
ρ = 0.7 0.00341 0.03466 1955 0.00
Heur 0.00414 0.03460 2284 16.81
SAA 0.00392 0.03051 2928 49.75

σ2 = 1, Nmax = 600

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.00303 0.06110 8478 15.53
ρ = 0.7 0.00358 0.06116 7338 0.00
Heur 0.00344 0.05656 8719 18.81
SAA 0.00336 0.06444 14784 101.46

Table 6.2: Aluffi-Pentini’s problem. Aluffi-Pentini problem.
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NG
σ2 = 0.01, Nmax = 100

Algorithm g l max fgm flm
ρ = −∞ 0 50 0 - -0.14524
ρ = 0.7 0 50 0 - -0.14542
Heur 0 50 0 - -0.14542
SAA 0 50 0 - -0.14542

σ2 = 0.1, Nmax = 200
Algorithm g l max fgm flm
ρ = −∞ 14 35 1 -0.11712 -0.12887
ρ = 0.7 17 32 1 -0.11507 -0.13104
Heur 20 30 0 -0.11364 -0.13275
SAA 1 49 0 -0.10523 -0.12551

σ2 = 1, Nmax = 600
Algorithm g l max fgm flm
ρ = −∞ 35 15 0 -0.12674 -0.097026
ρ = 0.7 36 14 0 -0.11956 -0.11337
Heur 34 16 0 -0.12114 -0.11079
SAA 33 17 0 -0.11745 -0.11857

BFGS
σ2 = 0.01, Nmax = 100

Algorithm g l max fgm flm
ρ = −∞ 0 50 0 - -0.14543
ρ = 0.7 0 50 0 - -0.14543
Heur 0 50 0 - -0.14543
SAA 0 50 0 - -0.14543

σ2 = 0.1, Nmax = 200
Algorithm g l max fgm flm
ρ = −∞ 14 36 0 -0.11710 -0.12818
ρ = 0.7 14 36 0 -0.11710 -0.12818
Heur 15 35 0 -0.11635 -0.12882
SAA 1 49 0 -0.10533 -0.12548

σ2 = 1, Nmax = 600
Algorithm g l max fgm flm
ρ = −∞ 37 13 0 -0.12047 -0.13036
ρ = 0.7 36 14 0 -0.11982 -0.13133
Heur 28 22 0 -0.11887 -0.12835
SAA 50 0 0 -0.11230 -

Table 6.3: The approximate stationary points for Aluffi-Pentini’s prob-
lem. Aproksimativne stacionarne tačke za Aluffi-Pentini problem.
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σ2 global minimizer - x∗ f(x∗)
0.001 (0.711273, 0.506415) 0.186298
0.01 (0.416199, 0.174953) 0.463179
0.1 (0.209267, 0.048172) 0.634960

Table 6.4: Rosenbrock problem - the global minimizers. Rosenbrock
problem - tačke globalnog minimuma.

more frequently.
The next example is based on the Rosenbrock function. Following

the example from [22], the noise is added to the first component in
order to make it random. The following objective function is thus
obtained

f(x) = E(100(x2 − (x1ξ)
2)2 + (x1ξ − 1)2), (6.5)

where ξ is the random variable defined with (6.4). This kind of func-
tion has only one stationary point which is global minimizer, but it
depends on the level of noise. The algorithms are tested with the
dispersion parameter σ2 equal to 0.001, 0.01 and 0.1. An interesting
observation regarding this problem is that the objective function (6.5)
becomes more and more ”optimization friendly” when the variance
increases. Therefore, we put the same maximal sample size for all
levels of noise. The stationary points and the minimal values of the
objective function are given in Table 6.4 while the graphics below rep-
resent the shape of the objective function f for variances 0.001 and 1
respectively.

Minimization of the Rosenbrock function is a well known problem
and in general the second-order directions are necessary to solve it.
The same appears to be true in a noisy environment. As almost all
runs with the negative gradient failed, only BFGS type results are pre-
sented in Table 6.5. All the parameters are the same as in the previous
example except that the initial approximation is x0 = (−1, 1.2)T .
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Figure 6.1: Rosenbrock function with different levels of variance.
Rosenbrock funkcija sa različitim nivoima varijanse.
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BFGS
σ2 = 0.001 , Nmax = 3500

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.003939 0.208515 44445 7.51
ρ = 0.7 0.003595 0.208355 41338 0.00
Heur 0.002521 0.206415 127980 209.59
SAA 0.003241 0.208450 247625 499.03

σ2 = 0.01 , Nmax = 3500

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.003064 0.132830 58944 7.74
ρ = 0.7 0.003170 0.132185 54711 0.00
Heur 0.001968 0.132730 114070 108.5
SAA 0.003156 0.132155 216825 296.3

σ2 = 0.1 , Nmax = 3500

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ φ %

ρ = −∞ 0.003387 0.091843 70958 3.49
ρ = 0.7 0.003359 0.091778 68566 0.00
Heur 0.002259 0.091167 106031 54.64
SAA 0.003279 0.092130 161525 135.58

Table 6.5: Rosenbrock problem. Rosenbrock problem.
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The same conclusion is valid for this example as for Aluffi-Pentini’s
problem - the variable sample size strategy reduces the number of func-
tion evaluations. Moreover, as far as this example is concerned, a clear
advantage is assigned to the algorithm that uses the safeguard rule.
The heuristic sample size scheme does not appear to be well suited for
this example although the performance improves significantly as the
variance increases. The percentage of iterations where the decrease of
a sample size is considered increases with the noise and varies from
7% for σ = 0.001 to 30% for σ = 1. The rejection due to the safeguard
rule from Algorithm 3 also differs, from 15% in the first case to 33%
in the case with the largest variance.

Let us now present the results for larger dimension problems. We
consider the set of five problems, each one of the dimension 10. The
problems from [44] are stated below together with their initial approx-
imations x0.

• Exponential problem

f(x) = E
(
−e−0.5‖ξx‖2

)
, x0 = (0.5, . . . , 0.5)T

• Griewank problem

f(x) = E

(
1 +

1

4000
‖ ξx ‖2 −

10∏
i=1

cos

(
xiξ√
i

))
,

x0 = (10, . . . , 10)T .

• Neumaier 3 problem

f(x) = E

(
10∑
i=1

(ξxi − 1)2 −
10∑
i=2

ξ2xixi−1

)
, x0 = (1, . . . , 1)T .
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• Salomon problem

f(x) = E
(
1− cos(2π ‖ ξx ‖2) + 0.1 ‖ ξx ‖2

)
, x0 = (2, . . . , 2)T .

• Sinusoidal problem

f(x) = E

(
−A

10∏
i=1

sin(ξxi − z)−
10∏
i=1

sin(B(ξxi − z))

)
,

A = 2.5, B = 5, z = 30, x0 = (1, . . . , 1)T .

The noise component ξ represents normally distributed random vari-
able N(1, σ2) with different values of σ as specified in Tables 6.6-6.10.
All results are obtained taking Nmin

0 = 3 with exit criteria (6.1). The
considered methods are again the same - four variants of Algorithm
1 (the negative gradient with ρ = −∞ and ρ = 0.7 and the BFGS
methods with ρ = −∞ and ρ = 0.7), the heuristic sample size scheme
and the SAA method, in total 8 methods. Two levels of noise σ2 = 0.1
and σ2 = 1 are considered for each of the five problems resulting in
the set of 10 problems.

When the number of test problems is that big, it is not that easy
to compare the algorithms by observing the numbers in tables. There-
fore, alternative ways for presenting the overall results are developed.
One of them is the performance profile (Dolan, Moré [24]) which is pre-
sented in Figure 6.2. Roughly speaking, the performance profile gives
the probability that the considered method will be close enough to the
best one. Here, the criterion is the number of function evaluations and
the best method is the one that has the smallest φ. The probability is
given by the relative frequency and the term ”close enough” is deter-
mined by the tolerance level α. Specially for α = 1, performance pro-
file represents the probability that the method is going to be the best.
For example, Figure 6.2 implies that BFGS ρ = 0.7 performed the best
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Figure 6.2: Performance profile. Profil učinka.

in 40% of the considered problems, i.e. 4 of 10. Furthermore, if we take
a look at the tolerance level α = 1.2, then the same method has the
performance profile equal to 0.5. This means that in 50% of problems
this method took no more than 20% function evaluations more than
the best method. In other words, if we denote the minimum num-
ber of function evaluations among the considered methods by φmin,
then in 5 of 10 problems inequality φ(BFGSρ = 0.7) ≤ 1.2φmin was
satisfied. As the performance profile clearly indicates, all implementa-
tions of Algorithm 1 clearly outperformed both the heuristic and SAA
corresponding methods.

A natural question here is the dynamics of the variable sample
scheme and the actual influence of the decrease as well as the safeguard
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rule. The number of iterations where N+
k < Nk varies very much

through the set of examples and variances. The Griewank test function
is solved by both NG methods without any decrease at all. A number
of BFGS iterations where N+

k < Nk occurred was also rather small
and the average number of safeguard rule calls varies from 11% to
20% for this example and none of the decreases is beneficial in terms
of function evaluations. This is the only example where the heuristic
scheme is the best method for both directions. In all other examples
a decrease in the sample size occurs and the safeguard is applied.
However the numbers are rather different, ranging from a couple of
percent to almost one half of the iterations. The same range is valid
for the rejection of the decrease according to the safeguard rule. The
average number of iterations where N+

k < Nk for all tested examples
and both NG and BFGS methods is 14.87% . The decrease is judged
as unproductive and it is rejected in 20.57% of cases on average. It
is quite clear that the safeguard rule i.e. the appropriate value of the
parameter which determines the acceptance or rejection of the decrease
is problem dependent. We report results for the same value of that
parameter for all examples and methods to make the comparison fair
as all other parameters have same values for all problems.

To conclude this discussion the plot of the sample scheme dynamic
for the Sinusoidal problem and one noise realization with σ = 1 and
NG direction is shown in Figure 6.3. The NG ρ = 0.7 method re-
quested 26219 function evaluations, while NG with ρ = −∞ took
40385 function evaluations, and NG Heur 39983 function evaluations.
As in almost all examples SAA NG is the worst requiring 86500 func-
tion evaluations. One can see in Figure 6.2 that the safeguard rule
rejects the decrease at the 6th iteration and keeps the maximal sam-
ple size until the end of the process, while the method with ρ = −∞
performed a number of sample decreases which are in fact unproduc-
tive in this example.

A more detailed account of these tests is available in Tables 6.6-
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NG BFGS
σ2 = 0.1, Nmax = 200

Algorithm ‖∇f̂Nmax
‖ φ % ‖∇f̂Nmax

‖ φ %
ρ = −∞ 0.00087 4591 0.00 0.00154 4604 0.00
ρ = 0.7 0.00087 4591 0.00 0.00154 4604 0.00
Heur 0.00111 7033 53.18 0.00131 7018 52.42
SAA 0.00314 11600 152.64 0.00081 12200 164.97

σ2 = 1, Nmax = 500

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00313 47454 68.71 0.00088 15752 2.53
ρ = 0.7 0.00217 28128 0.00 0.00138 15364 0.00
Heur 0.00400 575270 1945.22 0.00054 21668 41.04
SAA 0.00474 668025 2274.99 0.00268 36250 135.95

Table 6.6: Exponential problem. Eksponencijalni problem.

6.10. The structure of the tables is the same as before - the columns
are the value of the sample gradient at the last iteration, the cost mea-
sured as the number of function evaluations and the column showing
the relative increase/decrease for different methods. The cost of Algo-
rithm 1 with the safeguard is taken as the benchmark. All algorithms
are tested in 20 independent runs and the reported numbers are the
average values of these 20 runs. The same sample realizations are used
for all methods.

6.1.2 Application to the Mixed logit models

In this subsection we present numerical results obtained by apply-
ing slightly modified algorithms on simulated data. Discrete choice
problems are the subject of various disciplines such as econometrics,
transportation, psychology etc. The problem that we considered is an
unconstrained parameter estimation problem. We briefly describe the
problem here while the more detailed description with further refer-
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NG BFGS
σ2 = 0.1, Nmax = 500

Algorithm ‖∇f̂Nmax
‖ φ % ‖∇f̂Nmax

‖ φ %
ρ = −∞ 0.00997 1796250 0.00 0.00795 312840 -0.86
ρ = 0.7 0.00997 1796250 0.00 0.00822 315550 0.00
Heur 0.00988 1160300 -35.40 0.00505 172490 -45.34
SAA 0.00996 1800750 0.25 0.00794 504425 59.86

σ2 = 1, Nmax = 1000

Algorithm ‖∇f̂Nmax
‖ φ % ‖∇f̂Nmax

‖ φ %
ρ = −∞ 0.00993 6343500 0.00 0.00758 408585 1.98
ρ = 0.7 0.00993 6343500 0.00 0.00759 400670 0.00
Heur 0.00995 3790300 -40.25 0.00537 264070 -34.09
SAA 0.00994 6355500 0.19 0.00698 340150 -15.10

Table 6.7: Griewank problem. Griewank problem.

NG BFGS
σ2 = 0.1, Nmax = 500

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00732 798625 -1.85 0.00305 30223 0.80
ρ = 0.7 0.00714 813685 0.00 0.00306 29984 0.00
Heur 0.00598 725680 -10.82 0.00384 40338 34.53
SAA 0.00663 1052025 29.29 0.00278 54825 82.85

σ2 = 1, Nmax = 2000

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00949 3050850 0.17 0.00421 138195 2.71
ρ = 0.7 0.00948 3045650 0.00 0.00354 134555 0.00
Heur 0.00945 2199650 -27.78 0.00503 161140 19.76
SAA 0.00937 3496200 14.79 0.00128 190000 41.21

Table 6.8: Neumaier 3 problem. Neumaier 3 problem.
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NG BFGS
σ2 = 0.1, Nmax = 500

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00411 26590 8.55 0.00376 30814 -7.26
ρ = 0.7 0.00396 24495 0.00 0.00297 33226 0.00
Heur 0.00569 54620 122.99 0.00243 59057 77.74
SAA 0.00497 44750 82.69 0.00452 30250 -8.96

σ2 = 1, Nmax = 2000

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00164 75078 -16.20 0.00234 154245 0.00
ρ = 0.7 0.00157 89595 0.00 0.00235 154245 0.00
Heur 0.00153 127920 42.78 0.00214 182650 18.42
SAA 0.00272 196100 118.87 0.00349 143100 -7.23

Table 6.9: Salomon problem. Salomon problem.

NG BFGS
σ2 = 0.1, Nmax = 200

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00525 22578 2.99 0.00169 10518 0.54
ρ = 0.7 0.00520 21923 0.00 0.00125 10461 0.00
Heur 0.00457 29512 34.61 0.00202 18450 76.36
SAA 0.00575 32860 49.89 0.00326 18470 76.56

σ2 = 1, Nmax = 500

Algorithm ‖∇f̂Nmax‖ φ % ‖∇f̂Nmax‖ φ %
ρ = −∞ 0.00473 30968 2.14 0.00349 30550 -0.60
ρ = 0.7 0.00449 30320 0.00 0.00339 30735 0.00
Heur 0.00385 40453 33.42 0.00338 37588 22.30
SAA 0.00527 65475 115.95 0.00473 48525 57.88

Table 6.10: Sinusoidal problem. Sinusoidalni problem.
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ences can be found in [3, 4, 5].
Let us consider a set of ra agents and rm alternatives. Suppose

that every agent chooses one of finitely many alternatives. The choice
is made according to rk characteristics that each alternative has. Sup-
pose that they are all numerical. Further, each agent chooses the
alternative that maximizes his utility. Utility of agent i for alternative
j is given by

Ui,j = Vi,j + εi,j,

where Vi,j depends on the vector of characteristics of alternative j
defined by mj = (kj1, ..., k

j
rk

)T and εi,j is the error term. We consider
probably the most popular model in practice where Vi,j is a linear
function, that is

Vi,j = Vi,j(β
i) = mT

j β
i.

The vector βi, i = 1, 2, ..., ra has rk components, all of them normally
distributed. More precisely,

βi = (βi1, ..., β
i
rk

)T = (µ1 + ξi1σ1, ..., µrk + ξirkσrk)
T ,

where ξij, i = 1, 2, ..., ra, j = 1, 2, ..., rk are i.i.d. random variables with
the standard normal distribution. In other words, βik : N(µk, σ

2
k) for

every i. The parameters µk and σk, k = 1, 2, ..., rk are the ones that
should be estimated. Therefore, the vector of unknowns is

x = (µ1, . . . , µrk , σ1, . . . , σrk)
T

and the dimension of our problem is n = 2rk. Thus Vi,j is a function
of x and the random vector ξi,

Vi,j = mT
j β

i(x, ξi) =

rk∑
s=1

kjs(xs + ξisxrk+s) = Vi,j(x, ξ
i).

The term εi,j is a random variable whose role is to collect all factors
which are not included in the function Vi,j. It can also be viewed as the



6.1 Variable sample size methods 185

taste of each agent. Different assumptions about these terms lead to
different models. We assume that for every i and every j the random
variable εi,j follows the Gumbel distribution with location parameter
0 and scale parameter 1. The Gumbel distribution is also known as
the type 1 extreme value distribution.

Now, suppose that every agent makes his own choice among these
alternatives. The problem is to maximize the likelihood function. Un-
der the assumptions that are stated above, if the realization ξ̄i of
ξi = (ξi1, ..., ξ

i
rk

)T is known, the probability that agent i chooses alter-
native j becomes

Li,j(x, ξ̄i) =
eVi,j(x,ξ̄

i)

rm∑
s=1

eVi,s(x,ξ̄
i)

.

Moreover, the unconditional probability is given by

Pi,j(x) = E(Li,j(x, ξ
i)).

Now, if we denote by j(i) the choice of agent i, the problem becomes

max
x∈Rn

ra∏
i=1

Pi,j(i)(x). (6.6)

The equivalent form of (6.6) is given by

min
x∈Rn

− 1

ra

ra∑
i=1

lnE(Li,j(i)(x, ξ
i)).

Notice that this problem is similar, but not exactly the same as (4.1).
The objective function is now

f(x) = − 1

ra

ra∑
i=1

lnE(Li,j(i)(x, ξ
i)),
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so the approximating function is

f̂N(x) = − 1

ra

ra∑
i=1

ln(
1

N

N∑
s=1

Li,j(i)(x, ξ
i
s)).

Here ξi1, ..., ξ
i
N are independent realizations of the random vector ξi.

The realizations are independent across the agents as well. Calculat-
ing the exact gradient of f̂N is affordable and the derivative based
approach is suitable.

One of the main differences between algorithms presented in pre-
vious sections and the ones that are used for Mixed Logit problem is
the way that we calculate the lack of precision, εNδ (x). We define the
approximation of the confidence interval radius as it is proposed in
Bastin et al. [5],

εNδ (x) =
αδ
ra

√√√√ ra∑
i=1

σ̂2
N,i,j(i)(x)

NP 2
i,j(i)(x)

. (6.7)

Here, αδ represents the same parameter as in (4.8) and σ̂2
N,i,j(i)(x) is

the sample variance estimator, i.e.

σ̂2
N,i,j(i)(x) =

1

N − 1

N∑
s=1

(Li,j(i)(x, ξ
i
s)−

1

N

N∑
k=1

(Li,j(i)(x, ξ
i
k))

2.

The confidence level that is used for numerical testing is retained
at 0.95, therefore αδ ≈ 1.96. The reason for taking (6.7) is the
fact that it can be shown, by using the Delta method [55, 59], that√
N(f(x)− f̂N(x)) converges in distribution towards the random vari-

able with the normal distribution with mean zero and variance equal

to 1
N2

∑ra
i=1

σ2
i,j(i)

(x)

P 2
i,j(i)

(x)
.
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Let us briefly analyze the convergence conditions for the adjusted
algorithm. First of all, notice that for every N , function f̂N is nonneg-
ative and thus the lower bound in Lemma 4.1.2 is zero. Assumption
A1 can be reformulated in the following way

A1’ For every N, f̂N ∈ C1(Rn).

The following result holds.

Theorem 6.1.1 Suppose that the assumptions A1’ and B1 are satis-
fied. Furthermore, suppose that there exist a positive constant κ and
number n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1 and that the
sequence {xk}k∈N generated by the adjusted Algorithm 1 is bounded.
Then, either the adjusted Algorithm 1 terminates after a finite num-
ber of iterations at a stationary point of f̂Nmax or every accumulation
point of the sequence {xk}k∈N is a stationary point of f̂Nmax.

The test problem is generated as follows. We consider five alterna-
tives with five characteristics for each alternative. Thus we generate
the matrix M from R5×5 using the standard normal distribution such
that each column of M represents the characteristics of one of the
alternatives. The number of agents is assumed to be 500. So the
matrix B ∈ R5×500 is generated with Bij : N(0.5, 1) and each column
of that matrix represents one realization of the random vector βi. Fi-
nally, the matrix of random terms εij from R5×500 is formed such that
each component is a realization of a random variable with the Gumbel
distribution with parameters 0 and 1. These three matrices are used
to find the vector of choices for 500 agents.

The results presented in Table 6.11 are obtained after 10 indepen-
dent runs of each algorithm. At each run, the initial approximation is
set to be x0 = (0.1, . . . , 0.1)T . The maximal sample size for each agent
is Nmax = 500. Since we use independent samples across the agents,
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NG BFGS

Algorithm ‖∇f̂Nmax
‖ φ % ‖∇f̂Nmax

‖ φ %
ρ = −∞ 0.00887 3.98E+07 -8.50 0.00550 5.65E+07 25.16
ρ = 0.7 0.00896 4.36E+07 0.00 0.00523 4.52E+06 0.00
Heur 0.00842 1.09E+08 151.68 0.00674 1.53E+07 237.94
SAA 0.00929 8.07E+07 85.41 0.00810 1.82E+07 303.98

Table 6.11: Mixed Logit problem. Mixed Logit problem.

the total maximal sample size is 250 000. Thus, this is the number
of realizations of random vector ξ which are generated at the begin-
ning of the optimization process. In algorithms with variable sample
size, the starting sample size for each agent is Nmin

0 = 3. The other
parameters are set as in the previous subsection.

According to φ columns, the algorithms with variable sample size
strategy once again perform better than their fixed-size counterparts.
The heuristic method does not perform well in this example. Notice
also that the safeguard rule implies the decrease of the average number
of function evaluations significantly in the case of the BFGS method
but it produces a relatively small negative effect for the NG method,
increasing the number of function evaluations. In the case of the
BFGS method the decrease in the sample size is implied in 16.67%
of iterations but the safeguard rule declines the decrease in 58.33% of
these iterations. For the NG method the corresponding numbers are
26.84% and 20.88%.

6.2 Nonmonotone line search rules

The results from the previous section suggest that the variable sam-
ple size and the safeguard rule have positive effect on the algorithm
performance. In this section we apply Algorithm 4 with the safeguard
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proposed in Algorithm 3 and compare six different line search methods
with different search directions. In the first subsection, we consider
the problems from [73] which are transformed to include the noise.
The second subsection is devoted to a problem which includes real
data. The data is collected from a survey that examines the influence
of the various factors on the metacognition and the feeling of knowing
of the students (Ivana Rančić, project ”Quality of Educational System
in Serbia in the European perspective”, OI 179010, supported by the
Ministry of Education, Science and Technological Development, Re-
public of Serbia). The number of the examined students is 746. The
linear regression is used as the model and the least squares problem
is considered. This is the form of the objective function which is con-
sidered in [26] and therefore we compare Algorithm 4 with the scheme
proposed in that paper.

Algorithm 4 is implemented with the stopping criterion ‖gNmaxk ‖ ≤
0.1 where gNmaxk is an approximation or the true gradient of the func-

tion f̂Nmax . The maximal sample size for the first set of test problems
is Nmax = 100 and the initial sample size is N0 = 3. Alternatively, the
algorithm terminates if 107 function evaluations is exceeded. When
the true gradient is used every component is counted as one function
evaluation. In the first subsection, the results are obtained from eight
replications of each algorithm and the average values are reported. In
the second subsection, the problem does not have that kind of noise
included and therefore one replication is sufficient. All the algorithms
use the backtracking technique where the decreasing factor of the step
size is β = 0.5. The parameters from Algorithm 2 are ν1 = 0.1 and
d = 0.5. The confidence level is δ = 0.95 which leads us to the lack of
precision parameter αδ = 1.96.

We list the line search rules as follows. The rules where the pa-
rameter η̃k = 0.85 is given refer to C̃k defined by (5.4), while M = 10
determines the rule with C̃k defined by (5.8). The choice for this pa-
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rameters is motivated by the work of [71] and [17]. We denote the
approximation of the gradient ∇f̂Nk(xk) by gk. When the true gradi-

ent is available, gk = ∇f̂Nk(xk).

(B1) f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαkp
T
k gk

(B2) f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + εk − α2
kβk

(B3) f̂Nk(xk + αkpk) ≤ C̃k + εk − α2
kβk, η̃k = 0.85

(B4) f̂Nk(xk + αkpk) ≤ C̃k + ηαkp
T
k gk, M = 10

(B5) f̂Nk(xk + αkpk) ≤ C̃k + εk − α2
kβk, M = 10

(B6) f̂Nk(xk + αkpk) ≤ C̃k + ηαkp
T
k gk, η̃k = 0.85

The rules B1, B4 and B6 assume the descent search directions and
the parameter η is set to 10−4. The initial member of the sequence
which makes the nondescent directions acceptable is defined by ε0 =
max{1, |f̂N0(x0)|} while the rest of it is updated by εk = ε0k

−1.1 but
only if the sample size does not change, i.e. if Nk−1 = Nk. Otherwise,
εk = εk−1. Furthermore, we define βk = |gTkHkgk| where Hk is the

approximation of the inverse Hessian of the function f̂Nk at the point
xk.

The search directions are of the form

pk = −Hkgk.

We make 4 different choices for the matrix Hk and obtain the following
directions.

(NG) The negative gradient direction is obtained by setting Hk = I
where I represents the identity matrix.



6.2 Nonmonotone line search rules 191

(BFGS) This direction is obtained by using the BFGS formula for up-
dating the inverse Hessian

Hk+1 = (I − 1

yTk sk
sky

T
k )Hk(I −

1

yTk sk
yks

T
k ) +

1

yTk sk
sks

T
k

where yk = gk+1 − gk, sk = xk+1 − xk and H0 = I.

(SG) The spectral gradient direction is defined by setting Hk = γkI
where

γk =
‖sk−1‖2

sTk−1yk−1

.

(SR1) The symmetric rank-one direction is defined by H0 = I and

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)Tyk
.

If the true gradient is available, the negative gradient is the descent
search direction. Moreover, the BFGS and the SG implementations
also ensure descent search direction. This issue is addressed in sub-
section 2.2.1 while a more detailed explanation is available at [46] and
[63] for example.

We also tested the algorithm with the following gradient approxi-
mations. FD stands for the centered finite difference estimator while
FuN represents the simultaneous perturbations approximation that al-
lows the standard normal distribution for the perturbation sequence
[27].

(FD) For i = 1, 2, . . . , n

(gk)i =
f̂Nk(xk + hei)− f̂Nk(xk − hei)

2h
,

where ei is the ith column of the identity matrix and h = 10−4.
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(FuN) For i = 1, 2, . . . , n

(gk)i =
f̂Nk(xk + h∆k)− f̂Nk(xk − h∆k)

2h
∆k,i,

where h = 10−4 and random vector ∆k = (∆k,1, ...,∆k,n)T follows
the multivariate standard normal distribution.

The criterion for comparing the algorithms is the number of func-
tion evaluations as in the previous section.

6.2.1 Noisy problems

We use 7 test functions from the test collection [24] available at the
web page [73]: Freudenstein and Roth, Jennrich and Sampson, Biggs
EXP6, Osborne II, Trigonometric, Broyden Tridiagonal and Broyden
Banded. They are converted into noisy problems in two ways. The
first one is by adding the noise, and the second one involves multipli-
cation by a random vector which then affects the gradient as well. The
noise is represented by the random vector ξ with the normal distribu-
tion N (0, 1). If we denote the deterministic test function by q(x), we
obtain the objective functions f(x) = E(F (x, ξ)) in the following two
manners:

(N1) F (x, ξ) = q(x) + ξ

(N2) F (x, ξ) = q(x) + ‖ξx‖2.

This provides us with 14 test problems. The average number of func-
tion evaluations in 8 replications is used as the main criterion. Let us
denote it by φji where i represents the method determined by the line
search and the search direction and j represents the problem. We de-
fine the efficiency index like in Krejić, Rapajić [39], i.e. for the method
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Efficiency index (ω) Nonmonotonicity index (µ)
NG SG BFGS SR1 NG SG BFGS SR1

B1 0.2471 0.3975 0.5705 � 0.0000 0.0000 0.0000 �
B2 0.0774 0.4780 0.5474 0.4750 0.4835 0.2081 0.1616 0.2541
B3 0.0783 0.4927 0.5306 0.4401 0.4426 0.2083 0.1708 0.2810
B4 0.0620 0.6468 0.4200 � 0.4070 0.1049 0.0998 �
B5 0.0798 0.5157 0.5043 0.4725 0.4060 0.1998 0.1722 0.2593
B6 0.1064 0.6461 0.4690 � 0.3430 0.1050 0.0944 �

Table 6.12: The gradient-based methods. Gradijentni metodi.

i the efficiency index is

ωi =
1

14

14∑
j=1

mini φ
j
i

φji
.

We also report the level of nonmonotonicity. If the number of itera-
tions is k and s is the number of iterations at which the accepted step
size would not pass through if the line search rule has been B1, then
we define the nonmonotonicity index by

µ =
s

k
.

The numbers in the following two tables refer to the average values
of 8 independent runs. Table 6.12 represents the results obtained
by applying the methods with the true gradient, while the subsequent
table refers to the gradient approximation approach. The SR1 method
is not tested with the line search rules which assume descent search
directions and therefore the efficiency index is omitted in that cases.
The same is true for the nonmonotonicity. For the same reason we
omit the line search rules B1, B4 and B6 in Table 6.13.

Among the 21 tested methods presented in Table 6.12, the effi-
ciency index suggests that the best one is the spectral gradient method
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Efficiency index (ω)
SG-FD SG-FuN BFGS-FD SR1-FD

B2 0.6832 0.4536 0.7316 0.6995
B3 0.6957 0.4164 0.7149 0.6576
B5 0.7255 0.4286 0.6808 0.7156

Nonmonotonicity index (µ)
SG-FD SG-FuN BFGS-FD SR1-FD

B2 0.1693 0.1008 0.1349 0.2277
B3 0.1682 0.1166 0.1449 0.2516
B5 0.1712 0.1248 0.1453 0.2410

Table 6.13: The gradient-free methods. Metodi bez gradijenata.

combined with the line search rule B4. However, we can see that the
results also suggest that the negative gradient and the BFGS search
direction should be combined with the monotone line search rule B1.
The SR1 method works slightly better with the line search B2 than
with B5 and we can say that it is more efficient with the lower level
of nonmonotonicity. If we look at the SG method, we can conclude
that large nonmonotonicity is not beneficial for that method either.
In fact, B4 has the lowest nonmonotonicity if we exclude B1.

The results considering the spectral gradient method are consistent
with the deterministic case because it is known that the monotone
line search can inhibit the benefits of scaling the negative gradient
direction. However, these testings suggest that allowing too much
nonmonotonicity can be bad for the performance of the algorithms.

The results from Table 6.13 imply that B5 is the best choice if we
consider the spectral gradient or SR1 method with the finite differ-
ence gradient approximation. Furthermore, this kind of approxima-
tion combined with the BFGS direction performs the best with the
line search B2. This line search is the best choice for simultaneous
perturbation approach as well. However, this approximation of the
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gradient provided the least preferable results in general. This was ex-
pected because the simultaneous perturbation provided rather poor
approximations of the gradient. Also, the number of iterations was
not that large in general and the asymptotic features of that approach
could not develop.

The formulation of the problem where we add the noise term was
suitable for examining the convergence towards the local/global opti-
mum. However, the numerical results have not yielded useful infor-
mation. Moreover, if we consider the spectral gradient method, the
results are not as it was expected: there is no clear evidence that
the nonmonotone line search methods converge more frequently to
a global solution than their monotone counterparts. In fact, in the
Freudenstein and Roth problem for example, B1 method converged to
the global minimum in all 8 replications, B6 converged to the global
minimum only once while the other methods were trapped at the local
solutions. Furthermore, in Broyden Banded problem, B4 and B6 were
carried away from the global solution, while the other ones converged
towards it.

The case where the noise affects the gradient was harder for track-
ing the global optimum. However, we captured that the SG method
with the line searches that allow only the descent directions (B1, B4
and B6) converged to the point with the lower function value when the
problem Broyden Tridiagonal is concerned. Furthermore, in problem
Osborne II, SG with the Armijo line search B1 provided the lowest
function value.

The efficiency index yields similar conclusions as the performance
profile analysis. At the end of this subsection, we show the perfor-
mance profile graphics for the methods that performed the best: SG
in the gradient-based case (Figure 6.4) and BFGS-FD in the gradient-
free case (Figure 6.5). The first graphic in both figures provides the
results when the problems of the form (N1) are considered, the sec-
ond one refers to the problems (N2) while the third one gathers all 14
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problems together.

Figure 6.4 shows that B4 clearly outperforms all the other line
search rules in (N1) case, while in (N2) case B6 is highly competitive.
If we look at all the considered problems together, B4 is clearly the
best choice. In the BFGS-FD case, B2 and B3 seem to work better
than B5 and the advantage is on the side of B2. Moreover, the perfor-
mance profile suggests that this advantage is gained in the case where
the noise affects the search direction, i.e. when (N2) formulation is
considered.

6.2.2 Application to the least squares problems

As we already mentioned, this subsection is devoted to the real data
problem. The data comes from a survey that was conducted among
746 students in Serbia. The goal of this survey was to determine how
do different factors affect the feeling of knowing (FOK) and metacog-
nition (META) of the students. We will not go into further details of
this survey since our aim is only to compare different algorithms. Our
main concern is the number of function evaluations needed for solving
the problem rather than the results of this survey. Therefore, we only
present the number of function evaluations (φ) and nonmonotonicity
index (µ) defined above.

Linear regression is used as the model and the parameters are
searched for throughout the least squares problem. Therefore, we
obtain two problems of the form minx∈Rn f̂N(x) where

f̂N(x) =
1

N

N∑
i=1

(xTai − yi)2.

The sample size is N = Nmax = 746 and the number of factors exam-
ined is n = 4. Vectors ai, i = 1, 2, . . . , 746 represent the factors and
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Figure 6.4: The SG methods in noisy environment. SG metodi u
stohastičkom okruženju.



198 Numerical results

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

α

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BFGS-FD - N1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.4

0.6

0.8

1

α

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BFGS-FD - N2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

α

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BFGS-FD - N1 and N2

B2

B3

B5

B2

B3

B5

B2

B3

B5
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Algorithm 4 Heuristic
SG φ µ φ µ
B1 9.4802E+04 0.0000 1.2525E+05 0.0000
B2 5.3009E+04 0.2105 6.0545E+04 0.2105
B3 5.3009E+04 0.2105 6.0545E+04 0.2105
B4 4.4841E+04 0.1765 9.4310E+04 0.2121
B5 5.3009E+04 0.2105 7.1844E+04 0.1967
B6 4.5587E+04 0.1176 1.1178E+05 0.1343

Table 6.14: The FOK analysis results. Rezultati FOK analize.

yi, i = 1, 2, . . . , 746 represent the FOK or the META results obtained
from the survey.

The same type of problem is considered in [26]. Therefore, we
wanted to compare the variable sample size scheme proposed in this
thesis with the dynamics of increasing the sample size that is pro-
posed in [26] (Heuristic). We state the results in Table 6.14 and Table
6.15. Heuristic assumes that the sample size increases in the following
manner Nk+1 = dmin{1.1Nk, Nmax}e. Since the gradients are easy to
obtain, we chose to work with the gradient-based approach and we
use the spectral gradient method with the different line search rules to
obtain the following results. The Algorithm 4 is used with the same
parameters like in the previous subsection and the stopping criterion
‖gNmaxk ‖ ≤ 10−2.

First of all notice that the Algorithm 4 performs better than the
Heuristic in all cases. Also, the monotone line search B1 performs
the worst in both problems and both presented algorithms. When the
FOK problem is considered, the best results are obtained with the
line search B4 applied within the Algorithm 4, although B6 is highly
competitive in that case. Both of the mentioned line search rules
have modest nonmonotonicity coefficients. However, when Heuristic
is applied, the additional term εk turns out to be useful since the best
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Algorithm 4 Heuristic
SG φ µ φ µ
B1 1.6716E+05 0.0000 2.1777E+05 0.0000
B2 3.3606E+04 0.0909 6.2159E+04 0.2632
B3 3.3606E+04 0.0909 6.1408E+04 0.1897
B4 3.8852E+04 0.1538 6.6021E+04 0.1607
B5 3.3606E+04 0.0909 6.1408E+04 0.1897
B6 3.8852E+04 0.1538 1.4953E+05 0.1053

Table 6.15: The META analysis results. Rezultati META analize.

performance is obtained by B2 and B3.
While the analysis of FOK provided the results similar to the ones

in the previous subsection, the META yielded rather different con-
clusions. In that case, the lowest number of function evaluations was
achieved by the line search rules B2, B3 and B5. However, the results
are not that different because the level of nonmonotonicity for those
methods was not the highest detected among the line searches. Sim-
ilar results are obtained for Heuristic where B3 and B5 are the best
with the medium level of nonmonotonicity.
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that represents the uncertainty. Therefore, the objective function is
in fact deterministic. However, finding the analytical form of that ob-
jective function can be very difficult or even impossible. This is the
reason why the sample average approximation is often used. In order
to obtain reasonable good approximation of the objective function, we
have to use relatively large sample size. We assume that the sample is
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we can consider this sample average objective function as the deter-
ministic one. However, applying some deterministic method on that
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of evaluations of the function under expectation is a common way of
measuring the cost of an algorithm. Therefore, methods that vary the
sample size throughout the optimization process are developed. Most
of them are trying to determine the optimal dynamics of increasing
the sample size.

The main goal of this thesis is to develop the clas of methods that
can decrease the cost of an algorithm by decreasing the number of
function evaluations. The idea is to decrease the sample size whenever
it seems to be reasonable - roughly speaking, we do not want to impose
a large precision, i.e. a large sample size when we are far away from the
solution we search for. The detailed description of the new methods
is presented in Chapter 4 together with the convergence analysis. It
is shown that the approximate solution is of the same quality as the
one obtained by dealing with the full sample from the start.

Another important characteristic of the methods that are proposed
here is the line search technique which is used for obtaining the sub-
sequent iterates. The idea is to find a suitable direction and to search
along it until we obtain a sufficient decrease in the function value. The
sufficient decrease is determined throughout the line search rule. In
Chapter 4, that rule is supposed to be monotone, i.e. we are imposing
strict decrease of the function value. In order to decrease the cost of
the algorithm even more and to enlarge the set of suitable search di-
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rections, we use nonmonotone line search rules in Chapter 5. Within
that chapter, these rules are modified to fit the variable sample size
framework. Moreover, the conditions for the global convergence and
the R-linear rate are presented.

In Chapter 6, numerical results are presented. The test problems
are various - some of them are academic and some of them are real
world problems. The academic problems are here to give us more
insight into the behavior of the algorithms. On the other hand, data
that comes from the real world problems are here to test the real
applicability of the proposed algorithms. In the first part of that
chapter, the focus is on the variable sample size techniques. Different
implementations of the proposed algorithm are compared to each other
and to the other sample schemes as well. The second part is mostly
devoted to the comparison of the various line search rules combined
with different search directions in the variable sample size framework.
The overall numerical results show that using the variable sample size
can improve the performance of the algorithms significantly, especially
when the nonmonotone line search rules are used.

The first chapter of this thesis provides the background material
for the subsequent chapters. In Chapter 2, basics of the nonlinear
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rest of the thesis represents the original contribution.
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Fizički opis rada: 6/222/73/15/0/5/0
(broj poglavlja/strana/lit. citata/tabela/slika/grafika/priloga)
FO
Naučna oblast: Matematika
NO
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Važna napomena:
VN



220 Key Words Documentation

Izvod:
U okviru ove teze posmatra se problem optimizacije bez ograničenja
pri čemu je funkcija cilja u formi matematičkog očekivanja. Očekivanje
se odnosi na slučajnu promenljivu koja predstavlja neizvesnost. Zbog
toga je funkcija cilja, u stvari, deterministička veličina. Ipak, odred-
jivanje analitičkog oblika te funkcije cilja može biti vrlo kompliko-
vano pa čak i nemoguće. Zbog toga se za aproksimaciju često koristi
uzoračko očekivanje. Da bi se postigla dobra aproksimacija, obično
je neophodan obiman uzorak. Ako pretpostavimo da se uzorak real-
izuje pre početka procesa optimizacije, možemo posmatrati uzoračko
očekivanje kao determinističku funkciju. Medjutim, primena nekog
od determinističkih metoda direktno na tu funkciju može biti veoma
skupa jer evaluacija funkcije pod očekivanjem često predstavlja ve-
liki trošak i uobičajeno je da se ukupan trošak optimizacije meri po
broju izračunavanja funkcije pod očekivanjem. Zbog toga su razvijeni
metodi sa promenljivom veličinom uzorka. Većina njih je bazirana na
odredjivanju optimalne dinamike uvećanja uzorka.

Glavni cilj ove teze je razvoj algoritma koji, kroz smanjenje broja
izračunavanja funkcije, smanjuje ukupne troškove optimizacije. Ideja
je da se veličina uzorka smanji kad god je to moguće. Grubo rečeno,
izbegava se korǐsćenje velike preciznosti (velikog uzorka) kada smo
daleko od rešenja. U četvrtom poglavlju ove teze opisana je nova
klasa metoda i predstavljena je analiza konvergencije. Dokazano je da
je aproksimacija rešenja koju dobijamo bar toliko dobra koliko i za
metod koji radi sa celim uzorkom sve vreme.

Još jedna bitna karakteristika metoda koji su ovde razmatrani
je primena linijskog pretraživanja u cilju odredjivanja naredne it-
eracije. Osnovna ideja je da se nadje odgovarajući pravac i da se
duž njega vrši pretraga za dužinom koraka koja će dovoljno sman-
jiti vrednost funkcije. Dovoljno smanjenje je odredjeno pravilom lini-
jskog pretraživanja. U četvrtom poglavlju to pravilo je monotono što
znači da zahtevamo striktno smanjenje vrednosti funkcije. U cilju još
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većeg smanjenja troškova optimizacije kao i proširenja skupa pogod-
nih pravaca, u petom poglavlju koristimo nemonotona pravila linijskog
pretraživanja koja su modifikovana zbog promenljive veličine uzorka.
Takodje, razmatrani su uslovi za globalnu konvergenciju i R-linearnu
brzinu konvergencije.

Numerički rezultati su predstavljeni u šestom poglavlju. Test
problemi su različiti - neki od njih su akademski, a neki su realni.
Akademski problemi su tu da nam daju bolji uvid u ponašanje al-
goritama. Sa druge strane, podaci koji potiču od stvarnih prob-
lema služe kao pravi test za primenljivost pomenutih algoritama. U
prvom delu tog poglavlja akcenat je na načinu ažuriranja veličine
uzorka. Različite varijante metoda koji su ovde predloženi porede
se medjusobno kao i sa drugim šemama za ažuriranje veličine uzorka.
Drugi deo poglavlja pretežno je posvećen poredjenu različitih pravila
linijskog pretraživanja sa različitim pravcima pretraživanja u okviru
promenljive veličine uzorka. Uzimajući sve postignute rezultate
u obzir dolazi se do zaključka da variranje veličine uzorka može
značajno popraviti učinak algoritma, posebno ako se koriste nemono-
tone metode linijskog pretraživanja.

U prvom poglavlju ove teze opisana je motivacija kao i osnovni
pojmovi potrebni za praćenje preostalih poglavlja. U drugom
poglavlju je iznet pregled osnova nelinearne optimizacije sa akcen-
tom na metode linijskog pretraživanja, dok su u trećem poglavlju
predstavljene osnove stohastičke optimizacije. Pomenuta poglavlja su
tu radi pregleda dosadašnjih relevantnih rezultata dok je originalni
doprinos ove teze predstavljen u poglavljima 4-6.
IZ
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