

UNIVERSITY OF NOVI SAD

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

AND INFORMATICS

Distributed Optimization Methods
for Large Scale Unconstrained

Optimization Problems

- PhD thesis -

Supervisor:
Prof. Dr. Nataša Krejić

Candidate:
Greta Malaspina

Novi Sad, 2022

2

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а
ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА
1

Врста рада: Докторска дисертација

Име и презиме

аутора:
Грета Маласпина

Ментор (титула, име,

презиме, звање,

институција)

Др Наташа Крејић, редовни професор, Универзитет у Новом Саду

Природно-математички факултет

Наслов рада:
Meтоде дистрибуиране оптимизације за проблеме великих

димензија без ограничења, Distributed Optimization Methods for Large

Scale Unconstrained Optimization Problems
Језик публикације

(писмо):
енглески

Физички опис рада:

Унети број:
Страница: 213
Поглавља: 6
Референци: 75
Табела: 0
Слика: 15
Графикона: 0
Прилога: 1

Научна област: Математика

Ужа научна област

(научна дисциплина):
Нумеричка математика

Кључне речи /

предметна

одредница:

нумеричка оптимизација, дистрибуирана оптимизација, оптимизација

без ограничења

Резиме на српском

језику:

 Многи савремени математички модели захтевају решавање проблема

оптимизације на мрежи рачунарских чворова у кооперативном режиму,

док растући интерес за велике скупове података и машинско учење

захтева методе којима је могуће решити проблеме све већих димензија.

Већина класичних оптимизационих метода није погодна за примену у

дистрибуираном окружењу, те је потребно развити нове методе који

могу да одговоре на изазове који потичу из дистрибуираног окружења.

Ова теза је фокусирана на дистрибуиране методе за оптимизационе

проблеме великих димензија.

Резултати предављени у овој тези су допринос области дистрибуиране

оптимизације у следећим аспектима.

Прво је проширена анализа конвергенције за класу постојећих

дистрибуираних метода првог реда, за случај комуникационих мрежа

које се мењају у времену и за дужине корака које се мењају по времену

без координације између комјутерских чворова. Ово проширење је од

посебног значаја у практичним применама где су промене у

комуникационим мрежама узроковане техничким проблемима у

1
 Аутор докторске дисертације потписао је и приложио следеће Обрасце:

5б – Изјава о ауторству;
5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;
5г – Изјава о коришћењу.
Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

комуникацији или у случају све значајнијих покретних сензорских

мрежа.

Једно од главних питања у методама дистрибуиране оптимизације је

одређивање дужине корака. Наиме, класичне технике глобализације

попут линијског претраживања нису применљиве у овом оквиру, а

примена фиксне дужине корака често доводи до спорог метода. Сем

тога, примена фиксног корака захтева познавање глобалних константи

које се не могу једноставно оценити у дистрибуираном окружењу. Стога

је у тези предложен дистрибуирани приближан Њутнов метод са

адаптивном дужином корака која се може срачунати у диструбираном

окружењу, а помоћу тако одрђене дужине корака, уз уобичајене

претпоставке о регуларности проблема, метод је глобално конвергентан

и задржава локални ред конвергенције карактеристичан за

централизовану оптимизацију.

Системи линеарних једначина великих димензија су изазов и као

независни проблеми и као део оптимизационих поступака другог реда. У

општем случају, у свакој итерацији метода другог реда, попут

приближног Њутновог метода који је већ поменут, потребно је решити,

приближно или тачно, систем линеарних једначина да би се одредио

правац претраживања. Дистрибуирано окружење и овде представља

изазов. Методе непокретне тачке су познате као ефикасан начин

решавања система линеарних једначина у централизованом окружењу.

Овде је представљена класа дистрибуираних метода типа непокретне

тачке која је прилагођена дистрибуираном окружењу. Показано је да

поступци предложеног типа конвергирају за статичне и променљиве

комуникационе мреже, а резултати о конвергенцији су аналогни

резултатима у централизованом случају.

У последњем делу тезе је размтран проблем најмањих квадрата веома

велике димензије мотивисан проблемом дигитализације катастарских

мапа. Веома велика димензија проблема представља главни проблем за

примену класичних метода, док је ретка структура проблема природна

могућност за примену паралелних метода. У тези је представљен

приближни Левенберг-Маркардов метод за решавање ретких проблема

најмањих квадрата. Ретка структура је искоришћена као основ за

дефинисање стратегије типа непокретне тачке којом се одређује правац

претраживања на начин који је погодан за паралелизацију. Представљена

је теоријска анализа и показана глобална и локална конвергенција под

класичним претпоставкама за овај тип проблема.

Сви предложени методи су имплементирани и тестирани на релевантним

тест примерима. Нумерички резултати су емпиријски потврдили

теоријска тврђења. Поред тога, предложени методи су упоређени са

најзначајнијим постојећим методама за одговарајуће класе проблема и

показана је њихова компетитивност.
Датум прихватања

теме од стране

надлежног већа:

30.06.2022

Датум одбране:
(Попуњава

одговарајућа служба)

Чланови комисије:
(титула, име,

презиме, звање,

институција)

Председник: др Наташа Крклец Јеринкић
Члан: др Душан Јаковетић
Члан: др Наташа Крејић
Члан: др Стефаниа Белавиа

Напомена:

UNIVERSITY OF NOVI SAD
FACULTY OR CENTER

KEY WORD DOCUMENTATION
2

Document type: Doctoral dissertation

Author: Greta Malaspina

Supervisor (title, first

name, last name,

position, institution)

Dr. Nataša Krejić, professor, University of Novi Sad Faculty of Sciences,

Novi Sad

Thesis title:
Distributed Optimization Methods for Large Scale Unconstrained

Optimization Problems

Language of text

(script):

English

Physical description:

Number of:
Pages: 213
Chapters: 6
References: 75
Tables: 0
Illustrations: 15
Graphs: 0
Appendices: 1

Scientific field:
Mathematics

Scientific subfield

(scientific discipline):
Numerical mathematics

Subject, Key words: numerical optimization, distributed optimization, unconstrained problems

Abstract in English

language:

Many modern applications require networks of computational agents to solve

optimization problems in a cooperative manner, while the growing interest in

Big Data and machine learning calls for method that are able to solve

problems of increasingly large dimension. This poses many challenges in the

field of optimization as most classical methods are not suitable for the

distributed framework: new algorithms need to be developed, that are able to

deal with the practical limitations deriving from the distributed setting. This

thesis focuses on distributed methods for large scale optimization.
The contributions of this thesis to the area of distributed optimization are the

following. First of all, we extend the convergence analysis of a class of

existing first-order distributed methods to the case of time-varying networks

and uncoordinated time-varying stepsizes. This extension is particularly

relevant as changes in the communication network are common in practical

applications due to possible technical failures in the communication and the

increasing relevance of mobile sensor networks.
One of the main issues for distributed optimization is the selection of the

stepsize: classical globalization such as line search are not feasible in the

2 The author of doctoral dissertation has signed the following Statements:
 5б – Statement on the authority,
 5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
 5г – Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

multi-agent framework, while employing a fixed stepsize is known to often

cause the method to be slow and usually requires the knowledge of the

regularity constants of the problem, which can be hard to estimate

distributedly. To overcome these issues we propose a distributed Inexact

Newton method that relies on an adaptive choice of the stepsize, which can be

computed distributedly and, under suitable regularity assumptions, ensures

both global convergence and local fast convergence as in the centralized case.
Systems of linear equations and large dimensions are a problem of interest by

itself and as a part of second-order optimization methods. In general, in each

iteration of the second-order method, like Inexact Newton method mentioned

above, one has to solve a system of linear equations, either approximately or

exactly, to get the search direction. Again, distributed environment represents

a challenge. Fixed point methods are a known to be very effective in the

centralized framework for linear system of large dimensions. We propose here

a class of distributed fixed point methods that works in the distributed setting.

We show that such methods converge for both static and time-varying

network, achieving convergence results analogous to those that can be proved

for the centralized case.
Finally, in the last part of the thesis we consider the least square problems of

very large dimension motivated by digitalization of cadastral maps. The

dimension of the problem represent the main difficulty for classical method

while the sparse structure presents an opportunity to be exploited in parallel

computational framework. We present an Inexact Levenberg-Marquardt

method for sparse least squares problem. The method exploits the underlying

structure of the problem to define a fixed-point strategy for the computation of

the search direction that is suitable for parallelization. Theoretical analysis is

presented and we show both global and fast local convergence under the

classical assumptions for least squares problems.
All presented methods are implemented, and tested on relevant examples. The

numerical results reveal that the theoretical results are confirmed by empirical

evidence. Furthermore, the proposed methods are compared with the

corresponding state-of-the-art methods and their competitiveness is

demonstrated.

Accepted on Scientific

Board on:
30.06.2022

Defended:
(Filled by the faculty

service)

Thesis Defend Board:
(title, first name, last

name, position,

institution)

President: Dr. Nataša Krklec Jerinkić
Member: Dr. Dušan Jakovetić
Member: Dr. Nataša Krejić
Member: Dr. Stefania Bellavia

Note:

7

Abstract

Many modern applications require networks of computational agents
to solve optimization problems in a cooperative manner, while the
growing interest in Big Data and machine learning calls for method
that are able to solve problems of increasingly large dimension. This
poses many challenges in the field of optimization as most classical
methods are not suitable for the distributed framework: new algo-
rithms need to be developed, that are able to deal with the practical
limitations deriving from the distributed setting. This thesis focuses
on distributed methods for large scale optimization.
The contributions of this thesis to the area of distributed optimiza-
tion are the following. First of all, we extend the convergence anal-
ysis of a class of existing first-order distributed methods to the case
of time-varying networks and uncoordinated time-varying stepsizes.
This extension is particularly relevant as changes in the communi-
cation network are common in practical applications due to possible
technical failures in the communication and the increasing relevance
of mobile sensor networks.
One of the main issues for distributed optimization is the selection of
the stepsize: classical globalization such as line search are not feasi-
ble in the multi-agent framework, while employing a fixed stepsize is
known to often cause the method to be slow and usually requires the
knowledge of the regularity constants of the problem, which can be
hard to estimate distributedly. To overcome these issues we propose a
distributed Inexact Newton method that relies on an adaptive choice
of the stepsize, which can be computed distributedly and, under suit-
able regularity assumptions, ensures both global convergence and local
fast convergence as in the centralized case.
Systems of linear equations and large dimensions are a problem of in-

8

terest by itself and as a part of second-order optimization methods.
In general, in each iteration of the second-order method, like Inexact
Newton method mentioned above, one has to solve a system of linear
equations, either approximately or exactly, to get the search direction.
Again, distributed environment represents a challenge. Fixed point
methods are a known to be very effective in the centralized frame-
work for linear system of large dimensions. We propose here a class of
distributed fixed point methods that works in the distributed setting.
We show that such methods converge for both static and time-varying
network, achieving convergence results analogous to those that can be
proved for the centralized case.
Finally, in the last part of the thesis we consider the least square prob-
lems of very large dimension motivated by digitalization of cadastral
maps. The dimension of the problem represent the main difficulty for
classical method while the sparse structure presents an opportunity to
be exploited in parallel computational framework. We present an In-
exact Levenberg-Marquardt method for sparse least squares problem.
The method exploits the underlying structure of the problem to de-
fine a fixed-point strategy for the computation of the search direction
that is suitable for parallelization. Theoretical analysis is presented
and we show both global and fast local convergence under the classical
assumptions for least squares problems.
All presented methods are implemented, and tested on relevant ex-
amples. The numerical results reveal that the theoretical results are
confirmed by empirical evidence. Furthermore, the proposed methods
are compared with the corresponding state-of-the-art methods and
their competitiveness is demonstrated.

9

Apstrakt

Mnogi savremeni matematički modeli zahtevaju rešavanje prob-
lema optimizacije na mreži računarskih čvorova u kooperativnom re-
žimu dok rastući interes za velike skupove podataka i mašinsko učenje
zahteva metode kojima je moguće rešiti probleme sve većih dimenz-
ija. Većina klasičnih optimizacionih metoda nije pogodna za primenu
u distribuiranom okruženju, te je potrebno razviti nove metode koji
mogu da odgovore na izazove koji potiču iz distribuiranog okruženja.
Ova teza je fokusirana na distribuirane metode za optimizacione prob-
leme velikih dimenzija.
Rezultati predstavljeni u ovoj tezi su doprinos oblasti distribuirane
optimizacije u sledećim aspektima. Prvo je proširena analiza kon-
vergencije za klasu postojećih distribuiranih metoda prvog reda, za
slučaj komunikacionih mreža koje se menjaju u vremenu i za dužine ko-
raka koje se menjaju po vremenu bez koordinacije izmed̄u kompjuter-
skih čvorova. Ovo proširenje je od posebnog značaja u praktičnim
primenama gde su promene u komunikacionim mrežama uzrokovane
tehničkim problemima u komunikaciji ili u slučaju sve značajnijih
pokretnih senzorskih mreža.
Jedno od glavnih pitanja u metodama distribuirane optimizacije je
odred̄ivanje dužine koraka. Naime, klasične tehnike globalizacije poput
linijskog pretraživanja nisu primenjljive u ovom okviru, a primena fi-
ksne dužine koraka često dovodi do sporog metoda. Sem toga pri-
mena fiksnog koraka zahteva poznavanje globalnih konstanti koje se
ne mogu jednostavno oceniti u distribuiranom okruženju. Stoga je u
tezi predložen distribuirani približan Njutnov metod sa adaptivnom
dužinom koraka koja se može sračunati u distribuiranom okruženju,
a pomoću tako odred̄ene dužine koraka, uz uobičajene pretpostavke
o regularnosti problema, metod je globalno konvergentan i zadržava

10

lokalni red konvergencije karakterističan za centralizovanu optimizaciju.
Sistemi linearnih jednačina velikih dimenzija su izazov i kao nezavisni
problemi i kao deo optimizacionih postupaka drugog reda. U opštem
slučju, u svakoj iteraciji metoda drugog reda, poput približnog Njut-
novog metoda koji je već pomenut, potrebno je rešiti, približno ili
tačno, sistem linearnih jednačina da bi se odredio pravac pretraživanja.
Distribuirano okruženje i ovde predstavlja izazov. Metode nepokretne
tačke su poznate kao efikasan način rešavanja sistema linearnih jednačina
velikih dimenzija u centralizovanom okruženju. Ovde je predstavljana
klasa distribuiranih metoda tipa nepokretne tačke koja je prilagod̄ena
distribuiranom okruženju. Pokazano je da postupci predloženog tipa
konvergiraju za statične i promenljive komunikacione mreže, a rezul-
tati o konvergenciji su analogni rezultatima u centralizovanom slučaju.
U poslednjem delu teze je razmatran problem najmanjih kvadrata
veoma velike dimenzije motivisan problemom digitalizacije katastarskih
mapa. Veoma velika dimenzija problema predstavlja glavni problem
za primenu klasičnih metoda dok je retka struktura problema prirodna
mogućnost za primenu paralelnih metoda. U tezi je predstavljen pri-
bližni Levenbrg-Markardov metod za rešavanje retkih problema naj-
manjih kvadrata. Retka strukutura problema je iskorǐsćena kao os-
nov za definisanje strategije tipa nepokretne tačke kojom se odred̄uje
pravca pretraživanja na način koji je pogodan za paralelizaciju. Pred-
stavljena je teorijska analiza i pokazna globalna i lokalna konvergencija
pod klasičnim pretpostavkama za ovaj tip problema.
Svi predloženi metodi su implementirani, i testirani na relevantnim
test primerima. Numerički rezultati su emprijski potvrdili teorijska
tvrd̄enja. Pored toga, predloženi metodi su upored̄eni sa najznačajnim
postojećim metodama za odgovarajuće klase problema i pokazna je
njihova kompetitivnost.

11

Acknowledgements

First of all I wish to thank my supervisor Professor Nataša Krejić,
for all the time she spent working with me, her precious guidance and
patience, and for giving me the opportunity to learn so much from
her. I couldn’t have hoped for a better advisor.
I also would like to thank Professors Dušan Jakovetić and Nataša
Krklec Jerinkić, for reading this thesis in detail and all our interesting
collaborations during these years, and Professor Stefania Bellavia, for
her valuable comments regarding the thesis and most of all for intro-
ducing me first to the topic of numerical optimization and guiding me
in the very first steps of my career.

I am grateful to all the students, the professors, and everyone in-
volved in the BIGMATH project. It has been an invaluable opportu-
nity. In particular I want to thank Lense Swaenen and Sioux Math-
ware, for taking the time to work with me and for introducing me to
one of the main topics of my research.
I would also like to thank all the friends and colleagues that I met
during these years, in particular my colleagues from the University
of Novi Sad, for making this PhD an even greater experience, Stevo
Racković and Filipa Valdeira for our scientific collaborations, our trips
around Europe, and for sharing with me joys and pains of the PhD.

I thank Sebastiano and all my life-long friends for their encour-
agements and support, despite our geographical distance in these past
years. Finally, my deepest gratitude goes to my family, mamma, papà
and Edoardo, for the love and the unconditional support they have
always shown me.

12

13

Introduction

Recent advantages in technology such as the advent of Big Data
and the continuous development of wireless communication systems
able to support computational networks of increasing size has given
rise to many practical applications that require the solution of op-
timization problems involving data sets of extremely large size and
that are often stored over a large number of computational units. Ap-
plications of this kind require optimization methods that are able to
deal with the challenges offered by the new framework. Optimization
problems need to be solved in a cooperative manner by several com-
putational units, appropriately handling size, privacy requirements,
time constraints, as well as some technical limitations such as limited
communication capabilities and computational power of the machines.

The need for methods that are able to solve optimization prob-
lems in this framework created the field of distributed optimization,
which focuses on developing new methods designed specifically for
the framework at hand, as well as adapting well-established classi-
cal optimization methods, such as gradient descent, Newton’s method
and ADMM, by designing strategies that work around the limitations
posed by the distributed setting. Such methods should ideally be able
to provide a solution to the given problem without explicitly sharing
data among the machines and in general without excessive communi-
cation along the network. Moreover, given the practical nature of the
applications that originate the framework, in order to be considered ef-
fective, methods should be somehow robust to possible technical issues
in the network such as machines temporarily not working as well as
occasional disruptions in the communications. While the distributed
nature of the problem is the main obstacle to the application of clas-

14

sical methods, and the main focus of a large part of the algorithms
proposed in this context, it is important from the practical point of
view to develop methods that work in this framework but that at the
same time are also suitable for large scale problems by applying typ-
ical strategies such as iterative procedures for the solution of linear
systems, careful selection of the stepsizes, and so on.

The main topic of this thesis are distributed methods for large
scale optimization problems. In Chapter 1 we set the notation and
recall some useful classical results from linear algebra, real analysis
and graph theory, as well as classical optimization methods that are
the basis of the methods the we propose and discuss in Chapters 3-6.
In Chapter 2 we introduce the distributed optimization framework by
discussing typical problems and assumptions and presenting a review
of the current literature. In Chapters 3-6 we present the original con-
tributions of the thesis.
In Chapter 3 we consider a class of distributed gradient based meth-
ods and we extend its convergence analysis to the case of time-varying
directed networks, and time-varying uncoordinated (that is, node- de-
pendant) stepsizes, [39]. We show that given assumptions over the
sequence of networks, which in particular do not include strong con-
nectivity at all times, a suitable interval for the stepsizes can be found,
such that the considered method retain convergence properties analo-
gous to those proved for constant networks and stepsizes. Numerical
results show that asynchronous choices of the stepsizes can signifi-
cantly improve the performance of the methods in the considered class,
compared to the fixed step-size.
In Chapter 4, we propose a distributed Inexact Newton method that
combines penalty formulation of the problem, Jacobi Overrelaxation
method to compute the direction distributedly and uses an adaptive
stepsize to generate a new iterate, [29]. Under suitable assumptions
on the regularity of the objective function and on the connectivity

15

of the underlying network, we can prove both global and fast local
convergence, with convergence order depending on the choice of the
forcing parameters. The adaptive stepsize strategy yields larger steps
and thus generate a faster method, with the additional advantage of
working without a priori knowledge of the global constants. The re-
sults are a generalization of Polyak stepsize (both deterministic an
adaptive) for the Newton method in the centralized case. The method
is compared numerically with other second and first order distributed
methods showing the good performance of the proposed method when
considering problems of large dimension.
In Chapter 5 we propose a class of fully distributed fixed point meth-
ods for the solution of linear systems of equations, [28]. The proposed
method works for both static and time-varying networks and we are
able to prove convergence results that are analogous to those of fixed-
point methods in the centralized framework. We also present a set of
numerical results that show the effectiveness of the proposed strategy
compared to other distributed methods for the solution of linear sys-
tems and to distributed optimization methods applied to the quadratic
reformulation of the linear system.
In Chapter 6 we consider a parallel method for large sparse Least-
Squares problem that arise from localization problems, [20]. In par-
ticular we present an inexact Levenberg-Marquardt method that ex-
ploits the particular structure of the considered problems to compute
a search direction at each iteration in a parallel fashion. We show
that, under suitable assumptions over the objective function and the
parameters of the algorithm, one can prove for the proposed method
convergence results that are completely analogous to those of the cen-
tralized Inexact Levenberg-Marquardt method. We present a set of
numerical results that demonstrate the effectiveness of the considered
method compared to its centralized counterpart. This part of the
research is motivated by the specific industrial application - digital-
ization of cadastral maps in the Netherlands, and is carried out in

16

collaboration between the University of Novi Sad and Sioux Technolo-
gies (Eindhoven, The Netherlands) within the BIGMATH project, an
EU funded PhD program. Mr. Lense Swaenen from Sioux Technolo-
gies acted as the industrial advisor for this part of the research.

The BIGMATH project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska-Curie grant agreement No 812912.

Contents

Abstract 7

Acknowledgements 11

Introduction 13

1 Preliminaries 20
1.1 Linear Algebra, Real Analysis and

Graph Theory . 20
1.2 Centralized Optimization 32

2 Distributed Optimization 51
2.1 Distributed Framework 51
2.2 Literature Review . 57

3 Time-Varying First Order Methods 74
3.1 The Model and the Class of Considered Methods . . . 76
3.2 Convergence Analysis 80
3.3 Robustness - Analytical and Numerical Study 89

4 Distributed Inexact Newton Method with Adaptive
Step Size 100
4.1 Introduction . 100

18 CONTENTS

4.2 Preliminaries . 102
4.3 Algorithm DINAS . 104
4.4 Convergence of DINAS algorithm 110
4.5 Numerical Results . 124

5 Distributed Fixed Point Methods for Linear Systems 133
5.1 DFIX method . 134
5.2 Time-varying Network 144
5.3 Numerical results . 150

6 Parallel Inexact Levenberg-Marquardt Method for Net-
work Adjustment Problems 164
6.1 Parallel Inexact LM method 167
6.2 Convergence Analysis 174
6.3 Implementation and Numerical Results 191

7 Conclusions 198

Bibliography 201

Short Biography 212

List of Figures

3.1 Number of iteration for increasing upper bound on the
step size . 98

3.2 Number of iteration for increasing upper bound on the
step size . 99

4.1 Choice of the forcing terms, Logistic Regression 126
4.2 Total cost, Logistic Regression 129
4.3 Total cost, quadratic function 132

5.1 Dependence of number of iterations and communication
traffic on the degree of the network 155

5.2 Simple kriging problem (5.41) 156
5.3 m-regular graph . 158
5.4 DFIXM . 159
5.5 Varying number of nodes 160
5.6 Comparison for directed networks 161
5.7 Comparison for time-varying networks 163

6.1 Sparsity plot of the coefficient matrix for n= 35,000 . . 192
6.2 Percentage of residuals within 1, 2 and 3 standard de-

viations. Values of the percentages at each iteration . 195
6.3 Execution time for different number of processors . . . 196

Chapter 1

Preliminaries

In this chapter, we set the notation used in the thesis and we present
the basic definitions and many classical results that will be used in the
following chapters.

1.1 Linear Algebra, Real Analysis and

Graph Theory

We denote with N and R the set of natural and real numbers respec-
tively, we define N0 = N ∪ {0} and we use R>0 to indicate the set
of positive real numbers. Given n ∈ N, we denote with Rn the n-
dimensional real vector space. If x is in Rn we assume that it is a
column vector and we denote with x1, . . . , xn ∈ R its components.
We use Rn×m to represent the vector space of matrices with n rows, m
columns and entries in R. Given a matrix A ∈ Rn×m we denote its com-
ponents with aij for i = 1, . . . , n and j = 1, . . . ,m while Ai ∈ R1×m

will denote the i-th row of A. For any A ∈ Rn×m we denote with
A⊤ ∈ Rm×n its transpose and we say that A is symmetric if A = A⊤.
Given n ∈ N, we denote with In the identity matrix in Rn×n. When

1.1 Linear Algebra, Real Analysis and
Graph Theory 21

the order n is clear from context, we drop the index n. Moreover, we
denote with ei ∈ Rn the the vector that has i-th component equal
to 1 and zero everywhere else, and with e ∈ Rn the vector with all
components equal to 1.

Given a vector x ∈ RnN partitioned into N blocks, we denote with
xi ∈ Rn the i-th block of x. Analogously, given a matrix A ∈ RnN×nN

partitioned into N ×N block we denote with Aij the block in position
(i, j). That is,

x =

x1
...
xN

 , A =

A11 . . . A1N
...

...
AN1 . . . ANN

 .

Given a symmetric matrix A ∈ Rn×n we denote with eig(A) =
{λi}i=1:n the set of eigenvalues of A and we always assume that λ1 ≥
· · · ≥ λn. We will also use the notation λmin and λmax to denote the
eigenvalue with the smallest and the largest absolute value, respec-
tively. Moreover, we denote with Span(A) the subspace generated by
the columns of A and with Ker(A) its null space.
If λ ̸= 0 for every λ ∈ eig(A) we say that A is nonsingular and we
denote with A−1 its inverse.

Definition 1.1. Given a matrix A ∈ Rn×n we say that A is positive
semi-definite if for every x ∈ Rn we have x⊤Ax ≥ 0. We say that the
matrix is positive definite if the above inequality is strict.

Given a, b ∈ R we use the notation aIn ⪯ A ⪯ bIn to indicate the
fact that for every λ ∈ eig(A) we have a ≤ λ ≤ b.

Definition 1.2. The function ∥ · ∥ : Rn −→ R is a norm on Rn if

22 Preliminaries

i) ∥x∥ ≥ 0 for every x ∈ Rn, and ∥x∥ = 0 if and only if x = 0

ii) ∥ax∥ = |a|∥x∥ for every a ∈ R,x ∈ Rn

iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for every x,y ∈ Rn

Inequality iii) is referred to as triangular inequality. The following,
called reversed triangular inequality, holds for every norm and every
x,y:

∥x− y∥ ≥ |∥x∥ − ∥y∥|
We will use the following vector and matrix norms:

∥x∥2 =

(
n∑

i=1

x2
i

)1/2

∥x∥∞ = max
i=1:n

|xi|

∥A∥2 =
(
λmax(A

⊤A)
)1/2

∥A∥∞ = max
i=1:n

m∑
j=1

|aij|

For every x ∈ Rn and A ∈ Rn×m symmetric, the following inequal-
ities hold

∥x∥∞ ≤ ∥x∥2 ≤ n1/2∥x∥2
λmin(A)∥x∥2 ≤ ∥Ax∥2 ≤ λmax(A)∥x∥2

Moreover the norms above are sub-multiplicative. That is, for
every A,B ∈ Rn×n we have

∥AB∥2 ≤ ∥A∥2∥B∥2 ∥AB∥∞ ≤ ∥A∥∞∥B∥∞.

Given two vectors x,y ∈ Rn we have the following inequality, re-
ferred to as Cauchy-Schwartz inequality :

x⊤y ≤ ∥x∥∥y∥

1.1 Linear Algebra, Real Analysis and
Graph Theory 23

Definition 1.3. Given a sequence {xk}∞k=0 ⊂ Rn we say that {xk} is

i) bounded if there exists M ∈ R such that ∥xk∥ ≤ M for every
k ∈ N0

ii) Cauchy if for every ε > 0 there exists k̄ ∈ N0 such that ∥xs−xl∥ ≤
ε for every s, l ≥ k̄.

iii) convergent if there exists x∗ such that limk→+∞ xk = x∗. That is,
if for every ε > 0 there exists k̄ ∈ N0 such that ∥xk − x∗∥ ≤ ε for
every k ≥ k̄

Lemma 1.1. Given a sequence {xk}∞k=0 ∈ Rn we have that

1. {xk} is convergent if and only if it is a Cauchy sequence

2. if {xk} converges to x∗ ∈ Rn then all its subsequences also con-
verge to x∗.

Definition 1.4. Given a sequence {xk}∞k=0 ⊂ Rn and a point x̄ ∈ Rn,
we say that x̄ is an accumulation point of {xk} if for every open subset
C ⊆ Rn such that x̄ ∈ C, we have that xk ∈ C for infinitely many
values of k ∈ N0.

Lemma 1.2. Given a sequence {xk}∞k=0 ∈ Rn we have that if {xk} is
bounded then it has at least one accumulation point. Moreover, if x̄
is an accumulation point of {xk}, then there exists a subsequence of
{xk} that converges to x̄. That is, there exists K ⊆ N0 infinite subset
such that limk∈K xk = x̄.

Definition 1.5. Consider a sequence {xk}∞k=0 ⊂ Rn such that xk con-
verges to x∗ ∈ Rn as k tends to +∞ and assume that there exist q ≥ 1
and C ≥ 0 such that

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q

= C.

24 Preliminaries

We say that the convergence is linear if q = 1 and C ≥ 1, superlinear
if q ∈ (1, 2), and quadratic if q = 2.

Definition 1.6. Given a sequence {xk}∞k=0 ⊂ Rn such that xk con-
verges to x∗ ∈ Rn as k tends to +∞, we say that the convergence is
R-linear if there exist {εk}∞k=0 ⊂ R such that such that for every index
k large enough

∥xk − x∗∥ ≤ εk

and εk converges to 0 linearly.

Given A ∈ Rn×n nonsingular and b ∈ Rn, consider the linear
system

Ax = b (1.1)

and the sequence {x}∞k=0 generated by the following{
x0 ∈ Rn

xk+1 = Mxk + d
(1.2)

where M ∈ Rn×n and d ∈ Rn. We say that x∗ ∈ Rn is a fixed point of
(1.2) if

x∗ = Mx∗ + d

and that (1.2) is a fixed point method for the solution of the linear
system (1.1) if Ax∗ = b. The following theorem states sufficient condi-
tions for the convergence of (1.2) and provides a bound to the distance
of xk from x∗.

Theorem 1.1. Given M ∈ Rn×n and d ∈ Rn, if λmax(M) < 1 then
for every choice of x0 ∈ Rn the sequence {xk}∞k=0 generated by (1.2)
converges to the fixed point x∗. Moreover, for every iteration index k
we have

∥xk+1 − x∗∥ ≤ λmax(M)∥xk − x∗∥.

1.1 Linear Algebra, Real Analysis and
Graph Theory 25

Given a linear system (1.1) several fixed-point methods have been
developed in literature to find the solution, depending on the proper-
ties of the coefficient matrix A. We report here two examples that will
be relevant in the following chapters.

Assume that A ∈ Rn is a nonsingular matrix with nonzero diagonal
entries and let us consider the splitting A = D − B, where D is the
diagonal matrix D = diag(a11, . . . , ann). The Jacobi method is defined
by (1.2) with

M = D−1B =: MJ

d = D−1b.
(1.3)

Equivalently, at iteration k, we define xk+1
i for i = 1, . . . , n as follows:

xk+1
i = − 1

aii

n∑
j=1,j ̸=i

aijx
k
j + di.

From Theorem 1.1 we know that the Jacobi method converges lin-
early to the solution of (1.1) if λmax(D

−1B) < 1 which is a condition
satisfied, for example, by diagonally dominant matrices. To speed up
convergence and extend the class of matrices for which the method is
convergent, Jacobi Overrelaxation method (JOR) introduces the re-
laxation parameter ω ∈ R and defines the sequence {xk}∞k=0 as in (1.2)
with

M = ωD−1B + (1 − ω)I

d = D−1b.

Component by component, the k-th iteration of JOR is given by

xk+1
i = (1 − ω)xk

i −
ω

aii

(
n∑

j=1,j ̸=i

aijx
k
j + bi

)
, i = 1, . . . , n. (1.4)

If the matrix A is symmetric and positive definite, we can prove that
the sequence {xk} generated by JOR method converges to the solution

26 Preliminaries

of (1.1) for every choice of ω such that

ω ∈
(

0,
2

λmax(MJ)

)
,

where the matrix MJ is defined as in (1.3).
Given two matrices A ∈ Rn×m and B ∈ Rp×q we denote with A ⊗ B
the Kronecker product of A and B. That is

A⊗B =

a11B . . . a1mB
...

...
an1B . . . anmB

 ∈ Rnp×mq

Definition 1.7. Given a matrix A ∈ Rn×n with aij ≥ 0 for every
i, j = 1, . . . , n we say that A is:

i) row-stochastic if
∑n

j=1 aij = 1 for every row index i;

ii) column-stochastic if
∑n

i=1 aij = 1 for every column index j;

iii) doubly-stochastic if it is both row and column-stochastic.

Lemma 1.3. If A ∈ Rn×n is a row (resp. column) stochastic matrix
then |λi(A)| ≤ 1 for every i = 1, . . . , n, λmax = λ1 = 1 and e ∈ Rn is
a right (resp. left) eigenvector of A for the eigenvalue 1.

In this thesis we will generally consider smooth real valued func-
tions. Given a function f : Rn −→ R we say that it is continuously
differentiable if for every i = 1, . . . , n the partial derivative ∂xi

f exists
and is continuous everywhere in Rn. Analogously, we say that f is
twice continuously differentiable, or smooth, if ∂xi

∂xj
f exists and is

continuous everywhere in Rn for i, j = 1, . . . , n. Given a twice con-
tinuously function f : Rn −→ R we denote with ∇f(x) ∈ Rn and

1.1 Linear Algebra, Real Analysis and
Graph Theory 27

∇2f(x) ∈ Rn×n the gradient and the Hessian matrix of f respectively.
That is, for every i, j = 1, . . . , n

∇f(x)i =
∂

∂xi

f(x), ∇2f(x)ij =
∂2

∂xi
∂xj

f(x).

Given a continuously differentiable f : Rn −→ Rm, with f(x) =
(f1(x), . . . , fm(x))⊤ we denote with Jf (x) ∈ Rn the Jacobian matrix
of f , defined as follows

Jf (x) =

∇f1(x)⊤

...
∇fm(x)⊤

 ∈ Rm×n.

That is, for every i = 1, . . . ,m and every j = 1, . . . , n we have

Jf (x)ij =
∂

∂xj

fi(x).

We will often use the notation J(x) when it is clear that the Jacobian
is referred to a given function.

Definition 1.8. Given a function f : Rn −→ Rm and a constant
L ≥ 0 we say that f is L-Lipschitz continuous if for every x,y ∈ Rn

we have
∥f(x) − f(y)∥ ≤ L∥x− y∥

Definition 1.9. Given a function f : Rn −→ R, f is convex if for
every x,y ∈ Rn and every α ∈ [0, 1] we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).

Definition 1.10. Given a differentiable function f : Rn −→ R and a
constant µ > 0 we say that f is µ-strongly convex if for every x,y ∈ Rn

we have
f(y) ≥ f(x) + ∇f(x)⊤(y − x) +

µ

2
∥y − x∥2

28 Preliminaries

Lemma 1.4. Assume that the function f is given by

f(x) =
m∑
i=1

fi(x), with fi : Rn −→ R.

If for every i = 1, . . . ,m the function fi is Li-Lipschitz continuous
with Li ≥ 0 then f is Lipschitz continuous with constant L =

∑m
i=1 Li.

Analogously, if fi is µi-strongly convex for every i, then f is µ-strongly
convex with µ =

∑m
i=1 µi.

Lemma 1.5. Given a twice continuously differentiable function f :
Rn −→ R, the following properties hold

1. the Hessian matrix ∇2f(x) is a symmetric;

2. if ∇f is L-Lipschitz continuous, then for every x ∈ Rn we have
that

λmax

(
∇2f(x)

)
≤ L;

3. f is µ-strongly convex if and only if

λmin

(
∇2f(x)

)
≥ µ;

We have the following results, referred to as first and second order
Taylor expansion, respectively.

Theorem 1.2. If f : Rn −→ R is continuously differentiable then for
every x,d ∈ Rn we have

f(x + d) = f(x) +

∫ 1

0

∇f(x + td)⊤d dt

and there exists s ∈ [0, 1] such that

f(x + d) = f(x) + ∇f(x + sd)⊤d.

In particular, we have

f(x + d) = f(x) + ∇f(x + d)⊤d + O(∥d∥2). (1.5)

1.1 Linear Algebra, Real Analysis and
Graph Theory 29

Theorem 1.3. If f : Rn −→ R is twice continuously differentiable
then for every x,d ∈ Rn we have

∇f(x + d) = ∇f(x) +

∫ 1

0

∇2f(x + td)d dt

and there exists s ∈ [0, 1] such that

f(x + d) = f(x) + ∇f(x + d)⊤d +
1

2
d⊤∇2f(x + sd)d. (1.6)

The following theorem, which is an adaptation of a classical result
in control theory [13] and is usually referred to as Small Gain Theorem,
is widely used in the convergence analysis of optimization method
in the distributed setting [47, 48, 24] and will be the basis of the
results that we present in Chapter 3. Given a sequence of vectors
x := {xk}∞k=0 ⊂ Rn, a norm ∥ · ∥ on Rn, and two constant δ ∈ (0, 1)
and K ∈ N0 we define the following quantities

∥x∥δ,K = max
k=0,1,...,K

{
1

δk
∥xk∥

}
∥x∥δ = sup

k≥0

{
1

δk
∥xk∥

}
.

One can notice that, since 0 < δ < 1, proving that ∥x∥δ is bounded
implies that ∥xk∥ goes to zero at least as fast δk.

The version of the theorem that we state here assumes that two
sequences are given, but the same result can be extended to the case
of an arbitrary large number of sequences.

Theorem 1.4. [13] Let x = {xk}∞k=0, y = {yk}∞k=0 be two sequences
in Rn and assume that there exists δ ∈ (0, 1), γ1, γ2 ≥ 0 such that

30 Preliminaries

γ1 · γ2 ≤ 1 and for all K ∈ N0 the following inequalities hold

∥x∥δ,K ≤ γ1∥y∥δ,K + w1,

∥y∥δ,K ≤ γ2∥x∥δ,K + w2,

then

∥x∥δ ≤ w1γ2 + w2

1 − γ1γ2

and limk→∞ xk = 0 R-linearly.

We now introduce a few definition and results in graph theory,
which will be important when considering the underlying communica-
tion network in the distributed framework.

Definition 1.11. We define an undirected graph G as the couple (V,E)
where V ⊂ N and E ⊆

{
{u, v} | u, v ∈ V

}
.

Definition 1.12. We define a directed graph G as the couple (V,E)
where V ⊂ N and E ⊆ V× V.

Given a graph (directed or undirected) G, we refer to V and E as
the set of vertices and edges of G, respectively.

Definition 1.13. We say that a network G = (V,E) is simple if each
edge appears at most once in E.

Equivalently, an undirected graph can also be defined as a directed
graph G = (V,E) such that for every (i, j) ∈ E we also have (j, i) ∈ E.
For this reason, from now on we will use the notation (i, j) to indicate
the edge between node i and node j, also in case the network G is
undirected.

Definition 1.14. Given an undirected network G = (V,E), for every
i ∈ V, we denote with Ni the set of neighbors of node i. That is
Ni = {j ∈ V such that (i, j) ∈ E}. We define the degree of i, denoted
with deg(i), as the cardinality of Ni.

1.1 Linear Algebra, Real Analysis and
Graph Theory 31

If the graph is directed we can define two neighbors and two degrees
for each node, taking into account the direction of the edges.

Definition 1.15. Given an undirected (resp. directed) graph G =
(V,E) and two nodes i, j ∈ V we define a (directed) path of length
L from i to j as an ordered sequence (v1, . . . , vL) such that vl ∈ V

for every l, v1 = 1, vL = j and for every l = 1 : L − 1 we have
(vl, vl+1) ∈ E.

Definition 1.16. If G is a directed network, we say that it is strongly
connected if for every i, j ∈ V there exists a directed path from i to j.
We say that G is fully strongly connected if for every i, j ∈ V we have
(i, j) ∈ E. That is, if there is an edge in both direction between any to
nodes in the graph.

Definition 1.17. If G is an undirected network, we say that it is
connected if for every i, j ∈ V there exists a path between i and j.
We say that G is fully connected if for every i, j ∈ V we have (i, j) ∈ E.

Definition 1.18. Given a graph G = (V,E) we define the distance
between two nodes i, j ∈ V as the length of the shortest (directed) path
between i and j. We also define the diameter of the graph as the largest
distance between two nodes in G.

Definition 1.19. Given two graphs with the same set of nodes G1 =
(V,E1), G2 = (V,E2) we define the composition between G1 and G2 as
G = G2 ◦ G1 = (V,E) with

E := {(j, i) ∈ V2 | ∃ s ∈ V such that (j, s) ∈ E1, (s, i) ∈ E2}.

That is, there is an edge from j to i in G2 ◦ G1 if we can find a path
from j to i such that the first edge of the path is in G1 and the second
edge is in G2.

32 Preliminaries

This definition can be extended to finite sequences of graphs of
arbitrary length.

Given a graph G = (V,E) with |V| = n, if G is undirected and
simple, then it is possible to find a symmetric matrix W ∈ Rn×n such
that W is doubly stochastic, and for every i, j = 1, . . . , n, wij ̸= 0
if and only if (i, j) ∈ E. If G is connected, then we also have that
λ1(W) = 1 and |λi(W)| < 1 for every i = 2, . . . , n.

1.2 Centralized Optimization

In this section we review the basic concepts and methods in nonlin-
ear optimization. When not stated otherwise, for the results in this
Section we refer to [50].

Given a set C ⊆ Rn and a function f : Rn −→ R we consider the
problem of minimizing f over the set C. That is, we want to compute

f ∗ = min
x∈C

f(x). (1.7)

The goal of an optimization method is to find a point x∗ that
realizes the minimum of the function f . That is, x∗ ∈ X∗ with X∗

defined as

X∗ = arg min
x∈C

f(x) := {x ∈ C |f(x) = f ∗}.

In this thesis we focus on unconstrained optimization. That is, we
assume that C = Rn and therefore we want to solve

f ∗ = min
x∈Rn

f(x). (1.8)

Definition 1.20. Consider f : Rn −→ R and a point x ∈ Rn. We say
that x∗ is a global minimizer of f if f(x∗) ≤ f(x) for every x ∈ Rn

1.2 Centralized Optimization 33

We say that x∗ is a local minimizer of f if there exists a neighbourhood
N of x∗ such that f(x∗) ≤ f(x) for every x ∈ N.
We say that x∗ is a strict global (resp. local) minimizer if it is a global
(resp. local) minimizer and the inequalities above are strict.

Definition 1.21. If f is a continuously differentiable function f :
Rn −→ R, x∗ ∈ Rn is a stationary point of f if ∇f(x∗) = 0.

The following theorems give necessary and sufficient conditions for
a point x∗ to be a local minimizer of the function f .

Theorem 1.5 (Necessary Conditions). Given f : Rn −→ Rn and
x∗ ∈ R. If f is continuously differentiable in a neighborhood of x∗,
and x∗ is a local minimizer of f then ∇f(x∗) = 0. Moreover, if f is
twice continuously differentiable in a neighborhood of x∗, then we also
have that the Hessian ∇2f(x∗) is positive semi-definite.

Theorem 1.6 (Sufficient Conditions). Given f twice continuously dif-
ferentiable, if a point x∗ ∈ Rn is such that ∇(x∗) = 0 and ∇2f(x∗) is
positive definite, then x∗ is a strict local minimizer of f .

In general we will focus on problems where the objective function f
is twice continuously differentiable and (strongly) convex. In this case,
the following theorem guarantees that problem (1.8) is equivalent to
finding a point where the gradient of f vanishes.

Theorem 1.7. If f is a convex function, then all local minimizers of
f are also global minimizers. Moreover, is f is continuously differen-
tiable, then all stationary points are global minimizers of f .

In this work we consider iterative for methods for the solution of
(1.8). That is, algorithms that, starting from a given initial guess
x0 ∈ Rn generate a sequence of iterates {xk}∞k=0 that converges to a

34 Preliminaries

solution x∗ of (1.8). For all the methods that we consider, the sequence
{xk}∞k=0 is generated as follows{

x0 ∈ Rn

xk+1 = xk + αkd
k

(1.9)

where dk ∈ Rn and αk ≥ 0. We refer to dk and αk and as the direction
and the step size (or step length) at iteration k, respectively. Any
iterative method of this form is characterized by the specific choice
of the step size and the direction. That is, we define a method by
specifying how αk and dk are computed at each iteration. Regarding
the choice of dk we will see here two main classes of methods: Gradient
and Newton’s method. We will also discuss a few strategies for the
choice of the step size αk.

1.2.1 Choice of the direction dk

Let us assume that f is continuously differentiable and, given a point
xk, let us consider the first order Taylor expansion (1.5) of f around
xk:

f(xk + αdk) = f(xk) + α∇f(xk)⊤dk + α2O
(
∥dk∥2

)
.

It is easy to see that if ∇f(xk)⊤dk < 0 then for α small enough, we
will have

f(xk + αdk) < f(xk).

That is, if at iteration k the direction dk is such that ∇f(xk)⊤dk < 0,
then the value of the function f at the current iterate xk can be re-
duced along the direction dk. A vector dk that satisfies this property
is called a descent direction for f at xk, and most methods of the form
(1.9) assume the direction dk to be descent.

1.2 Centralized Optimization 35

The most simple choice for the descent direction is dk = −∇f(xk),
which defines Gradient Descent method. With this choice for dk and
assuming that the step size is fixed at each iteration, we can prove the
following result.

Theorem 1.8. Assume that f is a continuously differentiable convex
function f : Rn −→ R and that ∇f is L-Lipschitz continuous, and
let {xk} be the sequence generated by (1.9) with dk = −∇f(xk) and
αk = α for every k. If α ≤ 1/L then xk converges linearly to a solution
of (1.8).

Gradient Descent method with fixed step size is widely used in
many practical application because of its simplicity and because, since
it only requires first order derivatives and no additional computation
for the choice of the step size αk, every iteration is very cheap. How-
ever, it is in general slow, in the sense that it may require many itera-
tion to find a solution with good accuracy. First of all, depending on
the considered function f , the first order Taylor expansion may not be
a good local approximation of the function f , meaning that the direc-
tion dk may not be very good. Moreover, the choice of taking a fixed
step size also poses some issues: on the one hand the bound 1/L that
ensures convergence in Theorem 1.8 may be extremely small, causing
the method to preform a very large number if the initial guess x0 is far
from the solution, on the other hand choosing a larger α may cause
the sequence {xk} to diverge. Later in this section we will discuss a
strategy for the computation of the step size that, by considering the
value of the function and its derivatives along the direction dk, ensures
global convergence of the method, while allowing longer steps at some
iterations.

When the objective function f is twice continuously differentiable,
more sophisticated choices of the descent direction dk can be obtained

36 Preliminaries

by looking at the second order Taylor expansion (1.6). Given xk ∈ Rn

we consider the following approximation of f around xk:

f(xk + d) ≈ mk(d) = f(xk) + ∇f(xk)⊤d +
1

2
d⊤∇2f(xk)d (1.10)

and we compute the direction dk at iteration k by minimizing the
quadratic function mk. That is, we take

dk
N = arg min

d∈Rn

mk(d). (1.11)

It is easy to see that, if the Hessian ∇2f(xk) is positive definite, then
(1.11) has a unique solution, given by

dk
N = −∇2f(xk)−1∇f(xk). (1.12)

The method defined by (1.9) with direction dk = dk
N is called New-

ton’s method.
Compared to Gradient Descent, Newton’s method is known for being
generally fast, in the sense that it usually converges with a small num-
ber of iterations. In particular, with suitable regularity assumptions
on the function f , it achieves local quadratic convergence. However,
depending on the considered function f and the dimension n of the
problem, there may be some issues. First of all, in order to compute
the Newton direction dK

N at each iteration one has to compute all sec-
ond order derivatives and to solve a linear system of size n, which may
cause each iteration of the method to become computationally expen-
sive, especially for problems of large dimension. Secondly, in order for
dk
N to be a descent direction, the matrix ∇2f(xk) has to be positive

definite at each iteration. If the Hessian is singular or not positive
definite, the direction dk is not well defined, and even in case it is
positive definite, if at some iteration we have λmin(∇2f(xk)) is close
to zero, the linear system could become difficult to solve in practice

1.2 Centralized Optimization 37

and the method could become unstable.
To go around this second issue, the Hessian matrix in the local model
(1.10) is often replaced by a matrix Bk ∈ Rn×n which is purposefully
chosen in such a way that it is both a good approximation of the
true Hessian ∇2f(xk), but also has good spectral properties, so that
the system dk = −B−1

k ∇f(xk) is well-conditioned. Methods of this
kind are referred to as Quasi-Newton methods. Several strategies for
the computation of the matrix Bk have been proposed in literature
that retain the good convergence properties of the classical Newton’s
method.
While replacing the true Hessian ∇2f(xk) with the approximation Bk

makes Quasi-Newton methods suitable for problems where the Hes-
sian of the objective function may be singular or nearly singular, they
still require a linear system of size n to be solved at each iteration. A
widely used strategy to reduce the per-iteration cost of Newton and
Quasi-Newton methods and make them suitable for problems of large
dimension, is to compute the direction dk by solving the linear systems
∇2f(xk)dk = −∇f(xk) or Bkd

k = −∇f(xk) only approximately, up
to a controlled accuracy. Also in this case, conditions can be posed
on the accuracy for the computation of the direction dk, that ensure
local fast convergence of the methods.

1.2.2 Selection of the Step Size

We now discuss a few choices for the step size αk that will be relevant
in the following chapters.
We saw that for gradient method, taking the step size constant at
each iteration is a viable option, provided such a constant is small
enough (namely, smaller than the inverse of the Lipschitz constant
of the gradient of the objective function). However, we also noticed
possible issue with this kind of choice: on the one hand the step size
that ensures convergence could be small, causing the method to need

38 Preliminaries

a very large number of iterations to arrive at the solution; on the other
hand, the constant L is usually unknown, and working with a larger
step size may cause the method to diverge.
In general we saw that, whenever dk is a descent direction, for αk

small enough we have

f(xk + αkd
k) < f(xk). (1.13)

That is, we can always find a value of the step size that decreases
the value of the objective function. However, it can be proved that, in
general, a simple decrease condition like (1.13) is not enough to ensure
the convergence of the sequence to a solution of the problem. On the
other hand, given any direction dk, the optimal choice for the step size
αk would be the value that minimizes f along dk, i.e.

αk = arg min
α∈R>0

φ(α), with φ(α) = f(xk + αdk). (1.14)

This choice ensures that at each iteration we decrease the value of
the objective function as much as possible along the current direction.
However, computing such a value of the step size requires the solution
of the additional optimization method (1.14) at each iteration, and
it is usually too expensive to be applied in practice. In order for an
iterative method to work and be practicable we need a way to com-
pute the step size that does not require excessive computation, ensures
sufficient decrease in the objective function and at the same time also
ensures that the step size is not too small.

A main strategy for the selection of the step size is line search with
Armijo and Wolfe condition, which we will now briefly describe. Given
two constants 0 < c1 < c2 < 1 we choose αk such that the following
two conditions hold

f(x + αkd
k) ≤ f(xk) + c1αk∇f(xk)⊤dk (1.15)

1.2 Centralized Optimization 39

∇f(x + αkd
k)⊤dk ≥ c2αk∇f(xk)⊤dk (1.16)

The first condition ensures sufficient decrease of the objective func-
tion, while the second one, usually referred to as curvature condition,
prevents the step size from becoming too small. The following lemma
shows that, with suitable assumptions over the function f , we can al-
ways find an interval of values of the step size that satisfies both the
conditions above.

Lemma 1.6. Assume that f is a continuously differentiable function
f : Rn −→ R, xk ∈ Rn, f is bounded from below on the semi-line
{xk +αdk|α > 0} and 0 < c1 < c2 < 1. Then there exists and interval
I ⊂ R>0 such that conditions (1.15) and (1.16) hold for every α ∈ I.

To avoid multiple evaluations of the derivative of f at each itera-
tion, the second condition is usually not checked directly, and instead
a backtracking strategy is used, combined with the sufficient decrease
condition (1.15). The strategy consists in considering a decreasing
sequence of possible values of the step sizes, until one is found that
satisfies the Armijo condition or a given lower bound for the step size is
reached. The following algorithm describes the backtracking strategy
in more detail.

Algorithm 1.1 (Backtracking).
Input: 0 < tmin < t0, q ∈ (0, 1), c1 > 0, xk, dk.

1: set m=0
2: while tm ≥ tmin and f(x + tmd

k) > f(xk) + c1tm∇f(xk)⊤dk do
3: set tm+1 = qtm
4: end while
5: return tm

That is, starting from a trial step size t0 > 0, we check if Armijo
condition holds. If it does, we set αk = t0 and we proceed with the
method, otherwise, we compute a new trial step t1 = qt0 for some

40 Preliminaries

q < 1 and we check the condition again. The strategy proceeds in
this way until a step tm that satisfies Armijo condition is found, or
until the step size becomes too small. While this backtracking strat-
egy doesn’t ensure, theoretically, that the curvature condition will be
satisfied, since a lower bound on the step size is imposed directly by
choosing tmin, it is usually assumed in practice.

The following theorem shows how Armijo and Wolfe conditions can
be used to analyze the behaviour of line-search methods.

Theorem 1.9. Consider f : Rn −→ R and let {xk}∞k=0 be the sequence
generated by a method of the form (1.9) where, for every iteration index
k, dk is a descent direction for f at xk and αk satisfies conditions
(1.15) and (1.16). Assume that f is bounded from below and that
there exists an open set Ω ⊆ Rn such that

{x ∈ Rn|f(x) ≤ f(x0)} ⊂ Ω,

f is continuously differentiable on Ω and ∇f is L-Lipschitz continuous
on Ω. Then, denoting with θk the angle between dk and ∇f(xk) we
have

+∞∑
k=0

cos(θk)2∥∇f(xk)∥2 < +∞. (1.17)

Inequality (1.17) implies that

lim
k→+∞

cos(θk)∥∇f(xk)∥ = 0

and therefore, if the descent direction dk is defined in such a way that
there exists σ > 0 such that cos(θk) ≥ σ for every k, then ∇f(xk)
tends to zero as k tends to infinity. That is, if the step size satisfies
conditions (1.15), (1.16) and the direction dk does not tend to be or-
thogonal to the gradient, the sequence of gradients {∇f(xk)} tends to

1.2 Centralized Optimization 41

zero. In particular, every accumulation point of the sequence {xk}∞k=0

is a stationary point of f.

When the Hessian matrix ∇2f(xk) is positive definite, we already
noticed that the Newton direction defined in (1.11) is a descent direc-
tion and therefore the results of the previous theorem hold for New-
ton’s method. The following theorems show that, under suitable reg-
ularity assumptions on the objective function, after a finite number
of iteration of Newton’s method, the full step size αk = 1 is always
accepted. Moreover, we have that if the sequence starts close enough
to a stationary point, then the method converges quadratically.

Theorem 1.10. Assume that the same conditions of Theorem 1.9
hold, and additionally that the function f is strongly convex. Let
{xk}∞k=0 be the sequence generated by (1.9) with dk = dk

N Newton direc-
tion and αk computed like in Algorithm 1.1 with t0 = 1 and c1 ∈ (0, 1).
There exists c1 small enough and k̄ ∈ N0 such that αk = 1 for every
k ≥ k̄.

Theorem 1.11. Assume that f is a twice continuously differentiable
function f : Rn −→ R, let x∗ ∈ Rn be a stationary point of f and let
{xk}∞k=0 be the sequence generated by (1.9) with dk = dk

N and αk = 1
for every k. Assume also that there exists r > 0 such that the Hessian
matrix ∇2f is positive definite and L-Lipschitz continuous on B(x∗, r).
Then there exists ε > 0 such that if x0 ∈ B(x∗, ε) the sequence {xk}
converges to x∗ quadratically. Moreover, {∇f(xk)} converges to 0
quadratically.

Theorems 1.9 - 1.11 together show that, when combined with the
line search strategy that we discussed, for convex functions Newton’s
method exhibits both global convergence and local quadratic conver-
gence.

42 Preliminaries

We already remarked that, when the dimension n of the problem
is large, computing the Newton direction at each iteration could be
prohibitively expensive. Moreover, when the current point xk is far
away from the solution, it may not be necessary to use the exact
Newton direction, as we could achieve similar results using a cheaper
approximation. This is the idea behind Inexact Newton method: at
each iteration of the algorithm we take dk as a vector that solves the
linear system inexactly, up to a given accuracy, and then perform the
line search procedure described above. More formally, we take dk ∈ Rn

such that

∥∇2f(xk)dk + ∇f(xk)∥ ≤ ηk∥∇f(xk)∥, with ηk ∈ [0, 1). (1.18)

We can prove the following result, which is the analogous of Theorem
1.11 for Newton’s method.

Theorem 1.12. Let f be a twice continuously differentiable function
and let x∗ be a stationary point of f such that ∇2f(x∗) is positive
definite. Assume that the Hessian matrix ∇2f(x) is positive definite in
a neighborhood of x∗, and let {xk} be the sequence generated by (1.9)
with αk = 1 and dk satisfying (1.18) for a sequence {ηk} such that
0 ≤ ηk ≤ η̄ < 1. Then there exists ε > 0 such that if x0 ∈ B(x∗, ε),
we have

i) for η̄ small enough the sequence xk converges to x∗ linearly

ii) if lim
k→+∞

ηk = 0 then the convergence is superlinear

iii) if ηk = η∥∇f(xk)∥δ for some η > 0, δ ∈ (0, 1] then the conver-
gence is of order 1 + δ

In particular we notice that by choosing ηk proportional to ∥∇f(xk)∥
we recover the local quadratic convergence result that we stated for

1.2 Centralized Optimization 43

exact Newton’s method.

In [52] the authors propose a strategy for the choice of the step size
in Newton’s method that tries to reduce the number of function eval-
uation required by the line-search strategy that we discussed, while
still ensuring both global convergence and local fast convergence. The
details regarding this choice of the step length will be presented in
Chapter 3, together with its extension to Inexact Newton method and
to the distributed framework.

Regarding Gradient method, so far we considered the fixed step
size and the line-search strategy. In [2, 53, 54] the authors propose the
Spectral Gradient method. That is, a gradient based that incorporate
second order information into the choice of the step size. Given the
current point xk and the direction dk = −∇f(xk) the step size is given
by αk = σ−1

k , where σk is defined as follows

σk =
(sk−1)⊤yk−1

(sk−1)⊤sk−1

with sk−1 = xk − xk−1 and yk−1 = ∇f(xk) − ∇f(xk−1). The spec-
tral step size corresponds to applying a Quasi Newton method with
approximate Hessian matrix Bk = σ−1

k I, where at each iteration σk

is chosen as the scalar that best approximates the secant equation
Bks

k = yk. That is, σk = arg minσ∈R ∥σ−1sk−1 − yk−1∥.

1.2.3 Least-Squares Problem

We now briefly focus on the following unconstrained optimization
problem, that will be relevant in Chapter 6:

min
x∈Rn

F (x) with F (x) =
1

2

m∑
j=1

rj(x) =
1

2
∥R(x)∥22 (1.19)

44 Preliminaries

where for every j = 1, . . . ,m rj : Rn → R and R = (r1, . . . , rm) ∈
Rm. The functions rj and R are usually referred to as residuals, and
residuals vector respectively.
The derivatives of F are given by

∇F (x) =
m∑
j=1

rj(x)∇rj(x) = J(x)⊤R(x)

∇2F (x) =
m∑
j=1

∇rj(x)∇rj(x)⊤ +
m∑
j=1

rj(x)∇2rj(x)

= J(x)⊤J(x) +
m∑
j=1

rj(x)∇2rj(x)

In particular, it is easy to see that if the residual at the solution x∗ of
(1.19) is zero, then the second term in the expression for the Hessian
vanishes, and ∇2F (x∗) = J(x∗)⊤J(x∗). More in general, J(x)⊤J(x)
provides a good approximation of the Hessian whenever rj(x) is small.
This is particularly relevant in practice because it implies that the Hes-
sian matrix of the objective function can be approximated using only
first order derivatives. Classical methods for least-square problems
(1.19) rely on this particular property of ∇2F .

The first method we consider, called Gauss-Newton method, is an
iterative method of the form 1.9, with dk = dk

GN given by

J(xk)⊤J(xk)dk
GN = −J(x)⊤R(xk). (1.20)

Notice that the Gauss-Newton direction dk
GN is the minimizer of the

following local model for F at xk

mk(d) = F (xk) + ∇f(xk)⊤d +
1

2
d⊤J(xk)⊤J(xk)d. (1.21)

dk
GN an approximation of the Newton direction dk

N (1.12), obtained
replacing the Hessian matrix ∇2F (x) with J(x)⊤J(x) and therefore

1.2 Centralized Optimization 45

it is generally cheaper to compute than dk
N . Moreover, the matrix

J(x)⊤J(x) is always positive semi-definite and in particular dk
GN is a

descent direction whenever J(xk) is nonsingular.
The following theorems show the global and local convergence

properties of Gauss Newton method.

Theorem 1.13. Let {xk}∞k=0 be the sequence generated by Gauss-
Newton method with αk satisfying the line search conditions (1.15),
(1.16). Let us assume that rj is continuously differentiable and L-
Lipschitz continuous for every j = 1, . . . ,m, that the level set Ω =
{x ∈ Rn | F (x) ≤ f(x0)} is bounded and that that there exists γ > 0
such that ∥J(x)z∥ ≥ γ∥z∥ for every z ∈ Rn and every x ∈ N where N

is a neighborhood of Ω. Then

lim
k→+∞

J(xk)⊤R(xk) = 0.

Theorem 1.14. Let us denote with x∗ the solution of (1.19) and,
given l > 0 let us denote with Bl = {x ∈ Rn | ∥x − x∗∥ ≤ l}. Let
us assume that rj is continuously differentiable and L-Lipschitz con-
tinuous in Br for every j = 1, . . . ,m, that F (x∗) = 0, and that J(x)
is nonsingular on Bl. There exists ε > 0 such that if x0 ∈ Bε, the
sequence {xk}∞k=0 generated by Gauss-Newton method with αk = 1
converges to x∗ quadratically.

Theorem 1.14 shows that, despite using an approximation of the
Hessian matrix, under suitable assumptions Gauss-Newton method
achieves the same convergence rate as Newton method.

In order to be well defined, the Gauss-Newton method needs the
Jacobian to be nonsingular at all considered points. Moreover, even
when J(xk) is nonsingular, if λmin(J(xk)⊤J(xk)) is small the system
(1.20) may be ill-conditioned and therefore it may be hard to com-
pute the direction dk. The Levenberg-Marquardt (LM) method solves

46 Preliminaries

this issue by adding a regularization term to the coefficient matrix of
(1.20). That is, the LM direction at a generic iteration k is defined as

(J(xk)⊤J(xk) + µkIn)dk
LM = −J(x)⊤R(xk)

for some value of µk > 0. We notice that for µk = 0 the method be-
comes equivalent to the Gauss-Newton method discussed above, while
if µk is large compared to ∥J(x)∥ the direction dk

LM tends to be close
to the gradient direction. In general, the definition of the damping
parameter µk is fundamental from both the theoretical and the prac-
tical point of view, and several choice have been proposed in literature
depending on the assumptions on the considered problem.

In the original version of LM method, the damping parameter µk

actually plays a double role: the one mentioned above of regulariz-
ing the linear system that arises at each iteration of Gauss-Newton
method, and that of ensuring global convergence. The idea behind
this choice of µk is the following. Let us assume that xk is the current
point, dk

LM is the LM direction computed with the current value of
the damping parameter µk, and x̂ is the candidate new step, defined
as x̂ = xk + dk

LM . We compare the decrease in the objective function
with the decrease in the local model (1.21), then we accept/reject the
candidate step and update µk according to the comparison. That is,
given mk as in (1.21), we consider the ratio

ρ =
F (xk) − F (x̂)

mk(0) −mk(dk
LM)

.

If ρ is small, the new point is rejected, µk is increased and a new
direction dk

LM is computed. If ρ is large enough, the candidate step
is accepted and we take µk+1 ≤ µk with the inequality being strict
or not depending again on the value of ρ. For this choice of the pa-
rameter µk and αk = 1 for every k one can prove convergence results

1.2 Centralized Optimization 47

completely analogous to those stated above for Gauss-Newton method.

In particular, for the described method to achieve the same con-
vergence properties of Gauss-Newton, one has to assume that the Ja-
cobian is nonsingular and that ∥R(x∗)∥ = 0. These assumptions can
be restrictive: many practical applications require the solution of a
non-zero residual least squares problem, and the Jacobian matrix is
often singular or nearly singular in practice. Different modifications
of LM method have been proposed in literature that employs different
updating scheme for the sequence {µk} and ensure good convergence
properties with weaker assumptions [31, 3, 18, 19, 71].

1.2.4 Constrained Optimization

We now briefly consider problem (1.7), in the case where C, referred to
as feasible set is the subset of points of Rn that satisfy a given system
of equations. That is, we assume

C = {x ∈ Rn | hj(x) = 0, j = 1, . . . ,m}
where for every i = j, . . . ,m hj is a real-valued function on Rn.

Analogously to the unconstrained case, we give the following defi-
nition

Definition 1.22. A point x∗ ∈ Rn is a local solution of (1.7) if
there exists a neighbourhood N of x∗ such that f(x∗) ≤ f(x) for every
x ∈ N ∩ C.
A point x∗ ∈ Rn is a strict local solution if it is a local solution and
the inequality is strict.

Given a problem of this form, we define the Lagrangian function
L : Rn × Rm :−→ R as

L(x, s) = f(x) +
m∑
j=1

sjhj(x).

48 Preliminaries

The Langrangian function can be used to describe necessary and suf-
ficient optimality condition for problem (1.7).

Theorem 1.15 (Necessary Conditions). Assume that for every j =
1, . . . ,m f, hj : Rn −→ R are continuously differentiable functions,
that x∗ is a local solution of (1.7) and that the vectors ∇h1(x

∗), . . . ,
∇hm(x∗) are linearly independent. Then x∗ is a KKT point for (1.7).
That is, hj(x

∗) = 0 for j = 1, . . . ,m and there exists s∗ ∈ Rm such
that

∇xL(x∗, s∗) = 0.

If f and hj are twice continuously differentiable for every j = 1, . . . ,m
the we also have

v⊤∇2
xxL(x∗, s∗)v ≥ 0 ∀v ∈ C(x∗, s∗)

where C(x∗, s∗) = {v ∈ Rn | ∇hj(x
∗)⊤v = 0, j = 1, . . . ,m}.

Theorem 1.16 (Sufficient Conditions). Assume that for every j =
1, . . . ,m f, hj : Rn −→ R are twice continuously differentiable func-
tions and that x∗ ∈ C. If there exists s∗ ∈ Rm such that{

∇xL(x∗, s∗) = 0

v⊤∇2
xxL(x∗, s∗)v > 0 ∀v ∈ C(x∗, s∗),v ̸= 0

then x∗ is a strict local solution for (1.7).

Several methods have been developed in literature for the solution
of constrained problems, depending on the properties of the objec-
tive function f and the feasible set C.We describe here the quadratic
penalty method, that will be relevant in the next chapters.

Assume that we want to solve

min f(x) s.t. hj(x) = 0 j = 1, . . . ,m (1.22)

1.2 Centralized Optimization 49

with f, hj : Rn −→ R for j = 1, . . . ,m. Given β > 0 we define the
quadratic penalty function Φβ as follows

Φβ(x) = f(x) +
1

2β

m∑
j=1

hj(x)2.

The second term in Φβ, referred to as the penalty term, is a mea-
sure of the constraint violation, weighted by the penalty parameter
β. The penalty term is 0 at x ∈ Rn if all constraints are satisfied
(that is if hj(x) = 0 for every j) and it becomes larger the further x is
from satisfying the constraint. Intuitively, solving the unconstrained
optimization problem

min
x∈Rn

Φβ(x) (1.23)

gives and approximation of the solution of (1.22), with the quality of
the approximation depending on the penalty parameter β: if β is very
large, minimizing Φβ is similar to minimizing f over the whole Rn,
while the constraint violation becomes more relevant as β decreases.
On the one hand, taking a smaller β ensure a better approximation
of the solution of (1.22) as in ensures that the solution of (1.23) will
be close to satisfy the constraints. On the other hand, typically the
condition number of problem (1.23) increases as β approaches 0, thus
solving the problem for β small may be difficult.

The idea behind the Quadratic Penalty method is that of solving
a sequence of unconstrained problems with objective function Φβs for
{βs} decreasing, taking as initial guess for the (s+ 1)-th problem, the
approximate minimizer of Φβs .

Algorithm 1.2 (Quadratic Penalty Method).
Input: ε0, β0 > 0, x̂0 ∈ Rn

1: for s = 1, 2, . . . do

50 Preliminaries

2: use an iterative method starting at x̂s−1 to find x̂s such that

∥Φβs(x̂
s)∥ ≤ εs

3: choose βs+1 < βs

4: choose εs+1 ≤ εs
5: end for

The sequence of penalty parameters βs can be predefined or up-
dated in an adaptive fashion, depending on the progress made by the
algorithm and on the difficulty observed in solving the problem at line
2.

Theorem 1.17. Let us assume that f, hj are continuously differen-
tiable functions and that {x̂s} is the sequence generated by Algorithm
1.2 with lims→+∞ εs = lims→+∞ βs = 0. Let x̄ be a limit point of
{x̂s}. If x̄ is not feasible, then it is a stationary point of the con-
straint violation

∑m
j=1 hj(x)2. If x̄ is feasible and and that the vectors

∇h1(x̄), . . . ,∇hm(x̄) are linearly independent, then x̄ satisfies the first
order necessary optimality conditions for (1.22).

We notice that the penalty function can also be defined as

Φβ(x) = βf(x) +
1

2

m∑
j=1

hj(x)2

where β > 0 as the same meaning discussed above. This formulation
will be relevant in the following chapters.

Chapter 2

Distributed Optimization

In this chapter we introduce the concept of distributed optimization,
as well as some important methods in the field. In Section 2.1 we
define the computational framework that we are considering, we dis-
cuss the main challenges that it presents, and the main requirements
that method have to satisfied in order to be effective in this context.
In Section 2.2 we provide a literature review of distributed methods,
with particular focus on those algorithms that are most relevant for
the results presented in Chapters 3-5.

2.1 Distributed Framework

In distributed optimization, a set of computational agents connected
by a given communication network is required to solve an optimization
problem, while having only partial information regarding the objec-
tive function and communicating with the other nodes according to
the architecture of the network. A typical problem in this framework
is distributed learning [6], where the goal is to estimate a set of de-
cision variables based on the observations in a given data set, that

52 Distributed Optimization

happens to be distributed among different computational agents.
When designing and studying optimization algorithms in the distributed
framework, one is typically concerned, as in the classical centralized
case, with convergence to the solution, order of convergence and com-
putational cost, but also with the amount of information that the
agents share with each other, which is referred to as communication
traffic. In general, communication traffic is treated analogously to
computational cost: since sharing variables along the network is a
time-consuming and energy-consuming operation, one has to try to
keep the traffic as low as possible, and we are interested in studying
how the communication grows with the number of variables and the
number of agents in the network. Moreover, we can expect that there
would be some trade-off involving computational and communication
cost: if one could assume that communication traffic is inessential
(that is, that the nodes can instantly communicate any amount of
information), and algorithm could share all relevant quantities (e.g.
function values and derivatives) in such a way that all nodes work
with complete information, and then typical method from classical
optimization could be applied in this context directly. The fact that
communication traffic needs to stay low is one of the main reasons
why methods need to be developed, that are designed specifically for
the distributed framework.

We can distinguish two main types of network architectures, that
lead to the development of two main classes of methods:

• server/worker: one of the agents (the server) is able to commu-
nicate with all other nodes in the network, while the remaining
agents typically cannot communicate with each other. This is
the standard setting for parallel methods and federated learning.
In this framework, the server typically handles the the combina-
tion and transmission of the results of the computation carried

2.1 Distributed Framework 53

out by the workers, and it may manage the synchronization of
the network. In some applications (e.g. federated learning) each
worker holds privately a local dataset and performs local opti-
mization steps by using its partial knowledge of the problem and
the information received by the server. In other cases the parti-
tioning of the dataset and the distribution of the subsets of data
to the nodes is handled by the server, which also assigns to the
workers computational tasks to be carried out in parallel.

• decentralized: none of the computational agents plays a par-
ticular role, and the communication network does not usually
have any particular topology. In general, one cannot assume
the network to be fully connected, nor that there exists a node
that is able to communicate with all others. In this setting, all
nodes perform both the local optimization and the aggregation
step, by combining the results received from the agents in their
neighborhood.

We begin by focusing on the decentralized framework. Consider
the following unconstrained optimization problem

min
y∈Rn

f(y), with f(y) =
N∑
i=1

fi(y) (2.1)

where for every i = 1, . . . , N fi is a real-valued function of Rn. We
assume that a set of N computational agents is given, such that for
every i = 1, . . . , N agent i holds privately the function fi, and that the
agents can exchange information with each other according to a given
communication network G. That is, agents i and j can communicate
if and only if there is an edge in G between node i and node j.
Given the network G = (V,E) and assuming for the moment that it
is simple, undirected, connected and with self-loops at every node, we
can define a matrix W ∈ RN×N such that W is symmetric, doubly

54 Distributed Optimization

stochastic, and respects the sparsity of the the graph G. That is, wij =
0 for every i, j = 1, . . . , N with i ̸= j, such that (i, j) /∈ E. We refer to
W as consensus matrix for the network G. A typical choice for W is
the Metropolis matrix [65], whose components are defined as follows:

wij = 0 ifj /∈ Ni

wij =
1

1 + max{deg(i), deg(j)}
ifj ∈ Ni

wii = 1 −
∑
j ̸=i

wij.

(2.2)

We assume that each agent i holds a local version xi ∈ Rn of the
vector of variables and we denote with x ∈ RnN the aggregated vector
and with F the function F : RnN −→ R associated with the given f .
That is

x =

x1
...
xN

 ∈ RnN , F (x) =
N∑
i=1

fi(xi). (2.3)

It is immediate to see that problem (2.1) is equivalent to the fol-
lowing constrained problem

min
x∈RnN

F (x), s.t. xi = xj, ∀ i, j = 1, . . . , N.

Assuming that W is a consensus matrix associated with the net-
work G, we define W = W⊗In. Since W is a doubly stochastic matrix,
we have that Wx = x if and only if xi = xj for every i, j = 1, . . . , N
and therefore the problem can be further reformulated as

min
x∈RnN

F (x), s.t. (I −W)1/2x = 0. (2.4)

In Section 1.2.4 we discussed the penalty formulation of constrained
problems. Given β > 0, we define the penalty function for (2.4) as

2.1 Distributed Framework 55

follows

min
x∈RnN

Φβ(x) with Φβ(x) = βF (x) +
1

2
x⊤(I −W)x. (2.5)

An important concept when discussing distributed optimization
methods that work within this setting is that of consensus. That is,
the constraint (I−W)1/2x = 0 being satisfied. In the methods that we
consider, each node defines a local sequence of iterates {xk

i }∞k=0 ⊂ Rn

and, ideally, all the local sequences should converge to the same point.
Regarding consensus we can distinguish two main classes of methods:

• exact: methods in this class enforce the consensus constraint
directly, either by applying a primal-dual scheme for the solution
of (2.4) or by employing a two-step iteration that combines an
optimization phase and a consensus phase and ensures that the
sequence of local iterates converges to the average of the iterates
at all nodes

• inexact: methods in this class apply to the penalty reformula-
tion of problem (2.4). The accuracy of the solution computed by
these methods, both in terms of optimality and consensus error
is regulated by the penalty parameter.

In the following section, we will discuss methods from both of this
classes.

At the beginning of this section we mentioned two main types of
network architecture. While the distinction between the server/worker
and the decentralized case is neat and gives origin to different compu-
tational frameworks, problems and strategies, when considering either
of these cases it is important to distinguish a few additional cases,
depending on the nature of the network and how it may change over
time. In particular, we distinguish the three following situations:

56 Distributed Optimization

• constant network: all nodes are working at all times and the
communication network remains the same during the execution
of the algorithm

• time-varying network: all nodes are working at all times but
the communication network may change from one iteration to
another. In the decentralized framework this means that an
agent may be able to communicate with a different subset of
nodes at each iteration, while in the server/worker case it implies
that at a given iteration some of the workers may not be able
to communicate with the server. This framework typically mod-
els situations where some failure in communication between the
nodes occurs at some point during the execution of the method,
and the case where the agents move in space, so that devices
that may have been in each other communication range at the
beginning may move further away from each other during the
execution of the algorithm.

• asynchronous: there is no coordinating clock among the agents
so they do not execute the iterations of the considered algorithm
in a coordinated fashion. This framework is also used to model
the case where only a subset of nodes is active at each iteration.
In particular, it is not assumed that all nodes update their local
variables at the same time.

This thesis mainly focuses on the decentralized framework, and
it discusses method for both the constant and the time-varying net-
work case. The server/worker framework is considered in Chapter
6, where we present an optimization method that exploits a paral-
lelization strategy to solve least squares problems of large dimension.
Given the specifical application that we consider, for the server/worker
framework we are only interested in the constant network case.

2.2 Literature Review 57

2.2 Literature Review

We consider the same computational framework defined in the pre-
vious section. In particular we assume that we have the following
optimization problem

min
y∈Rn

f(y), with f(y) =
N∑
i=1

fi(y) (2.6)

and a network G = (V,E) of computational agents such that agent i
holds the function fi and can communicate directly with all its neigh-
bors in G. Moreover, we assume that each agent holds a local vector
of variables xi ∈ Rn and we define the function F : RnN → R as in
(2.3).

Typical applications that require an optimization problem to be
solved in this context are sensor network localization [30], distributed
control [45] and distributed learning [6], and many methods have been
developed in literature for the solution of problems of this form.

2.2.1 First Order Method

A basic method for the solution of problem (2.6) in the decentralized
framework is Distributed Gradient (DG) [49], which also provides the
structure for many first order methods. Every iteration of the method
consists of two phases: optimization and consensus. In the optimiza-
tion phase, each agents performs a step in the direction of the local
gradient (thus reducing the value of the local objective function), while
in the consensus phase each agent computes a weighted average of the
local iterate and the local iterates received from its neighbors. The
generic k-th iteration of Distributed Gradient method, at node i is de-
fined by the following two equations, corresponding to the two phases

58 Distributed Optimization

described above. {
x̂k+1
i = xk

i − αk∇fi(x
k
i)

xk+1
i =

∑N
j=1wijx̂

k+1
j

(2.7)

While the global vector xk holds all the local variables xk
i and

therefore it is not available at any node during the execution of the
algorithm, to ease the notation we can rewrite (2.7) as follows

xk+1 = Wxk − αk∇F (xk),

where F : RnN → R is defined in (2.3). We notice that sequence
generated by DG method with fixed step size αk = β for a given
β > 0 is the same as the sequence generated by centralized gradient
method with step size 1 applied to the penalty problem (2.5).

It is proved in [49] that, with suitable assumptions over the function
f and the underlying communication network G, the sequence gener-
ated by (2.7) achieves sublinear convergence to a solution of (2.6) in
the case of diminishing step sizes and linear inexact convergence if the
step size αk = α is fixed, where the accuracy reached by the method
depends on the size of the step size α.

In [35] the authors show that a gradient-based method with the
above structure and fixed step size, cannot in general achieve conver-
gence to the exact solution of (2.6), unless additional information is
shared among the agents.
In the same paper the authors propose a method that follows the
same structure of DG. However, instead of using as direction at each
iteration the local gradient, they propose a gradient tracking strat-
egy: each node holds an additional vector of variables ski , initialized
as s0i = ∇fi(x

0
i) that is updated and shared at each iteration in order

to capture information about the gradient of the aggregated objective

2.2 Literature Review 59

function. The resulting method, presented also in [47], is referred to
here as DIGing and is defined as follows:

x0 ∈ RnN

s0 = ∇F (x0) ∈ RnN

xk+1 = Wxk − αks
k

sk+1 = Wsk + ∇F (xk+1) −∇F (xk)

Before we state the convergence results for this method, we state
the following assumptions over the local objective function fi and the
network G, which will be similar for all the methods that we consider
here.

Assumption A1. (Regularity Assumptions) For every i = 1, . . . , N ,
fi is a continuously differentiable function fi : Rn −→ R and there
exist 0 < µi ≤ Li such that

• ∇fi is Li-Lipschitz continuous

• fi is µi-strongly convex

Assumption A2. (Communication Network) The network G = (V,E)
is undirected, simple and connected, and it has self-loops at every node
(i.e. (i, i) ∈ E for every i = 1, . . . , N).

Assumption A3. (Consensus Matrix) The matrix W ∈ RN×N is
such that

• if (i, j) ∈ E then wij > 0

• if i ̸= j and (i, j) /∈ E then wij = 0

• W is symmetric and doubly stochastic

60 Distributed Optimization

We notice that Assumption A1 implies that the aggregated objec-
tive function f is strongly convex and that the gradient ∇f is Lips-
chitz continuous, with constants given by µ =

∑
i µi and L =

∑
i Li,

respectively.
We also define the following quantities, relevant for the convergence

analysis of the methods that we consider.

x̄k =
1

N

N∑
i=1

xk
i ∈ Rn

gk =
1

N

N∑
i=1

fi(x
k
i) ∈ Rn

zk =

∥sk − e⊗ gk∥
∥xk − e⊗ x̄k∥√
N∥x̄k − y∗∥

 ∈ R3.

(2.8)

In particular, the three components of vector zk provide a measure of
the different kinds of errors: zk3 is the distance of the average iterate x̄
from the true solution of (2.6), zk2 is the consensus error and it is equal
to zero if and only if the local iterate is the same at each node, and
zk1 measures how well the local vector ski approximates the aggregated
gradient gk.

Theorem 2.1. [35] Let Assumptions A1-A3 hold and consider the
sequence generated by (2.8) with x0

i ∈ Rn and z0i = ∇fi(x
0
i) for every

i = 1, . . . , N and fixed step-size αk = α for every k, for some α > 0.
Let us define the following matrix, whose entries depend on the choice
of α:

M(α) =

σ + αL L(αL + 2) αL2

α λ2 0
0 αL τ

with τ = max{|1 − αµ|, |1 − αL|} and σ = max{λ2(W),−λN(W)}
Then we have

2.2 Literature Review 61

i) for every k ∈ N0 the vector zk satisfies the following inequality

zk+1 ≤ M(α)zk ≤ λmax(M(α))kz0.

ii) if α is such that λmax(M(α)) < 1 then ∥sk−e⊗gk∥, ∥xk−e⊗x̄k∥,
and ∥x̄k − y∗∥ tend to 0 R− linearly.

Lemma 2.1. [35] With the same assumptions of Theorem 2.1, we
have the following bounds for λmax(M(α))

i) if α = µ
L2

(
1−σ
6

)2
then

λmax(M(α)) ≤ 1 − 1

2

(
µ(1 − σ)

6L

)2

< 1

ii) if α < 1/L then

λmax(M(α)) ≤ max

{
1 − αµ

2
, σ + 5

√
αL2

µ

}

In particular, we notice that point i) of Lemma 2.1 ensures the ex-
istence of a step size such that the sequence generated by the method
converges. Moreover, we see that, depending on the value of the reg-
ularity constants and σ, the step size 1/L that ensures convergence
of gradient method in the centralized framework does not necessarily
ensure convergence of the method in this case.

In [47] the authors propose a modification of DG, called EXTRA
method, that ensures convergence by adding a correction term that
depends on the previous iterates and that balances the fact that the

62 Distributed Optimization

local gradients ∇fi do not vanish at a solution of (2.1). Extra method
is defined by the following equations

x0 ∈ RnN

x1 = Wx0 − αk∇F (x0)

xk+2 = (I + W)xk+1 − W̃xk − α
(
∇F (xk+1) −∇F (xk)

) (2.9)

with W = W ⊗ I and W̃ = W̃ ⊗ I where W, W̃ are consensus matrices
for the network G that satisfy the following assumptions

Assumption A3’. The matrices W, W̃ ∈ RN×N are such that

• if (i, j) ∈ E then wij, w̃ij > 0

• if i ̸= j and (i, j) /∈ E then wij = w̃ij = 0

• W = W⊤, W̃ = W̃⊤

• Ker(W − W̃) = Span(e), Span(e) ⊆ Ker(I −W)

• W̃ is positive definite and W ⪯ W̃ ⪯ 1
2
(I + W)

We notice that if W ∈ Rn×n satisfies Assumption A3 and W̃ =
1
2
(I + W), then Assumption A3’ holds.

For this method, the authors prove a similar convergence results
to that of (2.8). That is, they prove that if assumptions A1, A2 and
A3’ hold, then for a fixed step size α small enough, the sequence xk

i

converges R-linearly to the solution y∗ of (2.6).

In [24] a unified analysis of a class of first-order distributed methods
is presented, which in particular includes and extends (2.8) and (2.9)
presented above. We assume that at each iteration node i holds two

2.2 Literature Review 63

vectors xk
i and uk

i in Rn and that the global vectors xk, uk ∈ RnN ,
are updated according to the following rules:

x0 ∈ RnN

u0 = 0 ∈ RnN

xk+1 = Wxk − α(uk + ∇F (xk))

uk+1 = uk + (W− I)(∇F (xk) + uk −Bkxk)

(2.10)

where Bk ∈ RnN×nN is given by Bk = bI or Bkb = W for some con-
stant b ≥ 0. We notice that for Bk = 0 and Bk = 1

α
W we get the

method described in (2.8) and (2.9), respectively.

Theorem 2.2. [24] Assume that A1-A3 hold and let {xk}∞k=0 be the
sequence generated by (2.10) starting from a given initial guess x0 ∈
RnN . If the step size α satisfies the following inequality with C =
(L + ∥B∥) and σ = max{λ2(W),−λN(W)}

α ≤ min

{
(1 − σ)µ

19L2
,
(1 − σ)2µ

192LC

}
then xk

i converges to y∗ R-linearly for every i = 1, . . . , N.

As we already noticed, the assumption that the communication
network stays the same at each iteration is very restrictive in practice
and therefore it is interesting to generalize the convergence results of
distributed methods to the the case of time-varying networks. In [59]
the convergence of several first-order methods was generalized to the
case of a time-varying network, provided that the network is connected
at each iteration. In the same paper, the authors also show that the
EXTRA method (2.9) may diverge if the network is not the same at
each iteration.

64 Distributed Optimization

In [47] the same method as in [35] is presented and analyzed in
the time-varying case. We denote with Gk = (V,Ek) the underlying
network at iteration k and we assume that for every k we define a
consensus matrix Wk. In (2.8) we replace W with Wk = W k ⊗ I. We
make the following assumptions over {Gk} and {W k}.

Assumption A2”. For every k ∈ N0 the network Gk = (V,Ek) is
undirected and simple, with self-loops at every node

Assumption A3”. For every k ∈ N0 the matrix W k satisfies assump-
tion A3 for the network Gk. Moreover, there exists m ∈ N such that
for every k ∈ N0

δ := sup
k≥m−1

λmax

(
W k

m − 1

N
ee⊤

)
< 1

where W k
m = W kW k−1 . . .W k−m+1.

When the networks Gk are undirected, Assumption A3” is satisfied
if for every k the matrix W k is defined as in (2.2) and there exists
m̄ ∈ N such that the graph Gk

m̄ = (V,Ek
m̄) is connected for every k,

where

Ek
m =

m̄−1⋃
j=0

Ek−j.

In particular, we remark that the communication network Gk is not
required to be connected at all iterations.

Theorem 2.3. [47] Let Assumptions A1 and A2” hold and assume
that {xk}∞k=0 is the sequence generated by (2.8) with fixed step size
αk = α, Wk = Wk ⊗ I and {W k}∞k=0 satisfying A3”. If the step size α
is such that

α ≤ 2(1 − δ)2

µC
with C = 3m2L

µ

(
1 + 4

√
NL/µ

)

2.2 Literature Review 65

and m, δ given by assumption A3”, then xk
i converges R-linearly to y∗

for every i = 1, . . . , N.

In [55] an accelerated gradient-based method for the time-varying
directed case is proposed, with weaker assumptions over the underly-
ing networks. In [14] the authors considered the problem of minimizing
f(y)+G(y) over a closed and convex set K, where f is a possibly non-
convex function as in (2.6) and G is a convex nonseparable term, and
they propose a gradient-tracking method that achieves convergence in
the case of time-varying directed jointly-connected networks for dimin-
ishing synchronized step sizes. In [56] the method proposed in [14] is
extended with constant step-sizes to a more general framework while
in [58] R-linear convergence is proved for [56] with strongly convex
f(y). A unifying framework of these methods is presented in [69] and,
for the case of constant and undirected networks, in [1].

In all the decentralized methods we considered so far the sequence
of the step-sizes is assumed to be fixed and coordinated among all
the agents. In [48], [70], [67], [68], and [73] the case of uncoordinated
time-constant step sizes is considered, that is, each node has a different
step-size but these step sizes are constant in all iterations.

In [25] the authors propose a modification of (2.8), with step-sizes
varying both across nodes and iterations. That is, they consider the
method given by

x0 ∈ RnN

s0 = ∇F (x0)

xk+1 = Wxk − Aks
k

sk+1 = Wsk + ∇F (xk+1) −∇F (xk),

(2.11)

where Ak = diag(αk
1I, . . . , α

k
NI) is the matrix of local step sizes at

iteration k.

66 Distributed Optimization

Theorem 2.4. [25] If Assumptions A1-D2 hold and {xk}∞k=0 is the
sequence generated by (2.11), then there exists αmin < αmax such that
if αmin ≤ αk

i ≤ αmax for every k ∈ N0 and every i = 1, . . . , N the
sequence converges R-linearly to y∗.

The theorem states that there always exists an interval of step sizes
[αmin, αmax] such that the considered method converges, provided that
all step sizes falls inside the interval, independently of how the step
sizes are chosen by each node at each iteration. In the same paper,
the authors propose the following choice for the step size αk

i , which is
an adaptation to the distributed case of the spectral gradient method
described in Chapter 1. Such a choice is given by αk

i = (σk
i)−1 with

σk
i given by

σk
i =P[σmin,σmax]

(
(dk−1

i)Tyk−1
i

(dk−1
i)Tdk−1

i

+ σk−1
i

n∑
j=1

wk
ij

(
1 −

(dk−1
i)Tdk−1

j

(dk−1
i)Tdk−1

i

))

where dk−1
i = xk

i −xk−1
i , yk−1

i = ∇fi(x
k
i)−∇fi(x

k−1
i), σmin = 1/αmax,

σmax = 1/αmin and, given a closed set U , PU denotes the projection
onto U.
Theorem 2.4 ensures that there exist σmin, σmax such that the method
(2.11) with αk

i as above converges. In [25] the authors also provide
numerical results that show the effectiveness of the method when com-
pared to order first order method with fixed step size.

2.2.2 Second Order Methods

In [74] the idea behind [35] of sharing the local gradients at each iter-
ation with the goal of approximating the global gradient, is extended
to Newton method: at each iteration each node computes the local
direction by solving a linear system involving the local Hessian matrix
and a right hand side that combines the local gradient and information
received from the neighbors at the previous iteration.

2.2 Literature Review 67

The method introduced in [74], referred to as Newton Tracking is
defined as follows.

x0 = 0 ∈ RnN

u0 = (∇2F (x0) + εI)
−1∇F (x0) ∈ RnN

xk+1 = xk − uk

uk+1 =
(
∇2F (xk+1) + εI

)−1
((

∇2F (xk) + εI
)
uk

+ ∇F (xk+1) −∇F (xk) + α(I −W)(2xk+1 − xk)
)

where α, ε > 0. Equivalently, the update at node i is given by
xk+1
i = xk

i − uk
i

uk+1
i =

(
∇2fi(x

k+1
i) + εIn

)−1
((

∇2fi(x
k
i) + εIn

)
uk
i

+ ∇fi(x
k+1
i) −∇fi(x

k
i) + α(2xk+1

i − xk
i)

− α
∑N

j=1wij(2x
k+1
j − xk

j)
)

with x0
i = 0 ∈ Rn and u0

i =
(
∇2fi(x

k+1
i) + εIn

)−1∇fi(x
0
i) ∈ Rn.

Theorem 2.5. Let Assumptions A1-A3 hold and {xk}∞k=0 be the se-
quence generated by the method above for given values of α, ε > 0.
If α and ε are such that

α < ε− 4

λmin(I −W)

L2

µ

then xk
i converges R-linearly to y∗.

In [43] the authors propose a distributed version of classical Newton
method that relies on a truncated Taylor expansion of the inverse Hes-
sian matrix to compute distributedly an approximation of the Newton
direction, and employs a penalty formulation of the original problem
to ensure consensus among the nodes.

68 Distributed Optimization

Given β > 0, we consider the quadratic penalty reformulation of
problem (2.4). That is,

min
x∈RnN

Φβ(x) with Φβ(x) = βF (x) +
1

2
x⊤(I −W)x.

For i = 1, . . . , N and k ∈ N0 we define the following matrices and
vectors:

gk = ∇Φβ(xk) =

gk
1
...
gk
N

Hk = ∇2Φβ(xk) =

Hk
11 . . . Hk

1N
...

...
Hk

N1 . . . Hk
NN

 .

Notice that for i, j = 1, . . . , N we have

gk
i = β∇fi(x

k
i) + (1 − wii)x

k
i −

∑
j wijx

k
j

Hk
ij = −wijI for i ̸= j

Hk
ii = β∇2fi(x

k
i) + (1 − wii)I.

Moreover, we denote with Dk the block-diagonal matrix that has diag-
onal blocks equal to Hk

ii for i = 1, . . . , N , and we define B = Hk −Dk

(notice that B only depends on W so it is the same at each iteration).

Algorithm 2.1. [Network Newton]
Input: α > 0, M ∈ N0

Iteration k, node i:

1: compute gk
i and Dk

i

2: compute d
(0)
i = −(Dk

ii)
−1gk

i

3: for m = 0, . . . ,M − 1 do
4: share d

(m)
i with the neighbors

2.2 Literature Review 69

5: compute d
(m+1)
i = (Dk

ii)
−1
(∑

j Bijd
(m)
j − gk

i

)
6: end for
7: set dk

i = d
(M)
i

8: compute xk+1
i = xk

i + αdk
i

9: share xk+1
i with the neighbors

Linear convergence of the method is proved if assumptions A1-A3
hold, for a suitable choice of the step size α.

In [44] the same approximation strategy for the computation of the
direction is considered, but the authors propose the application of a
primal-dual strategy rather than solving the penalty problem. In [27]
the authors propose an inexact version of the method introduced in
[44].

All the second order methods we have seen so far achieve linear
convergence, provided that the underlying network is strongly con-
nected and constant in time. As remarked in [75], when considering
the distributed framework, there are two main issues that need to be
addressed in order to design a second order method that achieves su-
perlinear or quadratic convergence: exact consensus and choice of the
step size. Both the weighted averaging strategy [11] used in [74] and
the primal-dual scheme used by [44] only yield linear convergence of
the local vectors to the global consensus vector and therefore meth-
ods involving this strategies cannot achieve overall superlinear con-
vergence. On the other hand, it is know from the theory of second
order methods in the classical centralized framework that the choice
of the step size is of fundamental importance in order for a method to
achieve both global convergence and fast local convergence. However,
classical line search strategies, which effectively solve this issue in the
centralized framework, are not applicable in the distributed setting as
they require knowledge of the value of the global function at all nodes
and may require several evaluation at each iteration, which would be

70 Distributed Optimization

prohibitively expensive from the point of view of communication traf-
fic.

To overcome these obstacles, in [75] the authors propose a sec-
ond order method that achieves quadratic converges by employing a
finite-time communication strategy to share the necessary quantities
among the whole network, and the step size proposed in [52] for New-
ton method in the centralized case, which ensures both global conver-
gence and fast local convergence without requiring multiple function
evaluations at each iteration. Additional details about this choice of
the step size, including its derivation, are provided in Chapter 4.

Algorithm 2.2 (DSF).
Input: {Si}i=1:N messages at each node
Node i:

1: set I0i = {Si}
2: for k = 0, . . . , N − 1 do
3: for j ∈ Ni do
4: take S ∈ Ik−1

0 such that S was not received from node j and
not sent to node j at the previous iterations

5: send S to node j
6: end for
7: update IKi adding the messages received by the neighbors
8: end for

Assuming that every node starts with a local message Si, the pre-
vious algorithm ensures that after N−1 rounds of communication per
nodes, all node have the complete set of messages S1, . . . , SN .

Algorithm 2.3 (DAN).
Input: x0i = y ∈ Rn ∀i = 1, . . . , N, α > 0, M ∈ N0

Iteration k, node i:

1: compute gk
i = ∇fi(x

k) and Hk
ii = ∇2fi(x

k)

2.2 Literature Review 71

2: run DSF with Si = (gk
i , H

k
ii)

3: compute ḡk =
∑N

j=1 g
k
i

4: compute H̄k =
∑N

j=1H
k
ii

5: compute αk = min{1, µ
2

L
1

∥ḡk∥}
6: compute dk = (H̄k)−1ḡk

7: compute xk+1
i = xk

i + αdk

We notice that the step size and the direction are the same in all
nodes at each iteration and therefore, since all agents start with the
same initial guess, we have xk

i = xk
j for every i, j = 1, . . . , N and

for every k ∈ N0. Regarding the communication traffic, we notice that
DSF (Algorithm 2.2) ensures that the information held by each node is
transmitted to the whole network in a finite number of communication
rounds. Despite this fact, running DSF at each iteration for all the
local Hessian matrices may cause the communication traffic of DAN
algorithm to become quite large, making it not suitable for problems
of large dimensions. In the same paper the authors also propose a
version of DAN method that avoids sharing the full Hessian at each
iteration and works with a rank 1 approximation that significantly
reduces the communication cost of the method.

2.2.3 Linear Systems

Given a network of computational agents as described in the previous
part of the chapter, a matrix A ∈ Rn×n and a vector b ∈ Rn, we
consider the linear system

Ay = b (2.12)

where we assume that each node i holds a subset Ri ⊂ {1, . . . , n} of
the rows of the matrix A and the corresponding components of the
vector b.

72 Distributed Optimization

The problem of finding the solution of the linear system above can
clearly be reformulated as the problem of minimizing the sum of the
residuals in each equation. That is

y = arg min
y∈Rn

N∑
i=1

fi(y) with fi =
∑
j∈Ri

∥Ajy − bj∥2.

Since node i holds equation j of the system for j ∈ Ri, it holds the
function fi and therefore the methods from the previous subsections
can be used to solve (2.12). Moreover, several method have been de-
veloped specifically for the solution of linear systems in the distributed
setting [37, 46, 38, 64, 66, 36], while a survey of the methods is pre-
sented in [63]. In general, we can distinguish two classes of method.
In [46, 66] each node holds a local copy of a subset of the variables and
the sequence generated by each node converges to the corresponding
components of the solution. That is, when the algorithm terminates,
each node does not have the full solution. In [37, 38, 64, 36] each node
holds a local copy of the whole vector of variables and therefore, when
convergence is reached, each node has the full solution. Here we are
interested in the methods that achieve convergence to the full solution
at each node.

For every i = 1, . . . , N , let us denote with ni the number of equa-
tions held by node i and let us define the following quantities.

A[i] = (Aj)j∈Ri
∈ Rni×n, b[i] = (bj)j∈Ri

∈ Rni

Each node generates a sequence {xk
i }∞k=0 as follows.{

x0
i ∈ Rn such that A[i]x

0
i = b[i]

xk+1
i = xk

i − 1
mi
Pi

(
mix

k
i −

∑
j∈Ni

xk
j

)
where for every i = 1, . . . , N Ni is the neighborhood on i in the net-
work G, mi = |Ni| and Pi is the orthogonal projection over Ker(A[i]).

2.2 Literature Review 73

In [36] and [37] the authors prove that the method converges to the
solution of (1.1) for time-varying networks, provided that such solu-
tion exists unique and with suitable connectivity assumptions over the
sequence of networks.

Chapter 3

Time-Varying First Order
Methods

In this chapter, we consider the class of distributed first order methods
(2.10), presented in [24] in the case where the underlying communica-
tion network changes from iteration to iteration and each node employs
a different step size, that also changes through time.
Of special interest is the spectral gradient method (or Barzilai and
Borwein method). This method is very popular in centralized opti-
mization due to its efficiency, as reported in numerous studies, for
example [8, 15]. In general, the method avoids the famous zig-zag
behaviour of the steepest descent and converges much faster. The
method was first proposed by Barzilai and Borwein [2]. This reference
proves the method’s convergence for two-dimensional problems and
convex quadratic functions. The analysis is then extended to arbitrary
dimensions and convex quadratic functions by Raydan [53]. Minimiza-
tion of generic functions is considered in [54] in combination with a
nonmonomote line search. R-linear convergence for convex quadratic
functions has been proved in [9]. In summary, despite its excellent
numerical performance, spectral gradient methods are proved to con-

75

verge without any safeguarding lower and upper bounds on the step
size only for strongly convex quadratic costs. Convergence for generic
functions beyond convex quadratic is proved only under step size safe-
guarding, coupled with a line search strategy. Distributed variants
of spectral gradient methods and fixed network topologies are studied
in [25].
The main contributions, given in [39], are the following

• We prove that the methods proposed in [24], referred to here
(and also in [59]) as the unified EXTRA and the unified DIGing
are robust to time-varying directed networks and time-varying
uncoordinated step sizes, i.e., they converge R-linearly in this
setting. Up to now, it is only known that these methods converge
under static undirected networks [24] or time-varying networks
where the network is connected at each iteration [59]. These
methods have been previously considered only for time-invariant
coordinated step sizes.

• We prove that the method proposed in [25] is robust to time-
varying directed networks, which until now is only known to
converge for static, undirected networks.

• It is shown in [59] that the Extra method [57] may diverge over
time-varying networks, even when the network is connected at
every iteration. On the other hand, as we show here, the unified
Extra, a variant of Extra proposed in [24], is robust to time-
varying networks. Hence, our results reveal that the unified Ex-
tra can be considered as a mean to modify Extra and make it
robust.

• We provide a thorough numerical study and an analytical study
for a special problem structure that demonstrates that the unifi-
cation strategy in [24] and the spectral gradient-like step-size

76 Time-Varying First Order Methods

selection strategy in [25] exhibit a high degree of robustness
to time-varying networks and uncoordinated time-varying step-
sizes. More precisely, we show that these strategies converge,
when working on time-varying networks, for wider step-size ranges
than commonly used strategies such as constant coordinated
step-sizes and DIGing algorithmic forms. In addition, we show
by simulation that actually a combination of the unification and
the spectral step-size strategies further improves robustness.

This chapter is organized as follows. In Section 3.1 we describe the
computational framework that we consider and we present the meth-
ods that we analyse. In Section 3.2 we prove a convergence theorem for
the considered class of methods. In Section 3.3 we show analytically
and by simulation that the unification and spectral step-size selection
strategies increase robustness of the methods to time-varying networks
and uncoordinated step-sizes. We conclude the chapter with some in-
sights over the obtained results and comments on possible interesting
research directions.

3.1 The Model and the Class of Consid-

ered Methods

We consider the same computational setting of Chapter 2. That is,
we assume a set of computational agents is given, and we consider the
following optimization problem

min
y∈Rn

f(y), with f(y) =
N∑
i=1

fi(y) (3.1)

where for every i = 1, . . . , N node i holds the local function fi, and a
local vector of variables xi ∈ Rn.

3.1 The Model and the Class of Considered Methods 77

Given a sequence of matrices {Mk}k and m ∈ N, we define Mk
m as

follows {
Mk

0 = I

Mk
m := MkMk−1 . . .Mk−m+1

We assumed that at iteration k the N agents are the nodes of a given
network Gk = (V,Ek), and for every k we define a consensus matrix
for the network Gk. Our analysis is based on the following assumptions
over the objective function and the sequence of networks.

Assumption B1. (Regularity Assumptions) For every i = 1, . . . , N ,
fi is a continuously differentiable function from Rn to R and there
exist 0 < µi ≤ Li such that

• ∇fi is Li-Lipschitz continuous

• fi is µi-strongly convex

In particular this implies that f is µ-strongly convex with µ =∑
i µi and the gradient is L-Lipschitz continuous with L =

∑
i L,

which also imply that for every y ∈ Rn

µiI ⪯ ∇2fi(y) ⪯ LiI for i = 1, . . . , N

µI ⪯ ∇2f(y) ⪯ LI

Assumption B2. (Sequence of Networks) For every k ∈ N0, Gk =
(V,Ek) is a directed graph with self-loops at every node, and {W k}∞k=0 ∈
RN×N is such that

• W k is doubly stochastic

• if (i, j) ∈ Ek then wk
ij > 0

• wk
ij = 0 if i ̸= j and (i, j) /∈ Ek

78 Time-Varying First Order Methods

• there exists m ∈ N such that sup
k=0:m−1

νk < 1, where

νk = λmax

(
W k

m − 1

N
ee⊤

)
The assumptions above are the same as Assumption A1, A2”,A3”

that we saw for DIGing method in the previous chapter.

Remark 3.1. Assumption B2 does not require the underlying network
Gk to be connected at each iteration and can be satisfied by a sequence of
jointly connected networks, if the consensus matrix W k is chosen as the
Metropolis matrix, defined in (2.2). In more detail, the following can
be shown. Assume that the positive entries of the weight matrices Wk’s
are always bounded from below by a positive constant w- (including
also the diagonal entries, i.e., assume that the diagonal entries of Wk

are always greater than or equal to w). Furthermore, assume network
connectedness over bounded intercommunication intervals. That is,
for any fixed iteration k, consider the graph Gm

k = ({1, . . . , n}, Em
k),

Em
k = ∪k

ℓ=k−m+1Ek, whose set of links is the union of the sets of links
of graphs at time instances ℓ = k −m + 1, ..., k. Assume that Gm

k is
strongly connected, for every k. Now, it is easy to show that the above
assumptions imply that νmax

(
Wm

k − 1
n
ee⊤

)
< 1.

We assume that each node holds two local vectors of variables
xi,ui ∈ Rn and we define the aggregated vectors x,u and the aggre-
gated function F as

x =

x1
...
xN

 ∈ RnN , u =

u1
...

uN

 ∈ RnN , F (x) =
N∑
i=1

fi(xi). (3.2)

We consider the class of methods defined in (2.10), extended to
the case of time-varying network and time-varying uncoordinated step

3.1 The Model and the Class of Considered Methods 79

sizes. That is, we assume that each node generates two sequences
{xk

i }∞k=0, {uk
i }∞k=0, with x0

i ∈ Rn, u0
i = 0 and we assume that at each

iteration the following update is performed:{
xk+1 = Wkxk − Ak(uk + ∇F (xk))

uk+1 = uk + (Wk − I)(∇F (xk) + uk −Bkxk)
(3.3)

where Wk := (W k ⊗ I) ∈ RnN×nN , Ak = diag(αk
1I, . . . , α

k
nI) with

αk
i being the step-size for node i at iteration k and Bk is a symmetric

n×n matrix that respects the sparsity structure of the communication
network Gk and such that for every y ∈ Rn we have Bk(1⊗y) = c(1⊗y)
for some c ∈ R. Moreover, we assume that x0 ∈ RnN is an arbitrary
vector and u0 = 0 ∈ RnN .
For Bk = 0 and appropriate choice of the step-sizes αk

i we get the
method introduced in [25]. For Ak = αI, if Bk = bI or Bk = bW
we retrieve the class of methods analyzed in [24] while if Bk = 0 we
retrieve the DIGing method proposed in [47, 35]. For Ak = αI and
Bk = bW with b = 1

α
we have the EXTRA method [57], but the

analysis the we carry out in the following section requires the matrix
Bk to be independent on the step sizes and therefore it does not apply
to EXTRA method. In fact, it is known [59] that EXTRA method does
not converge in general for time-varying networks, even with stronger
assumptions on the sequence of networks than those we consider here.
In our analysis, we consider the case Bk = bI and Bk = bWk with
b nonnegative constant and αmin ≤ αk

j ≤ αmax for every k and every
j = 1, . . . , n for appropriately chosen safeguards 0 < αmin < αmax.

80 Time-Varying First Order Methods

3.2 Convergence Analysis

Let us denote with y∗ the solution of (3.1) and with x∗ the following
vector

x∗ :=

y∗

...
y∗

 ∈ RnN .

In this section, we prove that, under Assumptions B1 and B2, there
exist an interval [αmin, αmax] ⊂ R with 0 < αmin < αmax such that, the
sequence {xk}∞k=0 generated by (3.3) converges to x∗, provided that
the step size αk

i belongs to the interval for every i = 1, . . . , N and for
every k ∈ N0.

Given a vector v ∈ RnN , denote with v̄ the average v̄ = 1
N

∑N
j=1 vj ∈

Rn and with J the n×n matrix
(
I − 1

N
ee⊤

)
. Moreover, we define the

following quantities.

x̃k = xk − ex̄k ∈ RnN ,

ũk = uk + ∇F (x∗) ∈ RnN ,

qk = xk − x∗ = x̃k + eq̄k ∈ RnN .

To ease the notation, in the rest of this section we assume that
n = 1. In the general case the analysis proceeds analogously.
Since W k is doubly stochastic, we have that 1

N
ee⊤(W k−I) = 0. Using

this equality and the definition of uk+1 we get

ūk+1 =
1

N
ee⊤uk+1 =

=
1

N
ee⊤

(
uk + (W k − I)(uk + ∇F (xk) −Bkxk)

)
=

=
1

N
ee⊤uk = ūk

3.2 Convergence Analysis 81

and given that u0 = 0, we have

ūk = 0 for every k ∈ N0. (3.4)

Since x∗
i = y∗ for every index i, we have that

1

N
ee⊤∇F (x∗) =

1

N

N∑
i=1

fi(x
∗) =

1

N
∇f(y∗)

and therefore, from the definition of ũk, (3.4) and the fact that y∗ is
stationary point of the function f we get

1

N
ee⊤ũk =

1

N
ee⊤(uk + ∇F (x∗)) = ūk +

1

N
∇f(y∗) = 0. (3.5)

From Assumption B1, for every iteration index k there exists a matrix
Hk ⪯ LI such that

∇F (xk) −∇F (x∗) = Hk(xk − x∗). (3.6)

Lemma 3.1. [47] If the matrix sequence {W k}k satisfies assumption
A2, then for every k ≥ m we have∥∥JW k

my
∥∥ ≤ νk ∥Jy∥

Lemma 3.2. [51] If the function f satisfies assumption A1 and 0 <
α < 1

L
, then

∥y − α∇f(y) − y∗∥ ≤ τ∥y − y∗∥

where τ = max{|1 − αµ|, |1 − αL|}

The convergence result that we prove is based on the Small Gain
Theorem [13], stated in Section 1.1, which relies on the following def-
initions. Given an infinite sequence of vectors v := {vk}∞k=0 with

82 Time-Varying First Order Methods

vk ∈ Rn and two constant δ ∈ (0, 1) and K ∈ N0 we define the
following quantities

∥v∥δ,K = max
k=0,1,...,K

{
1

δk
∥vk∥

}
∥v∥δ = sup

k≥0

{
1

δk
∥vk∥

}
.

We will use the following technical Lemma to show that the se-
quences ∥q̄k∥ and ∥x̃k∥ satisfy the hypotheses of Theorem 1.4.

Lemma 3.3. Given b, µ, L ≥ 0, ν ∈ (0, 1) and n,m ∈ N, there exists
δ ∈ (0, 1) and 0 ≤ αmin < αmax such that the following conditions hold:

i) ν < δm;

ii) αmin

N
< 2

L
;

iii) 1 − µαmin + ∆L < δ;

iv) γβ2 < 1;

v) β3 < 1;

vi) β5γ
1−β3

< 1;

vii) β1+γβ2

1−γβ2
· β4+γβ5

1−β3−γβ5
< 1,

where

γ =
(b + L)C

δm − ν
, β1 =

Lαmax

δ − 1 + µαmin − ∆L
,

β2 =
∆

Lαmax

β1, β3 =
ν

δm
+ β4,

β4 = Lβ5, β5 =
Cαmax

δm
,

∆ = αmax − αmin, C =
δ(1 − δm)

1 − δ
.

3.2 Convergence Analysis 83

Proof. Take δm > ν and αmin < 2n
L

so that i) and ii) hold. For αmax >
αmin and close enough to αmin one can ensure that

αmax

αmin

< 1 +
µ

L
(3.7)

holds. By the previous inequality, we have 1 − µαmin + ∆L < 1 and
therefore, for fixed αmax and αmin we can always take δ ∈ (0, 1) such
that iii) is satisfied and i). still holds. Moreover, we can take αmin

arbitrarily small and αmax arbitrarily close to αmin without violating
conditions i)-iii). Notice that C = δ(1−δm)

1−δ
is an increasing function of

δ.
Let us now consider condition iv) given by

(b + L)C∆

(δm − ν)(δ − 1 + µαmin − ∆L)
< 1.

The left hand side expression is an increasing function of ∆ and it is
equal to 0 for ∆ = 0. Therefore, taking αmax close enough to αmin,
condition iv) holds.
Condition v) holds for αmax <

δm−ν
δmLC

.
Consider now condition vi),

(b + L)C2αmax

(δm − ν)(δm − ν)(δm − ν − LαmaxC)
< 1

The left hand side expression is an increasing function of αmax and
taking αmax small enough we conclude that the previous inequality
holds. Since we need αmax > αmin, in order to be able to take αmax

small, we need to take αmin small enough, but this can be done with-
out violating the previous conditions.

By definition, β2+γβ3

1−γβ3
and β5+γβ6

1−β4−γβ6
are also increasing functions of

αmax and ∆. Thus, we can apply the same reasoning that we applied
to iv) and vi) to get γ2 < 1 and γ3 < 1. In particular, we can take
αmin and αmax such that condition vii) holds. □

84 Time-Varying First Order Methods

We can now prove the following convergence result.

Theorem 3.1. Assume that B1 and B2 hold and let {xk} be the se-
quence generate by (3.3) with Bk = bW k or Bk = bI for any b > 0
or Bk = 0, and αmin ≤ αk

i ≤ αmax for every i = 1, . . . , N and every
k ∈ N0. Then there exists αmin < αmax such that the sequence {xk}
converges R-linearly to x∗.

Proof. Let us define ν = sup
k=0:m−1

νk < 1 where the sequence {νk} is

given in assumption B2, and take δ ∈ (0, 1), 0 ≤ αmin < αmax given
by Lemma 3.3. We prove that N1/2q̄k and x̃k satisfy the assumptions
of Theorem 1.4 thus ensuring R-linear convergence. That is, we will
prove that there exist γ2, γ3 ≥ 0 and w2, w3 ∈ R such that the product
γ2γ3 is smaller than 1 and the following inequalities hold

∥N1/2q̄∥δ,K ≤ γ2∥x̃∥δ,K + w2,

∥x̃∥δ,K ≤ γ3∥N1/2q̄∥δ,K + w3.
(3.8)

Since Bk = bI or Bk = bW k, we have Bkx∗ = bx∗, therefore
(W k − I)Bkx∗ = 0 and

(W k − I)Bkxk = (W k − I)Bk(xk − x∗) = (W k − I)Bkqk

For k ≥ m− 1, using (3.3), the previous equality and (3.6), we get

ũk+1 = uk+1 + ∇F (x∗) =

= uk + (W k − I)(uk + ∇F (xk) −Bkxk) + ∇F (x∗) =

= W k(uk + ∇F (x∗)) + (W k − I)(∇F (xk) −∇F (x∗))

− (W k − I)Bkxk =

= W kũk + (W k − I)Hkq
k − (W k − I)Bkqk.

Applying this equality recursively, we have

ũk+1 = W k
mũ

k−m+1 +
m−1∑
t=0

W k
t (W k−t − I)

(
Hk−t −Bk−t

)
qk−t. (3.9)

3.2 Convergence Analysis 85

By (3.5) and Lemma 3.1 we can bound the first term on the right
hand side,

∥W k
mũ

k−m+1∥ = ∥W k
mJũ

k−m+1∥ ≤ ν∥Jũk−m+1∥ =

= ν∥ũk−m+1∥

and by (3.6), the definition of Bk and the fact that W k is doubly
stochastic, we get the following inequality for each term of the sum

∥W k
t (W k−t − I)(Hk−t −Bk)qk−t∥ ≤ (L + b)∥qk−t∥.

Taking the norm in (3.9) and using the two bounds that we just found,
we have that for k ≥ m− 1

∥ũk+1∥ ≤ ν∥ũk−m+1∥ + (b + L)
m−1∑
t=0

∥qk−t∥. (3.10)

Notice that the above inequality also holds for the case Bk = 0, taking
b = 0. Multiplying both side of (3.10) by 1

δk+1 , taking the maximum
for k = −1 : k̄ − 1, and defining

ω̃1 = max
k=−1:m−1

{
1

δk+1
∥ũk+1∥

}
we get

∥ũ∥δk̄ = max
k=−1:m−1

{
1

δk+1
∥ũk+1∥

}
+ max

k=m:k̄

{
1

δk+1
∥ũk+1∥

}
≤ ν

δm
max
k=m:k̄

{
1

δk−m+1
∥ũk−m+1∥

}
+ (b + L)

m−1∑
t=0

1

δt
max
k=m:k̄

{
1

δk−t
∥qk−t∥

}
+ ω̃1

≤ ν

δm
∥ũ∥δk̄ +

(b + L)

δm
δ(1 − δm)

(1 − δ)
∥q∥δk̄ + ω̃1.

86 Time-Varying First Order Methods

Since by condition 1. in Lemma 3.3 we have ν < δm, reordering the
terms in the previous inequality and using the fact that qk = x̃k+eq̄k,
we get

∥ũ∥δk̄ ≤ γ1∥q∥δk̄ + ω1

≤ γ1∥x̃∥δk̄ + γ1N
1/2∥q̄∥δk̄ + ω1

(3.11)

with

γ1 =
(b + L)δ(1 − δm)

(1 − δ)(δm − ν)
, ω1 =

δm

δm − ν
ω̃1.

Let us now consider q̄k.

q̄k+1 = x̄k+1 − y∗ =
1

N
ee⊤xk+1 − y∗ =

=
1

N
ee⊤

(
W kxk − Ak(uk + ∇F (xk)

)
− y∗ =

= x̄k − y∗ − αmin

N
∇F (x̄k)

+
αmin

N

n∑
j=1

(∇fj(x̄
k) −∇fj(y

∗))

− 1

N

n∑
j=1

(αk
j − αmin)(∇fj(x

k
j) −∇fj(y

∗))

+
1

N

n∑
j=1

(αmin − αk
j)ũk

j .

Taking the norm, by Lipschitz continuity of the gradient and denoting
with ∆ = αmax − αmin, we have

∥q̄k+1∥ =
∥∥∥x̄k − y∗ − αmin

N
∇F (x̄k)

∥∥∥+
Lαmin

N
∥x̄k − y∗∥1

+
L∆

N
∥xk − x∗∥1 +

∆

N
∥ũk

j∥1.

3.2 Convergence Analysis 87

Since αmin

N
< 2

L
, Lemma 3.2 ensures that∥∥∥x̄k − y∗ − αmin

N
∇F (x̄k)

∥∥∥ ≤ τ∥x̄k − y∗∥

and we get

N1/2∥q̄k+1∥ ≤ N1/2τ∥x̄k − y∗∥ + Lαmin∥x̄k − y∗∥
+ L∆∥xk − x∗∥ + ∆∥ũk

j∥
≤ N1/2(τ + ∆L)∥q̄k∥ + Lαmax∥x̃k∥ + ∆∥ũk∥.

Multiplying both sides by 1
δk+1 and taking the maximum for k = −1 :

k̄ − 1 we have

N1/2∥q̄∥δk̄ ≤ τ + ∆L

δ
N1/2∥q̄∥δk̄ +

Lαmax

δ
∥x̃∥δk̄ +

∆

δ
∥ũ∥δk̄.

By Lemma 3.3 we have τ = 1 − µαmin and τ + ∆L < δ, thus
reordering and using (3.11), we get

N1/2∥q̄∥δk̄ ≤ +
Lαmax

δ − τ − ∆L
∥x̃∥δk̄ +

∆

δ − τ − ∆L
∥ũ∥δk̄

≤ (β1 + γ1β2)∥x̃∥δk̄ + γ1β2N
1/2∥q̄∥δk̄ + β2ω1

where β1 and β2 are defined in Lemma 3.3. Take

γ2 =
β1 + γ1β2

1 − γ1β2

, ω2 =
β2ω1

1 − γ1β2

.

From 4. in Lemma 3.3 we get

N1/2∥q̄∥δk̄ ≤ γ2∥x̃∥δk̄ + ω2. (3.12)

88 Time-Varying First Order Methods

Finally, let us consider x̃k. For k ≥ m− 1, we have

x̃k+1 = J(W kxk − Ak(uk + ∇F (xk)) =

= JW kW k−1xk−1 − JW kDk−1(uk−1 + ∇F (xk−1))−
− JDk(uk + ∇F (xk)) =

= JW k
mx

k−m+1 − J
m−1∑
t=0

W k
t D

k−t(ũk−t + Hk−tq
k−t).

Taking the norm, applying Lemma 3.1 and (3.6), we get

∥x̃k+1∥ ≤ ν∥x̃k−m+1∥ + αmax

m−1∑
t=0

(∥ũk−t∥ + L∥qk−t∥).

Multiplying with 1
δk+1 and taking the maximum for k = −1 : k̄− 1

we get

∥x̃∥δk̄ ≤ ν

δm
∥x̃k−m+1∥ + αmax

δ(1 − δm)

δm(1 − δ)
∥ũ∥δk̄

+ Lαmax
δ(1 − δm)

δm(1 − δ)
∥q∥δk̄ + ω̃3

≤ β3∥x̃k−m+1∥ + β4N
1/2∥q̄∥δk̄ + β5∥ũ∥δk̄ + ω̃3.

where

ω̃3 = max
k=−1:m−1

{
1

δk+1
∥x̃k+1∥

}
and β3, β4, β5 are defined in Lemma 3.3. In particular, we have β3 < 1,
and we can rearrange the terms of the previous inequality to get

∥x̃∥δk̄ ≤ β4

1 − β3

N1/2∥q̄∥δk̄ +
β5

1 − β3

∥ũ∥δk̄ +
ω̃3

1 − β3

.

3.3 Robustness - Analytical and Numerical Study 89

Now, applying (3.11) and 6. from Lemma 3.3, we obtain

∥x̃∥δk̄ ≤ γ3N
1/2∥q̄∥δk̄ + ω3

with

γ3 =
β4 + β5γ1

1 − β3 − γ1β5

, ω3 =
ω̃3 + β5ω1

1 − β3 − γ1β5

.

We thus proved

N1/2∥q̄∥δk̄ ≤ γ2∥x̃∥δk̄ + ω2

∥x̃∥δk̄ ≤ γ3N
1/2∥q̄∥δk̄ + ω3

with γ2γ3 < 1 by condition 7. in Lemma 3.3. By the Small Gain
Theorem, we have that ∥q̄k∥ and ∥x̃k∥ converge to 0, and thus ∥qk∥
converges to zeros, which gives the thesis. □

3.3 Robustness - Analytical and Numer-

ical Study

Theorem 3.1 and Lemma 3.3 ensure convergence of the considered
class of methods. That is, they ensure existence of αmin < αmax such
that, under the given assumptions over the objective function and the
sequence of networks, the sequence generated at each node converges
R-linearly if all the step sizes αk

i are between αmin and αmax. How-
ever the results we prove do not provide any information about the
difference ∆ = αmax − αmin and thus about how much the step sizes
employed by different nodes and at different iterations can differ. In
this section we try to address this issue by investigating in practice
the length of the interval of admissible step-sizes.
First we show a particular example where the upper bound αmax is

90 Time-Varying First Order Methods

not necessary to ensure convergence of the method, then we present
a set of numerical results that investigate how the step bounds αmin

and αmax and their difference ∆ influence the behaviour of the method.

We consider the same framework considered in [25] (Section 4.2)
extended to the case we are considering of time-varying network. Con-
sider the following objective function

f(y) =
N∑
i=1

fi(y) with fi(y) =
1

2
(y − ai)

2 (3.13)

where y ∈ R and ai ∈ R for every i = 1, . . . , N , and assume that at
iteration k the consensus matrix is of the following form, for a given
θk ∈ (0, 1)

Wk = (1 − θk)I + θkJ.

Lemma 3.4. Assume that θk ∈ (1
3
, 3
4
) for every k, and that {xk}∞k=0

is the sequence generated by (3.3) with b = 0, e⊤(u0 + ∇F (x0)) = 0
and e⊤x0 = e⊤a where a = (a1, . . . , aN) ∈ RN .
If αk

i = α for every i = 1, . . . , n and for every k, then the method
converges R-linearly to the solution of (3.13) if αmin ≤ α ≤ 2

3
and

αmin > 0 small enough. On the other hand, for any α > 2, there exists
a sequence {θk}, k = 0, 1, 2, . . . that satisfies the assumptions of the
Lemma such that the method diverges, i.e., ∥xk∥ → ∞.
If αk

i = (σk
i)−1 with

σk+1
i = P[σmin,σmax]

(
1 + σk

i

n∑
j=1

wk
ij

(
1 −

skj
ski

))
, (3.14)

with ski = xk+1
i − xk

i , σmin = 0, σmax = 3/2 and σ0
i = σ ∈ (σmin, σmax)

for every 1, . . . , n, then {xk} converges R-linearly to the solution of
(3.13).

3.3 Robustness - Analytical and Numerical Study 91

Proof. In the case we are considering (3.3) is equivalent to{
xk+1 = W kxk − Akzk

zk+1 = W kzk + xk+1 − xk

where Ak = diag(αk
1I, . . . , α

k
nI).

Let us consider the case with fixed step-size αk
i = α and let us denote

with ξk the vector (qk, zk) ∈ R2N . We can see that for every k we
have ξk+1 = P kξk where the matrix P k is given by

P k =

(
Wk − J −αI
Wk − I Wk − αI

)
∈ R2N×2N .

In order to prove the first part of the Lemma, it is enough to show that
there exists µ < 1 such that ∥P k∥22 < µ for every iteration index k.
That is, we have to prove that there exists µ < 1 such that the spec-
tral radius of (P k)⊤P k is smaller than µ for every k. Denoting with
1, δk2 , . . . , δ

k
n the eigenvalues of W k, it can be proved that the eigenval-

ues of (P k)⊤P k are given by the eigenvalues of the 2× 2 matrices Mk
i

defined as

Mk
1 =

(
α2 α(α− 1)

α(α− 1) (α− 1)2

)
Mk

i =

(
(δki)2 + α2 (δki)2 − (1 + α)δki + α2

(δki)2 − (1 + α)δki + α2 2(δki)2 − 2(1 + α)δki + 1 + α2

)
for i = 2, . . . , n. By direct computation we can see that the eigenvalues
of Mk

1 are given by 0 and 2α2 − 2α+ 1 < 1− 2
3
αmin and therefore it is

enough to take µ > 1 − 2
3
αmin. Denoting with pki (t) the characteristic

polynomial of Dk
i we can see that with the values of θmin, θmax and

αmax given by the assumptions, we can always find 1− 2
3
αmin < µ < 1

such that pki (µ) > 0 and pki (−µ) > 0 and thus such that the eigenval-
ues of Mk

i belong to (−µ and µ) for every k and for every i = 1, . . . , n.
To prove that if α > 2 the method is in general not convergent it is

92 Time-Varying First Order Methods

enough to consider the case when θk = θ0 for every iteration index k.
In this case we have that P k = P 0 for every k and thus ξk = (P 0)kξ0.
In this case we can see [25] that 1−α is an eigenvalue of P 0 an there-
fore if α > 2 we have that ρ(P 0) > 1 and thus the sequence {ξk} does
not converge. This concludes the first part of the proof.

Assume now that the step-sizes are computed as in (3.14). Pro-
ceeding as in the proof of Proposition 4.3 in [25] we can prove that
σk+1
i = σk+1 for every i with σk+1 given by

σk+1 =

{
min{σmax, 1 + σmaxθk} if σk = σmax

min{σmax, σ̂
k+1} otherwise

where σ̂k+1 = 1+θk +θkθk−1 + · · ·+
∏k

j=1 θ
j +σ0

∏k
j=0 θ

j. By using the

fact that θk > 1/3 and σmax = 3/2 we can prove that there exists k̄
such that σk = σmax for every k > k̄. Therefore, for k > k̄ the step-size
becomes the same for all nodes and equal to αk

i = σ−1
max = 2/3 and

thus the method converges by the first part of the Lemma. □

The above Lemma certifies convergence of the spectral-like method
[25] for time-varying networks and a very specific problem structure
with all-to-all communication network and consensus quadratic costs.
It is worth noting that, for generic quadratic cost functions and sparse
time-varying networks, an upper bound on the step-size is necessary
(see Figures 1 and 2 below). We now make an analogy on the achieved
results for the distributed spectral-like method [25] and the spectral
(Barzilei-Borwein) gradient method from the centralized optimization.
Namely, in centralized settings, the spectral gradient method’s conver-
gence without step size safeguarding has been proved only for a strictly
convex quadratic cost function. In the case of generic functions beyond
strictly convex quadratic, some safeguards ∆min and ∆max are neces-
sary, even in the centralized case. Though, in the centralized case,

3.3 Robustness - Analytical and Numerical Study 93

these safeguards can be arbitrarily small (∆min) and arbitrarily large
(∆max). Therefore, the need for safeguards is to be expected in the
distributed optimization scenario as well. This matches with the re-
sults that we present here. It turns our that the price to be payed
in the distributed time-varying networks scenario is two-fold: 1) the
no-safeguards case happens in a more restricted cost functions setting,
namely the consensus quadratic costs (see Lemma 4); and 2) the safe-
guard step size bounds in the general case are no longer arbitrary and
take a network-dependent form.

We also have the following Lemma where we continue to assume
the consensus problem but relax the requirement that the network is
fully connected at all times. When the network is not fully connected,
in general we need safeguarding for global convergence. However, as
explained below, the following Lemma sheds some light on the be-
havior of the spectral-like distributed method. While it is not to be
considered as a global convergence result, it highlights that the next
step size has a controlled length provided that the current solution
estimate is close to consensus.

Lemma 3.5. Let us assume that the objective function is given by
(3.13), and that x0, z0 are such that eTx0 = eTa, z0i = ∇f(x0

i) = x0
i .

Moreover, for every i = 1, . . . , n let the local stepsize αk
i be defined as

α0
i = α0 > 0 and, for every k ≥ 1, αk

i = 1/σk
i , with

σk+1
i = 1 + σk

i

n∑
j=1

wk
ij

(
1 −

skj
ski

)
(3.15)

where skj = xk+1
j − xk

j . Moreover, let us assume that at each iteration
assumption A2 holds with m = 1.
Given any α̂ > 1, if ∥x0 − ex̄0∥ ≤ ε̂ with ε̂ satisfying

ε̂ ≤ 1

ν0 + d0
(α0)2(α̂− 1)|x̄0|
2α̂ + α0(α̂− 1)

94 Time-Varying First Order Methods

then α1
i ≤ α̂ for every i = 1, . . . , N.

Proof. Let us denote with J ∈ Rn×n the matrix 1
n
eet and with vk =

sk − es̄k. From the assumptions and the double stochasticity of the
matrix W k, we have

∥v0∥ = ∥(I − J)(x1 − x0)∥ = ∥(I −W)(W 0x0 − x0 − α0z0)∥
= ∥(I − J)(W 0 − I − α0I)x0∥ ≤ ∥(W 0 − I)x0∥ + α0∥(I − J)x0∥
≤ (ν0 + α0)∥x0 − ex̄0∥ ≤ (ν0 + α0)ε̂ = ε

Where we defined ε = (ν0 + α0)ε̂. Moreover,

|s̄0| =
1

n
|et(W 0x0 − α0x0 − x0)| = α0|x̄0|.

These imply that, for every j = 1, . . . , n

1 − 2ε

α0|x̄0| − ε
≤

s0j
s0i

≤ 1 +
2ε

α0|x̄0| − ε
.

Replacing these bounds in (3.15), and defining σ0 = 1/α0, we get

1 − 2εσ0

α0|x̄0| − ε
≤ σ1

i ≤ 1 +
2εσ0

α0|x̄0| − ε
. (3.16)

It’s easy to see that the first inequality, together with the assumption
over ε̂, imply σ1

i ≥ 1/α̂, which in turn implies the thesis.
□

Intuitively, the Lemma above says that, for the considered problem,
if algorithm (3.3) with stepsize (3.15) starts from a point close to
consensus (i.e., a point where solution estimates across different nodes
are mutually close), then the next step size at each node will not be
too large. More precisely, the size of the next step size is controlled

3.3 Robustness - Analytical and Numerical Study 95

by the consensus neighborhood ϵ̂ that we start from. In other words,
if the next step size is to be upper bounded by an arbitrary constant
α̂ > 1, we can find a problem-dependent constant ϵ̂ such that, starting
at most ϵ̂ away from consensus, the next step size at each node is at
most α̂. To further explain this, suppose that all the quantities skj/s

k
i ’s

are ϵ′-close to one, |skj/ski | ∈ (1 − ϵ′, 1 + ϵ′), for all nodes i, j. Then, in

view of (3.16), quantity σk+1
i , for all nodes i, is approximated as:

1 ± σk
i n ϵ′.

In other words, for the special case of the consensus problem, provided
that all the quantities skj/s

k
i ’s are ϵ′-close to one, the next step-size

1/σk+1
i is in a neighborhood of one, and is hence bounded.

Let us now present some numerical results. We consider the prob-
lem of minimizing a logistic loss function with l2 regularization, that
is, we assume the local objective function fi at node i is given by

fi(y) = ln
(
1 + exp(−bia

⊤
i y)

)
+

1

2
R∥y∥22 (3.17)

where ai ∈ Rn, bi ∈ {−1, 1} and R > 0. Nine methods are considered,
obtained combining three possible choices of the matrix B and three
different ways of computing the step sizes αk

i . We consider an increas-
ing sequence of values of the upper bound αmax, and for each method
and each value of the step bound the number of iterations necessary
to arrive at convergence is plotted in Figure 3.1.

The dimension n is set to 10 and we generate ai ∈ Rn, bi ∈ {−1, 1}
in (3.17) as follows. For i = 1, . . . , n we take ai = (ai1, . . . , ai,n−1, 1)⊤

where the components aij are independent and come from the stan-
dard normal distribution, and bi = sign(a⊤

i y
∗ + ϵi) where y∗ ∈ Rn

with independent components drawn from the standard normal dis-
tribution, and ϵi are generated according to the normal distribution

96 Time-Varying First Order Methods

with mean 0 and standard deviation 0.4. Finally, we take the regu-
larization parameter R = 0.25. The initial vectors x0

i are generated
independently, with components drawn from the uniform distribution
on [0, 1], and at each iteration we define the consensus matrix W k as
the Metropolis matrix [65]. The convergence analysis we carried out
in Section 3 does not rely on any particular definition of the step-sizes
αk
i , therefore we need to specify how each node chooses the step-size

at each iteration. Two cases are considered. The first one, referred
to as spectral in Figure 3.1, is the case where αk

i = (σk
i)−1 with σk

i

as in (3.14). The second case we consider is the one where each node
performs local line search by employing a backtracking strategy start-
ing at αmax to satisfy classical Armijo condition on the local objective
function. That is, to satisfy

fi

(
N∑
j=1

wk
ijx

k
j − αk

i z
k
i

)
≤ fi(x

k
i) − cαk

i∇fi(x
k
i)⊤zki

with c = 10−3 and zki = uk
i +∇fi(x

k
i). We refer to this method as line

search. It is worth noting that there are no convergence guarantees
for the line search method. The rationale for including a comparison
with it is to show that the method [25] exhibits a significantly higher
degree of robustness with respect to a meaningful, time-varying and
node-varying, local step size strategy that can be employed.
For comparison, we also consider the method with fixed step-size
αk
i = αmax for every k and every i = 1, . . . , N. The choices of the

matrix Bk are given by Bk = 0 (plot (a) in Figure 3.1), Bk = α−1
maxI

(plot (b)) and Bk = α−1
maxW

k (plot(c)), where for the case B ̸= 0
the choice is made following [24]. Notice that the case αk

i = αmax

and Bk = 0 corresponds to [47, 35] with constant, coordinated step-
sizes. We consider increasing values of αmax in [1

50L
, 10
L

], while we fix
αmin = 10−8 as we saw that, in the considered framework, its choice
does not influence the performance of the methods significantly.

3.3 Robustness - Analytical and Numerical Study 97

The sequence of communication networks {Gk} is defined as follows.
We consider a network G with N = 25 nodes, undirected and con-
nected, generated as a random geometric graph with communication
radius

√
N−1 ln(N), and we define the sequence of networks {Gk} by

deleting each edge with probability 1
4
. We carried out analogous tests

in the cases where G is symmetric and constant and in the case where
it is given by a directed ring. The obtained results were comparable
to the ones that we present. We also observed in practice that double
stochasticity of the underlying network appears to be essential for the
convergence of the considered methods.

We are interested in the number of iterations required by each
method to reach a prescribed accuracy. More precisely, we terminate
the execution of the method when

max
i=1,...,n

∥xk̄
i − y∗∥ < ε,

where ε = 10−5. That is, we stop when the local error at each node is
smaller than ε. In Figure 3.1, on the x-axis we show the upper bound
αmax while on the y-axis we show k̄ for each method. To facilitate
the comparison among the methods, in Figure 3.2 we plot the same
results, with y-axis cut at 2000.

We can see in Figure 3.1 that, for all the choices of the matrix Bk

that we consider, the method that employs time-varying asynchronous
step sizes given by (3.14) converges for maximum step bound αmax that
is at least 10 times larger than the method that uses the same step size
at every node and each iteration, while the method that selects the
step size with local line search converges for αmax equal to 2 to 3 times
larger than the method with fixed step size. Moreover, we can see
that choosing B = bI seems to increase the maximum value of αmax

that yields convergence for all the considered methods. Finally, in

98 Time-Varying First Order Methods

0 1 2 3 4 5 6 7 8 9

step size

0

5000

10000

15000

ite
ra

tio
ns

spectral
line search
fixed

(a) B = 0

0 1 2 3 4 5 6 7 8 9

step size

0

5000

10000

15000

ite
ra

tio
ns

spectral
line search
fixed

(b) B = bI

0 1 2 3 4 5 6 7 8 9

step size

0

0.5

1

1.5

2

ite
ra

tio
ns

10 4

spectral
line search
fixed

(c) B = bW

Figure 3.1: Number of iteration for increasing upper bound on the
step size

Figure 3.2, we can notice that for most of the tested values of αmax we
can see that the spectral methods requires a smaller number of itera-
tions than the method with fixed step-size, therefore in the considered
framework, using uncoordinated time-varying step-sizes given by [25]
helps to significantly improve the robustness of the method and also
the performance. Notice also that the spectral step-size strategy ex-
hibits a “stable”, practically unchanged, performance for a wide range
of αmax; hence, it is not sensitive to tuning of αmax. This is in con-
trast with the constant step-size strategy that is very sensitive to the
step-size choice αmax. This is important also from the practical point
of view: the bounds to αmax and ∆ given by Theorem 3.1, as well

3.3 Robustness - Analytical and Numerical Study 99

0 1 2 3 4 5 6 7 8 9
step	size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ite
ra

tio
ns

spectral
line	search
fixed

(a) B = 0

0 1 2 3 4 5 6 7 8 9
step	size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ite
ra

tio
ns

spectral
line	search
fixed

(b) B = bI

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
step	size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ite
ra

tio
ns

spectral
line	search
fixed

(c) B = bW

Figure 3.2: Number of iteration for increasing upper bound on the
step size

as the value of the step size that ensures convergence of the method
with fixed step size, are usually unknown in practice. The numerical
results show that, if the step size is computed as in (3.14), then the
method is robust to the choice of αmax and that a bound of ∆ is not
necessary for convergence. That is, αmin can be set to a small value
independent of system parameters, e.g., αmin = 10−8, and setting αmax

requires only a coarse upper bound on quantity 1/L.

Chapter 4

Distributed Inexact Newton
Method with Adaptive Step
Size

4.1 Introduction

In this chapter we propose a distributed Inexact Newton method with
adaptive step size, for the finite sum minimization problem

min
y∈Rn

f(y), f(y) =
N∑
i=1

fi(y) (4.1)

that we already discussed in Section 2.1 and Chapter 3.

When considering second order methods in the distributed and
large-scale framework, there a few issues that need to be addressed.
First of all, as in the classical framework, Hessian-based methods are
typically quite expensive: while in the distributed framework the work
of computing the Hessian is shared by the nodes and therefore does

4.1 Introduction 101

not usually represent a problem, solving the linear system that is typ-
ically required at each iteration to compute the direction may be pro-
hibitively expensive for problems of very large sizes. Secondly, while
we normally assume that nodes can share the local vector of variables
and the local gradients (or some other vector), sharing the Hessian
would cause the communication traffic to became too large. In par-
ticular this implies that, while we can usually define the algorithms in
such a way that each node works with an approximation of the global
gradient that becomes more and more accurate along the iterations,
the same thing cannot be done with the Hessian matrix, as sharing the
Hessian with the neighbours would be impractical. Finally, the order
of convergence. Ideally, one would like for a second order method to
show superlinear or quadratic local convergence. However, when con-
sidering the distributed framework, there are two main obstacles: ex-
act consensus and choice of the step size. Both the weighted averaging
strategy [11] used in [74] and the primal-dual scheme used in [44, 27]
only yield linear convergence of the local vectors to the global con-
sensus vector and therefore methods involving this strategies cannot
achieve overall superlinear convergence. On the other hand, it is know
from the theory of second order methods in the classical centralized
framework that the choice of the step size is of fundamental impor-
tance in order for a method to achieve both global convergence and
fast local convergence. However, classical line search strategies, which
effectively solve this issue in the centralized framework, are not appli-
cable in the distributed setting as they require knowledge of the value
of the global function at all nodes and may require several evaluations
at each iteration, which would be prohibitively expensive from the
point of view of communication traffic. The distributed method pro-
posed in [75] achieves quadratic converges by employing a finite-time
communication strategy to share the local Hessians (or their rank one
approximation) through the whole network, and the step size proposed
in [52] for Newton’s method in the centralized case, which ensures both

102 Distributed Inexact Newton Method

global convergence and fast local convergence without requiring mul-
tiple function evaluations at each iteration.

We present here a Distributed Inexact Newton method that em-
ploys an adaptive step size that can be computed at each iteration
without knowing the global constants of the objective function, [29].
The method computes the search direction using a suitable iterative
solver in order to distributedly compute an approximate solution of
the Newton linear system at each iteration. After the direction is
computed, the step size is defined based on the value of the gradient
and the forcing term in the solution of the linear system. The con-
sidered step size is an adaptation of the one presented in [52], to the
distributed framework, and to the case where the Newton system is
solved inexactly. Under suitable assumptions over the objective func-
tion f and the underlying communication network, we prove that the
proposed method achieves global convergence and local linear, super-
linear or quadratic convergence depending on the choice of the forcing
term, analogously to the centralized Inexact Newton method [12].

This chapter is organized as follows. In Section 4.2 we describe the
framework we consider, state the basic assumption on the considered
problem, and describe the penalty reformulation. DINAS algorithm
is stated and discussed in Section 4.3 while the theoretical analysis
is presented in Section 4.4. Section 4.5 contains a set of numerical
results that investigate the performance of the DINAS and compare
it with relevant methods from the literature.

4.2 Preliminaries

The computational framework is analogous to that considered in Chap-
ter 3: we assume that a network G = (V,E) of computational agents

4.2 Preliminaries 103

is given, such that agent i holds the function fi and can communicate
directly with all its neighbors in G. Moreover, we assume that each
agent holds a local vector of variables xi ∈ Rn. The properties of the
communication network are stated in the assumption below.

Assumption D1. The network G = (V,E) is undirected, simple and
connected, and it has self-loops at every node, i.e., (i, i) ∈ E for every
i = 1, . . . , N .

We associate the consensus matrix W to the graph G such that the
following assumption hold.

Assumption D2. The matrix W ∈ RN×N is such that

• if (i, j) /∈ E then wij = 0

• W is symmetric and doubly stochastic

Moreover, we define W = W ⊗ In ∈ RnN×nN .

Regarding f , we make the following assumption, which is standard
for Newton-type methods.

Assumption D3. For every i = 1, . . . , N fi : Rn −→ R is a twice
continuously differentiable function and there exist µi, Li > 0 such that
fi is µi-strongly convex and ∇2f is Li-Lipschitz continuous for ∥ · ∥∞.
That is, for every y, z ∈ Rn

• µiI ≺ ∇2fi(y),

• ∥∇2fi(y) −∇2fi(z)∥∞ ≤ Li∥y − z∥∞
We define L =

∑N
i=1 Li and, analogously, µ =

∑N
i=1 µi.

We notice that Assumption D3 implies in particular that for every
i = 1, . . . , N

∥∇2fi(y)−1∥∞ ≤ ∥∇2fi(y)−1∥2 ≤
1

µi

.

104 Distributed Inexact Newton Method

As described in Section 2.1, problem (4.1) can be equivalently written
as

min
x∈RnN

F (x), s.t. (I −W)1/2x = 0 (4.2)

with

F (x) =
N∑
i=1

fi(xi).

In the following, we consider the quadratic penalty reformulation
of (4.2). That is,

min
x∈RnN

Φβ(x) with Φβ(x) = F (x) +
1

2β
x⊤(I −W)x. (4.3)

The relationship between the penalty problem above and the original
problem (4.1) is analysed in [72]. In particular, it is know that the
penalty problem yields an approximate solution of (4.1) such that
∥x∗

i − y∗∥ = O(β/(1 − λ2)) where x∗ = (x∗
1, . . . ,x

∗
N) is the solution of

(4.3), y is the solution of (4.1) and λ2 is the second largest eigenvalue of
W. The method we present in the following section solves the penalty
problem (4.3) for a given value of β > 0. Later in the same section,
we discuss how the method can be used to solve a sequence of penalty
problems with decreasing values of the parameter β to find the solution
of (4.1).

4.3 Algorithm DINAS

The classical Inexact Newton iteration for (4.3), given the current
point xk and the forcing parameter ηk is defined as

xk+1 = xk − αkd
k,

where dk is such that
Hkdk = gk + rk (4.4)

4.3 Algorithm DINAS 105

where Hk = ∇2Φβ(xk), gk = ∇Φβ(xk) and the residual vector rk ∈
RnN satisfies

∥rk∥∞ ≤ ηk∥gk∥∞. (4.5)

In general, it is assumed that ηk ≤ η < 1 for every k, while the step size
αk is determined by line search or some other globalization strategy
[16]. If ηk = 0 the method is in fact Newton’s method. Notice that
we are using the norm ∥ · ∥∞ in the above expressions, as it is suitable
for the distributed framework we are interested in.

To apply the above Inexact Newton iteration in the distributed
framework we need to solve two problems: to distributedly compute
the direction dk such that (4.5) holds and to choose the step size αk.
A number of methods is available for solving linear systems in the dis-
tributed case [28, 36, 37], however it is easy to see that, because of the
particular structure of the penalty function Φβ(x), the system that we
are considering (4.4) follows the sparsity pattern of the communica-
tion matrix and therefore it can be solved with a suitable fixed point
method without any changes [26, 27]. In the following, we assume
that the system is solved with Jacobi Overrelaxation (JOR) method
but the theoretical analysis is valid for any solver, provided that they
can be applied distributedly to (4.4) and achieve (4.5) for any given
forcing term ηk > 0.

For the sake of clarity let us briefly state the JOR method for
solving (4.4), while further details can be seen in [26, 27]. First of all
notice that the coefficient matrix of the linear system

Hk = ∇2Φβ(xk) = ∇2F (xk) +
1

β
(I −W)

is symmetric and positive definite due to strong convexity of F , the
fact that (I − W) is positive semidefinite and β > 0. Moreover, gk

106 Distributed Inexact Newton Method

and Hk have the following block structure:

gk =

gk
1
...
gk
N

 Hk =

Hk
11 . . . Hk

1N
...

...
Hk

N1 . . . Hk
NN

with blocks given by, for i, j = 1, . . . , N

gk
i = ∇fi(x

k
i) +

1

β

(
xk
i −

N∑
j=1

wijx
k
j

)

Hk
ij =

{
∇2fi(x

k
i) + 1

β
(1 − wii)In if j = i

− 1
β
wijIn if j ̸= i

In the following, we use Hk
i to denote the i-th block row of matrix Hk.

That is Hk
i = (Hk

i1, . . . , H
k
iN) ∈ Rn×nN . We remark that by definition of

the consensus matrix W , we have that wij = 0 if nodes i and j are not
neighbors in the communication network. In particular, if (i, j) /∈ E we
have Hk

ij = 0. Given the linear system (4.4), a relaxation parameter
ω > 0, and an initial guess dk,0 ∈ RnN , JOR method computes a
sequence dk,m that, for a suitable choice of the parameter ω converges
to the solution of (4.4). Because of the particular block structure of
the coefficient matrix, in the case that we are considering JOR method
can be implemented distributedly, in such a way that node i computes
the i-th block dkm

i of the approximate solution, and it only needs to
communicate with its neighbors in G. Iteration m of JOR at node i is
given by

dk,m+1
i = dk,m

i + ω(Dk
ii)

−1

(
gk
i −

N∑
j=1

Hk
ijd

k,m
j

)
, (4.6)

where Dk
ii = diag(Hk

ii). Since each node holds gk
i and Hk

ij for every
j = 1, . . . , N and Hk

ij = 0 if (i, j) /∈ E, we have that the nodes need to

4.3 Algorithm DINAS 107

share their approximate solutions dk,m
i only among neighbours. It is

known [26] that the method converges for

0 < ω < 2β
1 − w̄

L + 2β
,

with w̄ = max1≤i≤N wii. From now on we will assume that ω is chosen
in such a way that JOR method converges, with further implementa-
tion details postponed to Section 4.5.

Having a distributed algorithm for solving the system of linear
equations, let us explain the adaptive step size strategy we will employ
here. The basic assumption we have is that the global constants µ and
L are not available. Thus we employ the procedure that is governed
by a sequence of parameters {γk}∞k=0 that are used to generate the
step sizes, adopting the reasoning from [52] to the case of distributed
and inexact method. At each iteration we compute a trial step size
based on the current value of γk and check if such step size induces
enough decrease in the gradient. If the decrease is large enough the
step size is accepted and we proceed to a new iteration. If not, the
step size is rejected, the value of γk is reduced and a new trial step size
is computed. We will prove that this procedure eventually leads to an
acceptable step. Moreover, since the direction dk stays the same until
a suitable step size is found, the check is inexpensive. The step size
computation includes the infinity norm of the gradient at the previous
iteration and thus all nodes needs this value. For this reason, we use
the algorithm from [75] in order to exchange of information around the
network. Notice that in [75] the nodes exchange either local Hessians
or their rank one approximations, while in DINAS they will exchange
only scalars. For the sake of completeness we include the algorithm
here.

Algorithm 4.1 (DSF). [75]
Input: {Si}i=1:N messages at each node
Node i:

108 Distributed Inexact Newton Method

1: set I0i = {Si}
2: for k = 0, . . . , N − 1 do
3: for j ∈ Ni do
4: take S ∈ Ik−1

0 such that S was not received from node j and
not sent to node j at the previous iterations

5: send S to node j
6: end for
7: update Iki adding the messages received by the neighbors
8: end for

We can now state the main algorithm. In Algorithm 4.2 the pro-
posed method is described in a node-wise fashion, to facilitate the
understanding of the distributed flow. A condensed formulation will
be used later on, for theoretical considerations.

Algorithm 4.2 (DINAS).
Iteration k,
each node i holds: ηk, xk

i , gk
i , Hk

i , γk > 0, ∥gk∥∞, q ∈ (0, 1)

1: All nodes run DJOR iterations (4.6) to compute {dk
i }Ni=1 such that

∥Hk
i d

k
i − gk

i ∥∞ ≤ ηk∥gk∥∞, ∀i = 1, . . . , N (4.7)

2: All nodes compute the step size

αk = min

{
1,

1 − ηk
(1 + ηk)2

γk
1

∥gk∥∞

}
(4.8)

3: Each node i computes x̂i = xk
i − αkd

k
i

4: All nodes share x̂i with the neighbors in Ni

5: Each node i computes ĝi = ∇fi(x̂i) + 1
β

(
x̂i −

∑
j wijx̂j

)
6: All nodes run DSF (Algorithm 4.1) with message at node i given

by Si = ∥ĝi∥∞

4.3 Algorithm DINAS 109

7: Each node i computes ∥ĝ∥∞ = maxj=1:N Sj

8: Each node i performs the following check and conditional updates
9: if {

αk < 1

∥ĝ∥∞ ≤ ∥gk∥∞ − 1
2
(1−ηk)

2

(1+ηk)2
γk

(4.9)

or {
αk = 1

∥ĝ∥∞ ≤ ηk∥gk∥∞ + 1
2γk

(1 + ηk)2∥gk∥2∞
(4.10)

then
10: set γk+1 = γk
11: set xk+1

i = x̂i, g
k+1
i = ĝi, ∥gk+1∥∞ = ∥ĝ∥∞

12:

13: define Hk+1
i =

(
Hk+1

i1 , . . . , Hk+1
iN

)
∈ Rn×nN with

Hk+1
ij =

{
∇2fi(x

k+1
i) + 1

β
(1 − wii)In if j = i

− 1
β
wijIn if j ̸= i

14: else
15: set γk = qγk and return to line 2
16: end if

Notice that the local conditions (4.7), which is the stopping crite-
rion for DJOR, implies the global condition

∥Hkdk − gk∥∞ ≤ ηk∥gk∥∞.

The application of JOR method for solving (4.4) implies that in each
inner (JOR) iteration every node shares its current approximations
dk,m
i with its neighbours. Each iteration of JOR method includes

only the inversion of the local diagonal matrix and is hence rather
cheap. Depending on the value of ηk the number of inner iterations

110 Distributed Inexact Newton Method

can vary but the right hand side of (4.5) ensures that initially (that is,
when the gradient is large) we solve (4.4) rather loosely, with relative
large residual and small computational effort while the accuracy re-
quirements increase as the gradients gets smaller and we approach the
solution. Since we avoid the computation of the exact solution of the
linear system, DINAS should be particularly effective if the dimension
of (4.1) is relatively large. From the point of view of communication
traffic, in addition to what we already noticed about JOR, comput-
ing ∥ĝ∥∞ requires all nodes to know the infinity norm of all the local
gradients an it is achieved through Algorithm 4.1. While this implies
that several rounds of communication have to be performed at each
iteration, this procedure is relatively cheap, as only scalar values are
shared at each round. The step size computation at line 2 is performed
locally by each agent but the resulting step size is the same for all of
them, as all the involved quantities are available to all nodes. The
check and update defined at line 9 is again performed by all nodes
using the same values and hence the results will be the same. There-
fore, all nodes go back to line 2 or all nodes update the approximate
solution xk

i . Therefore the if loop at line 9 is well defined. In the next
section we will prove that the check cannot fail infinitely many times,
and therefore the algorithm is well defined.

4.4 Convergence of DINAS algorithm

Lemma 4.1. If Assumptions D1 - D3 are satisfied, then the following
holds

i) if γk ≤ µ2

L
then the condition at line 9 is satisfied

ii) the number of times γk is reduced is bounded from above by

log1/q

(
γ0

L

µ2

)

4.4 Convergence of DINAS algorithm 111

iii) for every k ∈ N0 we have γ̄ < γk ≤ γ0, with γ̄ = q µ2

L

iv) there exists m̄1 ∈ N0 such that γk = γm̄1 for every k ≥ m̄1

In particular, this implies that the algorithm is well defined, as there
are only a finite number of iterations where the candidate step is re-
jected.

Proof. Since f is continuously differentiable we have that for any α ∈
R

g(xk − αdk) = g(xk) − αHkdk −
∫ 1

0

α
(
H(xk − sαdk) −Hk

)
dkds.

From Assumption D3, (4.4) and (4.5) we then have

∥g(xk − αdk)∥∞ ≤ ∥gk − α(gk + rk)∥∞

+ α

∫ 1

0

∥H(xk − sαdk) −Hk∥∞∥dk∥∞ds

≤ |1 − α|∥gk∥∞ + α∥rk∥∞ + α2L

∫ 1

0

s∥dk∥2∞ds

≤ |1 − α|∥gk∥∞ + αηk∥gk∥∞ +
α2L

2
∥(Hk)−1(gk + rk)∥2∞

≤ (|1 − α| + ηkα)∥gk∥∞ +
1

2

L

µ2
(1 + ηk)2α2∥gk∥2∞.

(4.11)

To prove the first statement we have to prove that if γk ≤ µ2/L
then either (4.9) or (4.10) hold. From (4.11), if αk = 1 we have

∥ĝ∥∞ ≤ ηk∥gk∥∞ +
1

2

L

µ2
(1 + ηk)2∥gk∥2∞,

112 Distributed Inexact Newton Method

otherwise, replacing the value of αk < 1, we get

∥ĝ∥∞ ≤
(

1 − γk
(1 − ηk)2

(1 + ηk)2
1

∥gk∥∞

)
∥gk∥∞

+
1

2

L

µ2
(1 + ηk)2

(
γk

1 − ηk
(1 + ηk)2

1

∥gk∥∞

)2

∥gk∥2∞

≤ ∥gk∥∞ +
(1 − ηk)2

(1 + ηk)2
γk

(
1

2

L

µ2
γk − 1

)
.

Since we are assuming γk ≤ µ2

L
the desired inequalities follow immedi-

ately in both cases and we get i).
By definition of γk+1 (lines 10 and 13 in Algorithm DINAS), the se-
quence {γk} is non increasing, the value of γk is reduced only when
neither (4.9) nor (4.10) are satisfied and in that case γk+1 = qγk for
a fixed q ∈ (0, 1). This, together with i) implies ii) and iii). Since we
proved that {γk} is bounded from below, iv) follows immediately. □

Lemma 4.1 implies in particular that for k large enough γk becomes
constant. While by iii) we know that γm̄1 ≥ q µ2

L
, the Lemma does not

state that γk will eventually reach q µ2

L
.

Notice that the iteration of DINAS can be written in the following
compact form. Given xk and dk such that (4.5) holds, we have xk+1 =
xk − αkd

k where

αk = min

{
1,

1 − ηk
(1 + ηk)2

γk
1

∥gk∥∞

}
. (4.12)

In the next theorem we prove that the sequence converges to the
unique solution of the penalty problem.

Theorem 4.1. Assume that D1 - D3 hold, {ηk} be a nonincreasing
sequence of forcing parameters such that 0 ≤ ηk ≤ η̄ < 1 and γ0 > 0.
Let {xk} be the sequence generated by DINAS for any x0 ∈ Rn. Then

4.4 Convergence of DINAS algorithm 113

i) there exists m̄2 ∈ N0 such that αk = 1 for every k ≥ m̄1 + m̄2,
and

m̄2 ≤
⌈

1

C

(
∥gm̄1∥∞ − γ̄

1 − η̄

(1 + η̄)2

)
+ 1

⌉
, (4.13)

C = q
µ2

L

(1 − η̄)2

(1 + η̄)2
;

ii) limk→∞ ∥gk∥∞ = 0;

iii) limk→∞ xk = x∗ where x∗ is the unique solution of the penalty
problem (4.3).

Proof. Let us first assume that at iteration k we have step size

αk =
1 − ηk

(1 + ηk)2
γk

1

∥gk∥∞
< 1. (4.14)

From (4.9) we have

∥gk+1∥∞ ≤ ∥gk∥∞ − 1

2
γk

(1 − ηk)2

(1 + ηk)2
. (4.15)

By Lemma 4.1 we have γk ≥ q µ2

L
. Moreover, since (1−η)2

(1+η)2
is a decreasing

function of η for η ∈ (0, 1) and ηk ≤ η̄ < 1 we have that, for every k

(1 − ηk)2

(1 + ηk)2
≥ (1 − η̄)2

(1 + η̄)2
> 0

which implies that

γk
(1 − ηk)2

(1 + ηk)2
≥ q

µ2

L

(1 − η̄)2

(1 + η̄)2
= C > 0

Replacing this inequality in (4.15) we get

∥gk+1∥∞ ≤ ∥gk∥∞ − C (4.16)

114 Distributed Inexact Newton Method

for every iteration index k such that αk < 1.
Let us now consider the case where αk = 1 and let us notice that,

by definition of αk, this implies

∥gk∥∞ ≤ γk
1 − ηk

(1 + ηk)2
. (4.17)

From this inequality and (4.10) we have

∥gk+1∥∞ ≤ ηk∥gk∥∞ +
1

2γk
(1 + ηk)2∥gk∥2∞

≤ ηk∥gk∥∞ +
1

2
(1 − ηk) ∥gk∥∞ =

1

2
(1 + ηk)∥gk∥∞.

(4.18)

Since ηk ≤ η̄ < 1, this implies that for every k such that αk = 1 we
have

∥gk+1∥∞ ≤ ρ∥gk∥∞ (4.19)

with ρ = 1
2
(1 + η̄).

Let us now assume that k > m̄1. If αk = 1, by (4.17), (4.18),
ηk+1 ≤ ηk, and γk = γm̄1 = γk+1 we have

∥gk+1∥∞ ≤ ρ∥gk∥∞ ≤ ργk
(1 − ηk)

(1 − ηk)2
≤ ργk+1

(1 − ηk+1)

(1 − ηk+1)2

which implies αk+1 = 1. Denote with m̄2 the smallest positive integer
such that αm̄1+m̄2 = 1. This, together with (4.15) implies

γm̄1+m̄2−1
1 − ηm̄1+m̄2−1

(1 + ηm̄1+m̄2−1)2
< ∥gm̄1+m̄2−1∥∞ ≤ ∥gm̄1+m̄2−2∥∞ − C

≤ ∥gm̄1∥∞ − (m̄2 − 1)C,

and thus

m̄2 <
1

C

(
∥gm̄1∥∞ − γm̄1+m̄2−1

1 − ηm̄1+m̄2−1

(1 + ηm̄1+m̄2−1)2

)
+ 1

≤ 1

C

(
∥gm̄1∥∞ − γ̄

1 − η̄

(1 + η̄)2

)
+ 1.

4.4 Convergence of DINAS algorithm 115

Since we already proved that αk = 1 implies αk+1 = 1 for every
k ≥ m̄2, this proves i).
Inequalities (4.16) and (4.19), together with i), imply part ii) of the
Lemma.
We now prove that the sequence of iterates {xk} converges to the
solution of x∗. For every j ∈ N we have, by definition (4.4), (4.5),
(4.19) and the bound on ηk

∥dm̄1+m̄2+j∥∞ ≤ ∥
(
Hm̄1+m̄2+j

)−1
(gm̄1+m̄2+j + rm̄1+m̄2+j)∥∞

≤ 1

µ
(1 + η̄)∥gm̄1+m̄2+j∥∞ ≤ 1

µ
(1 + η̄)ρ∥gm̄1+m̄2+j−1∥∞

≤ 1

µ
(1 + η̄)ρj∥gm̄1+m̄2∥∞.

For every s ≥ l ≥ 0 we then have

∥xm̄1+m̄2+s − xm̄1+m̄2+l∥∞ ≤
s−1∑
j=l

∥dm̄1+m̄2+j∥∞ ≤

≤ 1

µ
(1 + η̄)∥gm̄1+m̄2∥∞

s−1∑
j=l

ρj =
1

µ
(1 + η̄)∥gm̄1+m̄2∥∞

ρs − ρl

1 − ρ
.

This implies that {xk} is a Cauchy sequence and therefore there exists
x̄ = limk→+∞ xk. Since we already proved that limk→+∞ ∥gk∥∞ = 0,
we have that x̄ = x∗ and therefore iii). □

Remark 4.1. Theorem 4.1 shows that, like line search in the classical
framework, the adaptive strategy employed by Algorithm 4.2 ensures
convergence to the solution for any initial guess (i.e. global conver-
gence), and also that the full step αk = 1 is accepted whenever the
norm of the gradient ∥gk∥∞ is small enough.

Regarding the forcing terms, Theorem 4.1 ensures convergence
of the method to the solution whenever ηk ≤ η̄ < 1. On the other

116 Distributed Inexact Newton Method

hand, for suitable choices of the relaxation parameter, one can ensure
that the spectral radius of the iterative matrix of the JOR method is
bounded away from 1. This implies that the assumptions of Theorem
4.1 still hold if at each iteration of Algorithm 4.2 the nodes perform
only one iteration of DJOR method.

The following theorem shows that, as in the centralized case [12],
the forcing sequence {ηk} determines the rate of convergence.

Theorem 4.2. Assume that D1 - D3 hold, γ0 > 0 and let {xk} be a
sequence generated by DINAS algorithm. If {ηk} is a nonincreasing
sequence with ηk ≤ η̄ and η̄ small enough the method converges linearly
in norm ∥ · ∥∞. If for k large enough we have ηk ≤ η∥gk∥δ∞ for some
η ≥ 0, then the convergence of xk is superlinear for δ ∈ (0, 1) and
quadratic for δ = 1.

Proof. We already proved in Theorem 4.1 that ∥gk∥∞ and xk converge
to 0 and x∗ respectively. In the following, we always assume that
k ≥ m̄ = m̄1 + m̄2, and hence αk = 1. For δ = 0, linear convergence
of ∥gk∥∞ follows directly from (4.19). Let us now consider the case
δ > 0. For k large enough, from (4.18) we have

∥gk+1∥∞ ≤ ηk∥gk∥∞ +
1

2γk
(1 + ηk)2∥gk∥2∞

≤ η∥gk∥1+δ
∞ +

1

γk
∥gk∥2∞ ≤ η∥gk∥1+δ

∞ +
1

γm̄
∥gk∥2∞.

If δ = 1 this implies

lim
k→+∞

∥gk+1∥∞
∥gk∥2∞

≤ lim
k→+∞

η∥gk∥2∞ + 1
γm̄

∥gk∥2∞
∥gk∥2∞

= η +
1

γm̄

which ensures quadratic convergence. If δ ∈ (0, 1), using the fact that

4.4 Convergence of DINAS algorithm 117

∥gk∥ −→ 0 as k −→ +∞, we get

lim
k→+∞

∥gk+1∥∞
∥gk∥∞

≤ lim
k→+∞

η∥gk∥1+δ
∞ + 1

γm̄
∥gk∥2∞

∥gk∥2∞
= lim

k→+∞
η∥gk∥δ∞ +

1

γm̄
∥gk∥∞ = 0

and therefore superlinear convergence.
We now consider the sequence xk. For every j ∈ N we have

∥xm̄+j+1 − x∗∥∞ = ∥xm̄+j − x∗ − dm̄+j∥∞ =

= ∥xm̄+j − x∗ − (Hm̄+j)−1(gm̄+j + rm̄+j)∥∞ =

= ∥(Hm̄+j)−1∥∞∥Hm̄+j(xm̄+j − x∗) − (gm̄+j + rm̄+j)∥∞

≤ 1

µ
∥Hm̄+j(xm̄+j − x∗) − (gm̄+j − g∗)∥∞ +

1

µ
∥rm̄+j∥∞.

(4.20)

Since the objective function is twice continuously differentiable, we
have

gm̄+j − g∗ =

∫ 1

0

H(xm̄+j + s(xm̄+j − x∗))(xm̄+j − x∗)ds

and therefore

∥Hm̄+j(xm̄+j − x∗) − (gm̄+j − g∗)∥∞

=

∥∥∥∥∫ 1

0

(Hm̄+j −H(xm̄+j + s(xm̄+j − x∗))(xm̄+j − x∗)ds

∥∥∥∥
∞

≤
∫ 1

0

sL∥xm̄+j − x∗)∥2∞ds ≤ L

2
∥xm̄+j − x∗)∥2∞.

(4.21)

Replacing this term in (4.20) and using the bound on ∥rk∥∞

∥xm̄+j+1 − x∗∥∞ ≤ 1

µ

L

2
∥xm̄+j − x∗∥2∞ +

1

µ
ηm̄+j∥gm̄+j∥∞. (4.22)

118 Distributed Inexact Newton Method

Since g(x) is continuous and {xk} is bounded, there exists L2 ≥ 0
such that

∥gk∥∞ = ∥gk − g∗∥∞ ≤ L2∥xk − x∗∥∞.

Let us consider the case δ > 0 and let us notice that, since xk converges
to x∗, we can assume j is large enough so that ∥xm̄+j −x∗∥∞ < 1. By
definition of ηk we then have

∥xm̄+j+1 − x∗∥∞ ≤ 1

µ

L

2
∥xm̄+j − x∗∥2∞ +

1

µ
η∥gm̄+j∥1+δ

∞

≤ 1

µ

(
L

2
+ L2η

)
∥xm̄+j − x∗∥1+δ

∞

(4.23)

which proves superlinear and quadratic convergence for δ ∈ (0, 1) and
δ = 1, respectively. For δ = 0, let us assume that ∥xm̄+j − x∗∥∞ ≤ ε.
From (4.22), using the fact that ηk ≤ η̄, we have

∥xm̄+j+1 − x∗∥∞ ≤ 1

µ

(
L

2
ε + L2η̄

)
∥xm̄+j − x∗∥∞

For ε, η̄ small enough we have that

1

µ

(
L

2
ε + L2η̄

)
< 1,

which ensures linear convergence and concludes the proof. □

The adaptive step size we use in DINAS can be traced back to the
adaptive step sizes proposed in [52] for the Newton method. Gener-
alizing the reasoning presented there, to take into account both the
distributed computational framework and approximate Newton search
direction. Assuming that N = 1, i.e., going back to the classical prob-
lem of solving (4.1) on a single computational node we can state the
adaptive step size method for Inexact method with the same analysis

4.4 Convergence of DINAS algorithm 119

as already presented. Going one step further and assuming that the
constants µ and L are available, we get the following statement for
Inexact Newton method with arbitrary linear solver.

Corollary 4.1. Assume that D1 - D3 hold and that the iterative se-
quence is generated as

xk+1 = xk − α̂kd
k

where dk satisfies (4.5), and

α̂k = min

{
1,

1 − ηk
(1 + ηk)2

µ2

L

1

∥gk∥∞

}
. (4.24)

Then limk x
k = x∗ and the rate of convergence is governed by the

forcing sequence {ηk} as in Theorem 4.2.

Proof. The step size employed in DINAS algorithm reduces to α̂k

whenever γk = µ2

L
, while from part i) of Lemma 4.1 we have that

for this choice of γk either condition (4.9) or (4.10) is always satisfied.
That is, for the considered sequence, we have

∥gk+1∥∞ ≤ ∥gk∥∞ − 1

2

µ2

L

(1 − ηk)2

(1 + ηk)2

for every k such that α̂k < 1, and

∥gk+1∥∞ ≤ ηk∥gk∥∞ +
1

2

L

µ2
(1 + ηk)2∥gk∥2∞

for every k such that α̂k = 1. The thesis then follows directly from
the convergence analysis of DINAS. □

Remark 4.2. The previous corollary provides a choice of the step
size that is accepted at all iterations. However, compared to α̂k, the

120 Distributed Inexact Newton Method

adaptive step size (4.8) presents several advantages. First of all, the
definition of α̂k involves the regularity constants L and µ, which are
generally not known. Moreover, depending on the considered objective
function, α̂k could be very small, especially if in the initial iterations
the value of the gradient is large. In fact a number of methods we
mentioned throughout this thesis assume the step sizes (at least theo-
retically) to be depending on the global constants and are rather small
which potentially makes the methods slow. The numerical experience
so far implies that for a reasonable value of γ0 we have a rather small
number of rejections in Step 9 and the step size is mostly accepted al-
though γk > µ2

L
. So, the adaptive step size approach allows us to take

larger steps and proceed faster than the method that employes the exact
value µ2

L
, at least when we are far away from the solution. Finally, we

notice that when γk >
µ2

L
, the right hand sides of inequalities (4.9) and

(4.10) are smaller than their equivalent for γk = µ2

L
. That is, when the

adaptive step size is accepted, the decrease in the gradient is larger
than the decrease induced by α̂k.

Theorem 4.3. Assume that D1 - D3 hold, {ηk} is a nonincreasing
sequence of forcing parameters such that 0 ≤ ηk ≤ η̄ < 1 and γ0 > 0.
Let {xk} be the sequence generated by DINAS for any x0 ∈ Rn. The
number of iterations necessary to reach ∥gk∥∞ ≤ ε for a given ε > 0
is bounded from above by

kε =

⌈
log (ε−1∥g0∥∞)

log(ρ̂−1)
+ 1

⌉
with

ρ̂ = max

{
(1 + η̄)

2
, 1 − q

µ2

L

(1 − η̄)2

(1 + η̄)2
1

∥g0∥∞

}
< 1.

Proof. Let us consider inequalities (4.15) and(4.19) derived in the
proof of Theorem 4.1. For every index k we have that if αk = 1

∥gk+1∥∞ ≤ ρ∥gk∥∞

4.4 Convergence of DINAS algorithm 121

with ρ = (1 + η̄)/2. If αk < 1 and C = q µ2

L
(1−η̄)2

(1+η̄)2
,

∥gk+1∥∞ ≤ ∥gk∥∞ − C ≤ ∥gk∥∞
(

1 − C

∥g0∥∞

)
=: ρ2∥gk∥∞.

Notice that since αk < 1, from the definition of αk and the fact that
γk ≥ qµ2/L and ηk ≤ η̄ < 1, we have

∥gk∥∞ > γk
1 − η̄k

(1 + η̄k)2
≥ q

µ2

L

1 − η̄

(1 + η̄)2
> C

and thus ρ2 ∈ (0, 1). That is, denoting with ρ̂ = max{ρ, ρ2} < 1, we
have that for every iteration index k

∥gk+1∥∞ ≤ ρ̂∥gk∥∞.

Let us denote with kε the first iteration such that ∥gkε∥∞ ≤ ε. From
the inequality above, we have

ε < ∥gkε−1∥∞ ≤ ρ̂∥gkε−2∥∞ ≤ ρ̂kε−1∥g0∥∞,

which implies

ρ̂kε−1 >
ε

∥g0∥∞
and thus

kε − 1 < log1/ρ̂

(
ε−1∥g0∥∞

)
=

log (ε−1∥g0∥∞)

log(ρ̂−1)
.

□

The proposed method minimizes the penalty function Φβ. That is,
given a value of the penalty parameter β, Algorithm 4.2 can be applied
to find the solution of (4.3) with arbitrary precision. As showed in
Section 1.2.4, under suitable assumptions problem (4.2) can be solved
by solving a sequence of penalty problems with objective function Φβs

for decreasing βs. We consider the following procedure, analogous to
Algorithm 1.2.

122 Distributed Inexact Newton Method

Algorithm 4.3.
Input: ε0, β0 > 0, x̂0 ∈ Rn, q ∈ (0, 1).

1: for s = 1, 2, . . . do
2: use DINAS starting at x̂s−1 to find x̂s such that

∥Φβs(x̂
s)∥∞ ≤ εs

3: set βs+1 = qβs

4: set εs+1 = qεs
5: end for

Remark 4.3. Similarly to what we commented for Algorithm 1.2, dif-
ferent choices could in theory be made at lines 3 and 4 for the update of
the penalty parameter βs and the tolerance εs. The fixed decrease pro-
posed here is suitable for the distributed case as it does not require any
additional communication among the nodes. The convergence theorem
below works with more general conditions over {βs} and {εs}.

The following theorem shows that every accumulation point of the
sequence generated by Algorithm 4.3 is the solution of (4.2). We
notice that Theorem 1.17 cannot be applied directly as the matrix
(I −W) is singular and thus the assumption of linear independence of
the gradients {∇hi(x

∗)} does not hold.

Theorem 4.4. Let Assumptions D1 - D3 hold and let us assume that
two sequences {βs}, {εs} ⊂ R>0 are given. For every s ∈ N0 let us
denote with x̂s the sequence of Rn such that

∥∇Φβs(x̂
s)∥∞ ≤ εs.

If lims→+∞ βs = lims→+∞ εs = 0, then every accumulation point of
the sequence x̂s satisfies the sufficient optimality conditions (Theorem
1.16) for problem (4.2).

4.4 Convergence of DINAS algorithm 123

Proof. We proceed as in the proof of Theorem 3.1 in [26]. Let x̄ be
an accumulation point of {x̂s} and let K1 ⊆ N0 be an infinite subset
such that limk∈K1 x̂

s = x̄. By definition of x̂s and Φβs , we have

εβs ≥ ∥∇Φβs(x̂
s)∥∞ =

∥∥∥∥∇F (x̂s) +
1

ββs

(I −W)x̂s

∥∥∥∥
∞

≥ 1

ββs

∥(I −W)x̂s∥∞ − ∥∇F (x̂s)∥∞,

which implies

∥(I −W)x̂s∥∞ ≤ βs(εs + ∥∇F (x̂s)∥∞). (4.25)

Since ∇F is bounded over {x̂s}K1 , and βs tends to zero, taking the
limit of the previous inequality for k → +∞ in K1, we get

∥(I −W)x̄∥∞ ≤ lim
k∈K1

βs(εs + ∥∇F (x̂s)∥∞) = 0,

which also implies that (I −W)1/2x̄ = 0 and therefore x̄ is a feasible
point for (4.2). Let us now define for every s ∈ N0 the vectors

vs =
1

βs

(I −W)1/2x̂s,

zs =
1

βs

(I −W)x̂s.

We want to prove that {vs}s∈K1 is bounded. Let (I − W) = UΛU⊤

be the eigendecomposition of (I − W), with Λ = diag(λ1, . . . , λnN).
From (4.25) we have that {zs}s∈K1 is bounded. That is, there exists
Z ∈ R such that ∥zs∥ ≤ Z for every s ∈ K1. Since U is an orthogonal
matrix, by definition of z we have

Z ≥ ∥zs∥ ≥ ∥U⊤zs∥ =
1

βs

∥U⊤UΛU⊤x̂s∥ =
1

βs

∥ΛU⊤x̂s∥

=
1

βs

(
nN∑
i=1

λ2
i (U

⊤x̂s)2i

)1/2

124 Distributed Inexact Newton Method

Since λi ≥ 0 for every i, this implies that { 1
βs
λ2
i (U

⊤xs)2i }s∈K1 is bounded

for every i and therefore { 1
βs
λi(U

⊤xs)2i }s∈K1 is also bounded. By defi-
nition of v we get

1

βs

(
nN∑
i=1

λi(U
⊤xs)i

)1/2

=
1

βs

∥Λ1/2U⊤x∥ = ∥U⊤vs∥.

This implies that {vs}s∈K1 is bounded and therefore there exists
v̄ ∈ Rn and K2 ⊆ K1 infinite subset such that limk∈K2 v

s = v̄. By
definition of x̂s, Φs, and vs we have

εs ≥ ∥∇Φs(x̂
s)∥∞ =

∥∥∥∥∇F (x̂s) +
1

βs

(I −W)x̂s

∥∥∥∥
∞

=

=
∥∥∇F (x̂s) + (I −W)1/2vs

∥∥
∞ .

Taking the limit for s ∈ K2 we get∥∥∇F (x̄) + (I −W)1/2v̄
∥∥
∞ = 0,

and thus x̄ is a satisfies the KKT conditions for (4.2). Denoting with L

the Lagrangian function of problem (4.2), by Assumption D3 we have
that ∇2

xxL(x̄, v̄) is positive definite, and therefore we get the thesis.
□

4.5 Numerical Results

We now present a set of numerical results to investigate the behavior
of DINAS and how it compares with relevant methods from the liter-
ature, for different kinds of problems.
We begin studying how the choice of the forcing terms ηk influences the
performance of the method. As in the previous chapter, we consider

4.5 Numerical Results 125

the problem of minimizing a logistic loss function with l2 regulariza-
tion. That is, given {aj}mj=1 ⊂ Rn, {bj}mj=1 ⊂ {−1, 1}, ρ > 0, the
objective function f is defined as

f(y) =
m∑
j=1

ln
(
1 + exp(−bja

⊤
j y)

)
+

1

2
ρ∥y∥22 (4.26)

We set n = 100, m = 1000 and we assume that node i holds {aj}j∈Ri
,

{bj}j∈Ri
for Ri = {(i−1)100+1, . . . , 100i}. For every j = 1, . . . ,m the

components of aj are independent and uniformly drawn from (0, 1),
while bj takes value 1 or −1 with equal probability. We take the
regularization parameter ρ = 0.01m. The underlying communication
network is defined as a random geometric graph with communication
radius

√
N−1 ln(N), and the consensus matrix W as the Metropolis

matrix [65] (see (2.2)). To evaluate the methods, we define the per-
iteration total cost of each method as the sum of the computational
cost plus the communication traffic multiplied by a scaling constant
r, [5]. That is,

total cost = computation + r · communication (4.27)

The computational cost is expressed in terms of scalar operations,
while the communication traffic is the total number of scalar quan-
tities shared by all nodes. The reason why the scaling factor r is
introduced is that the time necessary to share a variable between two
nodes compared with the time necessary to execute scalar computa-
tions depends on many factors of technical nature, such as the kind of
computational agents that form the network and the technology they
use to communicate, that are beyond the purpose of these experiments.

We consider a logistic regression function f generated as above
and, given β = 0.1, we solve the associated penalty problem (4.3)
with DINAS algorithm for different choices of the sequence of forcing

126 Distributed Inexact Newton Method

(a) δ = 0 (b) δ = 0

(c) δ = 1 (d) δ = 1

Figure 4.1: Choice of the forcing terms, Logistic Regression

terms {ηk}. All nodes start with initial guess x0
i = 0 ∈ Rn and the

execution terminates when ∥∇Φβ(xk)∥ ≤ 10−5. We assume that ηk is
given by

ηk = min{η, η∥gk∥δ∞}
for different choices of the parameters η and δ. In particular we con-
sider here δ = 0, 1 and η = 0.9, 0.1, 0.001. In Figure 4.1 we plot the
results for the six methods given by the different combinations of the
two parameters. In Figure 4.1a, 4.1b we consider the case δ = 0 (that
is, ηk = η for every iteration index k), while in Figure 4.1c,4.1d we
have δ = 1. in each subfigure we plot the value of log10(∥gk∥) versus

4.5 Numerical Results 127

iterations (Figure 4.1a, 4.1c) and cost (4.1b, 4.1d), with scaling factor
r = 1. For all the methods we define γ0 = 1
Figures 4.1a, 4.1c confirm the results in Theorem 4.2: the sequence
∥gk∥ is linearly decreasing for all the considered choices of δ and η,
while for δ = 1 the convergence is locally quadratic.
For both values of δ we see that the number of iterations required by
the methods to arrive at termination depends directly on the choice of
the forcing term: smaller values of η ensure the stopping criterion to
be satisfied in a smaller number of iterations. However, for δ = 1 we
notice that, when compared in terms of overall cost, the method with
the smallest value of η performs worse than the other two. For δ = 0
the comparison among the methods for the cost gives the same result
as that in terms of iterations. The results for different values of the
scaling factor r are completely analogous and are therefore omitted
here.

4.5.1 Comparison with Exact Methods

We compare DINAS with Network Newton [43], DAN and DAN-LA
[75], Newton Tracking [74], DIGing [47] and EXTRA [57], which were
all described in Section 2.2. The proposed method DINAS is designed
to solve the penalty formulation of the problem therefore, in order to
minimize (4.1), we apply Algorithm 4.3 with β0 = 0.1, q = 10 and
εs = 0.01βs. For Network Newton we proceed analogously, replacing
DINAS in line 2 with Network Newton. All other methods are exact,
and therefore can be applied directly to minimize f . We take γ0 = 1,
δ = 0 and η = 0.9 in Algorithm 4.2, while for all the methods the
step sizes are computed as in the respective papers. For DAN-LA the
constants are set as in [75]. In particular, we consider four different
values of the parameter c = M, 10M, 100M, 1000M

First, we consider a logistic regression problem with the same pa-
rameters as in the previous test. The exact solution y∗ of (4.26) is

128 Distributed Inexact Newton Method

computed by running the classical gradient method with tolerance
10−8 on the norm of the gradient. As in [43], the methods are evalu-
ated considering the average squared relative error, defined as

ek =
1

N

N∑
j=1

∥xk
i − x∗∥2

∥x∗∥2

where x∗ = (y∗, . . . ,y∗)⊤ ∈ RnN . For all methods we take initial
guess x0

i = 0 at every node, which yields e0 = 1, and we terminate the
execution when ek ≤ 10−4. We consider the same combined measure of
computational cost and communication defined in (4.27), with scaling
factor r = 0.1, 1, 10 and we plot the results in Figure 4.2.

We can see that for all values of r DINAS outperforms all the other
methods. Network Newton, DIGing and EXTRA all work with fixed
step sizes that, in order to ensure global convergence of the methods,
need to be very small. Despite the fact that each iteration of DIGing
and EXTRA is very cheap compared to an iteration of DINAS, this is
not enough to compensate the fact that both these methods require a
large number of iterations to arrive at termination. DAN and DAN-
LA all use an adaptive step size that depends on the constants of the
problem µ and L and on the inverse of ∥∇F k∥ in such a way that the
full step size is accepted when the solution is approached. In fact, we
can clearly see from the plots that all these methods reach a quadratic
phase where et decreases very quickly. However, the per-iteration cost
of these methods is, in general, significantly higher than the cost of
DINAS. DAN method requires all the local Hessians ∇2fi(x

k) to be
shared among all the nodes at each iteration. While using Algorithm
4.1 this can be done in a finite number of rounds of communications,
the overall communication traffic is large as it scales quadratically
with both the dimension n of the problem and the number of nodes
N . DAN-LA avoids the communication of matrices by computing and
sharing the rank-1 approximations of the local Hessians. While this

4.5 Numerical Results 129

(a) r = 0.1 (b) r = 1

(c) r = 10

Figure 4.2: Total cost, Logistic Regression

reduces significantly the communication traffic of the method, it in-
creases the computational cost, as two eigenvalues and one eigenvector
need to be computed by every node at all iterations, and the number
of iterations, since the direction is computed using an approximation
of the true Hessian. Overall, this leads to a larger per-iteration cost
than DINAS. Since γ0 = 1 and it only decreases when the conditions
(4.9),(4.10) do not hold, we have that αk in DINAS is relatively large
compared to the fixed step sizes employed by the other methods that
we considered. The per-iteration cost of DINAS is largely dominated

130 Distributed Inexact Newton Method

by the cost of JOR that we use to compute the direction dk. Since the
method is run with ηk large, and dk−1 is used as initial guess at the
next iteration, a small number of JOR iteration is needed on average
to satisfy (4.5), which makes the overall computational and commu-
nication traffic of DINAS small compared to DAN and DAN-LA.

We now consider a quadratic problem. That is, we assume

f(y) =
N∑
i=1

fi(y), fi(y) = y⊤Aiy + y⊤bi (4.28)

with Ai ∈ Rn×n, b ∈ Rn for every i = 1, . . . , N. We take n = 100 and
N = 10 and we generate Ai, bi as follows. Given 0 < λmin < λmax, we
define the diagonal matrix Di = diag(λi

1, . . . , λ
i
n) where the scalars λi

j

are independent and uniformly sampled in [λmin, λmax]. Given a ran-
domly generated orthogonal matrix Pi ∈ Rn×n we define Ai = PDP⊤.
For every i = 1, . . . , n the components of bi are independent and from
the uniform distribution in [0, 1]. We set λmin = 0.1 and we consider
different problems of the form (4.28) with increasing values of λmax.
For each problem the exact solution y∗, the initial guess and the ter-
mination condition are all set as in the previous test. We also use
the same combined measure of the cost, with scaling factor r. All
methods are run with step sizes from the respective papers, while for
Network Newton we use step size equal to 1, as suggested in [43] for
quadratic problems. In Figure 4.3 we plot the obtained results for
λmax = 0.5, 1, 10, 100 and r = 0.1, 10.

For this set of problems the advantages of DINAS, compared to
the other considered methods, become more evident as λmax increases.
When λmax is larger, the Lipschitz constant of the problem also in-
creases and therefore the step sizes that ensure convergence of DIGing
and EXTRA become progressively smaller. In fact we can see that EX-

4.5 Numerical Results 131

TRA outperforms the proposed method for λmax ≤ 1 when the cost is
computed with r = 0.1 and for λmax ≤ 10 when r = 10, but DINAS
becomes more efficient for larger values of λmax. Regarding DAN and
DAN-LA, what we noticed for the previous test also holds here. More-
over, their step size depends on the ratio µ2/L which, for large values
of λmax causes the step size to be small for many iterations. While
Network Newton uses the full step size in this test, we can see that
its performance is in general more influenced by the condition number
of the problem than that of DINAS. Moreover, while the per-iteration
communication traffic of Network Newton is fixed and generally lower
than that of DINAS, the computational cost is typically larger, as at
each iteration every node has to solve multiple linear systems of size
n, exactly. Finally, we notice that for all the considered values of λmax

the comparison between DINAS and the other method is better for
r = 0.1 which is a direct consequence of assigning different weight to
the communication traffic when computing the overall cost.

132 Distributed Inexact Newton Method

(a) λmax = 0.5, r = 0.1 (b) λmax = 0.5, r = 10

(c) λmax = 1, r = 0.1 (d) λmax = 1, r = 10

(e) λmax = 10, r = 0.1 (f) λmax = 10, r = 10

(g) λmax = 100, r = 0.1 (h) λmax = 100, r = 10

Figure 4.3: Total cost, quadratic function

Chapter 5

Distributed Fixed Point
Methods for Linear Systems

In this chapter we consider the same problem as in Section 2.2.3. That
is, we assume we have a linear system

Ay = b (5.1)

where A ∈ Rn×n and b ∈ Rn are given, and y ∈ Rn is the vector of
the unknowns. We assume that the matrix A is nonsingular, so that
there exists a unique y∗ ∈ Rn solution of (5.1). Moreover, we assume
that a set of computational agents is given, such that each node hold
a subset of the equations of the system, and that can communicate
according to a given network G.

In this Chapter, we propose a class of distributed methods to solve
(5.1), which we refer to as DFIX (Distributed Fixed Point), based on
a given centralized fixed point method associated with the linear sys-
tem, [28]. That is, we extend the convergence theory of fixed point
methods to the decentralized framework. In particular we prove that
under suitable assumptions on the communication network G, we can
prove in the distributed case a convergence result that is completely

134 Distributed Fixed Point Methods for Linear Systems

analogous to the convergence theorem of general fixed point methods
in the classical framework: if the spectral radius of the iterative matrix
is smaller than one, the method converges for any choice of the initial
guess.

This Chapter is organized as follows. In Section 5.1 we present
DFIX method and its theoretical analysis. We prove linear conver-
gence of DFIX under directed strongly connected fixed network and
explicitly quantify the corresponding convergence factor in terms of
the parameters of the linear system and the underlying network. We
also propose a modification of DFIX that works in the case where each
nodes hold a subset of the equations, and we shouw that the same the-
oretical results still apply. In Section 5.2 we extend the convergence
analysis of the proposed method to the case of time-varying networks.
We provide assumptions over the sequence of networks that ensure
convergence of DFIX and we compare such assumptions with the as-
sumptions made for similar papers in the literature. In particular we
prove that they are equivalent to those considered in [38, 36, 64]. We
also prove that the case with fixed network is a particular case of
the time-varying case. In Section 5.3 we provide extensive numerical
results. We study how the computational cost and communication
traffic of DFIX depend on the density of the communication network
and on the number of nodes in the network. Moreover, we compare
DFIX with several methods for the literature, including the method
for linear system in the decentralized framework presented in [36] and
different first order optimization methods.

5.1 DFIX method

Let us now define precisely the computational environment we con-
sider in this chapter. Assume that the network of nodes is a directed

5.1 DFIX method 135

network G = (V,E), where V is the set of nodes and E is the set of all
edges, i.e., all pairs (i, j) of nodes where node i can send information
to node j through a communication link.

Definition 5.1. The graph G = (V,E) is strongly connected if for
every couple of nodes i, j there exists an oriented path from i to j in G.
That is, if there exist s1, . . . , sl such that (i, s1), (s1, s2), . . . , (sl, j) ∈ E.

Assumption C1. The network G = (V,E) is directed, strongly con-
nected, with self-loops at every node.

Remark 5.1. The case of undirected network G can be seen as the
particular case of directed graph where G is symmetric. That is, (i, j) ∈
E if and only if (j, i) ∈ E. In this case, the hypothesis that G is strongly
connected is equivalent to G connected.

Let us denote by Oi the in-neighborhood of node i, that is, the set
of nodes that can send information to node i directly. Since the graph
has self loops at each node, then i ∈ Oi for every i. We associate with
G an n×n matrix W , such that the elements of W are all nonnegative
and each row sums up to one. More precisely, we assume the following.

Assumption C2. The matrix W ∈ Rn×n is row stochastic with ele-
ments wij such that

wij > 0 if j ∈ Oi, wij = 0 if j /∈ Oi

Let us denote by wmin a constant such that all nonzero elements
of W satisfy wij ≥ wmin > 0. Under the previously stated assumptions
we know that such constant exists. Moreover, we have wmin ∈ (0, 1).
Therefore, for all elements of W we have

wij ̸= 0 ⇒ wij ≥ wmin. (5.2)

136 Distributed Fixed Point Methods for Linear Systems

The diameter of a network is defined as the largest distance between
two nodes in the graph. Let us denote with δ the diameter of G.

We consider a generic fixed point method for solving (5.1). That
is,

yk+1 = Myk + d, (5.3)

with M = [mij] ∈ Rn×n, d = [di] ∈ Rn defined in such a way that
node i contains the i-th row Mi ∈ R1×n and di ∈ R. Moreover, we
assume that the fixed point y∗ of (5.3) is a solution of (5.1). We as-
sume that at each iteration each node holds a local copy of the vector
of variables, that is, each node hold a vector of size n equal to the
dimension of the considered problem. We denote with xk

i the local
vector of variable for node i at iteration k.

The DFIX method is presented in the algorithm below.

Algorithm 5.1. [DFIX]
Input: {x0

i }i=1,...,N ⊂ Rn

Iteration k, node i:

1: compute x̂k+1
i as follows

x̂k+1
ii =

n∑
j=1

mijx
k
ij + di,

x̂k+1
ij = x̂k

ij, i ̸= j.

(5.4)

2: share x̂k
i with its neighbors

3: update the local estimate xk
i

xk+1
i =

n∑
j=1

wijx̂
k+1
j (5.5)

5.1 DFIX method 137

Notice that in line 1 each node i updates only the i-th component
of its solution estimate and leaves all other components unchanged,
while in line 3 all nodes perform a consensus step [11, 23, 61] using the
set of vector estimates x̂k+1

j . Defining the global variable at iteration
k as

Xk =
(
xk
1; . . . ;xk

n

)
∈ Rn2

,

Algorithm DFIX can be stated in a condensed form using Xk and the
following notation

M̂i =

1

. . .

mi1 . . . mii . . . min

. . .

1

 ∈ Rn×n, d̂i =

0
...
di
...
0

 ∈ Rn.

More precisely, matrix M̂i has the i-th row equal to M , the rest of
diagonal elements are equal to 1 and the remaining elements are equal
to 0. Vector d̂i has only one nonzero element in the i-th row which is
equal to di. Now, Step 1 can be rewritten as

x̂k+1
i = M̂ix

k
i + d̂i,

and we can rewrite the Steps 1-2 in matrix form as

Xk+1 = (W ⊗ I)(MXk + d̂) (5.6)

where M = diag
(
M̂1, . . . , M̂n

)
∈ Rn2×n2

, d̂ =
(
d̂1; . . . ; d̂n

)
∈ Rn2

and ⊗ denotes the Kronecker product of matrices. We remark here
that equation (5.6) is only theoretical, in the sense that since each
agent has access only to partial information, the global vector Xk, the
matrix M and the vector d̂ are not computed at any node. We derived

138 Distributed Fixed Point Methods for Linear Systems

equation (5.6) to get a compact representation of Algorithm 5.1 and
to use it in the convergence analysis.

The following theorem shows that for every i ∈ {1, . . . , n} the local
sequence {xk

i } converges to the fixed point y∗ of (5.3). Denote

X∗ = (y∗; . . . ;y∗) ∈ Rn2

.

Theorem 5.1. Let Assumptions A1 and A2 hold, ∥M∥∞ = µ < 1
and let {Xk} be a sequence generated by (5.6). There exists a constant
τ < 1 such that for every k the global error Ek = Xk −X∗ satisfies

∥Ek+1∥∞ ≤ τ∥Ek−δ+1∥∞, (5.7)

where δ denotes the diameter of the underlying computational graph
G.

Proof. Since W is assumed to be row stochastic there holds (W ⊗
I)X∗ = X∗. Moreover, using the fact that d̂ = (I ⊗ I − M)X∗, we
obtain the following recursion

Ek+1 = (W ⊗ I)MEk. (5.8)

Notice that ∥(W ⊗ I)M∥∞ ≤ 1, so we have

∥Ek+1∥∞ ≤ ∥Ek∥∞. (5.9)

Now, denoting by eki the i-th block of Ek (the local error corresponding
to node i) and by ekij its j-th component, from (5.8) we obtain the
following

ek+1
ij = wijMje

k
j +

∑
s ̸=j

wise
k
sj. (5.10)

We prove the thesis by proving that if the distance between j and i in
the graph is equal to l, then for every k

|ek+1
ij | ≤ τ ′∥Ek−l+1∥∞, for a constant τ ′ < 1. (5.11)

5.1 DFIX method 139

We proceed by induction over the distance l. If l = 1, that is, if there
is an edge from j to i, then wij ≥ wmin > 0. By (5.10) we get

|ek+1
ij | ≤ wij|Mje

k
j | +

∑
s ̸=j

wis|eksj| ≤ wijµ∥Ek∥∞ + ∥Ek∥∞
∑
s ̸=j

wis

≤
(
1 − wij(1 − µ)

)
∥Ek∥∞ ≤

(
1 − wmin(1 − µ)

)
∥Ek∥∞,

(5.12)
and defining τ ′ =

(
1 − wmin(1 − µ)

)
< 1, we get

|ek+1
ij | ≤ τ ′∥Ek∥∞. (5.13)

Assume now that (5.11) holds for distance equal to l − 1, and let us
prove it for l. Let (j, sl−1, sl−2, . . . , s1, i) be a path of length l from j
to i. In particular we have that wis1 > 0 and thus

|ek+1
ij | ≤ wis1|eks1j| +

∑
s ̸=s1

wis|eksj|. (5.14)

For each of the terms |eksj| in the sum, by (5.9), we have

|eksj| ≤ ∥Ek∥∞ ≤ ∥Ek−l+1∥∞. (5.15)

Let us now consider the term |eks1j|. Since (j, sl−1, sl−2, . . . , s1, i) is a
path of length l from j to i and the distance between j and i is equal
to l, we have that the distance between j and s1 is equal to l− 1 and
therefore, by inductive hypothesis

|eks1j| ≤ τ ′∥Ek−(l−1)∥∞ = τ ′∥Ek−l+1∥∞, for τ ′ < 1. (5.16)

Replacing (5.15) and (5.16) in (5.14), we get

|ek+1
ij | ≤ wis1τ

′∥Ek−l+1∥∞ +
∑
s ̸=s1

wis∥Ek−l+1∥∞ =

= (1 − ws1j(1 − τ ′)) ∥Ek−l+1∥∞
≤ (1 − wmin(1 − τ ′)) ∥Ek−l+1∥∞

(5.17)

140 Distributed Fixed Point Methods for Linear Systems

and defining τ := (1 − wmin(1 − τ ′)) < 1 we get (5.11). Now the thesis
follows directly from the fact that the distance between any two nodes
is smaller or equal than the diameter δ of the graph.□

The previous analysis shows that the global error in nonexpanding
and that we have a decrease after at most δ iterations, where δ is
the diameter of the underlying graph. Next we quantify the R-linear
convergence factor.

Corollary 5.1. Suppose that the assumptions of Theorem 5.1 are sat-
isfied. Then each node’s solution estimate xk

i converges to the so-
lution y∗ of the problem (5.3) R-linearly with the factor γ = τ 1/δ,
i.e., for each i ∈ {1, 2, ..., N} there holds ∥xk

i − y∗∥∞ = O(γk), where

γ =
(
1 − wδ

min(1 − µ)
)1/δ

.

Proof. Denote ξk := ∥Xk − X∗∥∞ = ∥Ek∥∞. Notice that (5.9) im-
plies that ξk+1 ≤ ξk for every k. Moreover, every iteration k can be
represented as k = sδ + c, where s, c ∈ N0 and c < δ. Then,

ξk ≤ ξk−c ≤ τ sξ0 = τ (k−c)/δξ0 ≤ τ k/δτ−1ξ0 := γkC,

where
γ = τ 1/δ =

(
1 − wδ

min(1 − µ)
)1/δ

and

C =
ξ0
τ

=
∥X0 −X∗∥∞

1 − wδ
min(1 − µ)

.

By definition of Xk and X∗ we have ∥xk
i − y∗∥∞ ≤ ξk, i = 1, . . . , N

and the result follows. □

5.1.1 DFIX Method - multirow case

We consider now the case where each of the nodes holds a subset of
rows of the fixed point method, opposed to the previous section, where

5.1 DFIX method 141

each node had exactly one row. We consider again the fixed point
iterative method (5.3) and we assume that N computational agents
are given. We denote with Ri the set if indecess of the rows available
to agent i and we assume Ri

⋂
Rj = ∅ for i ̸= j and

⋃N
i=1 Ri =

{1, 2, ..., n}. More precisely, each node i holds Mj ∈ R1×n and di ∈ R,
for all j ∈ Ri. As in the previous section. the algorithm is designed in
such a way that each node computes a local estimate of the solution
y∗.

Algorithm 5.2. [DFIXM]
Input: {x0

i }i=1,...,N ⊂ Rn

Iteration k, node i:

1: compute x̂k+1
i as follows

x̂k+1
ij =

n∑
l=1

mjlx
k
il + dj, j ∈ Ri,

x̂k+1
ij = x̂k

ij, j /∈ Ri.

(5.18)

2: share x̂k
i with its neighbors

3: update the local estimate xk
i

xk+1
i =

N∑
j=1

wijx̂
k+1
j (5.19)

Notice that, analogously to the single-row case, in line 1 each node
i updates only the components j ∈ Ri of its solution estimate, while
in line 3 a consensus step is performed using the set of iterates x̂k+1

j

obtained from the immediate neighbours.

Algorithm DFIXM can be stated in the condensed form with

142 Distributed Fixed Point Methods for Linear Systems

Xk =

xk
1
...
xk
n

 ∈ RNn, d̂i =

0
...
dj
dj+1

...
dj+qi

...
0

∈ Rn

and M̂i ∈ Rn×n such that the j-th row of M̂i is equal to the j-th row
of M for all j ∈ Ri, the rest of diagonal elements are equal to 1 and
the remaining elements are equal to 0.

Now, line 1 can be rewritten as

x̂k+1
i = M̂ix

k
i + d̂i,

and each iteration of Algorithm DFIXM can be written as

Xk+1 = (W ⊗ I)(MXk + d̂) (5.20)

where M = diag
(
M̂1, . . . , M̂n

)
∈ RNn×Nn, and d̂ =

(
d̂1; . . . ; d̂n

)
∈

RNn. As we already notice, the global expression (5.6) is never com-
puted at any node and it is derived only for theoretical analysis.

The following theorem shows that for every i ∈ {1, . . . , N} the
local sequence {xk

i } converges to the fixed point y∗ of (5.3) as in the
case of DFIX.

Theorem 5.2. Let Assumptions C1 and C2 hold, ∥M∥∞ = µ < 1
and let {Xk}∞k=0 be the sequence generated by (5.20). Then, for every
k, the global error Ek = Xk −X∗ satisfies

∥Ek+1∥∞ ≤ τ∥Ek−δ+1∥∞, (5.21)

5.1 DFIX method 143

where δ denotes the diameter of the underlying computational graph G

and
τ = 1 − wδ

min(1 − µ) ∈ (0, 1). (5.22)

Proof. The proof is essentially the same as the proof of Theorem 5.1
with some technical changes. The error expression is now

ek+1
ij = wijMhe

k
j +

∑
s ̸=j

wise
k
sj, (5.23)

where h depends on i and j. As in the previous case, we prove the
thesis by proving that if the distance between j and i in the graph is
equal to l, then

|ek+1
ij | ≤ τ∥Ek−l+1∥∞, (5.24)

for every k, with τ = 1 − wl
min(1 − µ) ∈ (0, 1). Let us proceed by

induction over the distance l. If l = 1, that is, if there is an edge from
j to i, then wij ≥ wmin > 0. By (5.23) we get

|ek+1
ij | ≤ wij|Mhe

k
j | +

∑
s ̸=j

wis|eksj|

≤ wij∥Ek∥∞
n∑

l=1

|mhl| + ∥Ek∥∞
∑
s ̸=j

wis

≤ wijµ∥Ek∥∞ + ∥Ek∥∞(1 − wij)

≤
(
1 − wij(1 − µ)

)
∥Ek∥∞

≤
(
1 − wmin(1 − µ)

)
∥Ek∥∞,

and defining τ ′ = 1 − wmin(1 − µ) < 1, we get

|ek+1
ij | ≤ τ ′∥Ek∥∞. (5.25)

The rest of the proof is completely analogous to the proof of Theorem
5.1 and hence omitted here.□

144 Distributed Fixed Point Methods for Linear Systems

Analogously, we can quantify the convergence factor in the same
way as before and the corollary below holds.

Corollary 5.2. Suppose that the assumptions of Theorem 5.2 are sat-
isfied. Then each node’s solution estimate xk

i converges to the so-
lution y∗ of the problem (5.3) R-linearly with the factor γ = τ 1/δ,
i.e., for each i ∈ {1, 2, ..., N} there holds ∥xk

i − y∗∥∞ = O(γk), where

γ =
(
1 − wδ

min(1 − µ)
)1/δ

.

DFIXM is a generalization of DFIX that might be of practical
importance as it allows us to solve an n dimensional linear system
with an arbitrary number of nodes N ≤ n which might be the case in
many applications. However we will continue with DFIX method for
time-varying networks in the next Section to avoid notation cluttering
and to facilitate reading. The changes in the proofs are of the same
type as above.

5.2 Time-varying Network

The theoretical analysis presented in the previous section relies on the
fact that the communication network is the same at all iterations. As
we noticed in Chapter 1 this assumption could be impractical since
it does not take into account possible failures of the communication
link between two agents. In this section, we extend DFIX to the time-
varying framework and we give assumptions on the sequence of graphs
that yield a convergence result analogous to Theorem 5.1. In particular
we show that, in order to achieve convergence, the underlying network
does not need to be strongly connected at any time.

Assume that a sequence of directed graphs {Gk}k is given, such
that Gk represents the network of nodes at iteration k. That is, at
iteration k, each node can communicate with its neighbours in Gk.

5.2 Time-varying Network 145

The DFIX algorithm described by equations (5.4) and (5.5) can be
applied in this case if we replace (5.5) with

xk+1
i =

n∑
j=1

wk
ijx̂

k+1
j (5.26)

where W k is the consensus matrix associated with the graph Gk, that
is, W k satisfies Assumption C2 with G = Gk. With this modification,
the equation describing the global iteration becomes

Xk+1 = (W k ⊗ I)(MXk + d̂). (5.27)

We will prove a convergence result for a class of sequences of graphs.
We first present and analyze the assumptions on such sequence.

Remark 5.2. Let us consider a generic set of graphs G1, . . . ,Gm. It is
easy to see that if for every index j the graph Gj has self-loops at every
node then the set of edges of the composition G1 ◦ · · · ◦Gm contains the
set of edges of Gj for every j. In particular, if there exists an index
ȷ̂ ∈ {1, . . . ,m} such that Gȷ̂ is fully connected, then G1 ◦ · · · ◦Gm is also
fully connected.

Definition 5.2. Given an infinite sequence of networks {Gk}k and
a positive integer m̄, we say that the sequence is jointly fully (respec-
tively, strongly) connected for sequences of length m̄ if for every index
k, the composition Gk◦Gk+1◦· · ·◦Gk+m̄−1 is fully (respectively, strongly)
connected.

Definition 5.3. Given an infinite sequence of networks {Gk}k and two
integers τ0, l, we say that the sequence is repeatedly jointly strongly
connected with constants τ0, l, if for every index k, the composition
Gτ0+kl ◦ Gτ0+kl+1 ◦ · · · ◦ Gτ0+(k+1)l is strongly connected.

146 Distributed Fixed Point Methods for Linear Systems

Definition 5.4. Given two vertices i, j we say that there is a joint
path of length l from i to j in Gk, . . . ,Gk+m̄−1 if there exist s1, . . . , sl−1

such that (i, s1) ∈ Ek+m̄−1, (s1, s2) ∈ Ek+m̄−2, . . . , (sl−1, j) ∈ Ek+m̄−l,
and we say that i, j have joint distance l in Gk, . . . ,Gk+m̄−1 if the
shortest joint path from i to j is of length l.

Our analysis is based on the following assumption.

Assumption C3. {Gk} is a sequence of directed graphs, with self-
loops at every node, jointly fully connected for sequences of length m̄,
for some positive integer m̄.

The algorithm presented in [38] works for time-varying network in a
similar framework. Formally, the hypothesis on {Gk} in [38] is the
following.

Assumption C3’. {Gk} is a sequence of directed graphs, with self-
loops at every node, jointly strongly connected for sequences of length
p̄, for some positive integer p̄.

We show now that Assumptions C3 and C3’ are equivalent, in the
sense specified by Proposition 5.1. In the following, given an integer
m, we denote with Gm the composition of m copies of G.

Lemma 5.1. If G is a directed strongly connected graph with self-loops
at every node and diameter δ, then Gδ is fully connected.

Proof. By definition of composition we have that (i, j) is an edge in
Gδ if and only if

∃s1, . . . , sδ−1 ∈ V such that (i, s1), (s1, s2), . . . , (sδ−1, j) ∈ G. (5.28)

We want to prove that for every i, j ∈ V a sequence of nodes sh as in
(5.28) exists.

5.2 Time-varying Network 147

Since G is fully connected with diameter δ, there exists a path in G from
i to j of length l ≤ δ. That is, there exist a set of nodes v1, . . . , vl−1

such that (i, v1), (v1, v2), . . . , (vl−1, j) are edges in G and therefore a
sequence satisfying (5.28) is given by

sh =

{
vh h = 1 : l − 1

j h = l : δ.

□

Proposition 5.1. Let {Gk} be a sequence of graphs where, for each
k, Gk = (V,Ek) is a directed graph with self-loops at every node. The
following are equivalent:

(1) there exist τ0, l ∈ N such that {Gk} is repeatedly jointly strongly
connected with constants τ0, l

(2) there exists p̄ ∈ N such that {Gk} is strongly connected for se-
quences of length p̄

(3) there exists m̄ ∈ N such that {Gk} is fully connected for sequences
of length m̄

Proof. It is easy to see that (2) ⇒ (1) with τ0 = 0 and l = p̄ and
since full connectivity clearly implies strong connectivity, we have that
(3) ⇒ (2) with p̄ = m̄.
We now prove that (1) ⇒ (2) with p̄ = 2l. That is, we prove that if
(1) holds, then for every index s the composition Gs ◦ · · · ◦ Gs+2l−1 is
strongly connected. Given an index s, we denote with r̄ the remainder
of the division of (s− τ0) by l, we define h̄ := l−1(s− τ0 + l − r̄). By
definition of r̄ and h̄ and applying (1) with k = h̄ we have that the
graph

H : = Gs+l−r̄ ◦ · · · ◦ Gs+2l−r̄−1 =

= Gτ0+h̄l ◦ · · · ◦ Gτ0+(h̄+1)l−1

148 Distributed Fixed Point Methods for Linear Systems

is strongly connected and thus

Gs ◦ · · · ◦ Gs+2l−2 = Gs ◦ · · · ◦ Gs+l−r̄−1 ◦H ◦ Gs+2l−r̄ ◦ · · · ◦ Gs+2l−1

is strongly connected. Since 2l − r̄ ∈ l + 1, . . . , 2l we have the thesis.
Finally, we prove that (2) ⇒ (3). Since the size of V is finite, there
exists a finite number of graphs with vertices V. In particular, there
exists a finite integer L equal to the number of strongly connected
graphs with vertices V. We denote with H1, . . . HL such graphs, with
δj the diameter of Hj and with δ̄ := max δj. Given any index k, we
consider (δ̄ − 1)L + 1 sequences of length p̄ as follows:

S1 = Gk ◦ Gk+1 · · · ◦ Gk+p̄−1

S2 = Gk+p̄ ◦ Gk+p̄+1 · · · ◦ Gk+2p̄−1

...

S(δ̄−1)L+1 = Gk+(δ̄−1)Lp̄ ◦ Gk+(δ̄−1)Lp̄+1 · · · ◦ Gk+(δ̄−1)Lp̄+p̄−1.

Statement (2) implies that, for every j ∈ {1, . . . , (δ̄ − 1)L + 1}, Sj ∈
{H1, . . . HL} and thus there exists an index ı̂ ∈ {1, . . . , L} such that at
least δ̄ elements of {S1, . . . , S(δ̄−1)L+1} are equal to Hı̂. Using the fact

that, by Lemma 1, Hδı̂
ı̂ is fully connected and Remark 5.2, we have

Gk ◦ Gk+1 ◦ · · · ◦ Gk+(δ̄−1)Lp̄+p̄−1 = S1 ◦ · · · ◦ S(δ̄−1)L+1

fully connected, and thus (3) holds with m̄ = (δ̄ − 1)Lp̄ + p̄.□

To conclude the considerations on the sequence of networks we
remark that, since we are assuming that the linear system (5.1) has
unique solution and that each node contains exactly one row of the
coefficient matrix, the D-connectivity hypothesis introduced in [36] is
equivalent to Assumption C3’ and thus, by Proposition 5.1, to As-
sumption C3’.

5.2 Time-varying Network 149

Theorem 5.3. Assume that a sequence of networks {Gk}k is given,
satisfying Assumption C3, and that for every index k the corresponding
consensus matrix W k satisfies Assumption A2. Let {Xk} be a sequence
generated by (5.27) with ∥M∥∞ = µ < 1. There exists a constant
σ < 1 such that for every k ∈ N0 the global error Ek = Xk − X∗

satisfies
∥Ek+1∥∞ ≤ σ∥Ek−m̄+1∥∞, (5.29)

where m̄ is the constant given by Assumption A3.

Proof. We follow the proof of Theorem 5.1. For every index k, the
matrix W k is row stochastic and ∥(W k ⊗ I)M∥∞ ≤ 1, so we get

Ek+1 = (W k ⊗ I)MEk. (5.30)

and
∥Ek+1∥∞ ≤ ∥Ek∥∞. (5.31)

For every node i, j and for every iteration index k, we have

ek+1
ij = wk

ijMje
k
j +

∑
s ̸=j

wk
ise

k
sj. (5.32)

We now prove that if the joint distance between j and i in Gk−m̄+1,
Gk−m̄+2, . . . ,Gk is equal to l, then for every k

|ek+1
ij | ≤ σ′∥Ek−l+1∥∞, for σ′ < 1. (5.33)

We proceed by induction over the joint distance l. If l = 1, that is, if
wk

ij > 0, proceeding as in the derivation of (5.12) we get

|ek+1
ij | ≤

(
1 − wk

ij(1 − µ)
)
∥Ek∥∞ ≤

(
1 − wmin(1 − µ)

)
∥Ek∥∞ =: σ∥Ek∥∞.

We assume now that (5.33) holds for distance equal to l − 1 and we
prove it for l. Let (j, sl−1, sl−2, . . . , s1, i) be a joint path of length l from

150 Distributed Fixed Point Methods for Linear Systems

j to i in Gk−m̄+1,Gk−m̄+2, . . . ,Gk In particular we have that wk
is1

> 0
and thus

|ek+1
ij | ≤ wis1|eks1j| +

∑
s ̸=s1

wis|eksj|. (5.34)

Using the fact that (j, sl−1, sl−2, . . . , s1) is a joint path of length l −
1 from j to s1 in Gk−m̄+1,Gk−m̄+2, . . . ,Gk−1, applying the inductive
hypothesis and proceeding as in the proof of the previous theorem, we
get

|ek+1
ij | ≤ (1 − wmin(1 − σ′)) ∥Ek−l+1∥∞ (5.35)

with σ′ given by (5.33) for distance l − 1, and defining

σ := (1 − wmin(1 − σ′)) < 1

we get (5.33) for distance equal to l.
Since the sequence {Gk} is fully connected for sequences of length m̄
we have that for every couple of nodes i, j the joint distance between
j and i in Gk−m̄+1,Gk−m̄+2, . . . ,Gk is smaller or equal than m̄ and we
get the thesis.□

Lemma 1 shows that if we consider the time-independent case as
the particular instance of the time-varying case where each of the
graphs Gk is equal to G with diameter δ, then Assumption C3 holds
with m̄ = δ and the two theorems give the same inequality for the
error vectors.

5.3 Numerical results

We now present the results of several numerical tests on DFIX method
and on the comparison with the state-of-the-art distributed optimiza-
tion algorithms from [35, 47, 57, 59] referred to here as DIGing, EX-
TRA and SVL respectively, and the method for solving systems of lin-
ear equations presented in [36], abbreviated here as Projection. The

5.3 Numerical results 151

test set consists of two types of problems: Simple Kriging problems and
linear systems with strictly diagonally dominant coefficient matrix. In
Section 5.3.1 we consider Simple Kriging problems. We study the
influence of the connectivity of the underlying network on the compu-
tational cost and the communication traffic of DFIX, and we compare
DFIX with the mentioned methods. In Section 5.3.2 we repeat the
comparison considering a randomly generated linear system. More-
over, we tests the multi-row method DFIXM method is considered
and we analyze how the number of nodes influence the performance
of the method. In Sections 5.3.3 and 5.3.4 we consider the cases of
directed and time-varying networks, respectively.

The results demonstrate that DFIX, analogously to the classical
results, outperforms the optimization method for solving the uncon-
strained quadratic problem both in terms of computation and com-
munication. With respect to the method from[36] the comparison is
again favorable for DFIX. Clearly, the method from [36] is designed
for a wider class of problems, but in the case of unique solution and a
suitable iterative matrix its efficiency is significantly lower than DFIX.

In the following, the DFIX method we consider is defined using
Jacobi Overrelaxation as the underlying fixed point method. That is,
iteration k of the distributed method at each node is given by

x̂k+1
ii = (1 − ω)xk

ii −
α

aii

(∑
j ̸=i

aijx
k
ij − bi

)
,

x̂k+1
ij = xk

ij for j ̸= i,

(5.36)

and

xk+1
i =

n∑
j=1

wijx̂
k+1
j . (5.37)

In the rest of the section we refer to the method defined by equations
(5.36), (5.37) as DFIX-JOR, and we choose the relaxation parameter ω

152 Distributed Fixed Point Methods for Linear Systems

in (5.36) as 2/∥D−1A∥∞ where D = diag(a11, . . . , ann). The methods
for distributed optimization DIGing, EXTRA and SVL are applied
to solve the unconstrained problem with quadratic objective function
given by 1

2
x⊤Ax − b⊤x, which is equivalent to finding a solution of

(5.1). The step-size parameter for DIGing and EXTRA is chosen as
η = 1/(3L) where L = maxi=1:n 2∥Ai∥22, while the parameters for SVL
method are computed through the procedure described in [59]. We
remark that the relaxation parameter for DFIX and the step-size η
for DIGing and EXTRA can be easily computed in the distributed
framework, the computation of the optimal parameters for SVL re-
quires knowledge of the extremal eigenvalues of the matrix A and the
spectral gap of the consensus matrix W. Finally, Projection method
deals with the linear system (5.1) directly and it does not require the
computation of any additional parameter, but it requires a local initial
vector x0

i for each node i.

5.3.1 Simple Kriging problem

The first kind of problems that we consider is Simple Kriging [7, 34,
42]: an optimal linear prediction technique of the expected value of
a spatial random field Z(s), s ∈ Rn. Let us consider a physical pro-
cess modeled as a spatial random field and assume that a network
of sensors is given in the region of interest, taking measurements of
the field. The goal is to estimate the field in any given point of the
region. Assuming that the field is Gaussian and stationary, and that
the expected value and covariance function are known at any point,
this kind of problem can be solved by Simple Kriging method.

Denote with Z(s) the value of the random field at the point s, and
with µ(s) its expected value, which is assumed to be known. Moreover,
by the stationarity assumption, the covariance between the value of Z

5.3 Numerical results 153

at two points is given by

Cov(Z(s1),Z(s2)) = K(∥s1 − s2∥2)

for some nonnegative function K. Given the positions in space {s1, . . . , sn} ⊂
R2 of the n sensors of the network, let {Z(s1), . . . ,Z(sn)} be the sam-
pled values at those points and define the covariance matrix A = [aij] ∈
Rn×n as aij = K(∥si − sj∥2). Now, given a point s̄ where we want to
estimate the field, the vector b ∈ Rn is defined as bi = K(∥si − s̄∥2).
The predicted value of Z(s̄) is then given by

p̂(s) := µ(s̄) +
n∑

i=1

xi(Z(si) − µ(si))

where (x1, . . . , xn) is the approximate solution of the linear system

Ax = b. (5.38)

First of all, we study the influence of connectivity within the network in
terms of communication traffic and computational cost for the kriging
problem, with covariance function given by

K(t) := exp(−5t2). (5.39)

We assume that a set {s1, . . . , s100} ⊂ [−30, 30]2 of agents is given
and for any m ∈ {2, 4, . . . , 48, 50} we take the m-regular graph with
vertices {s1, . . . , s100}. The matrix W is defined using the Metropolis
weights [65], defined in (2.2). For each value of the degree m the system
Ax = b is solved with DFIX-JOR. For every considered value of the
degree m, in Figure 5.1a and 5.1b we plot the number of iterations and
the total communication cost, respectively, until the stopping criterion

max
i=1,...,n

∥Axk
i − b∥ ≤ 10−4 (5.40)

154 Distributed Fixed Point Methods for Linear Systems

is satisfied, for graphs of increasing degree. The communication cost
is computed as follows. At each iteration, line 1 of DFIX does not
require any communication, while in line 2 node i shares xk

i with all
the agents in its neighborhood. The per-iteration traffic is thus given
by n2m = 2|E|n, where E is the set of edges of the underlying network
and m is the degree. Note that here we implicitly assume that we
consider the case of peer-to-peer communication. That is, there is a
dedicated communication link between any pair of agents. In the other
tests that we present the broadcasting scenario will also be considered:
in that case, the per-iteration communication cost is independent to
the number of edges in the network and it is given by the number of
nodes times the size of the shared vectors, thus it is proportional to
the number of performed iterations.
From Figure 5.1 one can see that, as the degree of the network in-
creases, the number of iterations required to satisfy (5.40) decreases,
while the total communication traffic first decreases then increases
again. As the connectivity of the graph improves, the local informa-
tion is distributed through the network more efficiently, and a smaller
number of iterations is necessary. On the other hand, if the degree is
larger, the consensus step (5.5) of the algorithm requires each node to
share its local vector with a larger number of neighbours, yielding a
higher communication traffic at each iteration. The fact that the over-
all communication traffic (Figure 5.1b) is nonmonotone suggests that
for large values of the degree, the decrease in the number of iterations
in not enough to balance the higher per-iteration traffic.

Let us now compare the DFIX-JOR with DIGing [35, 47], EXTRA
[57], SVL [59] and Projection method [36]. We consider a 10× 10 grid
of nodes located at {s1, . . . , s100} ⊂ [−3, 3]2 and, given a communica-
tion radius R > 0, we define the network so that nodes i and j are
neighbours if and only if their distance is smaller than R. The linear
system that we consider is derived by the kriging problem described
at the beginning of this section. That is, we consider again Ax = b

5.3 Numerical results 155

0 10 20 30 40 50
degree

0

0.5

1

1.5

2

2.5

ite
ra

tio
ns

10 4

DJOR

(a) Number of iterations (b) Communication cost

Figure 5.1: Dependence of number of iterations and communication
traffic on the degree of the network

with

aij = K(∥si − sj∥2), bi = K(∥si − s̄∥2) (5.41)

where K is given by (5.39) and s̄ is a fixed random point in [−3, 3]2.
Proceeding as in the previous test, we compute the communication
traffic and computational cost required by the three methods to achieve
the tolerance specified at (5.40), for different values of the communi-
cation radius R. For each method, the overall computational cost is
given by the number of iterations performed times the per-iteration
cost, calculated as the number of scalar operations in one iteration.
Similarly, the communication traffic is given by the number of itera-
tions times the total number of vectors shared by the nodes during one
iteration, times the length n of the vector. The matrix W is defined
as in [65], with off-diagonal elements wij = 1

1+max{mi,mj} if j ∈ Oi,

and wij = 0 otherwise, where mi denotes the degree of node i. The
diagonal elements are wii = 1 −

∑
j ̸=i wij. The resulting matrix W

is stochastic. The stopping criterion is the same as in the previous

156 Distributed Fixed Point Methods for Linear Systems

test. The initial point at each node is the same for all the methods,
x0
ii = bi/aii and x0

ij = 0 for every j ̸= i. In Figure 5.2 we plot the
obtained results. As we can see, in this framework, DFIX method is
more efficient than the methods we compare with, both in terms of
computational and communication costs.

1 2 3 4 5 6 7 8

radius

0

0.5

1

1.5

2

2.5

3

co
m

pu
ta

tio
n

10 10

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(a) computational cost

1 2 3 4 5 6 7 8

radius

0

2

4

6

8

10

12

14

co
m

m
un

ic
at

io
n

10 9

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(b) peer-to-peer traffic

1 2 3 4 5 6 7 8

radius

0

1

2

3

4

5

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(c) broadcasting traffic

Figure 5.2: Simple kriging problem (5.41)

5.3.2 Strictly diagonally dominant systems

Let us now consider a linear system Ax = b of order n = 100, where
A and b are generated as follows. For every index i we take bi ran-
domly generated with uniform distribution in (0, 1) and A is a sym-
metric diagonally dominant random matrix obtained as follows: take

5.3 Numerical results 157

âij ∈ (0, 1) with uniform distribution and then set Ã = 1
2
(Â + ÂT)

and finally A = Â + (n− 1)I, where I is the identity matrix of order
n. The underlying network is an m-regular graph with n nodes. For
every fixed value of the degree m, 10 random linear systems are gen-
erated, solved with all methods and the average number of iterations
needed to fulfill (5.40) is computed. The total amount of computation
and communication for each method are then obtained multiplying
the average number of iterations and the per-iteration computational
cost and communication traffic, respectively. The matrix W is defined
as in (2.2), the parameter of the methods are computed as described
at the beginning of the section, while the initial guess at each node
and the termination condition are as in the previous test. In Figures
5.3 we plot the results for m ∈ {2, 4, . . . , 48, 50}. DFIX outperforms
DIGing, EXTRA and Projection method in terms of computation and
communication both in the peer-to-peer and in the broadcasting sce-
nario, while SVL method performs better than DFIX for values of the
degree larger than 15. We remark again that SVL method is run with
the optimal choice of the parameters, exploiting information on the
eigenvalues of A and W.

The same tests were performed on random Erdos-Renyi [17] graphs
with given expected average degree for a sequence of increasing de-
grees. In these tests all methods are more expensive in term of both
communication and computational effort but the the mutual compar-
ison is the same as in the case of m-regular graphs.

To confirm the effectiveness of DFIXM, we repeat the previous test
with a linear system of size n = 500 and N = 100 nodes, where each
node is assigned 5 equations. As we can see in Figure 5.4 the results
for all the methods are completely analogous to the case where each
node holds one equation.

Let us now show the influence of the number of nodes in the
network on performance of the five methods. We consider a lin-

158 Distributed Fixed Point Methods for Linear Systems

5 10 15 20 25 30 35 40 45 50

degree

0

0.5

1

1.5

2

2.5

co
m

pu
ta

tio
n

10 10

DFIX - JOR
DIGing
Projection
SVL
EXTRA

(a) computational cost

5 10 15 20 25 30 35 40 45 50

degree

0

0.5

1

1.5

2

2.5

3

3.5

co
m

m
un

ic
at

io
n

10 9

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(b) peer-to-peer traffic

5 10 15 20 25 30 35 40 45 50

degree

0

5

10

15

co
m

m
un

ic
at

io
n

10 7

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(c) broadcasting traffic

Figure 5.3: m-regular graph

ear system of size n = 100 generated as described above, and for
N = 10, 20, . . . , 100 consider a regular network of size N. For each
value of N the degree of the network is chosen so that the ratio between
N and the degree is constant. The results are plotted in figures 5.5.
The amount of both computation and communication of all the meth-
ods increases together with the number of nodes. Moreover, DFIX
seems to outperform all the methods that we compare to in terms of
computational costs, while in terms of communication it seems to be
comparable with Projection and both methods seems to be cheaper
than the optimization methods.

5.3 Numerical results 159

5 10 15 20 25 30 35 40 45 50

degree

0

2

4

6

8

10

12

14

co
m

pu
ta

tio
n

10 10

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(a) computational cost

5 10 15 20 25 30 35 40 45 50

degree

0

5

10

15

co
m

m
un

ic
at

io
n

10 9

DFIX - JOR
Harnessing
Projection
EXTRA
SVL

(b) peer-to-peer traffic

5 10 15 20 25 30 35 40 45 50

degree

0

1

2

3

4

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(c) broadcasting traffic

Figure 5.4: DFIXM

5.3.3 Directed Networks

We now consider underlying directed networks. Let n = 100 be the
size of linear system generated as in the previous tests. We consider a
randomly generated directed network of size n such that the average
out-degree of the nodes is equal to a fixed m. The consensus matrix
W is defined with off-diagonal elements wij = 1/(1 + m̂i) if j ∈ Oi,
and wij = 0 otherwise, where m̂i denotes the out-degree of node i, and
the diagonal elements are wii = 1−

∑
j ̸=i wij. The resulting matrix W

is row-stochastic. In Figures 5.6 we plot the results for m = 8, . . . , 50
for DFIX, DIGing, EXTRA and Projection. The SVL method fails
to converge in this framework. The resulting comparison among the

160 Distributed Fixed Point Methods for Linear Systems

10 20 30 40 50 60 70 80 90 100

nodes

0

1

2

3

4

5

co
m

pu
ta

tio
n

10 9

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(a) computational cost

10 20 30 40 50 60 70 80 90 100

nodes

0

2

4

6

8

10

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(b) peer-to-peer traffic

10 20 30 40 50 60 70 80 90 100

nodes

0

2

4

6

8

10

co
m

m
un

ic
at

io
n

10 7

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(c) broadcasting traffic

Figure 5.5: Varying number of nodes

four methods is analogous to the case of undirected networks: DFIX
seems to require the smallest computational effort among all methods
and a similar communication traffic as Projection.

5.3.4 Time-varying Network

We now compare the performance of the five methods in the time-
varying case described in Section 5.2. The sequence {Gk} is generated
as follows. For a fixed strongly connected graph G = (V,E) and a
scalar γ ∈ (0, 1], at every iteration k we randomly generate Ek by
uniformly sampling γ|E| edges from E and we set Gk = (V,Ek). This
construction can be interpreted as having a fixed underlying graph G

5.3 Numerical results 161

10 15 20 25 30 35 40 45 50

degree

0

2

4

6

8

10

12

co
m

pu
ta

tio
n

10 9

DFIX - JOR
DIGing
Projection
EXTRA

(a) computational cost

10 15 20 25 30 35 40 45 50

degree

0

1

2

3

4

5

co
m

m
un

ic
at

io
n

10 9

DFIX - JOR
DIGing
Projection
EXTRA

(b) peer-to-peer traffic

10 15 20 25 30 35 40 45 50

degree

0

0.5

1

1.5

2

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
DIGing
Projection
EXTRA

(c) broadcasting traffic

Figure 5.6: Comparison for directed networks

that represents the available communication links among the nodes,
and employing at each iteration only a fraction γ of the links. In
particular, γ = 1 corresponds to the case Gk = G for every k. As we
already remarked, this is equivalent to the time-independent case. The
tests we present here compare the communication and computational
costs required by the five methods to solve a given linear system using
the same sequence of networks {Gk}. We generated the linear system
as in Section 5.3.2 and chose G as the undirected m-regular graph
with n = 100 vertices and degree m = 8. The same test is repeated
for γ in {0.1, 0.2, . . . , 1}. For every k the consensus matrix W k asso-
ciated with Gk is defined as in (2.2), the termination condition and all
the parameters of the methods are chosen as in the previous sections.

162 Distributed Fixed Point Methods for Linear Systems

In Figure 5.7 we plot the results (note that Figure 5.7b repeats the
results of Figure 5.7a, excluding Projection method). The computa-
tional cost and the communication traffic are calculated as described
in Section 5.3.1. DFIX outperforms the three methods for distributed
optimization both in terms of computation and communication in this
framework. Comparing with Projection, for every value of the param-
eter γ, the computational cost of DFIX is significantly lower, but it
requires a smaller amount of communication only for large values of γ
(that is, when each graph Gk is equal or close to G). Moreover, we can
see that for all the methods except for SVL there is an optimal value
of γ < 1, that minimizes the communication traffic, suggesting that
using the whole graph G at every iteration (that is, setting γ = 1) is
inefficient. A similar phenomena happens for DIGing, EXTRA and
DFIX also for the computational cost (Figure 5.7b), while we can see
in Figures 5.7a and 5.7b that Projection and SVL methods are most
efficient when all the available communication links are used at each
iterations. For γ < 1 the networks Gk are in general not connected,
but the joint connectivity of the overall sequence is enough to ensure
the convergence of the methods.

5.3 Numerical results 163

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

co
m

pu
ta

tio
n

10 10

DFIX - JOR
Harnessing
Projection
EXTRA
SVL

(a) computational cost

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

co
m

pu
ta

tio
n

10 9

DFIX - JOR
Harnessing
EXTRA
SVL

(b) computational cost

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
Harnessing
Projection
EXTRA
SVL

(c) peer-to-peer traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

co
m

m
un

ic
at

io
n

10 8

DFIX - JOR
DIGing
Projection
EXTRA
SVL

(d) broadcasting traffic

Figure 5.7: Comparison for time-varying networks

Chapter 6

Parallel Inexact
Levenberg-Marquardt
Method for Network
Adjustment Problems

In this chapter we consider a nonlinear least squares problem

min
x∈Rn

F (x), F (x) =
1

2

m∑
j=1

rj(x)2 =
1

2
∥R(x)∥22. (6.1)

where for every j = 1, . . . ,m, rj : Rn → R, R(x) = (r1(x), . . . , rm(x))⊤ ∈
Rm is the vector of residuals, and F is the aggregated residual func-
tion. We assume that the problem is large scale, in the sense that
both the dimension n and the number of functions m are large, and
nearly separable.

In particular here we are interested in localization problems such as
Least Squares Network Adjustment [60], Bundle Adjustment [33] and

165

Wireless Sensor Network Localization [41], where the variables corre-
spond to the coordinates of physical points in the 2 or 3 dimensional
space, residuals correspond to observations of geometrical quantities
involving these points and the goal is to find the set of coordinates
that minimizes the residuals in the least squares sense. Typical obser-
vations are the distance between two points and the angle formed by a
set of three points. In problems of these kinds each of the observations
usually involves a small number of points. Moreover, when the prob-
lem is large and the points are deployed in a large region, each point is
typically involved in a small number of observations, compared with
the total amount of observations m. That is, for the problems we
consider, we have that each residual function rj only involves a small
number of variables, and each variable is involved in a relatively small
number of residual functions. A direct consequence of this kind of
sparsity, is that these problems are, usually, nearly-separable, meaning
that it is possible to partition the set of variables in such a way that
the number of residual functions involving variables in different sub-
sets is small compared to the number of residuals involving variables
in the same subset.

The particular application we focus on is the refinement of cadas-
tral maps and in this case n is prohibitively large for direct applica-
tion of the LM method. For example, the Dutch Kadaster is pursuing
making the cadastral map more accurate by making it consistent with
accurate field surveyor measurements [21, 62]. This application yields
a nonlinear least squares problem which is known as least squares ad-
justment in the field of geography. If the entire Netherlands were to
be considered as one big adjustment problem, the number of variables
would be twice the number of feature points in the Netherlands, which
is on the order of 1 billion variables and even considering separate parts
of the Netherlands still yields a very large-scale problem.

166 Parallel Inexact Levenberg-Marquardt Method

The Levenberg-Marquardt (LM) method is a classical method for
the solution of nonlinear least squares problems. As noticed in Section
1.2.3, at each iteration of the LM method, the search direction is
computed by solving a linear system of equations of size n equal to
the number of variables in the problem. In its original version, LM
methods achieves local quadratic convergence, assuming, in particular,
that the residual at solution is zero and that the Jacobian matrix is
nonsingular in a neighborhood of the solution. Moreover, solving a
linear system at each iteration may be impractical for problems of
large dimension.

Many modification of the classical Levenberg-Marquardt scheme
have been proposed in literature to retain convergence while relaxing
the assumptions on the objective function and to improve the perfor-
mance of the method. In [18, 19, 71] the damping parameter is defined
as a multiple of the objective function. With this choice of the pa-
rameter local superlinear or quadratic convergence is proved under a
local error bound assumption for zero residual problems, while global
convergence is achieved by employing a line search strategy. In [31]
the authors propose an updating strategy for the parameter that, in
combination with Armijo line search, ensures global convergence and
q-quadratic local convergence under the same assumption of the pre-
vious papers. In [3] the non-zero residual case is considered and a
Levenberg-Marquardt scheme is proposed that achieves local conver-
gence with order depending on the rank of the Jacobian matrix and of
a combined measure of nonlinearity and residual size around station-
ary points. In [10] an Inexact Levenberg-Marquardt is considered and
local convergence is proved under a local error bound condition. In [4]
the authors propose an approximated Levenberg-Marquardt method,
suitable for large-scale problems, that relies on inaccurate function
values and derivatives.

Given that we are interested in least squares problems of very large

6.1 Parallel Inexact LM method 167

dimension, we propose an Inexact Levenberg-Marquardt method suit-
able for the solution of these problems in the master/worker frame-
work, which allows us to distribute the data and the computational
effort among different nodes, [20]. At each iteration of the proposed
method, a search direction is computed by approximately solving the
linear system that arises at each iteration of Levenberg-Marquardt
method, using a fixed point strategy that relies on the partition of
the variables induced by the near-separability property and is suitable
for parallel implementation. We prove that the proposed method,
combined with a nonmonotone line search strategy, achieves global
convergence to a stationary point of the considered problem, while
for full step size we prove local convergence with order depending on
the choice of the parameters of the method. We see that, aside from
near-separability, the required assumptions are the same as for the
convergence analysis of classical Levenberg-Marquardt method. A se-
quential method for the solution of the same kind of problems was
proposed in [40].

This chapter is organized as follows. In Section 6.1 we formalize the
near-separability assumption, describe the consequent block-partition
of the Levenberg-Marquardt equation and present the Parallel Inexact
Levenberg-Marquardt Method. In Section 6.2 we carry out the con-
vergence analysis, while in Section 6.3 we present a set of numerical
results to investigate the performance of the method.

6.1 Parallel Inexact LM method

The problem we consider is stated in (6.1). Let us define I = {1, . . . , n}
and J = {1, . . . ,m}. Given a partition I1, . . . , IK of I we define the

168 Parallel Inexact Levenberg-Marquardt Method

corresponding partition of J into E1, . . . , EK as follows:

Es = {j ∈ J|rj only depends on variables in Is}, s = 1, . . . , K

Ê = J \
K⋃
i=s

Ei.
(6.2)

That is, given a partition of the set of variables, each of the subsets
Es contains the indices corresponding to residual functions that only
involve variables in Is, while Ê contains the indices of residuals that
involve variables belonging to different subsets Is. We say that prob-
lem (6.1) is separable if there exist K ≥ 2 and a partition {Is}s=1,...,K

of I such that Ê = ∅, while we say that it is nearly-separable if there
exist K ≥ 2 and a partition {Is}s=1,...,K of I such that the cardinality

of Ê is small with respect to the cardinality of
⋃K

s=1Es.
Given the partition {Is}Ks=1 of the variables and the corresponding

partition {Es}s=1,...,K , Ê of the residuals, for s = 1, . . . , K we define
xs ∈ Rns as the vector of the variables in Is where ns denotes the
cardinality of Is, and we introduce the following functions

Rs(xs) := (rj(x))j∈Es , ρ(x) := (rj(x))j∈Ê

Fs(xs) := ∥Rs(xs)∥22 Φ(x) := ∥ρ(x)∥22
(6.3)

so that, denoting with | · | the cardinality, for every s = 1, . . . , K,
Rs : Rns → R|Es| is the vector of residuals involving only variables in
Is, while ρ : Rn → R|Ê| is the vector of residuals in Ê and Fs, Φ are
the corresponding local aggregated residual functions. Since {Is}Ks=1

is a partition of I, we have
∑K

s=1 ns = n. With this notation problem
(6.1) can be equivalently written as

min
x∈Rn

(
Φ(x) +

K∑
s=1

Fs(xs)

)
= min

x∈Rn

(
∥ρ(x)∥22 +

K∑
s=1

∥Rs(xs)∥22

)
(6.4)

6.1 Parallel Inexact LM method 169

In particular, if the problem is separable (and therefore Ê is empty)
Φ(x) = 0 for every x ∈ Rn and solving problem (6.4) is equivalent to
solving K independent least squares problems given by

min
xs∈Rns

Fs(xs) = min
xs∈Rns

∥Rs(xs)∥22 for s = 1, . . . , K. (6.5)

If the problem is not separable then in general Φ is not equal to zero
and that is the case we are interested in.

Let {Is}s=1,...,K be a partition of I and {Es}s=1,...,K be the corre-
sponding partition of J as defined in (6.2). To ease the notation we
assume that the vectors x and R are reordered according to the given
partition. That is, for x ∈ Rn

x =

x1
...

xK

 , R(x) =

R1(x1)

...
RK(xK)
ρ(x)

With this reordering, denoting with JsRj

the Jacobian of the partial
residual vector Rj defined in (6.3) with respect to the variables in Is,
and with Jsρ the Jacobian of the partial residual ρ with respect to xs,
we have

J(x) =

J1R1(x1) 0

J2R2(x2)
. . .

0 JKRK
(xK)

J1ρ(x) J2ρ(x) . . . JKρ(x)

 .

Notice that for every i = 1, . . . , K the block JiRi
(xi) only involves

variables in Ii and residual functions in Ei. Therefore, assuming that
K nodes are given such that node i holds the portion of the dataset

170 Parallel Inexact Levenberg-Marquardt Method

relative to the functions in Ei, we have that each of the nodes can
compute one of the diagonal blocks of the Jacobian. Communication
is only needed for the last row of blocks. From this structure of R and
J we get the corresponding block structure of the gradient g(x) =
J(x)⊤R(x) and the matrix J(x)⊤J(x):

g(x)⊤ =
(
g⊤
1 (x),g⊤

2 (x), . . . ,g⊤
K(x)

)
, (6.6)

J(x)⊤J(x) =

P1(x) B12(x) . . . B1K(x)

B21(x) P2(x)
. . .

...
...

. BK−1K(x)
BK1(x) . . . BKK−1(x) PK(x)

 , (6.7)

where, for s, i, j = 1, . . . , K

gs(x) = JsRs(xs)
⊤Rs(xs) + Jsρs(x)⊤ρ(x) ∈ Rns

Ps(x) = JsRs(xs)
⊤JsRs(xs) + Jsρ(x)⊤Jsρ(x) ∈ Rns×ns

Bij(x) = Jiρ(x)⊤Jjρ(x) ∈ Rni×nj .

(6.8)

The algorithm we introduce here is motivated by the near-separability
property. Regarding this, we state the following formal assumption,

Assumption E1. There exists a constant CB > 0 such that for all
x ∈ Rn

∥B(x)∥ ≤ CB∥J(x)⊤J(x)∥. (6.9)

We notice that B(x) is a submatrix of J(x)⊤J(x) and there is no
upper bound over the magnitude of CB, so the assumption above is
not restrictive.

Consider a standard iteration of LM method for a given iteration
xk

xk+1 = xk + dk,

6.1 Parallel Inexact LM method 171

where dk ∈ Rn is the solution of(
(Jk)⊤Jk + µkI

)
dk = −(Jk)⊤Rk, (6.10)

where Jk = J(xk) ∈ Rm×n denotes the Jacobian matrix of Rk =
R(xk) and µk > 0 is a scalar. When n is very large solving (6.10) at
each iteration of the method may be prohibitively expensive. In the
following we propose an Inexact Levenberg-Marquardt method that
relies on the near-separability of the problem to define a fixed-point
iteration for the solution of the linear system (6.10). Such a method
is suitable for the server/worker framework: if each worker holds the
data relative to one of the subsets Es, the fixed point iterations can
be efficiently carried out in parallel, with moderate communication
traffic.

The linear system (6.10) at iteration k can be rewritten as

(P k + µkI + Bk)dk = −gk (6.11)

where gk = (Jk)⊤Rk is the vector with s-th block component equal to
gs(x

k), P k = P (xk) is the block diagonal matrix with diagonal blocks
given by Ps(x

k) for s = 1, . . . , K, Bk = B(xk) is the block partitioned
matrix with diagonal blocks equal to zero and off-diagonal blocks equal
to Bij(x

k), namely

P k =

P1(x

k)
P2(x

k)
. . .

PK(xk)

 ,

Bk =

0 B12(x

k) . . . B1K(xk)

B21(x
k) 0

. . .
...

...
. BK−1K(xk)

BK1(x
k) . . . BKK−1(x

k) 0

 .

(6.12)

172 Parallel Inexact Levenberg-Marquardt Method

Consider the sequence {yl} generated as follows{
y1 = −(P k + µkI)−1gk

yl+1 = −(P k + µkI)−1
(
gk + Bkyl

)
l ≥ 1.

(6.13)

The equations above define a fixed-point method for the solution of
(6.11). From the theory of fixed point methods (Theorem 1.1), we
know that if

∥(P k + µkI)−1Bk∥ < 1

then the sequence {yl} converges to the solution dk of (6.11).
Moreover, denoting with rlk the residual in the linear system at the
l-th inner iteration, namely

rlk = ((Jk)⊤Jk + µkI)yl + gk,

for every l ∈ N we have the following

∥rl+1
k ∥ = ∥((Jk)⊤Jk + µkI)yl+1 + gk∥

= ∥ − (P k + Bk + µkI)(P k + µkI)−1
(
gk + Bkyl

)
+ gk∥

= ∥Bkyl + Bk(P k + µkI)−1
(
gk + Bkyl

)
∥

= ∥Bk(P k + µkI)−1
(
(P k + µkI)yl + gk + Bkyl

)
∥

= ∥Bk(P k + µkI)−1
(
((Jk)⊤Jk + µkI)yl + gk

)
∥

≤ ∥Bk(P k + µkI)−1∥∥rlk∥ = ρk∥rlk∥

(6.14)

where we defined ρk = ∥Bk(P k + µkI)−1∥.
In the following, we use the fixed point iteration in (6.13) to define

an inexact LM method. More details regarding the implementation
of the algorithm in the server/worker framework will be discussed in
Section 6.3, together with the numerical results.

6.1 Parallel Inexact LM method 173

Algorithm 6.1 (PILM).
Parameters: c > 0, {ℓk}∞k=0 ∈ N, {εk}∞k=0 ∈ R>0

Iteration k:

1: compute Rk, Jk, P k, Bk

2: choose µk

3: for i = 1, . . . , K do
4: compute y1

i such that
(
P k
i + µkIni

)
y1
i = −gk

i

5: end for
6: for l = 1, . . . , ℓk − 1 do
7: for i = 1, . . . , K do

8: compute yl+1
i such that

(
P k
i + µkIni

)
yl+1
i = −

(
gk
i +

∑K
j=1Bijy

l
i

)
9: end for

10: end for
11: set dk = (yℓk

1 , . . . ,yℓk
K)⊤

12: use backtracking to find the largest positive αk ≤ 1 such that

F (xk + αkd
k) ≤ F (xk) − cα2

k∥gk∥2 + εk (6.15)

13: set xk = xk + αkd
k

Remark 6.1. Let us consider the line search condition (6.15). For
αk that tends to zero, the term on the left-hand side tends to F (xk),
while the negative term in the right-hand side tends to zero. Since
we assume that εk > 0, one can always find αk > 0 such that the
line search condition (6.15) is satisfied. Note that this argument holds
even in case the direction dk is not a descent direction for F at xk. In
particular, Algorithm PILM is well defined.

Remark 6.2. The K linear systems in line 4 are independent. In
particular the rounds of the for loop in lines 3-5 can be executed in a
parallel fashion. The same holds also for the for loop at lines 7-9.

174 Parallel Inexact Levenberg-Marquardt Method

6.2 Convergence Analysis

The following assumptions are regularity assumptions commonly used
in LM methods

Assumption E2. The vector of residuals R : Rn → Rm is continu-
ously differentiable.

Assumption E3. The Jacobian matrix J ∈ Rm×n of R is L-Lipschitz
continuous. That is, for every x,y ∈ Rn

∥J(x) − J(y)∥ ≤ L∥x− y∥.

6.2.1 Global Convergence

Lemma 6.1. Assume that dk is computed as in algorithm PILM for
a given ℓk ∈ N. The following inequalities hold

i) for every k ∈ N0

ρk ≤
∥Bk∥
µk

ii) for every k ∈ N0

∥rℓkk ∥ ≤ ρℓkk ∥gk∥

iii) for every k ∈ N0

∥dk∥ ≤ (1 + ρℓkk)

µk

∥gk∥

iv) for every k ∈ N0

(dk)⊤gk ≤

(
ρℓkk
µk

− 1

∥Jk∥2 + µk

)
∥gk∥2

6.2 Convergence Analysis 175

v) if µk in line 2 is chosen as µk = max{µmin, Cµ∥Bk∥} for some
µmin > 0 and Cµ > 1, then

∥rℓkk ∥ ≤
(

1

Cµ

)ℓk

∥gk∥

Proof. By sub-multiplicativity of the norm, we have

ρk = ∥Bk(P k + µkI)−1∥ ≤ ∥Bk∥∥(P k + µkI)−1∥ ≤ ∥Bk∥
µk

(6.16)

which is i). Using the definition of y1 in line 3 of Algorithm ILM we
have

∥r1k∥ = ∥ − (P k + Bk + µkI)(P k + µkI)−1gk + gk∥ =

= ∥Bk(P k + µkI)−1∥∥gk∥ = ρk∥gk∥
(6.17)

This proves part ii) of the thesis in case ℓk = 1. If ℓk > 1, recursively
applying (6.14), and using the equality above, we get

∥rℓkk ∥ ≤ ρk∥rℓk−1
k ∥ ≤ ρℓk−1

k ∥r1k∥ = ρℓkk ∥gk∥,

and ii) is proved. By definition of dk and rℓkk we have

dk = ((Jk)⊤Jk + µkI)−1(−gk + rℓkk) (6.18)

Taking the norm, we have

∥dk∥ =
∥∥∥((Jk)⊤Jk + µkI)−1

(
gk + rℓkk

)∥∥∥
≤ ∥((Jk)⊤Jk + µkI)−1∥

(
∥gk∥ + ∥rℓkk ∥

)
≤ (1 + ρℓkk)

µk

∥gk∥,

176 Parallel Inexact Levenberg-Marquardt Method

that is ii).
By (6.18), Cauchy-Schwartz inequality and i), we have

(dk)⊤gk = (gk)⊤((Jk)⊤Jk + µk)−1
(
−gk + rℓkk

)
≤ λmax

(
(Jk)⊤Jk + µk)−1

)
∥rk∥∥gk∥

− λmin

(
(Jk)⊤Jk + µk)−1

)
∥gk∥2

≤ 1

µk

ρℓkk ∥gk∥2 − 1

∥Jk∥2 + µk

∥gk∥2

≤

(
ρℓkk
µk

− 1

∥Jk∥2 + µk

)
∥gk∥2,

and we have part iii) of the statement.
To prove iv) it is enough to notice that if µk ≥ Cµ∥Bk∥ we have

∥Bk∥
µk

≤ 1

Cµ

,

and thus iv) follows directly from i). □

Theorem 6.1. Assume that Assumptions E2 and E3 hold, ℓk ≥ ℓ
for every k, {εk} is such that

∑∞
k=0 εk < +∞, and that in line 2 µk

is chosen as µk = max{µmin, Cµ∥Bk∥}. Then for ℓ large enough we
have that for every x0 ∈ Rn, each accumulation point of the sequence
{xk}∞k=1 is a stationary point of F(x)

Proof. Applying recursively the line search condition (6.15) we have
that for every k ∈ N0

F (xk+1) ≤ F (xk) − cα2
k∥gk∥2 + εk

≤ F (x0) − c
k∑

j=0

α2
j∥gj∥2 +

k∑
j=0

εj.
(6.19)

6.2 Convergence Analysis 177

Reordering inequality (6.19) and taking the limit for k → +∞ we get

+∞∑
k=0

α2
k∥gk∥2 ≤ F (x0) +

∞∑
k=0

εk < +∞

which implies that
lim

k→+∞
αk∥gk∥ = 0.

Let us consider x∗ ∈ Rn any accumulation point of the sequence {xk}.
By definition of accumulation point, there exists an infinite subset of
indices K0 ⊆ N0 such that the subsequence {xk}k∈K0 converges to x∗.
The limit above implies

lim
k∈K0

αk∥gk∥ = 0.

If there exists α > 0 such that αk ≥ α for every index k ∈ K0, then,
by continuity of the gradient g,

0 = lim
k∈K0

αk∥gk∥ ≥ α lim
k∈K0

∥gk∥ = α∥g(x∗)∥

and therefore x∗ is a stationary point of F . If such α > 0 does not
exist, then one can find K1 ⊆ K0 infinite set of indices such that
limk∈K1 αk = 0 and αk < 1 for every k ∈ K1. In particular this implies
that for every k ∈ K1 there exists 1 ≥ α̂k > αk such that condition
(6.15) does not hold. That is, for every k ∈ K1

F (xk + α̂kd
k) > −cα̂2

k∥gk∥2 + εk + F (xk) ≥ −cα̂2
k∥gk∥2 + εk.

Since εk ≥ 0, reordering the inequality above and applying the mean
value theorem we have, for some sk ∈ [0, 1]

−cα̂k∥gk∥2 < 1

α̂k

(
F (xk + α̂kd

k) − F (xk)
)

= g(xk + skα̂
kdk)⊤dk.

(6.20)

178 Parallel Inexact Levenberg-Marquardt Method

Let us now consider dk. By part ii) of Lemma 6.1, the definition of
µk, and the fact that Cµ > 1, we have

∥dk∥ ≤ 1 + ρℓkk
µk

∥gk∥ ≤ 2

µk

max
k∈K1

∥gk∥

where the maximum in the last term of the inequality exists because
{xk}k∈K1 is a compact subset of Rn and the gradient is continuous.
Since the maximum is finite and µk ≥ µmin > 0 we have that {dk}k∈K1

is a bounded subsequence of Rn and therefore it has an accumulation
point d∗. That is

lim
k∈K2

dk = d∗

for some K2 ⊆ K1 infinite subset.
Since limk∈K2 αk = 0, by definition of α̂k we have limk∈K2 α̂k = 0 and
thus limk∈K2 x

k + skα̂kd
k = x∗, which in turn implies

lim
k∈K2

g(xk + skα̂kd
k)⊤dk = (g∗)⊤d∗.

Adding and subtracting (dk)⊤gk in the right-hand side of (6.20) and
taking the limit for k ∈ K2, we then get

0 ≤ lim
k∈K2

(dk)⊤gk = (d∗)⊤g∗. (6.21)

On the other hand, by Lemma 6.1 iii) and the definition of µk we have
that

(d∗)⊤g∗ = lim
k∈K2

(dk)⊤gk ≤ lim
k∈K2

(
ρℓkk
µk

− 1

∥Jk∥2 + µk

)
∥gk∥2

≤ lim
k∈K2

 ρℓkk
µmin

− 1

max
k∈K2

∥Jk∥2 + µmax

 ∥gk∥2.
(6.22)

6.2 Convergence Analysis 179

where µmax = Cµ maxk∈K2 ∥Bk∥ and the maxima exist by compactness
of {xk}k∈K2 and continuity of J(x) and B(x).

If limk∈K2 ∥gk∥ = 0 then, by uniqueness of the limit, we have that

∥g∗∥ = lim
k∈K1

∥gk∥ = lim
k∈K2

∥gk∥ = 0

and therefore x∗ is a stationary point of F. Otherwise, we proceed by
contradiction. If ∥gk∥ does not vanish for k ∈ K2, there exist γ > 0
and K3 ⊆ K2 infinite sequence such that ∥gk∥ ≥ γ for every k ∈ K3.
Fix ν > 0. From Lemma 6.1 and we have that ρℓkk ≤ C−ℓk

µ . Since
Cµ > 1 and ℓk ≥ ℓ for every k, one can find ℓ large enough such that(

ρℓkk
µmin

− 1

maxk∈K2 ∥Jk∥2 + µmax

)
≤ −ν.

For this choice of ℓ, from (6.22) we have, for every k ∈ K3

(d∗)⊤g∗ ≤ −νγ2.

This contradicts (6.21) and therefore concludes the proof. □

6.2.2 Local Convergence

Let S denote the set of all stationary points of ∥R(x)∥2, namely S =
{x ∈ RN |J(x)⊤R(x) = 0}. Consider a stationary point x∗ ∈ S and
a ball Br := B(x∗, r) with radius r ∈ (0, 1) around it. From now on,
given a point x ∈ Rn we denote with x̄ a point in S that minimizes
the distance from x. That is,

∥x− x̄∥ = min
z∈S

∥x− z∥ = dist(x, S).

Since Br is a bounded subset of Rn, and R and J are continuous
functions on Rn, we have that there exist Rmax, L2 ≥ 0 such that

180 Parallel Inexact Levenberg-Marquardt Method

for every x ∈ Br ∥R(x)∥ ≤ Rmax and ∥J(x)∥ ≤ L2. The following
Lemma includes a set of inequalities, proved in [3] that are a direct
consequence of assumptions E2, E3 on the bounded subset Br.

Lemma 6.2. [3]If Assumptions E2-E3 hold, then for every x,y ∈ Br

i) ∥R(x) −R(y) − J(y)(x− y)∥ ≤ 1
2
L∥x− y∥2

ii) ∥R(x) −R(y)∥ ≤ L2∥x− y∥

iii) ∥g(x) − g(y)∥ ≤ L3∥x− y∥ with L3 = L2
2 + L1Rmax

iv) denoting with L4 = 1
2
L1L2

∥g(y)−g(x)−J(x)⊤J(x)(y−x)∥ ≤ L4∥x−y∥2+∥(J(x)−J(y))⊤R(y)∥

v) for every z̄ ∈ Br ∩ S

∥(J(x) − J(y))⊤R(y)∥ ≤ L1L2∥x− z̄∥∥y − z̄∥ + L1L2∥y − z̄∥2

+ ∥J(x)⊤R(z̄)∥ + ∥J(y)⊤R(z̄)∥

In the rest of the section we make the following additional as-
sumptions, which are standard for the local convergence analysis of
Levenberg-Marquardt method. In particular, Assumption E4, referred
to in the literature as local error bound condition, is typically used in
place of the nonsingularity of the Jacobian matrix, while Assumption
E5 is common for non-zero residual problems.

Assumption E4. There exists ω > 0 such that for every x ∈ B(x∗, r)

ωdist(x, S) ≤ ∥J(x)⊤R(x)∥

Assumption E5. There exist σ, δ > 0 such that for every x ∈ B(x∗, r)
and every z̄ ∈ B(x∗, r) ∩ S

∥(J(x) − J(z̄))⊤R(z̄)∥ ≤ σ∥x− z̄∥1+δ.

6.2 Convergence Analysis 181

Notice that since z̄ is a stationary point of ∥R(x)∥2, the inequality
above is equivalent to

∥J(x)⊤R(z̄)∥ ≤ σ∥x− z̄∥1+δ.

Lemma 6.3. Let us assume that E2-E5 hold and that {xk} is the
sequence generated by Algorithm PILM with αk = 1 for every k.
Moreover, let us assume that xk,xk+1 ∈ Br and ∥dk∥ ≤ c1dist(x

k, S)
for some constant c1 ≥ 0. Then the following inequality holds with
c2 = L4c

2
1 + L1L2(1 + c1) + L1L2(1 + c1)

2

ω∥xk+1 − x̄k+1∥ ≤ c2∥xk − x̄k∥2 +
(
σ + σ(1 + c1)

1+δ
)
∥xk − x̄k∥1+δ

+ (L3ρ
ℓk
k + c1µk)∥xk − x̄k∥

Proof. By the triangular inequality, the assumptions of the Lemma,
and the definition of x̄k, we have the following inequalities

∥xk+1 − x̄k∥ ≤ ∥dk∥ + ∥xk − x̄k∥ ≤ (1 + c1)∥xk − x̄k∥
∥(Jk)⊤R(x̄k)∥ ≤ σ∥xk − x̄k∥1+δ

∥(Jk+1)⊤R(x̄k)∥ ≤ σ∥xk+1 − x̄k∥1+δ ≤ σ(1 + c1)
1+δ∥xk − x̄k∥1+δ.

From part iv) and v) of Lemma 6.2, using the inequalities above, we
have

∥gk+1 − gk − (Jk)⊤Jk(xk+1 − xk)∥
≤ L4∥xk+1 − xk∥2 + ∥(Jk − Jk+1)⊤Rk+1∥
≤ L4∥dk∥2 + L1L2∥xk − x̄k∥∥xk+1 − x̄k∥ + L1L2∥xk+1 − x̄k∥2

+ ∥(Jk)⊤R(x̄k)∥ + ∥(Jk+1)⊤R(x̄k)∥
≤ c2∥xk − x̄k∥2 +

(
σ + σ(1 + c1)

1+δ
)
∥xk − x̄k∥1+δ.

(6.23)
From part iii) in Lemma 6.2, using the fact that(

(Jk)⊤Jk + µkI
)
dk = −gk + rk,

182 Parallel Inexact Levenberg-Marquardt Method

that x̄k is a stationary point of F , and the assumption over dk, we get

∥gk + (Jk)⊤Jkdk∥ ≤ ∥gk +
(
(Jk)⊤Jk + µkI

)
dk∥ + µk∥dk∥

≤ ∥rk∥ + µk∥dk∥ ≤ ρℓkk ∥gk∥ + µkc1∥xk − x̄k∥

≤ ρℓkk ∥gk − g(x̄k)∥ + µkc1∥xk − x̄k∥ ≤
(
L3ρ

ℓk
k + c1µk

)
∥xk − x̄k∥.

(6.24)
By Assumption E4, adding and subtracting gk + (Jk)⊤Jkdk we have

ωdist(xk+1, S) ≤ ∥gk+1∥ ≤ ∥gk+1−gk−(Jk)⊤Jkdk∥+∥gk+(Jk)⊤Jkdk∥.

Replacing the two terms of the right-hand side with the bounds found
in (6.23) and (6.24), we get the thesis. □

Lemma 6.4. If Assumptions E2-E5 hold and {xk} is the sequence
generated by Algorithm PILM with αk = 1, µk = max{µmin, Cµ∥Bk∥}
and ℓk ≥ ℓ for a given ℓ ∈ N then, if {xk} ⊂ Br, there exists c1 > 0
such that for every iteration index k

∥dk∥ ≤ c1dist(x
k, S).

Proof. Let us denote with p the rank of J(x∗)⊤J(x∗) and let {λ∗
i }ni=1 =

eig(J(x∗)⊤J(x∗)), in nonincreasing order. For a given iteration index
k, let us consider the eigendecomposition of (Jk)⊤Jk

(Jk)⊤Jk =
(
Qk

1, Q
k
2

)(Λk
1

Λk
2

)(
Qk

1, Q
k
2

)⊤
(6.25)

with Λk
1 = diag(λk

1, . . . λ
k
p) ∈ Rp×p and Λk

2 = diag(λk
p+1, . . . λ

k
n) ∈

R(n−p)×(n−p), where {λk
i }ni=1 = eig(J(xk)⊤J(xk)) again in nonincreas-

ing order, and Qk
1 ∈ Rn×p, Qk

2 ∈ Rn×(n−p). By continuity of J(x) and
of the eigenvalues over the entries of the matrix, we have that for r
small enough mini=1:p λ

k
i ≥ λ∗

p/2.

6.2 Convergence Analysis 183

By (6.25) we have, for i = 1, 2

(Qk
i)⊤(rk − gk) = (Qk

i)⊤
(
(Jk)⊤Jk + µkI

)
dk =

(
Λk

i + µkI
)

(Qk
i)⊤dk.

For i = 1, by definition of ρℓkk and the bound on λk
p we have

∥(Qk
1)⊤dk∥ ≤ ∥

(
Λk

1 + µkI
)−1

(Qk
1)⊤(−gk + rk)∥

≤ 1

λmin(Λk
1 + µk)

∥ − gk + rk∥

≤ 2

λ∗
p

(1 + ρℓkk)∥gk∥ ≤ 4L3

λ∗
p

∥xk − x̄k∥.

(6.26)

For i = 2, by Lemma 6.1, Lemma 6.2, Assumption E5, and the fact

that ∥
(
Λk

2 + µkI
)−1

Λk
2∥ ≤ 1, we have

∥(Qk
2)⊤dk∥ ≤ ∥

(
Λk

2 + µkI
)−1

(Qk
2)⊤(−gk + rk)∥

≤ ∥
(
Λk

2 + µkI
)−1

(Qk
2)⊤(gk − g(x̄k) − (Jk)⊤Jk(xk − x̄k))∥

+ ∥
(
Λk

2 + µkI
)−1

(Qk
2)⊤(Jk)⊤Jk(xk − x̄k)∥ +

1

µk

∥rk∥

≤ 1

µk

∥gk − g(x̄k) − (Jk)⊤Jk(xk − x̄k)∥

+ ∥
(
Λk

2 + µkI
)−1

Λk
2(Qk

2)⊤(xk − x̄k)∥ +
ρℓkk
µk

∥gk∥

≤ 1

µk

(
L4∥xk − x̄k∥2 + ∥(Jk)⊤R(x̄k)∥

)
+

(
1 +

ρℓkk L3

µk

)
∥xk − x̄k∥

≤ L4

µk

∥xk − x̄k∥2 +
σ

µk

∥xk − x̄k∥1+δ +

(
1 +

ρℓkk L3

µk

)
∥xk − x̄k∥.

(6.27)
By assumption we have µk ≥ µmin and ρℓkk ≤ ρℓk ≤ C−ℓ

µ . Therefore,

184 Parallel Inexact Levenberg-Marquardt Method

proceeding in the previous chain of inequalities

∥(Qk
2)⊤dk∥ ≤

(
1 +

L4 + σ + C−ℓ
µ L3

µmin

)
∥xk − x̄k∥. (6.28)

By the fact that (Qk
1, Q

k
2) is an orthonormal matrix, putting together

(6.26) and (6.28) we get

∥dk∥2 ≤ ∥(Qk
1)⊤dk∥2 + ∥(Qk

2)⊤dk∥2

≤
(

2L3

λ∗
p

)2

∥xk − x̄k∥2 +

(
1 +

L4 + σ + C−ℓ
µ L3

µmin

)2

∥xk − x̄k∥2.

By definition of x̄k, this implies the thesis with

c1 =

(2L3

λ∗
p

)2

+

(
1 +

L4 + σ + C−ℓ
µ L3

µmin

)2
1/2

.

□

Before we state the following Lemma, we notice that by Assump-
tion E1 and the definition of L2, we have that ∥B(x)∥ ≤ CBL

2
2 for

every x ∈ Br. In particular, if xk ∈ Br and µk = max{µmin, Cµ∥Bk∥},
then

µk ≤ CµCBL
2
2. (6.29)

Lemma 6.5. Let Assumptions E1-E5 hold and let us denote with
{xk} the sequence generated by Algorithm PILM with αk = 1, µk =
max{µmin, Cµ∥Bk∥} for Cµ > 1 and ℓk ≥ ℓ for a given ℓ ∈ N. More-
over, let as assume that there exists ν ∈ (0, 1) such that ων > c4 with
c4 = σ + σ(1 + c1)

2 + L3C
−ℓ
µ + c1CµL

2
2CB. If x

0 ∈ B(x∗, ε) with

ε ≤ min

{
ων − c4

c2
,
r(1 − ν)

1 + c1 − ν

}
then we have that for every k ∈ N0

6.2 Convergence Analysis 185

i) xk+1 ∈ Br

ii) dist(xk+1, S) ≤ νdist(xk, S)

iii) dist(xk+1, S) ≤ ε.

Proof. We proceed by induction over k. By Lemma 6.4 and the bound
on ε

∥x1 − x∗∥ ≤ ∥d0∥ + ∥x0 − x∗∥
≤ (1 + c1)dist(x

0, S) ≤ (1 + c1)ε ≤ r,
(6.30)

Which is i) for k = 0. Since x0 ∈ Br the bound (6.29) holds. By
Lemma 6.3, and the fact that x0 ∈ Bε we then have

ωdist(x1, S) ≤ c2∥x0 − x̄0∥2 +
(
σ + σ(1 + c1)

1+δ
)
∥x0 − x̄0∥1+δ

+ (L3ρ
ℓ0
0 + c1µ0)∥x0 − x̄0∥

≤
(
c2ε + σ + σ(1 + c1)

1+δ + L3ρ
ℓ0
0 + c1µ0

)
∥x0 − x̄0∥

≤
(
c2ε + σ + σ(1 + c1)

2 + L3C
−ℓ
µ + c1CµCBL

2
2

)
dist(x0, S)

≤ ωνdist(x0, S)
(6.31)

and therefore ii) holds for k = 0. To prove iii) is now enough to notice
that since ν < 1 we have

dist(x1, S) ≤ νdist(x0, S) ≤ νε ≤ ε.

Let us now assume that for every i = 1, . . . , k we have xi ∈ Br,
dist(xi, S) ≤ νdist(xi−1, S) and dist(xi, S) ≤ ε. We want to prove
that the same holds for i = k + 1. From the definition of xk+1, the
triangular inequality, the inductive assumptions and Lemma 6.4 we

186 Parallel Inexact Levenberg-Marquardt Method

have

∥xk+1 − x∗∥ ≤
k∑

i=0

∥di∥ + ∥x0 − x∗∥

≤ c1

k∑
i=0

dist(xi, S) + ∥x0 − x∗∥

≤ c1

k∑
i=0

νidist(x0, S) + ∥x0 − x∗∥

≤

(
1 + c1

k∑
i=0

νi

)
ε ≤

(
1 +

c1
1 − ν

)
ε.

(6.32)

Since ε ≤ r(1−ν)
1+c1−ν

we have that the right-hand side is smaller than r

and therefore xk+1 ∈ Br.
Proceeding as in (6.31),

ωdist(xk+1, S) ≤ c2∥xk − x̄k∥2 +
(
σ + σ(1 + c1)

1+δ
)
∥xk − x̄k∥1+δ

+ (L3ρ
ℓk
k + c1µk)∥xk − x̄k∥

≤
(
c2ε + σ + σ(1 + c1)

2 + L3C
−ℓ
µ + c1CµCBL

2
2

)
dist(xk, S)

≤ ωνdist(xk, S)
(6.33)

which implies ii). Since ν < 1, part iii) of the thesis follows directly
from ii) and the fact that dist(xk, S) ≤ ε.

□

Theorem 6.2. If the same Assumptions of Lemma 6.5 hold, then
dist(xk, S) → 0 linearly and xk → x̄ ∈ S ∩B(x∗, r).

Proof. By part ii) of Lemma 6.5 we have that for every iteration index
k

dist(xk+1, S) ≤ νdist(xk, S)

6.2 Convergence Analysis 187

since ν < 1 this implies that the sequence dist(xk, S) converges linearly
to 0. To prove the second part of the thesis, let us consider l, s ∈ N0

with l ≥ s. From Lemma 6.5 we have

∥xl − xs∥ ≤
l−1∑
i=s

∥di∥ ≤ c1ε
l−1∑
i=s

νi = c1ε
νs − νl

1 − ν

which implies that {xk} is a Cauchy sequence and therefore is conver-
gent. By Lemma 6.5 i) and the fact that dist(xk, S) → 0, the limit
point of the sequence has to be in S ∩ B(x∗, r), which concludes the
proof. □

We saw so far that the near-separability property of the problem
influences the choice of the damping parameter µk. In order to ensure
convergence of the fixed-point method in lines 3-6 of Algorithm PILM,
one has to chose µk large enough, depending on the norm of the matrix
B(x). However, for classical Levenberg-Marquardt method, in order
to achieve local superlinear convergence, the sequence of damping pa-
rameters typically has to vanish [3]. In the reminder of this section
we show that under a stronger version of the near separability con-
dition, the proposed method achieves superlinear and quadratic local
convergence with assumptions, other than the near separability one,
that are analogous to those of the classical LM.

Assumption E6. For every x ∈ Br we have that ∥B(x)∥ < λmin(P k)

If this assumption holds, then ρk = ∥Bk(P k + µkI)−1∥ < 1 for
every choice of µk. The following Theorem shows that, whenever the
previous Assumption holds and δ > 0 in Assumption E5, one can
find a suitable choice of the damping parameter µk that ensures local
superlinear convergence, provided that the number of inner iterations
ℓk is large enough.

188 Parallel Inexact Levenberg-Marquardt Method

Lemma 6.6. Let Assumptions E2-E6 hold with δ > 0 is E5, and let
us denote with {xk} the sequence generated by Algorithm PILM with
αk = 1, and µk such that

cµ∥xk − x̄k∥δ ≤ µk ≤ Cµ∥xk − x̄k∥δ

for 0 < cµ ≤ Cµ. If for every k the number of inner iterations ℓk is
such that ρℓkk ≤ Cη∥xk−x̄k∥δ for some Cη ≥ 0, then there exists c1 ≥ 0
such that

∥dk∥ ≤ c1dist(x
k, S)

for every k ∈ N0.

Remark 6.3. From Assumption E4 and part iii) in Lemma 6.2, we
have that ω∥xk − x̄k∥ ≤ ∥gk∥ ≤ L3∥xk − x̄k∥ therefore, µk = µ̄∥gk∥δ
satisfies the assumption of the Lemma. Analogously, taking ℓk such
that ρℓkk ≤ Cη

Lδ
3
∥gk∥δ yields ρℓkk ≤ Cη∥xk − x̄k∥δ.

Proof. The proof is analogous to that of Lemma 6.4. Inequalities
(6.26) and (6.27) still hold, as they are independent of the choice of
µk and ℓk. With the assumptions of the current Lemma, from (6.27)
we get

∥(Qk
2)⊤dk∥ ≤ L4∥xk − x̄k∥2

cµ∥xk − x̄k∥δ
+

σ∥xk − x̄k∥1+δ

cµ∥xk − x̄k∥δ

+

(
1 +

CηL3∥xk − x̄k∥δ

cµ∥xk − x̄k∥δ

)
∥xk − x̄k∥ ≤

≤
(

1 +
L4 + σ + CηL3

cµ

)
∥xk − x̄k∥.

(6.34)

Putting together (6.26), (6.34) and the fact that ∥dk∥2 = ∥(Qk
1)⊤dk∥2+

∥(Qk
2)⊤dk∥2 we get the thesis with

c1 =

((
2L3

λ∗
p

)2

+

(
1 +

L4 + σ + CηL3

cµ

)2
)1/2

.

6.2 Convergence Analysis 189

□

Lemma 6.7. Let us assume that the same hypotheses of Lemma 6.6
hold, and let us define c3 = c2 + σ + σ(1 + c1)

1+δ + L3Cη + c1Cµ and
fix ν ∈ (0, 1). If

ε ≤ min

{(
ων

c3

)1/δ

,
r(1 − ν)

1 + c1 − ν

}

and x0 ∈ B(x∗, ε) we have that for every k ∈ N0

i) xk+1 ∈ Br

ii) dist(xk+1, S) ≤ νdist(xk, S)

iii) dist(xk+1, S) ≤ ε.

Proof. The proof proceeds analogously to that of Lemma 6.5. Let
us first consider the case k = 0. Part i) of the thesis is proved as in
(6.30). By Lemma 6.3, the assumptions on µk and ρℓkk and the fact
that x0 ∈ Bε we then have

ωdist(x1, S) ≤ c2∥x0 − x̄0∥2 +
(
σ + σ(1 + c1)

1+δ
)
∥x0 − x̄0∥1+δ

+ (L3ρ
ℓ0
0 + c1µ0)∥x0 − x̄0∥

≤ c2∥x0 − x̄0∥2 +
(
σ + σ(1 + c1)

1+δL3Cη + c1Cµ

)
∥x0 − x̄0∥1+δ

≤ c3∥x0 − x̄0∥1+δ ≤ c3ε
δdist(x0, S),

(6.35)
and by the bound on ε we have that ii) holds for k = 0. Since ν < 1,
iii) follows immediately. Let us now assume that for every i = 1, . . . , k
we have xi ∈ Br, dist(x

i, S) ≤ νdist(xi−1, S) and dist(xi, S) ≤ ε. We
want to prove that the same holds for i = k+1. From the definition of

190 Parallel Inexact Levenberg-Marquardt Method

xk+1, the triangular inequality, the inductive assumptions and Lemma
6.6 we have

∥xk+1 − x∗∥ ≤
k∑

i=0

∥di∥ + ∥x0 − x∗∥

≤ c1

k∑
i=0

dist(xi, S) + ∥x0 − x∗∥

≤ c1

k∑
i=0

νidist(x0, S) + ∥x0 − x∗∥

≤

(
1 + c1

k∑
i=0

νi

)
ε ≤

(
1 +

c1
1 − ν

)
ε.

Since ε ≤ r(1−ν)
1+c1−ν

we have that the right-hand side is smaller than r

and therefore xk+1 ∈ Br.
Proceeding as in (6.35),

ωdist(xk+1, S) ≤ c2∥xk − x̄k∥2 +
(
σ + σ(1 + c1)

1+δ
)
∥x0 − x̄0∥1+δ

+ (L3ρ
ℓk
k + c1µk)∥xk − x̄k∥

≤ c3∥xk − x̄k∥1+δ ≤ c3ε
δdist(xk, S),

(6.36)
which implies ii). Since ν < 1, part iii) of the thesis follows directly
from ii) and the fact that dist(xk, S) ≤ ε. □

Theorem 6.3. If the same Assumptions of Lemma 6.7 hold, then
dist(xk, S) → 0 and xk → x̄ ∈ S ∩ B(x∗, r). The convergence of
dist(xk, S) is superlinear if δ ∈ (0, 1) and quadratic if δ = 1.

Proof. Convergence of dist(xk, S) to zero follows directly from part ii)
of the previous Lemma. Moreover, proceeding as in (6.36), we get

dist(xk+1, S) ≤ c3
ω
∥xk − x̄k∥1+δ =

c3
ω
dist(xk, S)1+δ

6.3 Implementation and Numerical Results 191

which implies superlinear convergence for δ ∈ (0, 1) and quadratic
convergence for δ = 1. Convergence of the sequence {xk}∞k=0 is proved
as in Theorem 6.2. □

6.3 Implementation and Numerical Re-

sults

In this section we discuss the parallel implementation of the proposed
method and we present the results of a set of numerical experiments
carried out to investigate the performance of method and the influence
of the parameter K.

We consider the least squares problems that arise from a Network
Adjustment problem [60]. Consider a set of points {Pi, . . . , Pn} in
R2 with unknown coordinates, and assume that a set of observations
of geometrical quantities involving the points are available. Least
Squares adjustments consists into using the available measurements
to find accurate coordinates of the points, by minimizing the resid-
ual with respect to the given observations in the least squares sense.
We consider here network adjustment problems with three kinds of
observations: point-point distance, angle formed by three points and
point-line distance.

The problems is generated as follows, taking into account the in-
formation about average connectivity and structure of the network
obtained from the analysis of real cadastral networks. Given the num-
ber of points n̂ we take {P1, . . . , Pn̂} by uniformly sampling 25% of the
points on a regular 2

√
n̂ × 2

√
n̂ grid and we generate observations of

the three kinds mentioned above until the average degree of the points
is equal to 6. Each observation is defined by randomly selecting the
points involved with probability depending on the distance between
the points, and generating a random number from the Gaussian distri-

192 Parallel Inexact Levenberg-Marquardt Method

bution with mean equal to the true measurement and given standard
deviation. We use a standard deviation equal to 0.01 and 1 degree for
distance and angle observations respectively. For all points we also
add coordinates observations: for 1% of the points we use standard
deviation 0.01, while for the remaining 99% we use standard devia-
tion 1. The problem is stated as a least squares adjustment problem
[60]. That is, given the set of observations, the optimization problem
is defined as a weighted least squares problem

min
x∈Rn

1

2

m∑
j=1

rj(x)2 = min
x∈Rn

1

2
∥R(x)∥22 (6.37)

where n = 2n̂, m is the number of observations, and rj(x) = w−1
j r̂j(x),

with r̂j residual function of the j-th observation and wj corresponding
standard deviation.

In Figure 6.1 we present the spyplot of the matrix J⊤J for a prob-
lem of size n = 35, 000.

Figure 6.1: Sparsity plot of the coefficient matrix for n= 35,000

6.3 Implementation and Numerical Results 193

The proposed method is implemented in Python and all the tests
are performed on the AXIOM computing facility consisting of 16 nodes
(8 × Intel i7 5820k 3.3GHz and 8 × Intel i7 8700 3.2GHz CPU - 96
cores and 16GB DDR4 RAM/node) interconnected by a 10 Gbps net-
work.

Algorithm 6.1 assumes that the number K and the subsets Is, Es,
s = 1, . . . , K of the variables and the residuals are given. In the tests
that follow, given the number K of workers, the server computes the
partition of the variables using METIS [32], then defines the corre-
sponding partition of the residuals as in (6.2) and transmits them to
the nodes. The time necessary to carry out this preprocessing phase
is included in the timings that we show below.

In the following, given i = 1, . . . , K we with denote with Ni the set
of indices j ̸= i such that there exists an observation in Ê involving
variables in both Ii and Ij. The Jacobian matrix and the derivatives
of F are computed as follows. For every i = 1, . . . , n node i computes
JiRi

and Jiρ and shares Jiρ with the server, which then broadcasts
{Jiρ}Ki=1 to the workers. Node i then computes gki , P k

i and {Bk
ij}j∈Ni

according to (6.8). Notice that Bk
ij is nonzero only if j ∈ Nj. The local

gradients gk
i are transmitted by the workers to the server, that then

broadcasts the aggregated gradient gk. We observed that, compared
to the approach where the server computes the whole Jacobian and
then transmits it to the rest of the nodes, the distributed approach
that we use leads to 50% faster execution of this phase.

To compute the direction dk (lines 3-7 in Algorithm 6.1) we proceed
as follows. At the first inner iteration (line 3), node i computes y1

i

solution of

(P k
i + µkIni

)y1
i = −gk

i

194 Parallel Inexact Levenberg-Marquardt Method

which only involves quantities available to it. After solving this sys-
tem, all nodes shares their local solution with server. The server de-
fines the aggregated vector yl = (yl

1, . . . ,y
l
K)⊤ and broadcasts it to the

nodes. For all other inner iterations (line 8) each node i first computes
the right hand side

(gk + Bkyl)i = gk
i +

∑
j∈Ni

Bk
ijy

l
j

using the aggregated vector received from the server, then computes
the new local estimate yl+1

i as the solution of

(P k
i + µkIni

)yl+1
i = −(gk + Bkyl)i.

Each node then sends the local vector to the server, which defines and
shares the aggregated vector, and a new inner iteration begins. All
the linear systems are solved with PyPardiso [22].

For all the communication phases we considered three approaches.
The one mentioned above where the server broadcasts the aggregated
quantities to all the nodes, the case where it send to each node only the
blocks that are necessary to them to perform their local computations,
and the case where we define communicator between the workers, in
such a way that node i can share relevant quantities directly to the
nodes in Ni. While in the second option the amount of exchanged
data is smaller, we observed that the broadcasting approach results in
practice in a significantly shorter communication time. Overall, the
performance of the node-to-node approach was very similar to that of
broadcasting and therefore we chose to continue with the broadcasting
strategy, which is simpler from the point of view of the implementa-
tion.

We consider a network adjustment problem with n = 106 and
m = 2.5×106 generated as described above, and we solve the problem

6.3 Implementation and Numerical Results 195

for different values of the parameter K. The initial guess is defined
as the coordinate observations available in the problem description
while the execution is terminated when at least 68%, 95% and 99.5%
of the residuals is smaller than 1, 2 and 3 times the standard deviation
respectively. To understand the behavior of the method, in Figure 6.2
we plot the values of the three percentages above at each iteration, for
K=60. In Figure 6.3 we plot the execution time to arrive a termination
for K ∈ [35, 85]. The damping parameter µk is initialized as 105, which
is the same order of magnitude as ∥R∥. At each iteration we take
µk+1 = µk/2 if the accepted step size is larger than 0.5 and µk+1 = 2µk

otherwise, with safeguards µmin = 10−10 and µmax = 1010. The number
of inner iteration is fixed to ℓk = 5 for every k.

Figure 6.2: Percentage of residuals within 1, 2 and 3 standard devia-
tions. Values of the percentages at each iteration

We can see that, starting from the smaller values of K, the exe-
cution time of the method decreases while K increase, until reaching
a plateau, after which it begins to increase. The plot shows the good
performance of the proposed method. Smaller values of K are omitted
from the plot as the time necessary to arrive at termination becomes
too large. In particular for K = 1, which correspond to the centralized
method, the execution time is orders of magnitude larger than for the

196 Parallel Inexact Levenberg-Marquardt Method

Figure 6.3: Execution time for different number of processors

values of K included in the plot, and hence not comparable.
There are two main reasons behind the increase for large values of K.
The first is that for larger values of K the norm of the matrix B is
larger and therefore the fixed point method converges more slowly to
the solution of the LM system. Since we are running a fixed number
of inner iterations ℓ that does not depend on the number of nodes K,
large values of K result in a direction dk that is a worse approxima-
tion of the LM direction and therefore the number of outer iterations
needed by the method is larger. That is, after a certain point the
overall computational cost increases because the saving induced by
the fact that the linear systems solved by each node are smaller is
not enough to balance the additional number of outer iterations. The
second reason is common to all parallel methods: increasing the num-
ber of nodes K increases the communication traffic and, when K is
too large, the time necessary to handle the additional communication
overcomes the saving in terms of computation.
The fact that there is a plateau is also relevant from the practical
point of view. The optimal value K depends on the size n but also
on sparsity and the separability of the problem, and thus it may be
hard to predict. However, the results show that the obtained timings

6.3 Implementation and Numerical Results 197

on the considered problems are similar and nearly-optimal for a wide
range of values of K, suggesting that an accurate choice of the number
of nodes could in general not be necessary in order for the method to
achieve a good performance.
Notice that while the choice of µk does not ensure theoretically ρk < 1
at all iterations, it gives good results in practice, and does not require
the computation of ∥Bk∥, which may be expensive in the distributed
framework.

As a comparison, Algorithm 6.1 was also implemented and tested
on the same problem in a sequential fashion. That is, with only one
machine performing the tasks for i = 1, . . . , K in sequence. The result-
ing timings were 228, 61.5 and 59.6 minutes for K = 45, 80, 100 respec-
tively. Since these timings decrease for increasing K, this shows that
the proposed method is effective, compared to classical LM method
(equivalent to K = 1), even when a parallel implementation is not
possible in practice. Moreover, they show that the saving in time in-
duced by the parallelization of the computation is significantly larger
than the time necessary to handle the communication.

Chapter 7

Conclusions

The results in this thesis cover several topics in distributed optimiza-
tion. The considered problems are unconstrained and of large di-
mension, while the computational framework is assumed to be dis-
tributed. Two main types of considered computational networks are
distributed networks, where computational nodes can communicate
through communication links represented by a communication matrix
and server/worker networks where one has a central node that com-
municates with all other nodes, but the worker nodes cannot commu-
nicate between themselves. The objective function is stated as a sum
of a large number of the so-called local functions. The main motiva-
tion for the considered problem comes from machine learning and Big
Data analytic. Theoretical analysis, followed by numerical results is
presented for four classes of methods that are considered in the thesis.

In Chapter 3 we proved that a class of distributed first-order meth-
ods, including those proposed in [24, 25], is robust to time-varying and
uncoordinated step-sizes and time-varying weight-balanced digraphs,
without requiring the network to be connected at all iterations. The
achieved results provide a solid improvement in understanding of the
robustness of exact distributed first-order methods to time-varying

199

networks and uncoordinated time-varying step sizes. Most notably,
we showed that the unification strategy in [24] and the spectral-like
step size selection strategy in [25], as well as combination of those,
exhibits a high degree of robustness.
In Chapter 4 we proposed a Distributed inexact Newton method that
applies JOR method for the computation of the direction at each it-
eration and employs an adaptive step size that does not require a
priori knowledge of the regularity constants of the objective function.
Provided that the local functions are strongly convex with Lipschitz-
continuous Hessian matrices, the strategy adopted by the method for
the computation of the stepsize ensures convergence to the solution of
the penalty problem (4.3) for any choice of the initial guess. More-
over, it can be proved that after a finite number of iterations the full
stepsize is accepted, and that the method achieves local convergence
with order depending on the choice of the forcing terms. The method
is presented and analyzed in the decentralized framework, assuming
that the underlying communication network is fixed during the execu-
tion of the method. It would be interesting from both the theoretical
and the practical point of view is to extend the method to the case
of time-varying network, as well as to consider different frameworks
such as the federated learning framework and the asynchronous case
mentioned in Section 2.1.
In Chapter 5 a class of novel, iterative, distributed methods for the
solution of linear systems of equations, are derived upon classical fixed
point methods. We proved linear convergence for strongly connected
communication network and showed that the convergence rate depends
on the diameter of the network and on the norm of the underlying it-
erative matrix. In particular, if the graph is strongly connected the
obtained result is analogous to the classical, centralized case. The pre-
sented method is extended to the time-varying case and an analogous
convergence result is proved under suitable joint connectivity assump-
tions, comparable with assumptions required by different methods in

200 Conclusions

literature. The algorithm is compared with the relevant optimization
methods presented in [35, 47, 57, 59, 36]. The numerical results show
good performance of DFIX in comparison with the mentioned meth-
ods. In particular, in the vast majority of the considered tests, DFIX
outperformed all the methods in terms of both computational cost and
communication traffic.
In Chapter 6 we presented an Inexact Levenberg-Marquardt method,
suitable for paralellization in the server/worker framework, for the so-
lution of nearly-separable least squares problems. The method relies
on a fixed-point iteration for the computation of the direction at each
iteration, and on a nonmonotone line search strategy for the selec-
tion of the stepsize. We proved that with suitable assumptions on the
objective function and the separablity of the problem, the proposed
method achieves global convergence and local linear, superlinear, or
quadratic convergence, depending on the choice of the damping pa-
rameter and the number of fixed-point iterations. An interesting line
of research could be to develop an analogous method for the decentral-
ized case, possibly exploiting the main ideas underlying the distributed
Inexact Newton method presented in Chapter 4, such as the focus on
the penalty reformulation of the distributed problem and the adaptive
stepsize.

Bibliography

[1] S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed. De-
centralized proximal gradient algorithms with linear convergence
rates. IEEE Transactions on Automatic Control, 66(6):2787–
2794, 2021.

[2] J. Barzilai and J. M. Borwein. Two point step size gradient meth-
ods. IMA Journal of Numerical Analysis, 8:141–148, 1988.

[3] R. Behling, D. S. Gonçalves, and S. A. Santos. Local convergence
analysis of the Levenberg-Marquardt framework for nonzero-
residue nonlinear least-squares problems under an error bound
condition. Journal of Optimization Theory and Applications,
183:1099–1122, 2019.

[4] S. Bellavia, S. Gratton, and E. Riccietti. A Levenberg-Marquardt
method for large nonlinear least-squares problems with dynamic
accuracy in functions and gradients. Numerische Mathematik,
140(3):791–825, 2018.

[5] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei. Bal-
ancing communication and computation in distributed optimiza-
tion. IEEE Transactions on Automatic Control, 64(8):3141–3155,
2019.

202 BIBLIOGRAPHY

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends in Ma-
chine Learning, 3(1), 2011.

[7] N. A. C. Cressie. Statistics for spatial data. New York: Wiley,
1993.

[8] Y. H. Dai, Y. Huang, and X. W. Liu. A family of spectral gradi-
ent methods for optimization. Computational Optimization and
Applications, 74(1):43–65, 2019.

[9] Y. H. Dai and L. Z. Liao. R-linear convergence of the Barzilai and
Borwein gradient method. IMA Journal of Numerical Analysis,
22(1):1–10, 2002.

[10] H. Dan, N. Yamashita, and M. Fukushima. Convergence prop-
erties of the inexact Levenberg-Marquardt method under local
error bound conditions. Optimization Methods and Software,
17(4):605–626, 2002.

[11] M. H. DeGroot. Reaching a consensus. Journal of the American
Statistical Association, 69(345):118–121, 1974.

[12] R. S. Dembo, S. C Eisenstat, and T. Steihaug. Inexact Newton
methods. SIAM Journal on Optimization, (2):400–408, 1982.

[13] C. Desoer and M. Vidyasagar. Feedback systems: Input-output
properties. SIAM - Classics in Applied Mathematics, 2009.

[14] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex op-
timization. IEEE Transactions on Signal and Information Pro-
cessing over Networks, 2(2):120–136, 2016.

BIBLIOGRAPHY 203

[15] D. Di Serafino, V. Ruggiero, G. Toraldo, and L Zanni. On the
steplength selection in gradient methods for unconstrained opti-
mization. Applied Mathematics and Computation, 318:176–195,
2018.

[16] S. C. Eisenstat and H. F. Walker. Globally convergent inexact
Newton methods. SIAM Journal on Optimization, 4:393–422,
1994.

[17] P. Erdős and A. Renyi. On random graphs I. Publicationes Math-
ematicae, 6:290–297, 1959.

[18] J. Fan and J. Pan. Convergence properties of a self-adaptive
Levenberg-Marquardt algorithm under local error bound condi-
tion. Computational Optimization and Applications, 34(1):47–62,
2006.

[19] J. Fan and Y. Yuan. On the quadratic convergence of the
Levenberg-Marquardt method without nonsingularity assump-
tion. Computing, 74(1):23–39, 2005.

[20] L. Fodor, D. Jakovetić, N. Krejić, and G. Malaspina. Parallel in-
exact Levenberg-Marquardt method for sparse least squares prob-
lems. (in preparation).

[21] J. Franken, W. Florijn, M. Hoekstra, , and E. Hagemans. Rebuild-
ing the cadastral map of the netherlands: the artificial intelligence
solution. FIG working week 2021 proceedings, 2021.

[22] A Haas. Pypardiso.

[23] J. M. Hendrickx, R. M. Jungers, A. Olshevsky, and G. Vankeer-
berghen. Graph diameter, eigenvalues, and minimum-time con-
sensus. Automatica, 50:635–640, 2014.

204 BIBLIOGRAPHY

[24] D. Jakovetić. A unification and generalization of exact distributed
first-order methods. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 5(1):31–46, 2019.

[25] D. Jakovetić, N. Krejić, and N. Krklec Jerinkić. Exact spectral-
like gradient method for distributed optimization. Computational
Optimization and Applications, 74:703—-728, 2019.

[26] D. Jakovetić, N. Krejić, and N. Krklec Jerinkić. Efix: Exact fixed
point methods for distributed optimization. Journal of Global
Optimization, 2022.

[27] D. Jakovetić, N. Krejić, and N. Krklec Jerinkić. A Hessian
inversion-free exact second order method for distributed consen-
sus optimization. arxiv preprint, arXiv:2204.02690, 2022.

[28] D. Jakovetić, N. Krejić, N. Krklec Jerinkić, G. Malaspina, and
A. Micheletti. Distributed fixed point method for solving systems
of linear algebraic equations. Automatica, 134(8), 2021.

[29] D. Jakovetić, N. Krejić, and G. Malaspina. Distributed inexact
Newton method with adaptive stepsize. (in preparation).

[30] S. Kar, J. M. F. Moura, and K. Ramanan. Distributed parameter
estimation in sensor networks: Nonlinear observation models and
imperfect communication. IEEE Transactions on Information
Theory, 58(6):3575–3605, 2012.

[31] E. W. Karas, S. A. Santos, and B. F. Svaiter. Algebraic
rules for computing the regularization parameter of the leven-
berg–marquardt method. Computational Optimization and Ap-
plications, 65:723–751, 2016.

[32] G. Karypis and V. Kumar. Graph partitioning and sparse matrix
ordering system. University of Minnesota, 2009.

BIBLIOGRAPHY 205

[33] K. Konolige. Sparse bundle adjustment. British Machine Vision
Conference, 2010.

[34] D. G. Krige. A statistical approach to some basic mine valuation
problems on the witwatersrand. ournal of the Southern African
Institute of Mining and Metallurgy, 52(6):119—-139, 1951.

[35] N. Li and G. Qu. Harnessing smoothness to accelerate distributed
optimization. IEEE Transactions Control of Network Systems,
5(3):1245–1260, 2017.

[36] J. Liu, A. S. Morse, A. Nedić, and T. Başar. Exponential con-
vergence of a distributed algorithm for solving linear algebraic
equations. Automatica, 83:37–46, 2017.

[37] J. Liu, S. Mou, and A. S. Morse. A distributed algorithm for solv-
ing a linear algebraic equation. Proceedings of the 51st Annual
Allerton Conference on Communication, Control, and Comput-
ing, 60(11):267—-274, 2013.

[38] J. Liu, S. Mou, and A. S. Morse. Asynchronous distributed algo-
rithms for solving linear algebraic equations. IEEE Transactions
on Automatic Control, 63(2):372–385, 2018.

[39] G. Malaspina, D. Jakovetić, and N. Krejić. Linear convergence
rate analysis of a class of exact first-order distributed methods
for time-varying directed networks and uncoordinated step sizes.
arxiv preprint: arXiv:2007.08837.

[40] G. Malaspina, N. Krejić, and L. Swaenen. Splitted Levenberg-
Marquardt method for large-scale sparse problems. arxiv preprint:
arXiv:2206.05188.

206 BIBLIOGRAPHY

[41] G. Mao, B. Fidan, and B. D. O. Anderson. Wireless sensor net-
work localization techniques. Computer Networks, 51(10):2529–
2553, 2007.

[42] G. Matheron. Traité de geostatistique appliquée vol. II, le
krigeage. Memoires du Bureau de Recherches Géologiques et
Miniéres, 24, 1963.

[43] A. Mokhtari, Q. Ling, and A. Ribeiro. Network Newton dis-
tributed optimization methods. IEEE Transactions on Signal
Processing, 65(1):146–161, 2017.

[44] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro. A decentral-
ized second-order method with exact linear convergence rate for
consensus optimization. IEEE Transactions on Signal and Infor-
mation Processing over Networks, 2(4):507–522, 2016.

[45] J. Mota, J. Xavier, P. Aguiar, and M. Püschel. Distributed op-
timization with local domains: Applications in mpc and network
flows. IEEE Transactions on Automatic Control, 60(7):2004–
2009, 2015.

[46] S. Mou, Z. Lin, L. Wang, D. Fullmer, and A. S. Morse. A dis-
tributed algorithm for efficiently solving linear equations and its
applications. System & Control Letters, 91:21–27, 2016.

[47] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric con-
vergence for distributed optimization over time-varying graphs.
SIAM Journal on Optimization, 27(4):2597—-2633, 2017.

[48] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe. Geomet-
rically convergent distributed optimization with uncoordinated
step sizes. American Control Conference, pages 3950–3955, 2017.

BIBLIOGRAPHY 207

[49] A. Nedić and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Con-
trol, 54(1):48–61, 2009.

[50] J. Nocedal and S. J. Wright. Numerical Optimization. Springer,
2006.

[51] Bertsekas D. P. Nonlinear programming. Athena Scientific, Bel-
mont, 1997.

[52] B. Polyak and A. Tremba. New versions of Newton method: Step-
size choice, convergence domain and under-determined equations.
Optimization Methods and Software, 35(6):1272—-1303, 2020.

[53] M. Raydan. On the Barzilai and Borwein choice of steplength
for the gradient method. IMA Journal of Numerical Analysis,
13:321–326, 1993.

[54] M. Raydan. Barzilai and Borwein gradient method for the large
scale unconstrained minimization problem. SIAM Journal on Op-
timization, 7:26–33, 1997.

[55] F. Saadatniaki, R. Xin, and U. A. Khan. Decentralized opti-
mization over time-varying directed graphs with row and column-
stochastic matrices. IEEE Transactions on Automatic Control,
60(11):4769–4780, 2020.

[56] G. Scutari and Y. Sun. Distributed nonconvex constrained opti-
mization over time-varying digraphs. Mathematical Programming,
176(1–2):497–544, 2019.

[57] W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: an exact first-
order algorithm for decentralized consensus optimization. SIAM
Journal on Optimization, 25(2):944–966, 2015.

208 BIBLIOGRAPHY

[58] Y. Sun, A. Daneshmand, and G. Scutari. Convergence rate of
distributed optimization algorithms based on gradient tracking.
arxiv preprint, arXiv:1905.02637, 2019.

[59] A. Sundararajan, B. Van Scoy, and L. Lessard. Analysis and de-
sign of first-order distributed optimization algorithms over time-
varying graphs. arxiv preprint, arXiv:1907.05448, 2019.

[60] P. J. G. Teunissen. Adjustment theory. Series on Mathematical
Geodesy and Positioning, 2003.

[61] B. Touri and A. Nedić. On backward product of stochastic ma-
trices. Automatica, 48(8):1477–1488, 2012.

[62] F. van den Heuvel, G. Vestjens, G. Verkuijl, and M. van den
Broek. Rebuilding the cadastral map of the netherlands: the
geodetic concept. FIG working week 2021 proceedings, 2021.

[63] P. Wang, S. Mou, J. Lian, and W. Ren. Solving a system of linear
equations: From centralized to distributed algorithms. Annual
Reviews in Control, 47:306–322, 2019.

[64] X. Wang, J. Zhou, S. Mou, and M. J. Corless. A distributed algo-
rithm for least square solutions. IEEE Transactions on Automatic
Control, 64(10):4217–4222, 2019.

[65] L. Xiao, S. Boyd, and S. Lall. Distributed average consensus with
time-varying metropolis weights. Automatica, 2006.

[66] Y. Xiao and J. Hu. Distributed solutions of convex feasibility
problems with sparsely coupled constraints. IEEE 56th Annual
Conference on Decision and Control, pages 3386–3392, 2017.

BIBLIOGRAPHY 209

[67] R. Xin and U. A. Khan. Distributed heavy-ball: a generaliza-
tion and acceleration of first-order methods with gradient track-
ing. IEEE Transactions on Automatic Control, 65(6):2627–2633,
2020.

[68] R. Xin, C. Xi, and U. A. Khan. Frost—fast row-stochastic op-
timization with uncoordinated step-sizes. EURASIP Journal on
Advances in Signal Processing—Special Issue on Optimization,
Learning, and Adaptation over Networks, 1, 2019.

[69] J. Xu, Y. Tian, Y. Sun, and G. Scutari. Distributed algorithms
for composite optimization: Unified framework and convergence
analysis. arxiv preprint, arXiv:2002.11534, 2020.

[70] J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Augmented distributed gra-
dient methods for multi-agent optimization under uncoordinated
constant step sizes. IEEE Conference on Decision and Control,
pages 2055–2060, 2015.

[71] N. Yamashita and M. Fukushima. On the rate of convergence of
the Levenberg-Marquardt method. Topics in Numerical Analysis,
15:239–249, 2001.

[72] K. Yuan, Q. Ling, and W. Yin. On the convergence of de-
centralized gradient descent. SIAM Journal on Optimization,
26(3):1835—-1854, 2016.

[73] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed. Exact diffusion for
distributed optimization and learning — part I: Algorithm devel-
opment. IEEE Transactions on Signal Processing, 67(3):708–723,
2019.

[74] J. Zhang, Q. Ling, and A. M. C. So. A Newton tracking algo-
rithm with exact linear convergence for decentralized consensus

210 BIBLIOGRAPHY

optimization. IEEE Transactions on Signal and Information Pro-
cessing over Networks, 7:346–358, 2021.

[75] J. Zhang, K. You, and Başar T. Distributed adaptive Newton
methods with global superlinear convergence. Automatica, 138,
2022.

211

212

Appendix A

Short Biography

Greta Malaspina was born on the 13th of
June 1992 in Pietrasanta, Italy. In 2011 she
enrolled in the Bachelor program in mathe-
matics at the university of Pisa, which she
completed in 2015. In 2018 she received
her Master degree in mathematics from the
University of Florence. In 2019 she started
her PhD studies at the University of Novi
Sad, and participated in BIGMATH, a PhD
project that is part of the European Eunion’s Horizon 2020 Marie
Sk lodowska-Curie actions. During her PhD she attended several inter-
national conferences, including ICIAM 2019 - International Congress
on Industrial and Applied Mathematics, and EURO conference in 2021
and 2022.

Novi Sad, 2022 Greta Malaspina

Национални портал отворене науке – open.ac.rs

Овај Образац чини саставни део докторске дисертације, односно

докторског уметничког пројекта који се брани на Универзитету у Новом

Саду. Попуњен Образац укоричити иза текста докторске дисертације,

односно докторског уметничког пројекта.

План третмана података

Назив пројекта/истраживања

Meтоде дистрибуиране оптимизације за проблеме великих димензија без ограничења

Distributed Optimization Methods for Large Scale Unconstrained Optimization Problems

Назив институције/институција у оквиру којих се спроводи истраживање

Универзитет у Новом Саду Природно-математички факултет

Назив програма у оквиру ког се реализује истраживање

Докторске студије математике

1. Опис података

1.1 Врста студије

У овој студији нису прикупљани подаци

2. Прикупљање података

3. Третман података и пратећа документација

4. Безбедност података и заштита поверљивих информација

5. Доступност података

6. Улоге и одговорност

