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Abstract. We develop a line-search second-order algorithmic framework for optimization prob-5
lems in noisy environments, i.e., assuming that only noisy values are available for the objective6
function and its gradient and Hessian. In the general noisy case, almost sure convergence of the7
methods fitting into the framework is proved when line searches and suitably decaying step lengths8
are combined. When the objective function is a finite sum, such as in machine learning applications,9
our framework is specialized as a stochastic L-BFGS method with line search only, with almost sure10
convergence to the solution. In this case, linear convergence rate of the expected function error is also11
proved, along with a worst-case O(log(ε−1)) complexity bound. Numerical experiments, including12
comparisons with state-of-the art first- and second-order stochastic optimization methods, show the13
efficiency of our approach.14
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1. Introduction. We consider the problem18

(1.1) min
x∈Rn

φ(x),19

where φ(x) is a twice continuously differentiable function in a noisy environment.20

This means that the values of φ(x), ∇φ(x) and ∇2φ(x) are only accessible with21

some level of noise. There is a large class of problems of this type in many areas of22

engineering and of physical and social sciences [11, 26, 27, 38]. Typical applications23

are, e.g., model fitting, parameter estimation, experimental design, and performance24

evaluation. Furthermore, problem (1.1) is typical in the framework of statistical25

learning, where very large training sets make computations extremely expensive. In26

this case, it is common to work with subsamples of data, obtaining approximate27

function values – see, e.g., [7].28

In the last few years there has been increasing interest toward stochastic opti-29

mization methods able to use second-order information, with the aim of improving30

accuracy and efficiency of first-order stochastic methods. We are interested in de-31

veloping a family of line-search stochastic optimization methods where the search32

direction is obtained by exploiting (approximate) second-order information.33

In order to provide motivations for our work and outline some techniques exploited34

in the sequel, we provide a quick overview of stochastic optimization methods. Their35
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roots can be found in the Stochastic Approximation (SA) method by Robbins and36

Monro [31], which can be interpreted as a stochastic variant of the gradient descent37

method. Convergence in probability of the SA method is ensured if the step-length38

sequence {αk} (called gain sequence) is of harmonic type, i.e., it is non-summable39

but square-summable. Under suitable assumptions, the method converges in the40

mean square sense [31] and almost surely [37]. Its key property is the ability to avoid41

zigzagging due to noise when approaching the solution, thanks to the decay of the gain42

sequence. However, a significant drawback of the SA method is its slow convergence.43

Asymptotically ideal step lengths for SA methods include the norm of the inverse44

Hessian at the solution [3]. Adjustments to the classical harmonic gain sequence,45

including adaptive step lengths based on changes in the sign of the difference between46

consecutive iterates, are analyzed in [13, 21] with the aim of speeding up the SA47

method. This idea is further developed in [39], where almost sure convergence of the48

method is proved. Adaptive step-length schemes are introduced also in [40], with49

the objective of reducing the dependence of the behavior of the method on user-50

defined parameters. The results in [5] are closely related to the SA method and51

concern methods based on search directions that are not necessarily noisy gradients,52

but some gradient-related directions. A hybrid approach that combines a line-search53

technique with SA is analyzed in [25] for noisy gradient directions and arbitrary54

descent directions. General descent directions are also considered in [24]. We also note55

that gradient approximations may need to be computed by using finite differences;56

an overview of finite-difference methods for stochastic optimization is given in [16].57

Variance-reduction SA methods with line search for stochastic variational inequalities58

are considered in [19].59

In the realm of machine learning, many stochastic versions of the gradient method60

have been developed. Starting from the basic stochastic and minibatch gradient61

methods – see, e.g., [7] and the references therein – variance reduction techniques62

for the gradient estimates have been developed, with the aim of improving conver-63

gence. Among them we mention SVRG [20], SAGA [12] and its version using Jacobian64

sketching [18], which will be considered in section 5. These methods have constant65

step lengths and get linear convergence in expectation.66

Stochastic optimization methods exploiting search directions based on second-67

order information have been developed to get better theoretical and practical conver-68

gence properties, especially when badly-scaled problems are considered. Stochastic69

versions of Newton-type methods are discussed in [2, 6, 8, 9, 33, 34, 35, 36] and a70

variant of the adaptive cubic regularization scheme using a dynamic rule for build-71

ing inexact Hessian information is proposed in [1]. Stochastic BFGS methods are72

analyzed, e.g., in [8, 10, 17, 28, 29, 30]. In particular, in [30] Moritz et al. propose73

a stochastic L-BFGS algorithm based on the same inverse Hessian approximation as74

in [10], but use SVRG instead of the standard stochastic gradient approximation. This75

algorithm, which applies a constant step length, has Q-linear rate of convergence of76

the expected value of the error in the objective function. A further modification to this77

L-BFGS scheme is proposed by Gower et al. in [17], where a stochastic block BFGS78

update is used, in which the vector pairs for updating the inverse Hessian are replaced79

by matrix pairs gathering directions and matrix-vector products between subsampled80

Hessians and those directions. The resulting algorithm uses constant step length and81

has Q-linear convergence rate of the expected value of objective function error, as in82

the previous case, but appears more efficient by numerical experiments.83
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Our contribution. We propose a Line-search Second-Order Stochastic (LSOS)84

algorithmic framework for stochastic optimization problems, where Newton and quasi-85

Newton directions in a rather broad meaning are used. Inexactness is allowed in the86

sense that the (approximate) Newton direction can be obtained as inexact solution of87

the corresponding system of linear equations. We focus on convex problems as they88

appear in a wide variety of applications, such as machine learning and least squares.89

Furthermore, many stochastic problems need regularization and hence become convex.90

We prove almost sure convergence of the methods fitting into the LSOS framework91

and show by experiments the effectiveness of our approach when using Newton and92

inexact Newton directions affected by noise.93

For finite-sum objective functions such as those arising in machine learning, we94

investigate the use of the stochastic L-BFGS Hessian approximations in [10] together95

with line searches and the SAGA variance reduction technique for the gradient esti-96

mates. The resulting algorithm has almost sure convergence to the solution, while97

for the efficient state-of-the-art stochastic L-BFGS methods in [17, 30] it has been98

proved only that the function error tends to zero in expectation. We also prove99

that the expected function error has linear convergence rate and provide a worst-100

case O(log(ε−1)) complexity bound. Finally, numerical experiments show that our101

algorithm is competitive with the stochastic L-BFGS methods mentioned above.102

Notation. E(x) denotes the expectation of a random variable x, E(x|y) the103

conditional expectation of x given y, and var(x) the variance of x. ‖ · ‖ indicates104

either the Euclidean vector norm or the corresponding induced matrix norm, while105

| · | is the cardinality of a set. R+ and R++ denote the sets of real non-negative106

and positive numbers, respectively. Vectors are written in boldface and subscripts107

indicate the elements of a sequence, e.g., {xk}. Throughout the paper M1,M2,M3, . . .108

and c1, c2, c3, . . . denote positive constants, without specifying their actual values.109

Other constants are defined when they are used. Finally, “a.s.” abbreviates “almost110

sure/surely”.111

Outline of the paper. The rest of this article is organized as follows. In sec-112

tion 2, we define the general Stochastic Second-Order (SOS) framework with pre-113

defined step-length sequence, which is the basis for the family of algorithms proposed114

in this work, and we give preliminary assumptions and results used in the sequel. In115

section 3 we provide the convergence theory of the algorithms fitting into the SOS116

framework. In section 4 we introduce a SOS version named LSOS, which combines117

non-monotone line searches and (if needed) pre-defined step lengths in order to make118

the algorithm faster, and provide its convergence analysis. In section 5 we special-119

ize LSOS for finite sum objective functions, obtaining a stochastic L-BFGS method120

with line search only, and in section 6 we provide its convergence theory, including121

convergence rate and complexity results. In section 7, numerical experiments on two122

classes of stochastic problems and comparisons with state-of-the art methods show123

the effectiveness of our approach. Concluding remarks are given in section 8.124

2. Preliminaries. We assume that for problem (1.1) we can only compute125

(2.1)
f(x) = φ(x) + εf (x),
g(x) = ∇φ(x) + εg(x),
B(x) = ∇2φ(x) + εB(x),

126

with εf (x) being a random number, εg(x) a random vector and εB(x) a symmetric127

random matrix. The general algorithmic scheme we analyze in this paper is given in128
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Algorithm 2.1.129

Algorithm 2.1 Second-Order Stochastic (SOS) method

1: given x0 ∈ Rn and {αk} ⊂ R+

2: for k = 0, 1, 2, . . . do
3: compute dk ∈ Rn

4: set xk+1 = xk + αkdk

5: end for

For now we assume that {αk} is given and it satisfies the conditions stated in130

Assumption 2.2 below. We also assume that f(x), g(x) and B(x) are available for131

any x ∈ Rn. Although here we do not specify how dk is obtained, we call the algorithm132

“Second-Order” because in the next sections we will compute dk by exploiting noisy133

second-order information about φ(x).134

We make the following assumptions.135

Assumption 2.1. The function φ is strongly convex and has Lipschitz-continuous136

gradient.137

If Assumption 2.1 holds, then there exists a unique x∗ ∈ Rn that solves (1.1), with
∇φ(x∗) = 0. Furthermore, for some positive constants µ and L and any x ∈ Rn we
have

µI � ∇2φ(x) � LI,

where I is the identity matrix, and138

(2.2)
µ

2
‖x− x∗‖2 ≤ φ(x)− φ(x∗) ≤

L

2
‖∇φ(x)‖2.139

Assumption 2.2. The gain sequence {αk} satisfies

αk > 0 for all k,
∑
k

αk =∞,
∑
k

α2
k <∞.

This is a standard assumption for SA methods.140

Henceforth we denote Fk the σ-algebra generated by x0,x1, . . . ,xk.141

Assumption 2.3. Let {xk} be a sequence generated by Algorithm 2.1. The gra-
dient noise εg(x) is such that

E(εg(x)|Fk) = 0 and E(‖εg(x)‖2|Fk) ≤M1.

In other words, we assume that the expected gradient noise is zero and the variance142

of gradient errors,143

(2.3) var(‖εg(x)‖ |Fk) = E(‖εg(x)‖2 |Fk)− E2(‖εg(x)‖ |Fk),144

is bounded. From (2.3) and Assumption 2.3 it also follows that

E(‖εg(x)‖2|Fk) ≥ E2(‖εg(x)‖|Fk)

and hence

E(‖εg(x)‖ |Fk) ≤
√

E(‖εg(x)‖2|Fk) ≤
√
M1 := M2.
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We observe that Assumptions 2.1 and 2.3 imply145

(2.4) ‖∇φ(x)‖2 + E(‖εg(x)‖2|Fk) ≤ L2‖x− x∗‖2 +M1 ≤ c1(1 + ‖x− x∗‖2),146

with c1 = max{L2,M1}. Moreover, (2.4) and Assumption 2.3 imply147

(2.5) E(‖g(x)‖2|Fk) ≤ c1(1 + ‖x− x∗‖2),148

which can be proved as follows:149

E(‖g(x)‖2|Fk) = E(‖∇φ(x) + εg(x)‖2|Fk)150

= E(‖∇φ(x)‖2 + 2∇φ(x)>εg(x) + ‖εg(x)‖2|Fk)151

= ‖∇φ(x)‖2 + 2∇φ(x)>E(εg(x)|Fk) + E(‖εg(x)‖2|Fk)152

≤ c1(1 + ‖x− x∗‖2),153

where the last inequality comes from E(εg(x)|Fk) = 0.154

The following theorem (see [31]) will be used in Section 3.155

Theorem 2.4. Let Uk, βk, ξk, ρk ≥ 0 be Fk-measurable random variables such
that

E(Uk+1|Fk) ≤ (1 + βk)Uk + ξk − ρk, k = 1, 2, . . . .

If
∑
k βk <∞ and

∑
k ξk <∞, then Uk → U a.s. and

∑
k ρk <∞ a.s..156

3. Convergence theory of Algorithm SOS. The assumptions stated in the
previous section generally form a common set of assumptions for SA and related
methods. Actually, Assumption 2.1 is different from the commonly used assumption
that for some symmetric positive definite matrix B and for all η ∈ (0, 1), we have

inf
η<‖x−x∗‖< 1

η

(x− x∗)
>B∇φ(x) > 0.

However, the restriction to strongly convex problems allows us to prove a more general157

convergence result.158

While the SA method uses the negative gradient direction, in [24] general descent159

directions have been considered such that for all k160

g(xk)>dk < 0,(3.1)161

(xk − x∗)
>E(dk|Fk) ≤ −c3‖xk − x∗‖ a.s.,(3.2)162

‖dk‖ ≤ c4‖g(xk)‖ a.s..163

Here we relax (3.1) and (3.2) so that the direction dk need neither be a descent164

direction nor satisfy (3.2). This relaxation allows us to extend the set of directions165

covered by the theoretical analysis presenter further on. At each iteration, we allow166

a deviation from a descent direction proportional to δk, where {δk} is a predefined167

sequence of positive numbers that converges to zero with almost arbitrary rate. More168

precisely, the following condition must hold:169

(3.3)
∑
k

αkδk <∞.170

Thus, a possible choice could be δk = νk, where ν ∈ (0, 1), regardless of the choice171

of the gain sequence. On the other hand, if we choose the standard gain sequence172
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αk = 1/k, then δk = 1/kε, with arbitrary small ε > 0, is a suitable choice. Roughly173

speaking, the set of feasible directions is rather wide while we are far away from the174

solution, and the descent condition is enforced as we progress towards the solution.175

More precisely, we make the following assumptions on the search directions.176

Assumption 3.1. The direction dk satisfies

∇φ(xk)>E(dk|Fk) ≤ δkc2 − c3‖∇φ(xk)‖2.

Assumption 3.2. The direction dk satisfies

‖dk‖ ≤ c4‖g(xk)‖ a.s..

We observe that Assumptions 3.1 and 3.2 can be seen as a stochastic version of
well-known sufficient conditions that guarantee gradient-related directions in the de-
terministic setting [4, p. 36], i.e.,

∇φ(xk)>dk ≤ −q1 ‖∇φ(xk)‖p1 , ‖dk‖ ≤ q2 ‖∇φ(xk)‖p2

for q1, q2 > 0 and p1, p2 ≥ 0.177

In the following theorem we prove almost sure convergence for the general Algo-178

rithm SOS.179

Theorem 3.3. Let Assumptions 2.1 to 2.3 and Assumptions 3.1 and 3.2 hold,180

and let {xk} be generated by Algorithm 2.1. Assume also that (3.3) holds. Then181

xk → x∗ a.s..182

Proof. Since xk+1 = xk + αkdk we have, by Assumption 2.1 and the descent183

lemma [4, Proposition A24],184

φ(xk+1)− φ(x∗) ≤ φ(xk)− φ(x∗) + αk∇φ(xk)>dk +
L

2
α2
k‖dk‖2.185

Therefore, by Assumption 3.2,186

E(φ(xk+1)− φ(x∗) |Fk) ≤ φ(xk)− φ(x∗) + αk∇φ(xk)>E(dk|Fk)187

+
L

2
α2
k c

2
4 E(‖g(xk)‖2|Fk)188

= φ(xk)− φ(x∗) + αk∇φ(xk)>E(dk|Fk)189

+α2
k c5 E(‖g(xk)‖2|Fk)190

where c5 = Lc24/2. From (2.5) (arising from Assumptions 2.1 and 2.3) and Assump-191

tion 3.1 it follows that192

E(φ(xk+1)− φ(x∗)|Fk) ≤ φ(xk)− φ(x∗) + α2
kc1c5

(
1 + ‖xk − x∗‖2

)
193

+αk
(
δkc2 − c3‖∇φ(xk)‖2

)
.194

Since (2.2) holds, we have195

E(φ(xk+1)− φ(x∗)|Fk) ≤ (1 + α2
kc6)(φ(xk)− φ(x∗)) + α2

kc1c5196

+αkδkc2 − αkc3
2

L
(φ(xk)− φ(x∗)),197

with c6 = 2c1c5/µ. Taking βk = α2
kc6, Uk = φ(xk)−φ(x∗), ξk = α2

kc1c5 +αkδkc2 and
ρk = 2αkc3/L (φ(xk)− φ(x∗)), we have∑

k

βk <∞,
∑
k

ξk <∞
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because of Assumption 2.2 and (3.3), and Uk ≥ 0 as x∗ is the solution of (1.1).
Therefore, by Theorem 2.4 we conclude that φ(xk)−φ(x∗) converges a.s. and

∑
k ρk <

∞ a.s.. Hence, we have

0 = lim
k→∞

ρk = lim
k→∞

αkc3
2

L
(φ(xk)− φ(x∗)) a.s..

There are two possibilities for the sequence {φ(xk) − φ(x∗)}: either there exists an
infinite set K ⊂ N such that

lim
k∈K,k→∞

φ(xk)− φ(x∗) = 0 a.s.

or there exists ε > 0 such that198

(3.4) φ(xk)− φ(x∗) ≥ ε a.s. for all k sufficiently large.199

If K exists, then we have that the whole sequence {φ(xk) − φ(x∗)} converges to
zero a.s., and then xk → x∗ a.s. because of the continuity of φ. On the other hand,
if (3.4) holds, then∑

k

ρk =
∑
k

αkc3
2

L
(φ(xk)− φ(x∗)) ≥ c3

2

L
ε
∑
k

αk =∞ a.s.,

which is a contradiction. Thus we conclude that xk → x∗ a.s..200

Now we extend the scope of search directions towards second-order approxima-201

tions. Since Assumption 2.1 holds, we also assume that the approximate Hessians are202

positive definite and bounded.203

Assumption 3.4. For every approximate Hessian B(x),

µI � B(x) � LI.

This assumption is fulfilled in many significant cases. For example, in binary classi-204

fication, mini-batch subsampled Hessians are taken as positive definite and bounded205

matrices, either with a proper choice of the subsample [32], or with regularization [8].206

The same is true for least squares problems.207

Assumption 3.4 implies

1

L
I � B−1(x) � 1

µ
I,

and hence ‖B−1(x)‖ ≤ µ−1.208

We also assume that the noise terms εf (x), εg(x) and εB(x) are mutually inde-209

pendent, which implies that the same is true for f , g and B. This independence210

assumption will be relaxed in section 5 in order to cope with finite-sum problems,211

where the gradient and Hessian approximations may be taken from the same sample.212

By defining213

(3.5) dk = −Dkg(xk), Dk = B−1(xk),214

we have

‖dk‖ ≤
1

µ
‖g(xk)‖,
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thus Assumption 3.2 holds. Furthermore, since Dk is independent of g(xk), we obtain215

E(∇φ(xk)>dk|Fk) = ∇φ(xk)>E(−Dkg(xk)|Fk)216

= ∇φ(xk)>E(−Dk|Fk)E(g(xk)|Fk)217

= ∇φ(xk)>E(−Dk|Fk)∇φ(xk)218

= E(−∇φ(xk)>Dk∇φ(xk)|Fk)219

≤ E(− 1

L
‖∇φ(xk)‖2|Fk) = − 1

L
‖∇φ(xk)‖2220

and hence221

(3.6) ∇φ(xk)>E(dk|Fk) ≤ − 1

L
‖∇φ(xk)‖2 .222

Then Assumption 3.1 holds with c2 = 0 and c3 = 1
L .223

Corollary 3.5. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold, and let224

(3.3) hold. If {xk} is a sequence generated by Algorithm 2.1 with dk defined in (3.5),225

then xk → x∗ a.s.226

Proof. The proof is an immediate consequence of Theorem 3.3 and the previous227

observations.228

Finally, let us consider the case of inexact Newton methods in the stochastic229

approximation framework, i.e., when the linear system230

(3.7) B(xk)dk = −g(xk)231

is solved only approximately, i.e.,232

(3.8) ‖B(xk)dk + g(xk)‖ ≤ δkγk,233

where γk is a random variable, and δk satisfies (3.3).234

For deterministic inexact Newton methods, global convergence has been proved235

when {xk} is bounded and the forcing terms are small enough – see the alternative236

statement of Theorem 3.4 in [15, page 400]. Thus, we will assume {xk} bounded in237

the stochastic case as well. For γk we assume bounded variance as follows.238

Assumption 3.6. The sequence of random variables {γk} is such that

E(γ2k|Fk) ≤M3.

Note that Assumption 3.6 implies239

E(γk|Fk) ≤
√

E(γ2k|Fk) ≤
√
M3 := M4.240

The main property of the search direction that allows us to prove Theorem 3.3 is241

stated in Assumption 3.1. Now we prove that Assumption 3.1 holds if the sequence242

{xk} is bounded and Assumption 3.6 holds.243

Lemma 3.7. Let {xk} be a sequence generated by Algorithm 2.1 such that (3.8)244

and Assumption 3.6 hold. If {xk} is bounded, then Assumption 3.1 holds.245

Proof. If {xk} is bounded then ‖∇φ(xk)‖ ≤M5 as φ is continuously differentiable.246

Furthermore, Assumption 3.6 implies247

(3.9) ‖∇φ(xk)‖E(γk|Fk) ≤M5M4 := M6.248
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Let us denote rk = B(xk)dk + g(xk). Then, by (3.8), ‖rk‖ ≤ δkγk. Furthermore,

dk = B(xk)−1rk −B(xk)−1g(xk).

Setting dNk = −B(xk)−1g(xk), we have

dk − dNk = B(xk)−1rk

and

∇φ(xk)>dk = ∇φ(xk)>
(
dk − dNk + dNk

)
= ∇φ(xk)>dNk +∇φ(xk)>

(
dk − dNk

)
.

Taking the conditional expectation, we get

∇φ(xk)>E(dk|Fk) = ∇φ(xk)>E(dNk |Fk) +∇φ(xk)>E(dk − dNk |Fk).

It has been shown, see (3.6), that

∇φ(xk)>E(dNk |Fk) ≤ − 1

L
‖∇φ(xk)‖2,

thus249

(3.10) ∇φ(xk)>E(dk|Fk) ≤ − 1

L
‖∇φ(xk)‖2 +∇φ(xk)>E(B(xk)−1rk|Fk).250

Furthermore,251

∇φ(xk)>E(B(xk)−1rk|Fk) ≤ ‖∇φ(xk)‖ E
(
‖B(xk)−1‖ ‖rk‖

∣∣Fk)252

≤ 1

µ
‖∇φ(xk)‖δkE(γk|Fk) ≤ 1

µ
δkM6(3.11)253

because of (3.8) and (3.9). Putting together (3.10) and (3.11), we get

∇φ(xk)>E(dk|Fk) ≤ δkc2 − c3‖∇φ(xk)‖2

with c2 = M6/µ and c3 = 1/L. Therefore, Assumption 3.1 holds.254

Notice that Assumption 3.2 is not necessarily satisfied by the direction dk in (3.8).255

Therefore, we cannot apply Theorem 3.3. Nevertheless, we can prove the following.256

Theorem 3.8. Let Assumptions 2.1 to 2.3 and Assumptions 3.4 and 3.6 hold. Let257

{xk} be a sequence generated by Algorithm 2.1 with search direction dk satisfying (3.8)258

with δk such that (3.3) holds. If {xk} is bounded, then xk → x∗ a.s..259

Proof. The direction dk satisfies

‖dk‖ = ‖B(xk)−1(rk − g(xk))‖ ≤ 1

µ
(‖rk‖+ ‖g(xk)‖) ≤ 1

µ
(δkγk + ‖g(xk)‖),

thanks to (3.8). Therefore,

‖dk‖2 ≤
2

µ2

(
δ2kγ

2
k + ‖g(xk)‖2

)
and260

E(‖dk‖2|Fk) ≤ 2

µ2

(
δ2kE(γ2k|Fk) + E(‖g(xk)‖2|Fk)

)
261

≤ 2

µ2

(
δ2kM3 + c1(1 + ‖xk − x∗‖2)

)
,262
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because of (2.5) and Assumption 3.6. Therefore,263

(3.12) E(‖dk‖2|Fk) ≤ c7 + c8‖xk − x∗‖2,264

for c7 = (2/µ2)(δ2maxM3 + c1) and c8 = 2c1/µ
2, where δmax = maxk δk. Using the

descent lemma and Assumption 2.1 as in Theorem 3.3, we get

φ(xk+1)− φ(x∗) ≤ φ(xk)− φ(x∗) + αk∇φ(xk)>dk +
L

2
α2
k‖dk‖2

and, by (3.12) and Lemma 3.7,265

E(φ(xk+1)− φ(x∗)|Fk) ≤ φ(xk)− φ(x∗) + αk∇φ(xk)>E(dk|Fk)266

+
L

2
α2
k E(‖dk‖2|Fk)267

≤ φ(xk)− φ(x∗) + αk

(
δk
M6

µ
− 1

L
‖∇φ(xk)‖2

)
268

+α2
k

L

2
(c7 + c8‖xk − x∗‖2).269

Using (2.2), we get270

E(φ(xk+1)− φ(x∗)|Fk) ≤ (φ(xk)− φ(x∗))

(
1 + α2

k

L

µ
c8

)
+ α2

k

L

2
c7271

+αkδk
M6

µ
− αk

2

L2
(φ(xk)− φ(x∗)).272

Now we define

βk = α2
k

L

µ
c8, ξk = α2

k

L

2
c7 + αkδk

M6

µ
, ρk = αk

2

L2
(φ(xk)− φ(x∗))

and
Uk = φ(xk)− φ(x∗).

As the hypotheses of Theorem 2.4 are fulfilled due to (3.3) and Assumption 2.2, we273

have that xk → x∗ a.s..274

So far we have required only that γk is a random variable with bounded variance.
Following inexact Newton methods in the deterministic case [15], the norm of the
left-hand side in (3.7) can be used to define the inexactness in the solution of the
linear system. By setting

γk = c9 ‖g(xk)‖,

we have that (3.8) implies275

‖dk‖ = ‖B(xk)−1(rk − g(xk))‖ ≤ 1

µ
(‖rk‖+ ‖g(xk)‖)276

≤ 1

µ
(δkc9 ‖g(xk)‖+ ‖g(xk)‖) =

1

µ
(δmaxc9 + 1)‖g(xk)‖.277

Therefore, for this choice of γk we have that Assumption 3.2 holds as well. Further-
more, by (2.5) we get

E(γ2k|Fk) = c29E(‖g(xk)‖2|Fk) ≤ c29c1(1 + ‖xk − x∗‖2).
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Assuming that {xk} is bounded, we get

E(γ2k|Fk) ≤ c29c1(1 + ‖xk − x∗‖2) ≤ c29c1(1 +M7) := M8

and hence Assumption 3.6 holds as well. The previous observations imply the following278

convergence statement, whose proof is straightforward.279

Corollary 3.9. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold. Let {xk}
be a sequence generated by Algorithm 2.1 where dk satisfies

‖B(xk)dk + g(xk)‖ ≤ δk‖g(xk)‖,

and δk satisfies (3.3) holds. If {xk} is bounded then xk → x∗ a.s..280

The next theorem considers the most general case, extending the tolerance for281

inexact solutions of the Newton linear system (3.7) even further. Let us define282

(3.13) γk = ω1ηk + ω2‖g(xk)‖283

for some ω1, ω2 ≥ 0 and a random variable ηk such that284

(3.14) E(η2k|Fk) ≤M9,285

i.e., with bounded variance.286

Theorem 3.10. Let Assumptions 2.1 to 2.3 and Assumption 3.4 hold. Let {xk}
be a sequence generated by Algorithm 2.1 where dk satisfies

‖B(xk)dk + g(xk)‖ ≤ δkγk,

with γk defined by (3.13) and δk such that (3.3) holds. If {xk} is bounded, then287

xk → x∗ a.s..288

Proof. First, note that the search direction dk satisfies289

‖dk‖ = ‖B(xk)−1(rk − g(xk))‖ ≤ 1

µ
(δkγk + ‖g(xk)‖)290

=
1

µ
(ω1δkηk + (1 + ω2δk)‖g(xk)‖) ,291

and then, by (3.14), (2.5), and Assumption 2.1,292

E(‖dk‖2|Fk) ≤ 2

µ2

(
ω2
1δ

2
k E(η2k|Fk) + (1 + ω2δk)2 E(‖g(xk)‖2|Fk)

)
293

≤ 2

µ2
ω2
1δ

2
kM9 +

2

µ2
(1 + ω2δk)2c1(1 + ‖xk − x∗‖2)294

=
2

µ2

(
ω2
1δ

2
kM9 + c1(1 + ω2δk)2

)
+

2

µ2
c1(1 + ω2δk)2

2

µ
(φ(xk)− φ(x∗))295

≤M10 +M11(φ(xk)− φ(x∗)),296

where M10 = 2/µ2 (ω2
1δ

2
maxM9 + c1(1 + ω2δmax)2) and M11 = 4c1/µ

3 (1 + ω2δmax)2.297

Since dk = B(xk)−1(rk − g(xk)), using the same arguments as for (3.10) we298

obtain299

(3.15) ∇φ(xk)>E(dk|Fk) ≤ − 1

L
‖∇φ(xk)‖2 +∇φ(xk)>E(B(xk)−1rk|Fk).300
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Furthermore,301

∇φ(xk)>E(B(xk)−1rk|Fk) ≤ ‖∇φ(xk)‖ E(‖B(xk)−1‖‖rk‖|Fk)302

≤ 1

µ
‖∇φ(xk)‖ δk E(γk|Fk)303

and304

E(γk|Fk) = E(ω1ηk + ω2‖g(xk)‖|Fk)305

= ω1E(ηk|Fk) + ω2E(‖g(xk)‖|Fk)306

≤ ω1

√
E(η2k|Fk) + ω2

√
E(‖g(xk)‖2|Fk)307

≤ ω1

√
M9 + ω2

√
c1(1 + ‖xk − x∗‖2)308

≤ ω1

√
M9 + ω2

√
c1(1 +M7) := M12.309

Putting together the above estimates and using the descent lemma as in the previous310

proofs, we get311

E(φ(xk+1)− φ(x∗)|Fk) ≤ φ(xk)− φ(x∗) + αk∇φ(xk)>E(dk|Fk) + α2
k

L

2
E(‖dk‖2|Fk)312

≤ φ(xk)− φ(x∗) + α2
k

L

2
(M10 +M11(φ(xk)− φ(x∗))313

+αk

(
− 1

L
‖∇φ(xk)‖2 + ‖∇φ(xk)‖ 1

µ
δkM12

)
314

≤ (φ(xk)− φ(x∗))

(
1 + α2

k

L

2
M11

)
+ α2

k

L

2
M10315

+αkδk
1

µ
M13M12 − αk

2

L2
(φ(xk)− φ(x∗)),316

where ‖∇φ(xk)‖ ≤ M13 because of the boundedness of {xk} and the continuity of
∇φ. By defining

βk = α2
k

L

2
M11, ξk = α2

k

L

2
M10 + αkδk

1

µ
M13M12, ρk = αk

2

L2
(φ(xk)− φ(x∗)),

and observing that (3.3) and Assumption 2.2 hold, we can apply Theorem 2.4 to get317

the thesis.318

4. SOS method with line search. It is well known that in practice a gain319

sequence that satisfies Assumption 2.2 is usually too conservative and makes the320

algorithm slow because the step length becomes too small soon. In order to avoid this321

drawback, we propose a practical version of Algorithm SOS that uses a line search in322

the initial phase and then reduces to SOS if the step length obtained with the line323

search becomes too small, e.g., smaller than some predetermined threshold tmin > 0.324

Since the search directions considered in the previous sections do not have to be325

descent directions (not even for the current objective function approximation), and326

the line search can be performed considering only the approximate objective function,327

we choose a nonmonotone line-search strategy.328

We state the new algorithmic framework in Algorithm 4.1. Note that this algo-329

rithm remains well defined even with the monotone (classical Armijo) line search – if330

the search direction is not a descent one, we shift to the predefined gain sequence.331

We prove the a.s. convergence of Algorithm LSOS under a mild additional as-332

sumption.333
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Algorithm 4.1 Line-search Second-Order Stochastic (LSOS) method

1: given x0 ∈ Rn, η ∈ (0, 1), tmin > 0 and {αk}, {δk}, {ζk} ⊂ R+

2: set LSphase = active
3: for k = 0, 1, 2, . . . do
4: compute a search direction dk such that

(4.1) ‖B(xk)dk + g(xk)‖ ≤ δk‖g(xk)‖.

5: find a step length tk as follows:
6: if LSphase = active then find tk that satisfies

(4.2) f(xk + tkdk) ≤ f(xk) + ηtkg(xk)>dk + ζk

7: if tk < tmin then set LSphase = inactive
8: if LSphase = inactive then set tk = αk

9: set xk+1 = xk + tkdk

10: end for

Assumption 4.1. The objective function estimator f is unbiased, i.e.,

E(εf (x)|Fk) = 0.

Theorem 4.2. Let Assumptions 2.1 to 2.3, Assumption 3.4 and Assumption 4.1334

hold. Assume also that the sequence {ζk} is summable and the forcing term sequence335

{δk} satisfies (3.3). If the sequence {xk} generated by Algorithm 4.1 is bounded, then336

xk → x∗ a.s..337

Proof. If there exists an iteration k such that tk < tmin, then Algorithm LSOS
reduces to SOS and the thesis follows from Corollary 3.9. Let us consider the case
tk ≥ tmin for all k. Using rk = B(xk)dk + g(xk) we obtain

dk = B(xk)−1rk −B(xk)−1g(xk).

Furthermore, Assumption 3.4 together with (4.1) implies338

g(xk)>dk = g(xk)>B(xk)−1rk − g(xk)>B(xk)−1g(xk)339

≤ ‖g(xk)‖
∥∥B(xk)−1

∥∥ ‖rk‖ − 1

L
‖g(xk)‖2340

≤ 1

µ
δk‖g(xk)‖2 − 1

L
‖g(xk)‖2341

=

(
δk
µ
− 1

L

)
‖g(xk)‖2.342

Assumption 2.2 together with (3.3) implies δk → 0. Therefore, there exists k such
that

δk ≤
µ

2L
for all k ≥ k

and hence343

(4.3) g(xk)>dk ≤ −
1

2L
‖g(xk)‖2.344
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Furthermore, LSphase is active at each iteration and for k ≥ k we get345

f(xk + tkdk) ≤ f(xk) + η tk g(xk)>dk + ζk346

≤ f(xk)− η tk
1

2L
‖g(xk)‖2 + ζk347

≤ f(xk)− η tmin
1

2L
‖g(xk)‖2 + ζk.348

Setting c10 = η tmin/(2L), taking the conditional expectation and using Assump-349

tion 4.1, we get350

(4.4) φ(xk+1) ≤ φ(xk)− c10 E(‖g(xk)‖2|Fk) + ζk.351

Assumption 2.3 implies352

(4.5) E(g(xk)|Fk) = ∇φ(xk),353

and thus we get354

(4.6) ‖∇φ(xk)‖2 = ‖E(g(xk)|Fk)‖2 ≤ E2(‖g(xk)‖|Fk) ≤ E(‖g(xk)‖2|Fk),355

which, together with Assumption 2.1, implies356

(4.7)
µ

L
‖xk − x∗‖2 ≤ ‖∇φ(xk)‖2 ≤ E(‖g(xk)‖2|Fk).357

Combining (4.7) with (4.4) we have358

(4.8) φ(xk+1) ≤ φ(xk)− c11 ‖xk − x∗‖2 + ζk for all k ≥ k359

for a suitable k, where c11 = c10µ/L. The boundedness of the iterates and the
continuity of φ imply the existence of a constant Q such that φ(xk) ≥ Q for all k.
Furthermore, (4.8) implies that, for all p ∈ N,

Q ≤ φ(xk+p) ≤ φ(xk)− c11
p−1∑
j=0

‖xk+j − x∗‖2 +

p−1∑
j=0

ζk+j .

Taking the expectation, letting p tend to infinity and using the summability of ζk, we360

conclude that361

∞∑
k=0

E(‖xk − x∗‖2) <∞.362

Finally, using Markov’s inequality we have that for any ε > 0

P (‖xk − x∗‖ ≥ ε) ≤
E(‖xk − x∗‖2)

ε2

and therefore
∞∑
k=0

P (‖xk − x∗‖ ≥ ε) <∞.

The almost sure convergence follows from Borel-Cantelli Lemma [22, Theorem 2.7],363

which completes the proof.364
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5. Specializing LSOS for finite sums. Now we consider finite-sum problems,365

where the objective function is, e.g., the sample mean of a finite family of convex366

functions. This is the case, for example, of machine learning problems in which the367

logistic loss, the quadratic loss or other loss functions are used, usually coupled with `2-368

regularization terms. Recently, much attention has been devoted to the development369

of methods for the solution of problems of this type. Therefore, we analyze extensions370

to this setting of the LSOS algorithmic framework.371

Specifically, we focus on objective functions of the form372

(5.1) φ(x) =
1

N

N∑
i=1

φi(x),373

where each φi(x) is twice continuously differentiable and µ-strongly convex, and has374

Lipschitz-continuous gradient with Lipschitz constant L. It is straightforward to show375

that these assumptions imply that φ satisfies Assumption 2.1.376

We assume that at each iteration k a sample Nk of size Nk � N is chosen377

randomly and uniformly from N = {1, ..., N}. Then, we consider378

fNk(x) =
1

Nk

∑
i∈Nk

φi(x),379

which is an unbiased estimator of φ(x), i.e., Assumption 4.1 holds.380

By considering the first and second derivatives of fNk , we obtain the following381

subsampled gradient and Hessian of φ:382

(5.2) gNk(x) =
1

Nk

∑
i∈Nk

∇φi(x), BNk(x) =
1

Nk

∑
i∈Nk

∇2φi(x),383

which are unbiased estimators of the gradient and the Hessian of φ as well. More384

precisely, the first equality in Assumption 2.3 holds (i.e., E(εg(x)|Fk) = 0) together385

with Assumption 3.4.386

The derivative estimates in (5.2) can be replaced by more sophisticated ones,387

with the aim of improving the performance of second-order stochastic optimization388

methods. The Hessian approximation BNk(x) only needs to satisfy Assumption 3.4 in389

order to prove the results contained in this section. Therefore, the theory we develop390

still holds if one replaces the subsampled Hessian approximation with a quasi-Newton391

approximation. For example, in [10] Byrd et al. propose to use subsampled gradients392

and an approximation of the inverse of the Hessian ∇2φ(x), say Hk, built by means of393

a stochastic variant of limited memory BFGS (L-BFGS). Given a memory parameter394

m, Hk is defined by applying m BFGS updates to an initial matrix, using the m395

most recent correction pairs (sj ,yj) ∈ Rn×Rn like in the deterministic version of the396

L-BFGS method. The pairs are obtained by averaging iterates, i.e., every l steps the397

following vectors are computed398

(5.3) wj =
1

l

k∑
i=k−l+1

xi, wj−1 =
1

l

k−L∑
i=k−2l+1

xi,399

where j = k
l , and they are used to build sj and yj as specified next:400

(5.4) sj = wj −wj−1, yj = BTj (wj) sj ,401
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where Tj ⊂ {1, . . . , N}. By defining the set of the m most recent correction pairs as

{(sj ,yj), j = 1, . . . ,m} ,

the inverse Hessian approximation is computed as402

(5.5) Hk = H
(m)
k ,403

where for j = 1, . . . ,m404

(5.6) H
(j)
k =

(
I −

sj y>j
s>j yj

)>
H

(j−1)
k

(
I −

yj s>j
s>j yj

)
+

sj s>j
s>j yj

,405

and H
(0)
k = (s>mym/‖ym‖2) I. It can be proved (see [10, Lemma 3.1] and [30,

Lemma 4]) that for approximate inverse Hessians of the form (5.5) there exist con-
stants λ2 ≥ λ1 > 0 such that

λ1I � Hk � λ2I,
i.e., Assumption 3.4 holds with µ = min{µ, 1/λ2} and L = max{L, 1/λ1}. The
authors of [10] propose a version of Algorithm 2.1 in which the direction is computed as

dk = −Hk gNk(xk),

and prove R-linear decrease of the expected value of the error in the function value.406

As regards the gradient estimate, we observe that the second part of Assump-407

tion 2.3 is not required by the method presented in this section. Notice that we can408

replace the subsampled gradient estimate in (5.2) with alternative estimates coming,409

e.g., from variance reduction techniques, which have gained much attention in the lit-410

erature. This is the case of the stochastic L-BFGS algorithm by Moritz et al. [30] and411

the stochastic block L-BFGS by Gower et al. [17], where SVRG gradient approxima-412

tions are used. The former method computes the same inverse Hessian approximation413

as in [10], while the latter uses an adaptive sketching technique exploiting the action414

of a sub-sampled Hessian on a set of random vectors rather than just on a single415

vector. Both stochastic BFGS algorithms use constant step lengths and have Q-linear416

rate of convergence of the expected value of the error in the objective function, but417

the block L-BFGS one appears more efficient than the other in most of the numerical418

experiments reported in [17].419

Instead of choosing the SVRG approximation, we apply a mini-batch variant of420

the SAGA algorithm [12], used in [18]. Starting from the matrix J0 ∈ Rn×N whose421

columns are defined as J
(i)
0 = ∇φi(x0), at each iteration we compute the gradient422

approximation as423

(5.7) gSAGA
Nk (xk) =

1

Nk

∑
i∈Nk

(
∇φi(xk)− J (i)

k

)
+

1

N

N∑
l=1

J
(l)
k ,424

and, after updating the iterate, we set425

(5.8) J
(i)
k+1 =

{
J
(i)
k if i /∈ Nk,

∇φi(xk+1) if i ∈ Nk.
426

As in SVRG, the set {1, . . . , N} is partitioned into a fixed-number nb of random mini-427

batches which are used in order. One advantage of SAGA over SVRG is that it only428

requires a full gradient computation at the beginning of the algorithm, while SVRG429

requires a full gradient evaluation each nb iterations.430
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Remark 5.1. By assuming that all the φi’s have Lipschitz-continuous gradients431

with Lipschitz constant L, we have that the gradient estimates gNk(x) and gSAGA
Nk (x)432

are Lipschitz continuous with the same Lipschitz constant.433

Our algorithmic framework for objective functions of the form (5.1) is called
LSOS-FS (where FS stands for Finite Sums) and is outlined in Algorithm 5.1. For the
sake of generality, we refer to generic gradient and Hessian approximations, denoted
g(xk) and B(xk), respectively. We consider the possibility of introducing inexactness
in the computation of the direction

dk = −B(xk)−1g(xk),

even if for the L-BFGS strategy mentioned above, where Hk = B(xk)−1, the direction434

can be computed exactly by a matrix-vector product with Hk.435

Algorithm 5.1 LSOS for Finite Sums (LSOS-FS)

1: given x0 ∈ Rn, η, β ∈ (0, 1), {δk} ⊂ R+ and {ζk} ⊂ R++

2: for k = 0, 1, 2, . . . do
3: compute fNk (xk), g(xk) and B(xk)
4: find a search direction dk such that

(5.9) ‖B(xk) + g(xk)‖ ≤ δk‖g(xk)‖

5: find the smallest integer j ≥ 0 such that the step length tk = βj satisfies

(5.10) fNk (xk + tkdk) ≤ fNk (xk) + η tk g(xk)>dk + ζk

6: set xk+1 = xk + tkdk

7: end for

6. Convergence theory of Algorithm LSOS-FS. We assume436

(6.1)
∑
k

ζk <∞.437

In the initial phase of the computation, nondescent directions are likely to occur;438

however, by requiring ζk > 0 we ensure that the line search remains well defined.439

Furthermore, by (6.1) it is ζk → 0, which, by reasoning as in the proof of Theorem 4.2,440

implies that Algorithm 5.1 will eventually determine a descent direction for the current441

approximation of the objective function.442

Algorithm LSOS-FS computes the step length tk by applying a backtracking443

line-search to the approximate function fNk(x). In the next lemma we prove that444

the sequence {tk} is bounded away from zero for all k large enough, if the gradient445

approximation is the subsampled gradient gNk(xk). Throughout this section we use446

δmax defined at the beginning of page 10.447

Lemma 6.1. Let Algorithm 5.1 be applied to problem (5.1) with g(xk) = gNk(xk),448

and let δk → 0. Then the step-length sequence {tk} is such that449

(6.2) tk ≥
β(1− η)µ2

L2(1 + δmax)2
:= tmin ∈ (0, 1),450

for all k large enough.451
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Proof. If tk = 1, then (6.2) holds. If tk < 1, then there exists t′k = tk/β such that452

(6.3) fNk(xk + t′kdk) > fNk(xk) + η t′k gNk(xk)>dk.453

Furthermore, by the descent lemma applied to fNk and the Lipschitz continuity of454

gNk we have455

(6.4) fNk(xk + t′kdk) ≤ fNk(xk) + t′k gNk(xk)>dk +
L

2
(t′k)2‖dk‖2.456

Combining (6.3) and (6.4) we obtain457

(6.5) tk = βt′k >
−2β(1− η)gNk(xk)>dk

L‖dk‖2
.458

Following the proof of Theorem 4.2, we can show that (4.3) holds for all k ≥ k with459

g = gNk and thus460

(6.6) − gNk(xk)>dk ≥
‖gNk(xk)‖2

2L
.461

On the other hand,462

‖dk‖ =
∥∥(BNk(xk))−1(rk − gNk(xk))

∥∥ ≤ 1

µ
(‖rk‖+ ‖gNk(xk)‖)463

≤ δk + 1

µ
‖gNk(xk)‖,464

where the last inequality comes from (5.9). Therefore, since δk ≤ δmax, we obtain465

‖dk‖2 ≤
(δmax + 1)2

µ2
‖gNk(xk)‖2.466

This, together with (6.5) and (6.6), gives the thesis.467

In the following theorem we state the convergence of the LSOS-FS method. The468

proof is omitted since it follows the steps of the proof of Theorem 4.2. The Lemma469

above exploits g(xk) = gNk(xk); for general g(xk) we have to assume that the step470

lengths are bounded away from zero. Notice that we do not need the assumption of471

bounded iterates since the line search is performed at each iteration and the function472

is strongly convex and thus bounded from below.473

Theorem 6.2. Let {xk} be the sequence generated by Algorithm 5.1 applied to474

problem (5.1). Assume that (6.1) and Assumption 3.4 hold, and g(x) is a Lipschitz-475

continuous unbiased gradient estimate. Moreover, assume {tk} is bounded away from476

zero. Then {xk} converges a.s. to the unique minimizer of φ.477

Finally, we provide the convergence rate analysis of LSOS-FS. We prove that478

the expected function error converges R-linearly provided that ζk vanishes R-linearly.479

We also prove that a Q-linear rate of convergence can be achieved if the monotone480

(Armijo) line search is employed and the descent direction is ensured. The latter481

condition can be provided by putting an upper bound on the forcing term, which is in482

line with the classical (deterministic) analysis. The results are stated in the following483

three theorems, whose proofs rely on the steps of the proof of Theorem 4.2. Since L is484

an upper bound of the spectrum of the Hessian estimates, without loss of generality485

we can assume L ≥ 1.486
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Theorem 6.3. Let {xk} be a sequence generated by Algorithm 5.1 applied to prob-487

lem (5.1). Let δk → 0 and let ζk → 0 R-linearly. Let Assumption 3.4 hold, g(x) be488

a Lipschitz-continuous unbiased gradient estimate and the sequence {tk} be bounded489

away from zero. Then there exist constants ρ1 ∈ (0, 1) and C > 0 such that490

(6.7) E(φ(xk)− φ(x∗)) ≤ ρk1C.491

Proof. Let tmin be a lower bound for the sequence {tk}. Following the steps of492

the proof of Theorem 4.2 we obtain (4.4) with c10 = η tmin/(2L), or equivalently,493

φ(xk+1)− φ(x∗) ≤ φ(xk)− φ(x∗)− c10 E(‖g(xk)‖2|Fk) + ζk.494

Moreover, using (4.5), (4.6) and the right-hand inequality in (2.2), we have495

φ(xk+1)− φ(x∗) ≤ φ(xk)− φ(x∗)−
2c10
L

(φ(xk)− φ(x∗)) + ζk.496

Applying the expectation we get497

(6.8) E(φ(xk+1)− φ(x∗)) ≤ ρE(φ(xk)− φ(x∗)) + ζk,498

where ρ = 1 − 2c10/L = 1 − ηtmin/L
2 ∈ (0, 1). Applying the induction argument we499

obtain500

E(φ(xj)− φ(x∗)) ≤ ρjE(φ(x0)− φ(x∗)) + υj ,501

where υj =
∑j−1
i=1 ρ

i−1ζj−i. The thesis follows by recalling that Lemma 4.2 from [23]502

implies υj → 0 R-linearly, with a factor ρv = 1
2 (1 + max{ρ, ρζ}) ∈ (0, 1), where503

ρζ ∈ (0, 1) is an R-linear convergence factor of the sequence ζk. Finally, the statement504

holds with ρ1 = max{ρ, ρv}.505

Notice that the condition δk → 0 can be relaxed with 0 < δk → δmin where δmin <506

µ/(2L). The reason is that, eventually, the inexact second-order direction becomes a507

descent direction if (6.6) holds for all k large enough. Under the same argument we508

can prove Lemma 6.1 and the proof is essentially the same as for Theorem 6.3. Thus,509

the R-linear convergence is attainable under the persistent inexactness in solving the510

Newton equation.511

Theorem 6.4. Let {xk} be a sequence generated by Algorithm 5.1 applied to prob-512

lem (5.1). Assume that ζk → 0 R-linearly and δk → δmin, where δmin < µ/(2L).513

Moreover, let Assumption 3.4 be satisfied, g(x) be a Lipschitz-continuous unbiased514

gradient estimate and {tk} be bounded away from zero. Then there exist ρ1 ∈ (0, 1)515

and C > 0 such that (6.7) holds.516

An immediate consequence of the previous theorem is the following worst-case517

complexity result.518

Corollary 6.5. Let {xk} be a sequence generated by Algorithm 5.1 applied to
problem (5.1). Assume that ζk → 0 R-linearly and δk → δmin, where δmin < µ/(2L).
Moreover, Let Assumption 3.4 be satisfied, g(x) be a Lipschitz-continuous unbiased
gradient estimate and {tk} be bounded away from zero. Then, to achieve E(φ(xk) −
φ(x∗)) ≤ ε for some ε ∈ (0, e−1), Algorithm 5.1 takes at most

kmax =

⌈
|log(C)|+ 1

|log(ρ1)|
log(ε−1)

⌉
,

where ρ1 ∈ (0, 1) and C > 0 satisfy (6.7).519
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Proof. Theorem 6.4 implies (6.7). Thus, E(φ(xk)− φ(x∗)) ≤ ε for all

k ≥ log(C)− log(ε)

−log(ρ1)
.

Now, using the fact that log(ε) < −1 and log(ρ1) < 0 we can provide an upper bound
to the right-hand side of the previous inequality as follows

log(C)− log(ε)

−log(ρ1)
≤ |log(C)|log(ε−1) + log(ε−1)

|log(ρ1)|
=
|log(C)|+ 1

|log(ρ1)|
log(ε−1)

and the thesis holds.520

In order to achieve a Q-linear rate of convergence, the standard Armijo line search521

has to be used, i.e., ζk = 0 has to be set in (5.10). Again, the forcing terms δk need522

not vanish in order to achieve the desired rate (i.e., Newton’s equation can be solved523

inexactly), but it must be bounded above away from one. More in detail, it must be524

δmax ≤ µ/(2L), as stated in the following theorem. A sequence {δk} satisfying the525

requirement of the theorem can be defined as δk = µ/(2L) for all k.526

Theorem 6.6. Let {xk} be a sequence generated by Algorithm 5.1 applied to prob-527

lem (5.1). Assume that δmax ≤ µ/(2L) and ζk = 0 for all k. Moreover, suppose that528

Assumption 3.4 is satisfied, g(x) is a Lipschitz-continuous unbiased gradient estimate529

and the sequence {tk} is bounded away from zero. Then there exists ρ2 ∈ (0, 1) such530

that for all k531

(6.9) E(φ(xk+1)− φ(x∗)) ≤ ρ2E(φ(xk)− φ(x∗)).532

Proof. Notice that the Lipschitz continuity of the gradient estimate implies that
(6.6) holds for every k since δk ≤ µ/(2L). Let tmin be a lower bound for the sequence
{tk}. By following the steps of the proof of Theorem 6.3, we have that (6.8) holds
with ζk = 0. Therefore, by setting

ρ2 = ρ = 1− ηtmin

L2
≤ 1− η(1− η)βµ2

L2(2L+ µ)

the thesis holds.533

Since Theorem 6.6 implies E(φ(xk) − φ(x∗)) ≤ ρk2(φ(x0) − φ(x∗)), following the534

same reasoning as in Corollary 6.5, we obtain the following complexity result.535

Corollary 6.7. Let {xk} be a sequence generated by Algorithm 5.1 applied to
problem (5.1). Assume that δmax ≤ µ/(2L) and ζk = 0 for all k. Moreover, sup-
pose that Assumption 3.4 is satisfied, g(x) is a Lipschitz-continuous unbiased gra-
dient estimate and the sequence {tk} is bounded away from zero. Then, in order
to achieve E(φ(xk) − φ(x∗)) ≤ ε for some ε ∈ (0, e−1), LSOS-FS takes at most
kmax = O(log(ε−1)) iterations. More precisely,

kmax =

⌈
|log(φ(x0)− φ(x∗))|+ 1

|log(ρ2)|
log(ε−1)

⌉
,

where ρ2 satisfies (6.9).536

This manuscript is for review purposes only.



LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 21

7. Numerical experiments. We developed MATLAB implementations of the537

algorithms discussed in the previous sections and tested them on two sets of stochastic538

optimization problems. The first set consists of general convex problems with the539

addition of random noise in the evaluation of the objective function and its derivatives.540

On these problems we tested Algorithms SOS and LSOS discussed in sections 2 to 4.541

The second set consists of finite-sum problems arising in training linear classifiers542

with regularized logistic regression models. On these problems we tested a specialized543

version of LSOS-FS. All the tests were run with MATLAB R2019b on a server available544

at the University of Campania “L. Vanvitelli”, equipped with 8 Intel Xeon Platinum545

8168 CPUs, 1536 GB of RAM and Linux CentOS 7.5 operating system.546

7.1. Convex random problems. The first set of test problems was defined by547

setting548

(7.1) φ(x) =

n∑
i=1

λi (exi − xi) + (x− e)>A(x− e),549

where, given a scalar κ� 1, the coefficients λi are logarithmically spaced between 1550

and κ, A ∈ Rn×n is symmetric positive definite with eigenvalues λi, and e ∈ Rn has all551

entries equal to 1. Changing the values of n and κ allows us to have strongly convex552

problems with variable size and conditioning. In order to obtain unbiased estimates553

of φ and its gradient, we considered εf (x) ∼ N (0, σ) and (εg(x))i ∼ N (0, σ) for all i,554

where N (0, σ) is the normal distribution with mean 0 and standard deviation σ. We555

considered σ ∈ (0, 1]. Since the Hessian estimate can be biased, we set it equal to the556

diagonal matrix εB(x) = diag (µ1, . . . , µn), where µj ∼ N (0, σ) for all j.557

In applying Algorithm 4.1 to this set of problems, we introduced a small modi-558

fication in the switching criterion at line 7 of the algorithm, by deactivating the line559

search whenever tk‖dk‖ < tmin instead of deactivating it when tk < tmin.560

We first ran Algorithm LSOS with exact solution of the noisy Newton systems,
i.e., δk = 0 in (4.1). The parameters were set as n = 103, κ = 102, 103, 104,
σ = 0.1%κ, 0.5%κ, 1%κ, and A was generated by using the MATLAB sprandsym

function with density 0.5 and eigenvalues λ1, . . . , λn. It was verified experimentally
that the condition number of the Hessian of φ is close to κ at the solution. This
solution was computed with high accuracy by using the (deterministic) L-BFGS im-
plementation by Mark Schmidt, available from https://www.cs.ubc.ca/∼schmidtm/
Software/minFunc.html. The starting point was set as a random vector with distri-
bution of entries N (0, 5). The noisy Newton systems were solved by the MATLAB
backslash operator. The parameter used to switch between the line search and the
pre-defined gain sequence was set as tmin = 10−3. The gain sequence {αk} used after
the deactivation of the line search was defined as

αk = αkτ
T

T + k − kτ
for all k > kτ ,

where kτ is the first iteration such that tkτ ‖dkτ ‖ < tmin, αkτ = tmin/‖dkτ ‖ and561

T = 106. In the nonmonotone line search we set η = 10−4 and ζk = ϑk for all k,562

where ϑ = 0.9.563

LSOS was compared with the following algorithms:564

• SOS (Algorithm 2.1) with exact solution of the noisy Newton systems and565

gain sequence defined as566

(7.2) αk =
1

‖d0‖
T

T + k
567
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• Stochastic Gradient Descent with step length (7.2), referred to as SGD.568

For both SOS and SGD the choice of the starting point was the same as for LSOS.569

The comparison was performed in terms of the absolute error of the objective570

function value (with respect to the optimal value computed by the deterministic L-571

BFGS algorithm) versus the execution time. We ran each algorithm 20 times on each572

problem and computed the average error and the average execution time spent until573

each iteration k. The results are shown in Figure 1, where each error line is plotted574

with its 95% confidence interval (which does not appear in the pictures because its575

size is negligible). The time interval on the x axis is the average time required by576

LSOS to perform 50 iterations.577

Fig. 1. Test set 1: comparison of LSOS, SOS and SGD. The condition number increases from
top to bottom, the noise increases from left to right.

The figure shows that the introduction of the line search yields much better578

exploitation of the second-order directions, thus enabling the method to approach the579

solution faster. The line search also allows us to overcome typical problems associated580

with the choice of a pre-defined gain sequence, which may strongly affect the speed581

of the algorithm and possibly lead to divergence in practice.582

We also investigated the effect of the inexactness in the solution of the noisy583

Newton systems. To this aim, we considered problems of the form (7.1) with size584

n = 2 · 104, where, following [14], the symmetric positive definite matrix A was585
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defined as586

A = V D V T .587

Here D is a diagonal matrix with diagonal entries λ1, . . . , λn and

V = (I − 2 v3v
T
3 )(I − 2 v2v

T
2 )(I − 2 v1v

T
1 ),

with vj random vectors of unit norm. Since for these problems the Hessian is available588

in factorized form, we solved the noisy Newton systems with the Conjugate Gradient589

(CG) method implemented in the MATLAB pcg function, exploting the factorization590

to compute matrix-vector products. In this case, we compared three versions of591

Algorithm LSOS:592

• LSOS with with δk = 0 in (4.1);593

• LSOS with δk = %k and % = 0.95, referred to as LSOS-I (where I denotes the594

inexact solution of the Newton systems according to (4.1));595

• a line-search version of the SGD algorithm (corresponding to LSOS with596

dk = −g(xk)), referred to as SGD-LS.597

The CG method in LSOS and LSOS-I was run until the residual norm of the Newton598

system had been reduced by max(δk, 10−6) with respect to the initial residual norm.599

In Figure 2 we report the results obtained with the three algorithms, in terms of600

average error on the objective function versus average execution time over 20 runs,601

with 95% confidence intervals (not visible, as in the previous tests). In this case the602

time interval on the x axis is the average time required by LSOS-I to perform 250603

iterations. The plots clearly show that LSOS-I outperforms the other methods.604

7.2. Binary classification problems. The second set of test problems models605

the training a linear classifier by minimization of the `2-regularized logistic regres-606

sion. Given N pairs (ai, bi), where ai ∈ Rn is a training point and bi ∈ {−1, 1} the607

corresponding class label, an unbiased hyperplane approximately separating the two608

classes can be found by minimizing the function609

(7.3) φ(x) =
1

N

N∑
i=1

φi(x),610

where611

φi(x) = log
(

1 + e−bi a
>
i x
)

+
µ

2
‖x‖2612

and µ > 0. By setting zi(x) = 1 + e−bi a
>
i x, the gradient and the Hessian of φi are613

∇φi(x) =
1− zi(x)

zi(x)
bi ai + µx and ∇2φi(x) =

zi(x)− 1

z2i (x)
aia
>
i + µI.614

From zi(x)−1
z2i (x)

∈ (0, 1) it follows that φi is µ-strongly convex and615

µI � ∇2φi(x) � LI, L = µ+ max
i=1,...,N

‖ai‖2.616

We applied the L-BFGS version of Algorithm LSOS-FS described in section 5,617

which is sketched in Algorithm 7.1.618
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Fig. 2. Test set 2: comparison of LSOS, LSOS-I and SGD-LS. The condition number increases
from top to bottom, the noise increases from left to right.

Algorithm 7.1 LSOS-BFGS

1: given x0 ∈ Rn, m, l ∈ N, η, ϑ ∈ (0, 1)
2: for k = 0, 1, 2, . . . do
3: compute a partition {K0,K1, . . . ,Knb−1} of {1, . . . , N}
4: for r = 0, . . . , nb − 1 do
5: choose Nk = Kr and compute g(xk) = gSAGA

Nk (xk) as in (5.7)-(5.8)
6: compute dk = −Hk g(xk) with Hk defined in (5.5)-(5.6)
7: find a step length tk satisfying

fNk (xk + tkdk) ≤ fNk (xk) + ηtk g(xk)>dk + ϑk

8: set xk+1 = xk + tkdk;
9: if mod (k, l) = 0 and k ≥ 2 l then

10: update the L-BFGS correction pairs by using (5.3)-(5.4)
11: end if
12: end for
13: end for

To test the effectiveness of LSOS-BFGS we considered six binary classification619

datasets from the LIBSVM collection available from https://www.csie.ntu.edu.tw/620

∼cjlin/libsvmtools/datasets/, which we list in Table 1.621
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Table 1
Datasets from LIBSVM. For each dataset the number of training points and the number of

features (space dimension) are reported; the datasets are sorted by the increasing number of fea-
tures. Whenever a training set was not specified in LIBSVM, we selected it by using the MATLAB
crossvalind function so that it contained 70% of the available data.

name N n
covtype 406709 54
w8a 49749 300
epsilon 400000 2000
gisette 6000 5000
real-sim 50617 20958
rcv1 20242 47236

We compared Algorithm 7.1 with the stochastic L-BFGS algorithms proposed622

in [17] and [30] (referred to as GGR and MNJ, respectively), both using a con-623

stant step length selected by means of a grid search over the set {1, 5 · 10−1, 10−1, 5 ·624

10−2, 10−2, . . . , 5 · 10−5, 10−5}, and with a mini-batch variant of the SAGA algo-625

rithm equipped with the same line search used in LSOS-BFGS. The implementations626

of GGR and MNJ were taken from the MATLAB StochBFGS code available from627

https://perso.telecom-paristech.fr/rgower/software/StochBFGS dist-0.0.zip. In Al-628

gorithm 7.1 we set ϑ = 0.999 and started the line searches from a value tini selected629

by means of a grid search over {1, 5 · 10−1, 10−1, 5 · 10−2, 10−2, . . . , 5 · 10−5, 10−5}. In630

particular, we set tini = 5 · 10−3 for epsilon, tini = 5 · 10−2 for covtype and w8a, and631

tini = 1 · 10−2 for gisette, rcv1 and real-sim. We adopted the same strategy as the632

line-search version of SAGA used for the comparison, setting tini = 5 ·10−1 for epsilon633

and tini = 1 for the other datasets. Furthermore, we set m = 10 and l = 5. Since the634

first L-BFGS update pair is available after the first 2l = 10 iterations, following [10]635

we take dk = −g(xk) for the first 10 iterations. The same values of m and l were used636

in the MNJ algorithm proposed in [30]. For GGR, following the indications coming637

from the results in [17], we set m = 5 and used the sketching based on the previous638

directions (indicated as prev in [17]), with sketch size l = d 3
√
ne. We chose the sample639

size equal to
⌈√

N
⌉

and the regularization parameter µ = 1/N , as in the experiments640

reported in [17]. We decided to stop the algorithms when a maximum execution time641

was reached, i.e., 60 seconds for covtype, w8a and gisette, and 300 seconds for epsilon,642

real-sim and rcv1.643

Figure 3 shows a comparison among the four algorithms in terms of the average644

absolute error of the objective function (with respect to the optimal value computed645

with the L-BFGS code by Mark Schmidt) versus the average execution time. As in646

the previous experiments, the error and the times were averaged over 20 runs and647

the plots show their 95% confidence interval (shaded lines, when visible). For all the648

algorithms, the grid search for defining or initializing the step lengths was performed649

on the first of the 20 runs and then fixed for the remaining 19 runs.650

The results show that LSOS-BFGS algorithm outperforms the other stochastic651

L-BFGS algorithms on w8a and gisette, and outperforms GGR on real-sim and rcv1.652

It is worth noting that for covtype and rcv1 the error for GGR tends to increase after653

a certain iteration, while the other algorithms seem to keep a much less “swinging”654

decrease. Furthermore, LSOS-BFGS seems to have a less oscillatory behavior with655

respect to GGR and MNJ. We conjecture that this behavior is due to the use of the656

line-search strategy. Since, in general, stopping criteria on this type of problems rely657

on the number of iterations, the number of epochs or the computational time, we658
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believe that a smoother behaviour could be associated with more consistent results if659

one decides to stop the execution in advance (see, e.g., the behavior of MNJ on epsilon).660

Finally, we observe that LSOS-BFGS is more efficient than the line-search-based mini-661

batch SAGA on all the problems, showing that the introduction of stochastic second-662

order information is crucial for the performance of the algorithm.663

Fig. 3. Binary classification problems: comparison of LSOS-BFGS, MNJ, GGR and SAGA.

8. Conclusions. The proposed LSOS framework includes a variety of second-664

order stochastic optimization algorithms, using Newton, inexact Newton and, for665

finite-sum problems, limited-memory quasi-Newton directions. Almost sure conver-666

gence of the sequences generated by all the LSOS variants has been proved. For667

finite-sum problems, R-linear and Q-linear convergence rates of the expected objective668

This manuscript is for review purposes only.



LSOS: LINE-SEARCH SECOND-ORDER STOCHASTIC OPTIMIZATION METHODS 27

function error have been proved for stochastic L-BFGS Hessian approximations and669

any Lipschitz-continuous unbiased gradient estimates. In this case, an O(log(ε−1))670

complexity bound has been also provided.671

Numerical experiments have confirmed that line-search techniques in second-order672

stochastic methods yield a significant improvement over predefined step-length se-673

quences. Furthermore, in the case of finite-sum problems, the experiments have674

shown that combining stochastic L-BFGS Hessian approximations with the SAGA675

variance reduction technique and with line searches produces methods that are highly676

competitive with state-of-the art second-order stochastic optimization methods.677

A challenging future research agenda includes the extension of (some) of these678

results to problems that do not satisfy the strong convexity assumption, as well as679

extensions to constrained stochastic problems.680
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[24] N. Krejić, Z. Lužanin, Z. Ovcin, and I. Stojkovska, Descent direction method with line749
search for unconstrained optimization in noisy environment, Optim. Methods Softw., 30750
(2015), pp. 1164–1184, https://doi.org/10.1080/10556788.2015.1025403.751
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