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LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC
OPTIMIZATION METHODS*

DANIELA DI SERAFINO', NATASA KREJIC!, NATASA KRKLEC JERINKIC!, AND
MARCO VIOLA'

Abstract. We develop a line-search second-order algorithmic framework for optimization prob-
lems in noisy environments, i.e., assuming that only noisy values are available for the objective
function and its gradient and Hessian. In the general noisy case, almost sure convergence of the
methods fitting into the framework is proved when line searches and suitably decaying step lengths
are combined. When the objective function is a finite sum, such as in machine learning applications,
our framework is specialized as a stochastic L-BFGS method with line search only, with almost sure
convergence to the solution. In this case, linear convergence rate of the expected function error is also
proved, along with a worst-case O(log(¢~!)) complexity bound. Numerical experiments, including
comparisons with state-of-the art first- and second-order stochastic optimization methods, show the
efficiency of our approach.

Key words. Stochastic optimization, Newton-type methods, quasi-Newton methods, almost
sure convergence, complexity bounds.
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1. Introduction. We consider the problem

(1.1) in 6(x),

where ¢(x) is a twice continuously differentiable function in a noisy environment.
This means that the values of ¢(x), Vo(x) and V2¢(x) are only accessible with
some level of noise. There is a large class of problems of this type in many areas of
engineering and of physical and social sciences [11, 26, 27, 38]. Typical applications
are, e.g., model fitting, parameter estimation, experimental design, and performance
evaluation. Furthermore, problem (1.1) is typical in the framework of statistical
learning, where very large training sets make computations extremely expensive. In
this case, it is common to work with subsamples of data, obtaining approximate
function values — see, e.g., [7].

In the last few years there has been increasing interest toward stochastic opti-
mization methods able to use second-order information, with the aim of improving
accuracy and efficiency of first-order stochastic methods. We are interested in de-
veloping a family of line-search stochastic optimization methods where the search
direction is obtained by exploiting (approximate) second-order information.

In order to provide motivations for our work and outline some techniques exploited
in the sequel, we provide a quick overview of stochastic optimization methods. Their
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2 D. DI SERAFINO, N. KREJIC, N. KRKLEC JERINKIC, AND M. VIOLA

roots can be found in the Stochastic Approximation (SA) method by Robbins and
Monro [31], which can be interpreted as a stochastic variant of the gradient descent
method. Convergence in probability of the SA method is ensured if the step-length
sequence {ay} (called gain sequence) is of harmonic type, i.e., it is non-summable
but square-summable. Under suitable assumptions, the method converges in the
mean square sense [31] and almost surely [37]. Its key property is the ability to avoid
zigzagging due to noise when approaching the solution, thanks to the decay of the gain
sequence. However, a significant drawback of the SA method is its slow convergence.

Asymptotically ideal step lengths for SA methods include the norm of the inverse
Hessian at the solution [3]. Adjustments to the classical harmonic gain sequence,
including adaptive step lengths based on changes in the sign of the difference between
consecutive iterates, are analyzed in [13, 21] with the aim of speeding up the SA
method. This idea is further developed in [39], where almost sure convergence of the
method is proved. Adaptive step-length schemes are introduced also in [40], with
the objective of reducing the dependence of the behavior of the method on user-
defined parameters. The results in [5] are closely related to the SA method and
concern methods based on search directions that are not necessarily noisy gradients,
but some gradient-related directions. A hybrid approach that combines a line-search
technique with SA is analyzed in [25] for noisy gradient directions and arbitrary
descent directions. General descent directions are also considered in [24]. We also note
that gradient approximations may need to be computed by using finite differences;
an overview of finite-difference methods for stochastic optimization is given in [16].
Variance-reduction SA methods with line search for stochastic variational inequalities
are considered in [19].

In the realm of machine learning, many stochastic versions of the gradient method
have been developed. Starting from the basic stochastic and minibatch gradient
methods — see, e.g., [7] and the references therein — variance reduction techniques
for the gradient estimates have been developed, with the aim of improving conver-
gence. Among them we mention SVRG [20], SAGA [12] and its version using Jacobian
sketching [18], which will be considered in section 5. These methods have constant
step lengths and get linear convergence in expectation.

Stochastic optimization methods exploiting search directions based on second-
order information have been developed to get better theoretical and practical conver-
gence properties, especially when badly-scaled problems are considered. Stochastic
versions of Newton-type methods are discussed in [2, 6, 8, 9, 33, 34, 35, 36] and a
variant of the adaptive cubic regularization scheme using a dynamic rule for build-
ing inexact Hessian information is proposed in [1]. Stochastic BFGS methods are
analyzed, e.g., in [8, 10, 17, 28, 29, 30]. In particular, in [30] Moritz et al. propose
a stochastic L-BFGS algorithm based on the same inverse Hessian approximation as
in [10], but use SVRG instead of the standard stochastic gradient approximation. This
algorithm, which applies a constant step length, has Q-linear rate of convergence of
the expected value of the error in the objective function. A further modification to this
L-BFGS scheme is proposed by Gower et al. in [17], where a stochastic block BFGS
update is used, in which the vector pairs for updating the inverse Hessian are replaced
by matrix pairs gathering directions and matrix-vector products between subsampled
Hessians and those directions. The resulting algorithm uses constant step length and
has Q-linear convergence rate of the expected value of objective function error, as in
the previous case, but appears more efficient by numerical experiments.
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LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 3

Our contribution. We propose a Line-search Second-Order Stochastic (LSOS)
algorithmic framework for stochastic optimization problems, where Newton and quasi-
Newton directions in a rather broad meaning are used. Inexactness is allowed in the
sense that the (approximate) Newton direction can be obtained as inexact solution of
the corresponding system of linear equations. We focus on convex problems as they
appear in a wide variety of applications, such as machine learning and least squares.
Furthermore, many stochastic problems need regularization and hence become convex.

We prove almost sure convergence of the methods fitting into the LSOS framework
and show by experiments the effectiveness of our approach when using Newton and
inexact Newton directions affected by noise.

For finite-sum objective functions such as those arising in machine learning, we
investigate the use of the stochastic L-BFGS Hessian approximations in [10] together
with line searches and the SAGA variance reduction technique for the gradient esti-
mates. The resulting algorithm has almost sure convergence to the solution, while
for the efficient state-of-the-art stochastic L-BFGS methods in [17, 30] it has been
proved only that the function error tends to zero in expectation. We also prove
that the expected function error has linear convergence rate and provide a worst-
case O(log(e™1)) complexity bound. Finally, numerical experiments show that our
algorithm is competitive with the stochastic L-BFGS methods mentioned above.

Notation. E(x) denotes the expectation of a random variable z, E(z|y) the
conditional expectation of z given y, and var(z) the variance of x. | - | indicates
either the Euclidean vector norm or the corresponding induced matrix norm, while
| - | is the cardinality of a set. R4 and Ri. denote the sets of real non-negative
and positive numbers, respectively. Vectors are written in boldface and subscripts
indicate the elements of a sequence, e.g., {x}. Throughout the paper My, My, Ms, ...
and ¢, co,c3,... denote positive constants, without specifying their actual values.
Other constants are defined when they are used. Finally, “a.s.” abbreviates “almost
sure/surely”.

Outline of the paper. The rest of this article is organized as follows. In sec-
tion 2, we define the general Stochastic Second-Order (SOS) framework with pre-
defined step-length sequence, which is the basis for the family of algorithms proposed
in this work, and we give preliminary assumptions and results used in the sequel. In
section 3 we provide the convergence theory of the algorithms fitting into the SOS
framework. In section 4 we introduce a SOS version named LSOS, which combines
non-monotone line searches and (if needed) pre-defined step lengths in order to make
the algorithm faster, and provide its convergence analysis. In section 5 we special-
ize LSOS for finite sum objective functions, obtaining a stochastic L-BFGS method
with line search only, and in section 6 we provide its convergence theory, including
convergence rate and complexity results. In section 7, numerical experiments on two
classes of stochastic problems and comparisons with state-of-the art methods show
the effectiveness of our approach. Concluding remarks are given in section 8.

2. Preliminaries. We assume that for problem (1.1) we can only compute
fx) = o(x)+e;(),

(2.1) g(x) = Vo(x)+e4(x),
B(x) V2¢(x) + ep(x),

with €;(x) being a random number, £4(x) a random vector and ep(x) a symmetric
random matrix. The general algorithmic scheme we analyze in this paper is given in
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4 D. DI SERAFINO, N. KREJIC, N. KRKLEC JERINKIC, AND M. VIOLA

Algorithm 2.1.

Algorithm 2.1 Second-Order Stochastic (SOS) method
1: given x° € R™ and {a;} C Ry

2: for k=0,1,2,... do

3:  compute di € R"
4
5

set Xp4+1 = Xk + ardi
: end for

For now we assume that {a;} is given and it satisfies the conditions stated in
Assumption 2.2 below. We also assume that f(x), g(x) and B(x) are available for
any x € R™. Although here we do not specify how dy, is obtained, we call the algorithm
“Second-Order” because in the next sections we will compute di by exploiting noisy
second-order information about ¢(x).

We make the following assumptions.

ASSUMPTION 2.1. The function ¢ is strongly convex and has Lipschitz-continuous
gradient.

If Assumption 2.1 holds, then there exists a unique x, € R™ that solves (1.1), with
V¢(x4) = 0. Furthermore, for some positive constants g and L and any x € R™ we
have

pl < V2¢(x) < LI,
where [ is the identity matrix, and
2.2 B —x, |2 < _ <Ly 2
(2.2) 5 1 = %" < 6(x) = o(x:) < S [Vox)]"
ASSUMPTION 2.2. The gain sequence {ay} satisfies

ag >0 for all k, Zakzoo, Zai < 0.
k k

This is a standard assumption for SA methods.

Henceforth we denote Fj the o-algebra generated by xg,x1,...,Xk.

ASSUMPTION 2.3. Let {x} be a sequence generated by Algorithm 2.1. The gra-
dient noise €4(x) is such that

E(eq(x)|Fi) = 0 and E(|leg(x)[|*|Fr) < M.

In other words, we assume that the expected gradient noise is zero and the variance
of gradient errors,

(2:3) var([leq ()| 17k) = Elleq ()11 | Fk) = E*(lleg ()l [ F),
is bounded. From (2.3) and Assumption 2.3 it also follows that

E(lleq(x)1?1F) > E*(lleg (x) 11 F%)

E(|leg(x)]| 1Fx) < \/E(leq(x)]12|1Fk) < /M := M.

and hence

This manuscript is for review purposes only.
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LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 5

We observe that Assumptions 2.1 and 2.3 imply
(24)  [IVeE)I* +E(lleg()II*1Fr) < L2lx = x[* + My < ex(1 + [lx — x.%),
with ¢; = max{L?, M;}. Moreover, (2.4) and Assumption 2.3 imply
(2.5) E(lg()|I*|Fx) < (1 + [x = x.]1%),
which can be proved as follows:

E(lg()[*1Fr) = E(IVe(x) + €4(x) 1| Fr)
= E(|Vo&)II* +2Ve(x) ey (x) + [leg ()| Fr)
= [IVo()|* + 2V (%) "E(ey (x)|Fk) + Elleg ()11 7x)
e+ x = %),

where the last inequality comes from E(e (x)|Fx) = 0.
The following theorem (see [31]) will be used in Section 3.

THEOREM 2.4. Let Uy, Bk, &k, p > 0 be Fi-measurable random wvariables such

that
E(Uk+1|fk)§(1+ﬂk)Uk+€k7pkv k:172a

If Y7, B < 00 and Y, & < o0, then Uy — U a.s. and ), pr < 00 a.s..

3. Convergence theory of Algorithm SOS. The assumptions stated in the
previous section generally form a common set of assumptions for SA and related
methods. Actually, Assumption 2.1 is different from the commonly used assumption
that for some symmetric positive definite matrix B and for all € (0,1), we have

inf  (x—x,)"BVg¢(x) > 0.

n<llx—x.[ <2

However, the restriction to strongly convex problems allows us to prove a more general
convergence result.

While the SA method uses the negative gradient direction, in [24] general descent
directions have been considered such that for all k

g(Xk)Tdk <0,
(3.2) (xp — %) T E(dp|Fr) < —c3|xp — x.|| as.,
[dell < callg(xw)ll as..

Here we relax (3.1) and (3.2) so that the direction dy need neither be a descent
direction nor satisfy (3.2). This relaxation allows us to extend the set of directions
covered by the theoretical analysis presenter further on. At each iteration, we allow
a deviation from a descent direction proportional to dj, where {d;} is a predefined
sequence of positive numbers that converges to zero with almost arbitrary rate. More
precisely, the following condition must hold:

(3.3) Zakék < 0.
k

Thus, a possible choice could be 6, = v*, where v € (0, 1), regardless of the choice
of the gain sequence. On the other hand, if we choose the standard gain sequence
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6 D. DI SERAFINO, N. KREJIC, N. KRKLEC JERINKIC, AND M. VIOLA

ap = 1/k, then §; = 1/k¢, with arbitrary small € > 0, is a suitable choice. Roughly
speaking, the set of feasible directions is rather wide while we are far away from the
solution, and the descent condition is enforced as we progress towards the solution.
More precisely, we make the following assumptions on the search directions.

ASSUMPTION 3.1. The direction dy, satisfies
Vo(xi) "E(d|Fr) < drea — es]| Vo(xi)||.
ASSUMPTION 3.2. The direction dy, satisfies

[dil < callgxp)| a.s..

We observe that Assumptions 3.1 and 3.2 can be seen as a stochastic version of
well-known sufficient conditions that guarantee gradient-related directions in the de-
terministic setting [4, p. 36], i.e.,

Vo) di < —au [Voxo) P, lldill < a2 [[Ve(xe) [

for q1,q2 > 0 and py,p2 > 0.
In the following theorem we prove almost sure convergence for the general Algo-
rithm SOS.

THEOREM 3.3. Let Assumptions 2.1 to 2.3 and Assumptions 3.1 and 3.2 hold,
and let {xy} be generated by Algorithm 2.1. Assume also that (3.3) holds. Then
X — Xy Q.S..

Proof. Since x;41 = Xi + apdy we have, by Assumption 2.1 and the descent
lemma [4, Proposition A24],

B(xp41) — (%) < d(xx) — d(x.) + xV(xx) dy, + ga%||dk||2o
Therefore, by Assumption 3.2,
E(¢(xk41) = ¢(x:) [Fi) < d(x1) = ¢(x.) + ax Vo (xx) " E(dk| Fi)
20} B (s en)|1?1 )
= o(xx) — ¢(x:) + arVo(xx) "E(dy | Fr)
+ai o5 E(||g(xx) [ Fr)

where ¢5 = Lc3/2. From (2.5) (arising from Assumptions 2.1 and 2.3) and Assump-
tion 3.1 it follows that

E($(xkt1) — ¢(x:)|F) < d(xx) — (%) + afercs (14 lIxe — x.1%)
G+ (5k62 — 03||V¢(xk)||2) .
Since (2.2) holds, we have
E(¢(xp41) — ¢(3x:)[Fk) < (1+ ajice)(d(xk) — d(x4)) + afercs

Fandies — anes (90x) — 6(x.),

with ¢g = 2c1¢5/p. Taking By = a%cG, U = ¢(xi) — d(X4), & = aiclc5 + a0pco and
Pk = 2acs/L(p(xk) — d(x4)), we have

Zﬁk<oo7 Z§k<oo
k k

This manuscript is for review purposes only.
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because of Assumption 2.2 and (3.3), and Uy > 0 as x, is the solution of (1.1).
Therefore, by Theorem 2.4 we conclude that ¢(xj) —@(x,) converges a.s. and ), pi <
oo a.s.. Hence, we have

2
0= lim pr = lim ages—= (p(xk) — P(x4)) a.s..
k—o0 k—o0 L

There are two possibilities for the sequence {p(x;) — ¢(x4)}: either there exists an
infinite set X C N such that

kG/%i,}’cnﬁoo d(xk) — o(x4) =0 as.

or there exists € > 0 such that
(3.4) d(x5) — d(x4) > € a.s. for all k sufficiently large.

If K exists, then we have that the whole sequence {¢(x;) — ¢(x.)} converges to
zero a.s., and then x; — x, a.s. because of the continuity of ¢. On the other hand,
if (3.4) holds, then

Zpk = Zakcs%(d’(xk) — P(x4)) = 03%52% =0 as,
& k k

which is a contradiction. Thus we conclude that x;, — x, a.s.. O

Now we extend the scope of search directions towards second-order approxima-
tions. Since Assumption 2.1 holds, we also assume that the approximate Hessians are
positive definite and bounded.

ASSUMPTION 3.4. For every approximate Hessian B(x),
ul <X B(x) < LI.

This assumption is fulfilled in many significant cases. For example, in binary classi-
fication, mini-batch subsampled Hessians are taken as positive definite and bounded
matrices, either with a proper choice of the subsample [32], or with regularization [8].
The same is true for least squares problems.

Assumption 3.4 implies

and hence ||B~1(x)|| < p~!.

We also assume that the noise terms e5(x),e,(x) and ep(x) are mutually inde-
pendent, which implies that the same is true for f, g and B. This independence
assumption will be relaxed in section 5 in order to cope with finite-sum problems,
where the gradient and Hessian approximations may be taken from the same sample.
By defining

(3.5) di = —Dig(xx), D= B~ '(x),

we have 1
dell < —llg(xk)ll,
1

This manuscript is for review purposes only.
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8 D. DI SERAFINO, N. KREJIC, N. KRKLEC JERINKIC, AND M. VIOLA

thus Assumption 3.2 holds. Furthermore, since Dy, is independent of g(xy), we obtain

E(V(xk) " dilFr) = Vo (xi) "E(—Drg(xk)| Fr)
= Vo (xx) "E(—Dy|F)E(g(xx)| F)
= V(i) "E(=Di|Fr) V(x)
= E(=Vo(xx) " DrVo(x1)| Fi)
< E(- 1 IVo(x0) 21 F) = — 1960
and hence
(36) Volxu) E(dil ) < ~ 7 [Voteu)l.

Then Assumption 3.1 holds with ¢o = 0 and ¢3 = %

COROLLARY 3.5. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold, and let
(3.3) hold. If {xx} is a sequence generated by Algorithm 2.1 with dy, defined in (3.5),
then X — X4 a.S.

Proof. The proof is an immediate consequence of Theorem 3.3 and the previous
observations. O

Finally, let us consider the case of inexact Newton methods in the stochastic
approximation framework, i.e., when the linear system

(3.7) B(xp)di, = —g(xx)
is solved only approximately, i.e.,

(3.8) | B(xx)dr + g(xx)|| < 0k7ks

where ;, is a random variable, and Jy satisfies (3.3).

For deterministic inexact Newton methods, global convergence has been proved
when {x;} is bounded and the forcing terms are small enough — see the alternative
statement of Theorem 3.4 in [15, page 400]. Thus, we will assume {x;} bounded in
the stochastic case as well. For v; we assume bounded variance as follows.

ASSUMPTION 3.6. The sequence of random variables {yx} is such that
E(il Fi) < Ms.

Note that Assumption 3.6 implies

E(vk|Fr) < \/E(EIFE) </ Mz := My.

The main property of the search direction that allows us to prove Theorem 3.3 is
stated in Assumption 3.1. Now we prove that Assumption 3.1 holds if the sequence
{x1} is bounded and Assumption 3.6 holds.

LEMMA 3.7. Let {x}} be a sequence generated by Algorithm 2.1 such that (3.8)
and Assumption 3.6 hold. If {xi} is bounded, then Assumption 3.1 holds.

Proof. If {x;.} is bounded then [|[Vo(xk)|| < M5 as ¢ is continuously differentiable.
Furthermore, Assumption 3.6 implies

(3.9 IV (xi) || E(yi|Fr) < MsMy := Ms.

This manuscript is for review purposes only.
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LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 9

Let us denote ry = B(xg)dy + g(xx). Then, by (3.8), ||rk] < dxyk. Furthermore,
dy = B(xx) 'rp — B(xx) tg(xp).
Setting diY = —B(x;) 'g(x), we have
dp — dy = B(xp) 'y,
and
Vo(xi) di = Vo(xi) " (dp — di +d7Y) = Vo(xr) "y + Volxi) " (di — di) .
Taking the conditional expectation, we get
Vo(xi) "E(de|Fr) = Vo(xr) "E(dY | Fr) + Vo(xr) 'E(dy — dif [Fr)-
It has been shown, see (3.6), that

V() TE(Y |7 < 7 Vo0 I,

thus
(3.10) Vo (xx) "E(dg|Fx) < —%HVQS(X]C)”Z + Vo (xx) "E(B(xx) " 1k | F).
Furthermore,

Vo (xx) "E(B(xk) vl Fr) < |Vo(xn)| E (|BOk) | ekl [Fr)
(3.11) < VOB IF) < ey

because of (3.8) and (3.9). Putting together (3.10) and (3.11), we get
Vo(xy) "E(dy|Fr) < ez — ea]| Vo) ||

with c¢a = Mg/p and ¢z = 1/L. Therefore, Assumption 3.1 holds. |

Notice that Assumption 3.2 is not necessarily satisfied by the direction dj, in (3.8).
Therefore, we cannot apply Theorem 3.3. Nevertheless, we can prove the following.

THEOREM 3.8. Let Assumptions 2.1 to 2.3 and Assumptions 3.4 and 3.6 hold. Let
{x1} be a sequence generated by Algorithm 2.1 with search direction dy, satisfying (3.8)
with 0y such that (3.3) holds. If {xy} is bounded, then X — X, a.s..

Proof. The direction dj, satisfies

el = 1B () ™" (xx — (i)l < —(lrell + ll8Gea) ) < — Ok + llglxe)l),

==
==

thanks to (3.8). Therefore,

2
Idil* < =5 (divk + llg(xe)11?)

1
and
2
E(||de || Fx) < 2 (GRE(viFr) + E(llg(xi)]1?[Fr))
2
< e (6aMsz + c1(1+ ||k — x.%))

This manuscript is for review purposes only.
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10 D. DI SERAFINO, N. KREJIC, N. KRKLEC JERINKIC, AND M. VIOLA
because of (2.5) and Assumption 3.6. Therefore,
(3.12) E([ldel|*[Fx) < e7 + esllxe — x|,

for ¢; = (2/1?)(62,, M3 + ¢1) and cg = 2¢1/p?, where dyax = maxy 0. Using the
descent lemma and Assumption 2.1 as in Theorem 3.3, we get

Blxicrr) — B0x) < B0xk) — 9x.) + nVo(xi) i+ 5 o i
and, by (3.12) and Lemma 3.7,
E(¢(xp41) = ¢(%.) | Fr) < d(x) — d(x.) + x Vo (xx) "E(dy|Fr)

L
+§ai E(||dk*|Fr)

< 6000) — olx.) + o (32 - FIVocI?)
022 (er + eslxi —x. ).

Using (2.2), we get

E(¢(xk41) — ¢(x:)|[Fr) < (o(xk) — d(x4)) <1 + aiicg;) + aigq
o8 — g2 (6(xk) — 6(x.))

Now we define
L L M, 2
Br = ai;cs, &= aigﬁ + Oék5k767 pPr = Oékﬁ(¢<xk) — P(x4))

and

U = d(xk) — d(xx).
As the hypotheses of Theorem 2.4 are fulfilled due to (3.3) and Assumption 2.2, we
have that x; — x, a.s.. 0

So far we have required only that - is a random variable with bounded variance.
Following inexact Newton methods in the deterministic case [15], the norm of the
left-hand side in (3.7) can be used to define the inexactness in the solution of the
linear system. By setting

Ve = ¢ [lg(xp)ll,
we have that (3.8) implies

i ll = [1B(xx) ™" (v = g(xa) I < = (]l + llg(xi)l)

==

< %mcg leGll + el = %wmaxcg +1)llgx)]l-

Therefore, for this choice of v, we have that Assumption 3.2 holds as well. Further-
more, by (2.5) we get

E(7;1Fr) = SE(lg ()% Fx) < cger(l + [lxi = x.1%).
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Assuming that {xx} is bounded, we get
E(elFi) < cger(1+ [|xi — x.]1%) < cer(1 + My) -= Ms

and hence Assumption 3.6 holds as well. The previous observations imply the following
convergence statement, whose proof is straightforward.

COROLLARY 3.9. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold. Let {xy}
be a sequence generated by Algorithm 2.1 where dy satisfies

| B(xx)di + g(xx)|| < drllg(xw)l,

and 0y, satisfies (3.3) holds. If {xx} is bounded then x — X, a.s..

The next theorem considers the most general case, extending the tolerance for
inexact solutions of the Newton linear system (3.7) even further. Let us define

(3.13) Ve = wink + wellg (x|
for some wy,ws > 0 and a random variable 7 such that
(3.14) E(ni|Fi) < My,

i.e., with bounded variance.

THEOREM 3.10. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold. Let {xy}
be a sequence generated by Algorithm 2.1 where dj, satisfies

| B(xx)dr + g(xx)[| < 0k,

with vy defined by (3.13) and 6y such that (3.3) holds. If {xy} is bounded, then
Xk — Xi Q.S..

Proof. First, note that the search direction dj, satisfies
1kl = 1B (xe) ™ (rre — g(x))|| < i(&ﬂk + [lg(xw)ll)
=~ (rdne + (1-+ a8 800 )
and then, by (3.14), (2.5), and Assumption 2.1,
E()|dk]?|F) < % (wioR Bl Fi) + (1 + w2or)* E([lg(xx)lI*[Fr))

2 2
< EW?&%Mg ol wadi) e (1+ [|xr, — %)

= % (Widh My + c1(1 + w2br)?) + %01(1 + w25k)2%(¢(xk) - ¢(x4))
< Mig + M1 (¢(xk) — ¢(x4)),

where Mg = 2/p? (w362, Mo + c1(1 + wadmax)?) and M1 = 4ey /p® (1 + wabmax)?.
Since d, = B(xx) *(rr — g(xx)), using the same arguments as for (3.10) we
obtain

(3.15) Voé(xi)  E(dg|Fi) < —%||V¢(Xk)||2 + Vo(xi) "E(B(xk) ' re| F).-
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Furthermore,
V6 (ock) TE(B(x1) " 14 Fi) < IV (k)| E(IBGxi) el Fe)
%nvmxk)u 51 Evel o)

N

IN

and

E(y&|Fr) = E(wink + walg(xe) ||| Fr)
= w1 E(n|Fr) + woE(l|g ()| Fr)

< wi\/EmE|Fk) + w2 vV E(llg (k)12 F)

< w1V My + wav/er (1 + [[xx — x.[[2)

< wiV/ My + war/c1(1+ Mz) := Ms.

Putting together the above estimates and using the descent lemma as in the previous
proofs, we get

E($(xk11) — ¢(x:)|Fk) < d(xk) — ¢(x) + ax Vo (xi) "E(di| Fr) + o %E(||dk||2\fk)
< d(xp) — d(x) + aié (Mo + My (p(xk) — ¢(x4))
+an (= IV06I? + 160005012
< (0(x0) — o(x.) (1+ a2 M ) + o My
+ak5k%M13M12 - ak%w(xk) — ¢(x4)),

where ||[Vo(xk)|| < Mis because of the boundedness of {x;} and the continuity of
V¢. By defining

L L 1 2
Br = aiEMm & = ai§M10 + akék;MISMUa P = akﬁ(¢(xk) — o(x4)),

and observing that (3.3) and Assumption 2.2 hold, we can apply Theorem 2.4 to get
the thesis. O

4. SOS method with line search. It is well known that in practice a gain
sequence that satisfies Assumption 2.2 is usually too conservative and makes the
algorithm slow because the step length becomes too small soon. In order to avoid this
drawback, we propose a practical version of Algorithm SOS that uses a line search in
the initial phase and then reduces to SOS if the step length obtained with the line
search becomes too small, e.g., smaller than some predetermined threshold t.;, > 0.

Since the search directions considered in the previous sections do not have to be
descent directions (not even for the current objective function approximation), and
the line search can be performed considering only the approximate objective function,
we choose a nonmonotone line-search strategy.

We state the new algorithmic framework in Algorithm 4.1. Note that this algo-
rithm remains well defined even with the monotone (classical Armijo) line search — if
the search direction is not a descent one, we shift to the predefined gain sequence.

We prove the a.s. convergence of Algorithm LSOS under a mild additional as-
sumption.

This manuscript is for review purposes only.
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Algorithm 4.1 Line-search Second-Order Stochastic (LSOS) method

1: given x” € R™, 1 € (0,1), tmin > 0 and {ou}, {0}, {C} C Ry
2: set LSphase = active

3: for k=0,1,2,... do

4 compute a search direction dj such that

(4.1) [ B(xk)dr + g(xk)[| < dkllg(xk)]]-

5:  find a step length ¢; as follows:

6: if LSphase = active then find ¢, that satisfies
(4.2) Fxi + trdi) < f(xx) + ntrg(xi) " di + G

7 if ¢ < tmin then set LSphase = inactive

8: if LSphase = inactive then set tx = ay,

9: set Xp4+1 = X + trpdi

10: end for

ASSUMPTION 4.1. The objective function estimator f is unbiased, i.e.,
E(ef(x)|Fk) = 0.

THEOREM 4.2. Let Assumptions 2.1 to 2.3, Assumption 3.4 and Assumption 4.1
hold. Assume also that the sequence {(x} is summable and the forcing term sequence
{0k} satisfies (3.3). If the sequence {xy} generated by Algorithm 4.1 is bounded, then
Xp — Xx G.S..

Proof. If there exists an iteration k such that ¢ < tynn, then Algorithm LSOS
reduces to SOS and the thesis follows from Corollary 3.9. Let us consider the case
tg > tmin for all k. Using ry, = B(xg)dy + g(xx) we obtain

d, = B(xk)flrk — B(Xk)ilg(xk).
Furthermore, Assumption 3.4 together with (4.1) implies

g(xy) ' di = g(xx) " B(xx) vy, — g(xk) B(xk) 'g(xk)
gl || BGw) ™| lewll — %Ilg(Xk)H2

IN

IN

1 9 1 2
;5k||g(xk)” ZHg(Xk)”

= (% 1) ool

Assumption 2.2 together with (3.3) implies d;, — 0. Therefore, there exists k such
that

/'L J—
< — >
51@*2[1 for all k >k

and hence

(4.3) g0 Tdi < o g(xo)|

This manuscript is for review purposes only.
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345 Furthermore, LSphase is active at each iteration and for k > k we get

346 Flxp +trdy) < f(xi) +nteg(xe) ' di + G
1
347 < f(xx) = nte = llgxi)1? + G
2L
1
348 < f(%k) = Ntmin ﬁ”g(xk)HQ + G-

349 Setting c10 = Ntmin/(2L), taking the conditional expectation and using Assump-
350 tion 4.1, we get

391 (44) P(xp+1) < (%) — c10 E(lg(xw) 11 Fx) + G-
352 Assumption 2.3 implies

353 (4.5) E(g(x)|Fr) = Vo(xk),

354 and thus we get

355 (4.6) Vo)1 = IE(g (i) [Fe) I < E*(llg(er) 1F%) < E(llg(xn)lI*F),

356 which, together with Assumption 2.1, implies

- K
357 (4.7) 7l = %1 < (Vo) [1* < Ellglei) 71 F5)-
358  Combining (4.7) with (4.4) we have

359 (4.8) d(xpr1) < O(xp) —cin ||Ixp — %> + ¢ forall k >k

for a suitable k, where ¢;; = ciopt/L. The boundedness of the iterates and the
continuity of ¢ imply the existence of a constant @ such that ¢(xx) > @ for all k.
Furthermore, (4.8) implies that, for all p € N,

p—1 p—1

Q < dlxz,,) <o6xp) —en Y Ixp; — %+ D Gy
7=0 =0

360 Taking the expectation, letting p tend to infinity and using the summability of (x, we
361 conclude that

o0
o S E(lx — x.2) < .
k=0

Finally, using Markov’s inequality we have that for any € > 0

Bl — x. %)

Pllxx —x.] = €) < 5

€

and therefore -
> P(xk — x| =€) < oo
k=0

363 The almost sure convergence follows from Borel-Cantelli Lemma [22, Theorem 2.7],
364 which completes the proof. O

This manuscript is for review purposes only.



380
381
382

383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

399

LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 15

5. Specializing LSOS for finite sums. Now we consider finite-sum problems,
where the objective function is, e.g., the sample mean of a finite family of convex
functions. This is the case, for example, of machine learning problems in which the
logistic loss, the quadratic loss or other loss functions are used, usually coupled with £-
regularization terms. Recently, much attention has been devoted to the development
of methods for the solution of problems of this type. Therefore, we analyze extensions
to this setting of the LSOS algorithmic framework.

Specifically, we focus on objective functions of the form

1 N
(5.1) o(x) = 7 D_ 4i(x)

where each ¢;(x) is twice continuously differentiable and f-strongly convex, and has
Lipschitz-continuous gradient with Lipschitz constant L. It is straightforward to show
that these assumptions imply that ¢ satisfies Assumption 2.1.

We assume that at each iteration k a sample N} of size N, < N is chosen
randomly and uniformly from N = {1,..., N}. Then, we consider

ka Z ¢1

lENk

which is an unbiased estimator of ¢(x), i.e., Assumption 4.1 holds.
By considering the first and second derivatives of far,, we obtain the following
subsampled gradient and Hessian of ¢:

(5.2) gy (X) = — Z Voi(x), B (x) = Z V2i(x

16Nk ZENk

which are unbiased estimators of the gradient and the Hessian of ¢ as well. More
precisely, the first equality in Assumption 2.3 holds (i.e., E(e4(x)|Fx) = 0) together
with Assumption 3.4.

The derivative estimates in (5.2) can be replaced by more sophisticated ones,
with the aim of improving the performance of second-order stochastic optimization
methods. The Hessian approximation B, (x) only needs to satisfy Assumption 3.4 in
order to prove the results contained in this section. Therefore, the theory we develop
still holds if one replaces the subsampled Hessian approximation with a quasi-Newton
approximation. For example, in [10] Byrd et al. propose to use subsampled gradients
and an approximation of the inverse of the Hessian V2¢(x), say Hy, built by means of
a stochastic variant of limited memory BFGS (L-BFGS). Given a memory parameter
m, Hy is defined by applying m BFGS updates to an initial matrix, using the m
most recent correction pairs (s;,y;) € R™ x R™ like in the deterministic version of the
L-BFGS method. The pairs are obtained by averaging iterates, i.e., every [ steps the
following vectors are computed

1 k 1 k—L
(5.3) wi= T Z Xin Wj—1= Z X,
i=k—I1+1 1=k—21+1

where j = %, and they are used to build s; and y; as specified next:

(54) Sj = Wj — Wj—la yj = BTJ (WJ) Sj,
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where 7; C {1,..., N}. By defining the set of the m most recent correction pairs as

{(Sj5Yj)7 ]: 13"'7m}7

the inverse Hessian approximation is computed as

(5.5) H, = H]Em)7
where for j=1,...,m
T T T T
. S: V. . iy S: S
(5.6) HY = ]_JTiyJ I (1 yaT ) 8%
Sj Y Sj Y Sj Yj

and ngo) = (s} ¥ym/llyml?)I. Tt can be proved (see [10, Lemma 3.1] and [30,
Lemma 4]) that for approximate inverse Hessians of the form (5.5) there exist con-
stants Ao > A1 > 0 such that

Ml = H = Ao,

i.e., Assumption 3.4 holds with u = min{f, 1/A2} and L = max{L, 1/\;}. The
authors of [10] propose a version of Algorithm 2.1 in which the direction is computed as

dk = _Hk: SN (Xk:)7

and prove R-linear decrease of the expected value of the error in the function value.

As regards the gradient estimate, we observe that the second part of Assump-
tion 2.3 is not required by the method presented in this section. Notice that we can
replace the subsampled gradient estimate in (5.2) with alternative estimates coming,
e.g., from variance reduction techniques, which have gained much attention in the lit-
erature. This is the case of the stochastic L-BFGS algorithm by Moritz et al. [30] and
the stochastic block L-BFGS by Gower et al. [17], where SVRG gradient approxima-
tions are used. The former method computes the same inverse Hessian approximation
as in [10], while the latter uses an adaptive sketching technique exploiting the action
of a sub-sampled Hessian on a set of random vectors rather than just on a single
vector. Both stochastic BFGS algorithms use constant step lengths and have Q-linear
rate of convergence of the expected value of the error in the objective function, but
the block L-BFGS one appears more efficient than the other in most of the numerical
experiments reported in [17].

Instead of choosing the SVRG approximation, we apply a mini-batch variant of
the SAGA algorithm [12], used in [18]. Starting from the matrix J° € R™*¥ whose
columns are defined as Jo(l) = V¢;(xY), at each iteration we compute the gradient
approximation as

N
1 ; 1
SAGA _ ) _7(® - Q)
(5.7) B0 = 37 2 (Voita) = ) + 2
K3 k =

and, after updating the iterate, we set
5.8 Jo I if i ¢ N,
( ) k1 { ngi(xk_H) if i € Ny

As in SVRG, the set {1,..., N} is partitioned into a fixed-number n;, of random mini-
batches which are used in order. One advantage of SAGA over SVRG is that it only
requires a full gradient computation at the beginning of the algorithm, while SVRG
requires a full gradient evaluation each ny iterations.
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Remark 5.1. By assuming that all the ¢;’s have Lipschitz-continuous gradients
with Lipschitz constant L, we have that the gradient estimates gy, (x) and gjs\}zGA (x)

are Lipschitz continuous with the same Lipschitz constant.

Our algorithmic framework for objective functions of the form (5.1) is called
LSOS-FS (where FS stands for Finite Sums) and is outlined in Algorithm 5.1. For the
sake of generality, we refer to generic gradient and Hessian approximations, denoted
g(xy) and B(xy), respectively. We consider the possibility of introducing inexactness
in the computation of the direction

dy = —B(xx) " 'g(xx),

even if for the L-BFGS strategy mentioned above, where Hy, = B(x}) ™!, the direction
can be computed exactly by a matrix-vector product with Hy.

Algorithm 5.1 LSOS for Finite Sums (LSOS-FS)

1: given x° € R™, n, 8 € (0,1), {6x} C Ry and {1} C Ryy
2: for k=0,1,2,... do

3:  compute fa, (Xx), g(xx) and B(xx)

4: find a search direction dg such that

(5.9) 1B(xx) + g(xx)l < orllg(xx)
5. find the smallest integer j > 0 such that the step length ¢, = 7 satisfies
(5.10) Ivie (ki + tedi) < f (xk) + nteg(xk) T di + G

6: set Xp4+1 = X + trpdi
7: end for

6. Convergence theory of Algorithm LSOS-FS. We assume

(6.1) > G < oo
k

In the initial phase of the computation, nondescent directions are likely to occur;
however, by requiring (; > 0 we ensure that the line search remains well defined.
Furthermore, by (6.1) it is {x — 0, which, by reasoning as in the proof of Theorem 4.2,
implies that Algorithm 5.1 will eventually determine a descent direction for the current
approximation of the objective function.

Algorithm LSOS-FS computes the step length t; by applying a backtracking
line-search to the approximate function fas, (x). In the next lemma we prove that
the sequence {t} is bounded away from zero for all k large enough, if the gradient
approximation is the subsampled gradient g, (x). Throughout this section we use
Odmax defined at the beginning of page 10.

LEMMA 6.1. Let Algorithm 5.1 be applied to problem (5.1) with g(xx) = gnr, (Xk),
and let 8, — 0. Then the step-length sequence {ty} is such that

B(1 —n)u?
(6.2) b > M ‘= tmin € (0,1),

for all k large enough.
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Proof. If t;, = 1, then (6.2) holds. If t; < 1, then there exists t}, = ¢/ such that
(6.3) I, (X +t;cdk) > fan (xx) —|—’I7t;€ gNk(Xk)Tdk-
Furthermore, by the descent lemma applied to fa, and the Lipschitz continuity of

gn, we have

L
(6.4) I (3 + tedi) < Fv (k) + 1, g, (i) i + 55 (6)% ||
Combining (6.3) and (6.4) we obtain

26(1 — n)gn, (xx) "di

6.5 ty = Bty > —
( ) k B k LHdk||2

Following the proof of Theorem 4.2, we can show that (4.3) holds for all k£ > k with
g = gu, and thus

2

(66) _gNk(Xk)Tdk > ||gNk (xk)” )
2L
On the other hand,
_ 1
]l = [|(Ban (1)) " (rr — g (i) || < ;(Hl‘kH + llgns, (xx)1l)
o +1
< 1 Hg./\/k(xk)Hv

where the last inequality comes from (5.9). Therefore, since 6 < dnax, We obtain

(5max + 1)2

de]l* < 2 g, (xi) 1%

This, together with (6.5) and (6.6), gives the thesis. ad

In the following theorem we state the convergence of the LSOS-FS method. The
proof is omitted since it follows the steps of the proof of Theorem 4.2. The Lemma
above exploits g(x) = gur, (xx); for general g(xy) we have to assume that the step
lengths are bounded away from zero. Notice that we do not need the assumption of
bounded iterates since the line search is performed at each iteration and the function
is strongly convex and thus bounded from below.

THEOREM 6.2. Let {xy} be the sequence generated by Algorithm 5.1 applied to
problem (5.1). Assume that (6.1) and Assumption 3.4 hold, and g(x) is a Lipschitz-
continuous unbiased gradient estimate. Moreover, assume {ty} is bounded away from
zero. Then {x} converges a.s. to the unique minimizer of ¢.

Finally, we provide the convergence rate analysis of LSOS-FS. We prove that
the expected function error converges R-linearly provided that (j, vanishes R-linearly.
We also prove that a @-linear rate of convergence can be achieved if the monotone
(Armijo) line search is employed and the descent direction is ensured. The latter
condition can be provided by putting an upper bound on the forcing term, which is in
line with the classical (deterministic) analysis. The results are stated in the following
three theorems, whose proofs rely on the steps of the proof of Theorem 4.2. Since L is
an upper bound of the spectrum of the Hessian estimates, without loss of generality
we can assume L > 1.
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THEOREM 6.3. Let {x1} be a sequence generated by Algorithm 5.1 applied to prob-
lem (5.1). Let 6 — 0 and let (x — 0 R-linearly. Let Assumption 3.4 hold, g(x) be
a Lipschitz-continuous unbiased gradient estimate and the sequence {t;} be bounded
away from zero. Then there exist constants p1 € (0,1) and C > 0 such that

(6.7) E(¢(xk) — d(x4)) < piC.

Proof. Let tmin be a lower bound for the sequence {t;}. Following the steps of
the proof of Theorem 4.2 we obtain (4.4) with ¢19 = 9 tmin/(2L), or equivalently,

P(xpr1) — G(x:) < P(x) — D(x) — 10 E([lg(xu) 121 F) + G-
Moreover, using (4.5), (4.6) and the right-hand inequality in (2.2), we have

2c10

P(xkr1) = d(x:) < P(xk) = G(x:) = —— (D) — (%)) + G-
Applying the expectation we get

(6.8) E(p(xk11) — d(x)) < pE(d(xk) — d(x2)) + Gk,

where p = 1 — 2¢10/L = 1 — ntmin/L? € (0,1). Applying the induction argument we
obtain

E(¢(x;) = d(x.)) < p'E(d(x0) — d(x4)) +vj,

where v; = Zf;ll p'~1¢;_;. The thesis follows by recalling that Lemma 4.2 from [23]
implies v; — 0 R-linearly, with a factor p, = (1 + max{p,pc}) € (0,1), where
p¢ € (0,1) is an R-linear convergence factor of the sequence (i. Finally, the statement
holds with p; = max{p, p, }. 0

Notice that the condition d, — 0 can be relaxed with 0 < §; — dmin Where o <
1/ (2L). The reason is that, eventually, the inexact second-order direction becomes a
descent direction if (6.6) holds for all k large enough. Under the same argument we
can prove Lemma 6.1 and the proof is essentially the same as for Theorem 6.3. Thus,
the R-linear convergence is attainable under the persistent inexactness in solving the
Newton equation.

THEOREM 6.4. Let {x)} be a sequence generated by Algorithm 5.1 applied to prob-
lem (5.1). Assume that ¢, — 0 R-linearly and 6 — Omin, where dmin < p/(2L).
Moreover, let Assumption 3.4 be satisfied, g(x) be a Lipschitz-continuous unbiased
gradient estimate and {ty} be bounded away from zero. Then there exist p; € (0,1)
and C > 0 such that (6.7) holds.

An immediate consequence of the previous theorem is the following worst-case
complexity result.

COROLLARY 6.5. Let {xx} be a sequence generated by Algorithm 5.1 applied to
problem (5.1). Assume that ¢, — 0 R-linearly and 0 — Smin, where dmin < p/(2L).
Moreover, Let Assumption 3.4 be satisfied, g(x) be a Lipschitz-continuous unbiased
gradient estimate and {tx} be bounded away from zero. Then, to achieve E(¢(xx) —
d(x4)) < e for some e € (0,e7 1Y), Algorithm 5.1 takes at most

_les(@)l 41,
bowe = [ o]

where p1 € (0,1) and C > 0 satisfy (6.7).
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Proof. Theorem 6.4 implies (6.7). Thus, E(¢(x;) — ¢(x.)) < € for all

log(C) — log(e)
BT eg)

Now, using the fact that log(e) < —1 and log(p1) < 0 we can provide an upper bound
to the right-hand side of the previous inequality as follows

log(C) — log(e) _ |log(C)llog(e™") +1log(e™") _ |log(C)[+1

-1
—log(p1)  ~ llog(p1)] ~ log(py)] fog(e™)

and the thesis holds. 0

In order to achieve a Q-linear rate of convergence, the standard Armijo line search
has to be used, i.e., {; = 0 has to be set in (5.10). Again, the forcing terms d; need
not vanish in order to achieve the desired rate (i.e., Newton’s equation can be solved
inexactly), but it must be bounded above away from one. More in detail, it must be
Omax < p/(2L), as stated in the following theorem. A sequence {d;} satisfying the
requirement of the theorem can be defined as d = p/(2L) for all k.

THEOREM 6.6. Let {x)} be a sequence generated by Algorithm 5.1 applied to prob-
lem (5.1). Assume that dmax < p/(2L) and = 0 for all k. Moreover, suppose that
Assumption 3.4 is satisfied, g(x) is a Lipschitz-continuous unbiased gradient estimate
and the sequence {tx} is bounded away from zero. Then there exists p2 € (0,1) such
that for all k

(6.9) E(p(xk11) = ¢(x4)) < paB(@(xk) — d(xx))-

Proof. Notice that the Lipschitz continuity of the gradient estimate implies that
(6.6) holds for every k since 8, < pu/(2L). Let tmin be a lower bound for the sequence
{tx}. By following the steps of the proof of Theorem 6.3, we have that (6.8) holds
with (x = 0. Therefore, by setting

win _ | n(1—n)Bp?
L2 — L2(2L + p)

the thesis holds. O

Since Theorem 6.6 implies E(¢(xx) — ¢(xx)) < p5(d(x0) — ¢(x.)), following the
same reasoning as in Corollary 6.5, we obtain the following complexity result.

COROLLARY 6.7. Let {xx} be a sequence generated by Algorithm 5.1 applied to
problem (5.1). Assume that dmax < u/(2L) and ; = 0 for all k. Moreover, sup-
pose that Assumption 3.4 is satisfied, g(x) is a Lipschitz-continuous unbiased gra-
dient estimate and the sequence {ty} is bounded away from zero. Then, in order
to achieve E(p(xx) — ¢(x4)) < € for some ¢ € (0,e71), LSOS-FS takes at most
kmax = O(log(e™1)) iterations. More precisely,

_ [Mog(ébxo) =)l +1,

where ps satisfies (6.9).
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7. Numerical experiments. We developed MATLAB implementations of the
algorithms discussed in the previous sections and tested them on two sets of stochastic
optimization problems. The first set consists of general convex problems with the
addition of random noise in the evaluation of the objective function and its derivatives.
On these problems we tested Algorithms SOS and LSOS discussed in sections 2 to 4.
The second set consists of finite-sum problems arising in training linear classifiers
with regularized logistic regression models. On these problems we tested a specialized
version of LSOS-FS. All the tests were run with MATLAB R2019b on a server available
at the University of Campania “L. Vanvitelli”, equipped with 8 Intel Xeon Platinum
8168 CPUs, 1536 GB of RAM and Linux CentOS 7.5 operating system.

7.1. Convex random problems. The first set of test problems was defined by
setting

n

(7.1) 6x) = SN (¢ —a) + (x— )T A(x —e),

i=1
where, given a scalar xk > 1, the coefficients \; are logarithmically spaced between 1
and k, A € R™ "™ is symmetric positive definite with eigenvalues \;, and e € R™ has all
entries equal to 1. Changing the values of n and « allows us to have strongly convex
problems with variable size and conditioning. In order to obtain unbiased estimates
of ¢ and its gradient, we considered £s(x) ~ N (0,0) and (g,4(x)); ~ N (0,0) for all 4,
where N (0, o) is the normal distribution with mean 0 and standard deviation o. We
considered o € (0, 1]. Since the Hessian estimate can be biased, we set it equal to the
diagonal matrix ep(x) = diag (p1, . .., pn), where p; ~ N(0,0) for all j.

In applying Algorithm 4.1 to this set of problems, we introduced a small modi-
fication in the switching criterion at line 7 of the algorithm, by deactivating the line
search whenever tx||dg|| < tmin instead of deactivating it when tx < tmin.

We first ran Algorithm LSOS with exact solution of the noisy Newton systems,

ie., 0 = 0 in (4.1). The parameters were set as n = 103, x = 10%,10%,10%,
o= 01%k,0.5%k, 1%k, and A was generated by using the MATLAB sprandsym
function with density 0.5 and eigenvalues Aq,...,\,. It was verified experimentally

that the condition number of the Hessian of ¢ is close to k at the solution. This
solution was computed with high accuracy by using the (deterministic) L-BFGS im-
plementation by Mark Schmidt, available from https://www.cs.ubc.ca/~schmidtm/
Software/minFunc.html. The starting point was set as a random vector with distri-
bution of entries N'(0,5). The noisy Newton systems were solved by the MATLAB
backslash operator. The parameter used to switch between the line search and the
pre-defined gain sequence was set as i, = 1073, The gain sequence {ay} used after
the deactivation of the line search was defined as

_r
Tk — K,

where k; is the first iteration such that ¢y ||de. || < tmin, @k, = tmin/||dk, | and
T = 10%. In the nonmonotone line search we set n = 10~% and ¢, = ¥* for all k,
where ¥ = 0.9.
LSOS was compared with the following algorithms:
e SOS (Algorithm 2.1) with exact solution of the noisy Newton systems and
gain sequence defined as

for all k& > k-,

aE =

1T
2 g =
(72 F a0 T+ k

This manuscript is for review purposes only.


https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

22 D. DI SERAFINO, N. KREJIC7 N. KRKLEC JERINKIC, AND M. VIOLA
568 e Stochastic Gradient Descent with step length (7.2), referred to as SGD.
569  For both SOS and SGD the choice of the starting point was the same as for LSOS.
570 The comparison was performed in terms of the absolute error of the objective
571 function value (with respect to the optimal value computed by the deterministic L-

2 BFGS algorithm) versus the execution time. We ran each algorithm 20 times on each

i) =1

Ja) = f*

problem and computed the average error and the average execution time spent until
574 each iteration k. The results are shown in Figure 1, where each error line is plotted
575 with its 95% confidence interval (which does not appear in the pictures because its
576 size is negligible). The time interval on the x axis is the average time required by
577 LSOS to perform 50 iterations.
100 cond 1e2 -- sigma 0.1% 101 cond 1e2 -- sigma 0.5% 1010 cond 1e2 -- sigma 1%
- - Lsos |- - Lsos|
—S0S —S0s
i --=-SGD [ ~ o |=—-SGD ~
10° AN T 10° \\\
\ : \
\ \
\ S~
10° ' 10° T
0 0.5 1 15 0.5 1 15 0 0.5 1 15
time (s) time (s) time (s)
1010 cond 1e3 -- sigma 0.1% 1010 cond 1e3 -- sigma 0.5% 1010, cond 1e3 -- sigma 1%
-~ Lsos [ ~~'Lsos i - - Lsos
- — SOS -~ = 0S - F = SOS
e e --=-SGD ™~ ----8GD T ----SGD
10° \\\ IR \\\ ‘f 10° AN
\ = S ~ Te~o
\ S-aa o
10° T 10° 10
0 05 1 1.5 2 0.5 1 15 2 0 0.5 1 1.5
time (s) time (s) time (s)
1010 cond 1e4 -- sigma 0.1% 1010 cond 1e4 -- sigma 0.5% 1010, cond 1e4 -- sigma 1%
— - Lsos — - - LsOSk L S— - - Lsos
T~ _|—sos T~<_ |—sos T —S0s
----SGD ~ |----sap S._ |=--sep
0 ST R .
v oo o= -~
Ei £
= =
10° 10° 10°
0 0:5 1 1:5 015 1 1:5 0 0:5 1 1:5
time (s) time (s) time (s)
Fic. 1. Test set 1: comparison of LSOS, SOS and SGD. The condition number increases from
top to bottom, the moise increases from left to right.
578 The figure shows that the introduction of the line search yields much better
579 exploitation of the second-order directions, thus enabling the method to approach the
580 solution faster. The line search also allows us to overcome typical problems associated
581 with the choice of a pre-defined gain sequence, which may strongly affect the speed
582 of the algorithm and possibly lead to divergence in practice.
583 We also investigated the effect of the inexactness in the solution of the noisy
584  Newton systems. To this aim, we considered problems of the form (7.1) with size
585 n = 2-10*% where, following [14], the symmetric positive definite matrix A was
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defined as
A=V DVT
Here D is a diagonal matrix with diagonal entries Aq,..., A, and
V= —-2v3vi)(I —2vovi)(I —2vyvi),

with v; random vectors of unit norm. Since for these problems the Hessian is available
in factorized form, we solved the noisy Newton systems with the Conjugate Gradient
(CG) method implemented in the MATLAB pcg function, exploting the factorization
to compute matrix-vector products. In this case, we compared three versions of
Algorithm LSOS:
e LSOS with with 6 =0 in (4.1);
e LSOS with §; = ¢* and o = 0.95, referred to as LSOS-I (where I denotes the
inexact solution of the Newton systems according to (4.1));
e a line-search version of the SGD algorithm (corresponding to LSOS with
di = —g(xy)), referred to as SGD-LS.
The CG method in LSOS and LSOS-I was run until the residual norm of the Newton
system had been reduced by max(dz, 107%) with respect to the initial residual norm.
In Figure 2 we report the results obtained with the three algorithms, in terms of
average error on the objective function versus average execution time over 20 runs,
with 95% confidence intervals (not visible, as in the previous tests). In this case the
time interval on the x axis is the average time required by LSOS-I to perform 250
iterations. The plots clearly show that LSOS-I outperforms the other methods.

7.2. Binary classification problems. The second set of test problems models
the training a linear classifier by minimization of the /s-regularized logistic regres-
sion. Given N pairs (a;, b;), where a; € R™ is a training point and b; € {—1,1} the
corresponding class label, an unbiased hyperplane approximately separating the two
classes can be found by minimizing the function

1 N
(7:3) o(x) = 3 D_ 0i(x),

where
b aTx
¢i(x) = log (1 +e b ) + ngHz

and p > 0. By setting z;(x) =1+ e~ % aiTx, the gradient and the Hessian of ¢; are

ey LT E(), o, oy zilx)—1 -
Vi(x) = Wbl a; +px and V7g(x) = Wazai + pl.
zi(x)—1

From € (0,1) it follows that ¢; is p-strongly convex and

27 (x)

pl 2 V2i(x) 2 LI, L=p+ max [a]?

We applied the L-BFGS version of Algorithm LSOS-FS described in section 5,
which is sketched in Algorithm 7.1.
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Fic. 2. Test set 2: comparison of LSOS, LSOS-I and SGD-LS. The condition number increases
from top to bottom, the noise increases from left to right.

Algorithm 7.1 LSOS-BFGS

1: given x° € R®, m,l €N, n,9 € (0,1)
2: for k=0,1,2,... do

3:  compute a partition {Ko, K1,...,Kn,—1} of {1,...,N}

4 forr=0,...,n, —1do

5 choose N, = K, and compute g(xx) = gi, " (xx) as in (5.7)-(5.8)
6: compute dy, = —Hj, g(xx) with Hy defined in (5.5)-(5.6)

7

find a step length ¢; satisfying
I (X + tedi) < fa (xi) + 0t g(zn) " di +9*

8: set Xp41 = X + tedg;
9: if mod (k,l1) =0 and k > 2] then
10: update the L-BFGS correction pairs by using (5.3)-(5.4)
11: end if
12:  end for
13: end for

619 To test the effectiveness of LSOS-BFGS we considered six binary classification
620 datasets from the LIBSVM collection available from https://www.csie.ntu.edu.tw/
621 ~cjlin/libsvmtools/datasets/, which we list in Table 1.
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TABLE 1
Datasets from LIBSVM. For each dataset the number of training points and the number of
features (space dimension) are reported; the datasets are sorted by the increasing number of fea-
tures. Whenever a training set was not specified in LIBSVM, we selected it by using the MATLAB
crossvalind function so that it contained 70% of the available data.

name N n
covtype | 406709 54
w8a 49749 300
epsilon 400000 2000
gisette 6000 5000
real-sim 50617 | 20958
revl 20242 | 47236

We compared Algorithm 7.1 with the stochastic L-BFGS algorithms proposed
in [17] and [30] (referred to as GGR and MNJ, respectively), both using a con-
stant step length selected by means of a grid search over the set {1,5-107%, 10715 -
1072,1072,...,5 - 1075,107°}, and with a mini-batch variant of the SAGA algo-
rithm equipped with the same line search used in LSOS-BFGS. The implementations
of GGR and MNJ were taken from the MATLAB StochBFGS code available from
https://perso.telecom- paristech.fr /rgower /software/StochBFGS_dist-0.0.zip. In Al-
gorithm 7.1 we set ¢ = 0.999 and started the line searches from a value t;,; selected
by means of a grid search over {1,5-1071,107,5-1072,1072,...,5-1075,107°}. In
particular, we set ti; = 5 - 1073 for epsilon, t,; = 5- 1072 for covtype and w8a, and
tini = 1-1072 for gisette, rcvl and real-sim. We adopted the same strategy as the
line-search version of SAGA used for the comparison, setting ¢;,; = 5- 107! for epsilon
and t;,; = 1 for the other datasets. Furthermore, we set m = 10 and [ = 5. Since the
first L-BFGS update pair is available after the first 2/ = 10 iterations, following [10]
we take d = —g(xy,) for the first 10 iterations. The same values of m and | were used
in the MNJ algorithm proposed in [30]. For GGR, following the indications coming
from the results in [17], we set m = 5 and used the sketching based on the previous
directions (indicated as prev in [17]), with sketch size I = [ &/n]. We chose the sample

size equal to [\/ N 1 and the regularization parameter p = 1/N, as in the experiments

reported in [17]. We decided to stop the algorithms when a maximum execution time
was reached, i.e., 60 seconds for covtype, w8a and gisette, and 300 seconds for epsilon,
real-sim and rcvl.

Figure 3 shows a comparison among the four algorithms in terms of the average
absolute error of the objective function (with respect to the optimal value computed
with the L-BFGS code by Mark Schmidt) versus the average execution time. As in
the previous experiments, the error and the times were averaged over 20 runs and
the plots show their 95% confidence interval (shaded lines, when visible). For all the
algorithms, the grid search for defining or initializing the step lengths was performed
on the first of the 20 runs and then fixed for the remaining 19 runs.

The results show that LSOS-BFGS algorithm outperforms the other stochastic
L-BFGS algorithms on w8a and gisette, and outperforms GGR on real-sim and rcv1.
It is worth noting that for covtype and rcvl the error for GGR tends to increase after
a certain iteration, while the other algorithms seem to keep a much less “swinging”
decrease. Furthermore, LSOS-BFGS seems to have a less oscillatory behavior with
respect to GGR and MNJ. We conjecture that this behavior is due to the use of the
line-search strategy. Since, in general, stopping criteria on this type of problems rely
on the number of iterations, the number of epochs or the computational time, we
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believe that a smoother behaviour could be associated with more consistent results if
one decides to stop the execution in advance (see, e.g., the behavior of MNJ on epsilon).
Finally, we observe that LSOS-BFGS is more efficient than the line-search-based mini-
batch SAGA on all the problems, showing that the introduction of stochastic second-
order information is crucial for the performance of the algorithm.
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F1G. 3. Binary classification problems: comparison of LSOS-BFGS, MNJ, GGR and SAGA.

8. Conclusions. The proposed LSOS framework includes a variety of second-
order stochastic optimization algorithms, using Newton, inexact Newton and, for
finite-sum problems, limited-memory quasi-Newton directions. Almost sure conver-
gence of the sequences generated by all the LSOS variants has been proved. For
finite-sum problems, R-linear and Q-linear convergence rates of the expected objective

This manuscript is for review purposes only.



669
670
671
672
673
674
675
676
677
678
679
680

681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 27

function error have been proved for stochastic L-BFGS Hessian approximations and
any Lipschitz-continuous unbiased gradient estimates. In this case, an O(log(¢71))
complexity bound has been also provided.

Numerical experiments have confirmed that line-search techniques in second-order
stochastic methods yield a significant improvement over predefined step-length se-
quences. Furthermore, in the case of finite-sum problems, the experiments have
shown that combining stochastic L-BFGS Hessian approximations with the SAGA
variance reduction technique and with line searches produces methods that are highly
competitive with state-of-the art second-order stochastic optimization methods.

A challenging future research agenda includes the extension of (some) of these
results to problems that do not satisfy the strong convexity assumption, as well as
extensions to constrained stochastic problems.
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