
SIAM J. OPTIM. c© 2017 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 1171–1203

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION FOR
DISTRIBUTED OPTIMIZATION∗

DRAGANA BAJOVIĆ† , DUŠAN JAKOVETIĆ† , NATAŠA KREJIĆ‡ , AND

NATAŠA KRKLEC JERINKIĆ‡

Abstract. We consider distributed optimization problems where networked nodes cooperatively
minimize the sum of their locally known convex costs. A popular class of methods to solve these
problems are the distributed gradient methods, which are attractive due to their inexpensive itera-
tions, but have a drawback of slow convergence rates. This motivates the incorporation of second
order information in the distributed methods, but this task is challenging: although the Hessians
which arise in the algorithm design respect the sparsity of the network, their inverses are dense,
hence rendering distributed implementations difficult. We overcome this challenge and propose a
class of distributed Newton-like methods, which we refer to as distributed quasi-newton (DQN). The
DQN family approximates the Hessian inverse by (1) splitting the Hessian into its diagonal and off-
diagonal parts, (2) inverting the diagonal part, and (3) approximating the inverse of the off-diagonal
part through a weighted linear function. The approximation is parameterized by the tuning variables
which correspond to different splittings of the Hessian and by different weightings of the off-diagonal
Hessian part. Specific choices of the tuning variables give rise to different variants of the proposed
general DQN method—dubbed DQN-0, DQN-1, and DQN-2—which mutually trade-off communi-
cation and computational costs for convergence. Simulations demonstrate the effectiveness of the
proposed DQN methods.

Key words. distributed optimization, second order methods, Newton-like methods, linear
convergence

AMS subject classifications. 90C25, 90C53, 90K05

DOI. 10.1137/15M1038049

1. Introduction. We consider a connected network with n nodes, each of which
has access to a local cost function fi : Rp → R, i = 1, . . . , n. The objective for all
nodes is to minimize the aggregate cost function f : Rp → R, defined by

f(y) =

n∑
i=1

fi(y).(1)

Problems of this form arise in many emerging applications like big data analyt-
ics, e.g., [7], distributed inference in sensor networks [33, 16, 21, 5], and distributed
control [29].

Various methods for solving (1) in a distributed manner are available in the
literature. A class of methods based on gradient descent at each node and exchange
of information between neighboring nodes is particularly popular; see [30, 31, 32, 14,
15, 6, 40, 36, 20]. Assuming that the local costs fi’s are strongly convex and have
Lipschitz continuous gradients and that a constant step size α is used, these methods
converge linearly to a solution neighborhood. With such methods, step size α controls

∗Received by the editors September 2, 2015; accepted for publication (in revised form) February
6, 2017; published electronically June 22, 2017.

http://www.siam.org/journals/siopt/27-2/M103804.html
Funding: Research supported by the Serbian Ministry of Education, Science, and Technological

Development grant 174030.
†Biosense Institute, University of Novi Sad, Zorana Djindjića 3, 21000 Novi Sad, Serbia

(dbajovic@uns.ac.rs, djakovet@uns.ac.rs).
‡Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg

Dositeja Obradovića 4, 21000 Novi Sad, Serbia (natasak@uns.ac.rs, natasa.krklec@dmi.uns.ac.rs).

1171

http://www.siam.org/journals/siopt/27-2/M103804.html
mailto:dbajovic@uns.ac.rs
mailto:djakovet@uns.ac.rs
mailto:natasak@uns.ac.rs
mailto:natasa.krklec@dmi.uns.ac.rs

1172 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

the trade-off between the convergence speed toward a solution neighborhood and
the distance of the limit point from the actual solution, and larger α means faster
convergence but larger distance from the solution in the limit; see, e.g., [15], [22].
Distributed first order (gradient) methods allow for a penalty interpretation, where
the distributed method is interpreted as a (centralized) gradient method applied on a
carefully constructed penalty reformulation of the original problem (1); see [15], [22]
for details.

Given the existence of well-developed theory and efficient implementations of
higher order methods in centralized optimization in general, there is a clear need to
investigate the possibilities of employing higher order methods in distributed opti-
mization as well. More specifically, for additive cost structures (1) we study here, a
further motivation for developing distributed higher order methods comes from their
previous success when applied to similar problems in the context of centralized opti-
mization. For example, additive cost (1) is typical in machine learning applications
where second order methods play an important role; see, e.g., [2, 3, 4]. Another sim-
ilar class of problems arise in stochastic optimization, where the objective function
is given in the form of mathematical expectation. Again, second order methods are
successfully applied in centralized optimization [12, 17, 18, 25, 26].

There have been several papers on distributed Newton-type methods. Distributed
second order methods for network utility maximization and network flow optimization
are developed in [37] and [41] but on problem formulations different from (1). The net-
work Newton (NN) method [22] aims at solving (1) and presents a family of distributed
(approximate) Newton methods. The class of NN methods is extensively analyzed in
[23, 24]. The proposed methods are based on the penalty interpretation [15, 22] of the
distributed gradient method in [30], and they approximate the Newton step through
an `th order Taylor approximation of the Hessian inverse, ` = 0, 1, This approx-
imation gives rise to different variants of methods within the family, dubbed NN-`.
Different choices of ` exhibit inherent trade-offs between the communication cost and
the number of iterations until convergence, while NN-0, 1, and 2 are the most efficient
in practice. The proposed methods converge linearly to a solution neighborhood, ex-
hibit a kind of quadratic convergence phase, and show significantly better simulated
performance when compared with the standard distributed gradient method in [30].
Reference [27] proposes a distributed second order method which approximates the
(possibly expensive) primal updates with the distributed alternating direction of mul-
tipliers method in [35]. In [38], the authors propose a distributed Newton Raphson
method based on the consensus algorithm and separation of time-scales. Reference [28]
proposes distributed second order methods based on the proximal method of multi-
pliers (PMM). Specifically, the methods approximate the primal variable update step
through a second order approximation of the NN-type [22]. While the NN methods
in [22] converge to a solution neighborhood, the methods in [28, 27, 38] converge to
exact solutions.

In this paper, we extend [22, 23, 24] and propose a different family of distributed
Newton-like methods for solving (1). We refer to the proposed family as distributed
quasi-Newton (DQN) methods. The methods are designed to exploit the specific
structure of the penalty reformulation [15, 22], as is done in [22], but with a different
Hessian inverse approximation, for which the idea originates in [19]. Specifically, the
Hessian matrix is approximated by its block diagonal part, while the remaining part
of the Hessian is used to correct the right-hand side of the quasi-Newton equation.
The methods exhibit linear convergence to a solution neighborhood under a set of
standard assumptions for the functions fi and the network architecture—each fi is

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1173

strongly convex and has Lipschitz continuous gradient, and the underlying network
is connected. Simulation examples on (strongly convex) quadratic and logistic losses
demonstrate that DQN compares favorably with NN proposed in [22].

With the DQN family of methods, the approximation of the Newton step is pa-
rameterized by diagonal matrix Lk at each iteration k, and different choices of Lk give
rise to different variants of DQN, which we refer to as DQN-0, 1, and 2. Different
variants of DQN, based on different matrices Lk, trade off the number of iterations
and computational cost. In particular, setting Lk = 0 yields the DQN-0 method; a
constant, diagonal matrix Lk = L corresponds to DQN-1. Finally, Lk with DQN-2 is
obtained through approximately fitting the Newton equation (34) using a first order
Taylor approximation. The DQN-1 method utilizes the latter, DQN-2’s weight ma-
trix at the first iteration, and then it “freezes” it to this constant value throughout
the iterations; that is, it sets L = L0, where L0 corresponds to the weight matrix of
DQN-2 in the initial iteration.

Let us further specify the main differences between the proposed DQN family
and NN methods in [22] as the NN methods are used as the benchmark in the work
presented here. First, the DQN methods introduce a different, more general splitting
of Hessians with respect to NN, parameterized with a scalar θ ≥ 0; in contrast, the
splitting used in NN corresponds to setting θ = 1. Second, with the proposed variants
of DQN-0, 1, and 2, we utilize diagonal matrices Lk, while the NN-` methods use
in general block-diagonal or neighbor-sparse matrices. Third, DQN and NN utilize
different inverse Hessian approximations; the NN’s inverse Hessian approximation
matrix is symmetric, while with DQN it is not symmetric in general. Fourth, while NN
approximates the inverse Hessian directly (independently of the Newton equation),
DQN actually aims at approximating the Newton equation. Hence, unlike NN, the
resulting DQN’s inverse Hessian approximation (with DQN-2 in particular) explicitly
depends on the gradient at the current iterate, as is the case with many quasi-Newton
methods; see, e.g., [9]. Finally, the analysis here is very different from [22], and
the major reason comes from the fact that the Hessian approximation with DQN is
asymmetric in general. This fact also incurs the need for a safeguarding step with
DQN in general, as detailed in section 3. We also point out that results presented
in [22] show that NN methods exhibit a quadratic convergence phase. It is likely that
similar results can be shown for certain variants of DQN methods as well, but detailed
analysis is left for future work. It may be very challenging to rigorously compare the
linear convergence rate factors of DQN and NN methods and their respective inverse
Hessian approximations. However, we provide in section 5 both certain analytical
insights and extensive numerical experiments to compare the two classes of methods.

As noted, DQN methods do not converge to the exact solution of (1), but they con-
verge to a solution neighborhood, as is the case with other methods (e.g., distributed
gradient descent [30] and NN methods [22]) which are based on the penalty inter-
pretation of (1). Hence, for very high accuracies, they may not be competitive with
distributed second order methods which converge to the exact solution [27, 28, 38].
However, following the framework of embedding distributed second order methods
into PMM, developed in [28], we apply here the DQN Newton direction approxi-
mations to the PMM methods; we refer to the resulting methods as PMM-DQN-`,
` = 0, 1, 2. Simulation examples on strongly convex quadratic costs demonstrate that
the PMM-DQN methods compare favorably with the methods in [27, 28, 38]. There-
fore, with respect to the existing literature and in particular with respect to [22, 28],
this paper broadens the possibilities for distributed approximations of relevant New-
ton directions and hence offers alternative distributed second order methods, which

1174 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

exhibit competitive performance on the considered simulation examples. Analytical
studies of PMM-DQN are left for future work.

This paper is organized as follows. In section 2 we give the problem statement and
some preliminaries needed for the definition of the method and convergence analysis.
Section 3 contains the description of the proposed class of Newton-like methods and
convergence results. Specific choices of the diagonal matrix that specifies the method
completely are presented in section 4. Some simulation results are presented in section
5, while section 6 discusses extensions of embedding DQN in the PMM framework.
Finally, conclusions are drawn in section 7, while the appendix provides some auxiliary
derivations.

2. Preliminaries. Let us first give some preliminaries about problem (1), its
penalty interpretation in [15, 22], as well as the decentralized gradient descent algo-
rithm in [30] that will be used later on.

The following assumption on the fi’s is imposed.
Assumption A1. The functions fi : Rp → R, i = 1, . . . , n, are twice continuously

differentiable, and there exist constants 0 < µ ≤ L <∞ such that for every x ∈ Rp

µI � ∇2fi(x) � LI.

Here, I denotes the p× p identity matrix, and M � N means that the matrix N −M
is positive semidefinite.

This assumption implies that the functions fi, i = 1, . . . , n, are strongly convex
with modulus µ > 0,

fi(z) ≥ fi(y) +∇fi(y)T (z − y) +
µ

2
‖z − y‖2, y, z ∈ Rp,(2)

and the gradients are Lipschitz continuous with the constant L, i.e.,

‖∇fi(y)−∇fi(z)‖ ≤ L‖y − z‖, y, z ∈ Rp, i = 1, . . . , n.(3)

Assume that the network of nodes is an undirected network G = (V, E), where V
is the set of nodes and E is the set of all edges, i.e., all pairs {i, j} of nodes which can
exchange information through a communication link.

Assumption A2. The network G = (V, E) is connected, undirected, and simple
(no self-loops nor multiple links).

Let us denote by Oi the set of nodes that are connected with the node i (open
neighborhood of node i) and let Ōi = Oi

⋃
{i} (closed neighborhood of node i). We

associate with G a symmetric, (doubly) stochastic n × n matrix W. The elements of
W are all nonnegative and rows (and columns) sum up to one. More precisely, we
assume the following.

Assumption A3. The matrix W = WT ∈ Rn×n is stochastic with elements wij
such that

wij > 0 if {i, j} ∈ E , wij = 0 if {i, j} /∈ E , i 6= j, and wii = 1−
∑
j∈Oi

wij

and there are constants wmin and wmax such that for i = 1, . . . , n

0 < wmin ≤ wii ≤ wmax < 1.

Denote by λ1 ≥ · · · ≥ λn the eigenvalues of W. Then it can be easily seen that
λ1 = 1. Furthermore, the null space of I −W is spanned by e := (1, . . . , 1).

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1175

Following [15], [22], the auxiliary function Φ : Rnp → R and the corresponding
penalty reformulation of (1) is introduced as follows. Let x = (x1, . . . , xn) ∈ Rnp with
xi ∈ Rp, and denote by Z ∈ Rnp×np the matrix obtained as the Kronecker product of
W and the identity I ∈ Rp×p,Z = W ⊗ I.

The corresponding penalty reformulation of (1) is given by

min
x∈Rnp

Φ(x) := α

n∑
i=1

fi(xi) +
1

2
xT (I− Z)x.(4)

Applying the standard gradient method to (4) with the unit step size we get

xk+1 = xk −∇Φ(xk), k = 0, 1, . . . ,(5)

which, denoting the ith p × 1 block of xk by xki , and after rearranging terms, yields
the decentralized gradient descent method [30]

xk+1
i =

∑
j∈Ōi

wij x
k
j − α∇fi(xki), i = 1, . . . , n.(6)

Clearly, the penalty parameter α influences the relation between (4) and (1)—a smaller
α means better agreement between the problems but also implies smaller steps in (6)
and thus makes the convergence slower. It can be shown [22] that if ỹ ∈ Rp is the
solution of (1) and x∗ := (ȳ1, . . . , ȳn) ∈ Rnp is the solution of (4), then, for all i,

‖ȳi − ỹ‖ = O(α).(7)

The convergence of (6) toward x∗ is linear, i.e., the following estimate holds [40, 15]:

Φ(xk)− Φ(x∗) ≤ (1− ξ)k(Φ(x0)− Φ(x∗)),(8)

where ξ ∈ (0, 1) is a constant depending on Φ, α, and W.
The matrix and vector norms that will be frequently used in what follows are

defined here. Let ‖a‖2 denote the Euclidean norm of vector a of arbitrary dimension.
Next, ‖A‖2 denotes the spectral norm of matrix A of arbitrary dimension. Further,
for a matrix M ∈ Rnp×np with blocks Mij ∈ Rp×p, we will also use the following block
norm:

‖M‖ := max
j=1,...,n

n∑
i=1

‖Mij‖2,

where, as noted, ‖Mij‖2 is the spectral norm of Mij . For a vector x ∈ Rnp with blocks
xi ∈ Rp, the following block norm is also used:

‖x‖ :=

n∑
i=1

‖xi‖2.

3. Distributed quasi-Newton method. In this section we introduce a class
of quasi-Newton methods for solving (4). The general DQN method is proposed in
subsection 3.1. The method is characterized by a generic diagonal matrix Lk. The
global linear convergence rate for the class is established in subsection 3.2, while local
linear convergence rate with the full step size ε = 1 is analyzed in subsection 3.3.
Specific variants DQN-0, 1, and 2, which correspond to the specific choices of Lk, are
studied in section 4. As we will see, algorithm DQN has certain tuning parameters,
including the step size ε. Discussion on the tuning parameters choice is relegated to
section 4.

1176 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

3.1. The proposed general DQN method. The problem we consider from
now on is (4), where we recall Z = W ⊗ I, and W satisfies Assumption A3.

The problem under consideration has a specific structure as the Hessian is sparse if
the underlying network is sparse. However, its inverse is dense. Furthermore, the ma-
trix inversion (i.e., linear system solving) is not suitable for decentralized computation.
One possibility of exploiting the structure of ∇2Φ(x) in a distributed environment is
presented in [22], where the Newton step is approximated through a number of inner
iterations. We present here a different possibility. Namely, we keep the diagonal part
of ∇2Φ(x) as the Hessian approximation but at the same time use the nondiagonal
part of ∇2Φ(x) to correct the right-hand-side vector in the (quasi-) Newton equation.
Let us define the splitting

Wd = diag(W) and Wu = W −Wd

and Z = Zd + Zu with

Zd = Wd ⊗ I = diag(Z) and Zu = Wu ⊗ I.

Here, diag(W) denotes the diagonal matrix with the same diagonal as the matrix
W . Hence, matrix Zd is an np × np diagonal matrix whose ith p × p block is the
scalar matrix wiiI, Zu is an np×np block (symmetric) matrix such that (i, j)th p× p
off-diagonal blocks are again scalar matrices wijI, while the diagonal blocks are all
equal to zero.

Clearly, the gradient is

∇Φ(x) = α∇F (x) + (I− Z)x,

where I denotes the np× np identity matrix and

F (x) =

n∑
i=1

fi(xi), ∇F (x) = (∇f1(x1), . . . ,∇fn(xn)),

while the Hessian is

∇2Φ(x) = α∇2F (x) + I− Z,

where ∇2F (x) is the block diagonal matrix with the ith diagonal block ∇2fi(xi).
The general DQN algorithm is presented below. Denote by k the iteration counter,

k = 0, 1, . . . , and let xk = (xk1 , . . . , x
k
n) ∈ Rnp be the estimate of x∗ at iteration k.

Consider the following splitting of the Hessian:

∇2Φ(xk) = Ak −G(9)

with

Ak = α∇2F (xk) + (1 + θ)(I− Zd)(10)

and

G = Zu + θ(I− Zd)

for some θ ≥ 0. Hence, G is an np × np block (symmetric) matrix whose ith p × p
diagonal block equals gii I, with gii := θ (1−wii), while the (i, j)th p× p off-diagonal

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1177

block equals gij I, with gij := wij . One can easily see that the splitting above recovers
the splitting for NN methods [22] taking θ = 1. We keep θ unspecified for now, and
later on we will demonstrate numerically that taking θ = 0 can be beneficial. Also,
notice that Ak is block diagonal with the ith diagonal block

Aki = α∇2fi(x
k
i) + (1 + θ)(1− wii)I.

Let Lk ∈ Rnp×np be a diagonal matrix composed of diagonal p × p matrices
Λki , i = 1, . . . , n. In this paper, we adopt the following approximation of the Newton
direction skN = −(Ak −G)−1∇Φ(xk):

sk = −(I− LkG)A−1
k ∇Φ(xk).(11)

The motivation for this approximation comes from [19] and the following reasoning.
Keep the Hessian approximation on the left-hand side of the Newton equation (Ak −
G)skN = −∇Φ(xk) diagonal, and correct the right-hand side through the off-diagonal
Hessian part. In more detail, the Newton equation can be equivalently written as

Ak skN = −∇Φ(xk) + G skN ,(12)

where the off-diagonal part s̃k := G skN is moved to the right-hand side. If we pre-
tended for a moment to know the value of s̃k, then the Newton direction is obtained as

skN = − (Ak)
−1 (∇Φ(xk)− s̃k

)
.(13)

This form is suitable for distributed implementation due to the need to invert only
the block diagonal matrix Ak. However, s̃k is clearly not known, and hence we ap-
proximate it. To this end, note that, assuming that G∇Φ(xk) is a vector with all the
entries being nonzero, without loss of generality, s̃k can be written as follows:

s̃k = Lk G∇Φ(xk),(14)

where Lk is a diagonal matrix. Therefore, estimating s̃k translates into estimating the
diagonal matrix Lk, assuming that G∇Φ(xk) is known. We follow [19] and consider
simple approximations of the “true” Lk. For example, we will consider Lk = 0, which
discards the off-diagonal Hessian part. Also, as we will see ahead, we adopt a Taylor
approximation method for estimating Lk. Now, substituting (14) into (13), we obtain
the following Newton direction approximation:

sk0 = − (Ak)
−1

(I− Lk G)∇Φ(xk).(15)

Finally, we adopt (11) as the definite form of the Newton direction approximation,

i.e., we permute the matrices (I− Lk G) and (Ak)
−1

. The reason is that both sk and
sk0 have the same inner product with ∇Φ(xk), and hence they have the same descent
properties (for example, Theorem 3.2 ahead holds unchanged for sk and sk0), while a
careful inspection shows that sk allows for a cheaper (in terms of communications per
iteration) distributed implementation.

The reasoning above justifies restriction to diagonal Lk’s, i.e., in view of (14),
adopting diagonal Lk’s does not in principle, i.e., in structure sacrifice the quality of
the Newton direction approximation, while it is computationally cheap.

1178 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Then, following a typical quasi-Newton scheme, the next iteration is defined by

xk+1 = xk + εsk(16)

for some step size ε.
Clearly, the choice of Lk is crucial in the approximation of (∇2Φ(xk))−1. The

following general algorithm assumes only that Lk is diagonal and bounded. Specific
choices of Lk will be discussed in section 4. Actually, all the proposed variants DQN-0,
1, and 2 utilize diagonal matrices Lk. Parameter θ affects splitting (9) and the search
direction (11). For this moment we are assuming only that θ is nonnegative and fixed
initially, while further details are presented later on.

In summary, the proposed distributed algorithm for solving (4) is given below.
Algorithm 1: DQN in vector format. Given x0 ∈ Rnp, ε, ρ > 0. Set k = 0.
Step 1. Chose a diagonal matrix Lk ∈ Rnp×np such that

‖Lk‖ ≤ ρ.

Step 2. Set

sk = −(I− LkG)A−1
k ∇Φ(xk).

Step 3. Set

xk+1 = xk + εsk, k = k + 1.

For the sake of clarity, the proposed algorithm, from the perspective of each node i
in the network, is presented in Algorithm 2.

Algorithm 2: DQN—distributed implementation. At each node i, require
ρ, ε > 0.

1. Initialization: Each node i sets k = 0 and x0
i ∈ Rp.

2. Each node i transmits xki to all its neighbors j ∈ Oi and receives xkj from all
j ∈ Oi.

3. Each node i calculates

dki =
(
Aki
)−1

α∇fi(xki) +
∑
j∈Oi

wij
(
xki − xkj

) .
4. Each node i transmits dki to all its neighbors j ∈ Oi and receives dkj from all
j ∈ Oi.

5. Each node i chooses a diagonal p× p matrix Λki such that ‖Λki ‖2 ≤ ρ.
6. Each node i calculates

ski = −dki + Λki
∑
j∈Ōi

Gij d
k
j .

7. Each node i updates its solution estimate as

xk+1
i = xki + ε ski .

8. Set k = k + 1 and go to step 3.
Calculation of Λki in step 6 will be specified in the next section and, for cer-

tain algorithm variants, will involve an additional interneighbor communication of
a p-dimensional vector. Likewise, choices of tuning parameters ε, ρ, θ are discussed
throughout the rest of this section and section 4.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1179

Remark 3.1. It is useful to compare (11) with the direction adopted in NN meth-
ods. Setting θ = 1 and Lk = 0 recovers NN-0, θ = 1 and Lk = −A−1

k recovers NN-1,
while NN-2 cannot be recovered in a similar fashion. Hence, DQN in a sense gener-
alizes NN-0 and NN-1. An approximation Lk = L, which will be considered later on,
does not recover any NN methods.

Observe that the approximation matrix (I−LkG)A−1
k is not symmetric in general.

This fact induces the need for a safeguarding step in Algorithm 1; more precisely the
elements of Lk are uniformly bounded as stated in step 1 (Algorithm 1), ‖L‖ ≤ ρ,
and the resulting method requires an analysis different from [22].

3.2. Global linear convergence rate. In this subsection, the global linear
convergence rate of algorithm DQN is established. The convergence analysis consists
of two parts. First, we demonstrate that sk is a descent direction. Then we determine
a suitable interval for the step size ε that ensures linear convergence of the iterative
sequence.

The following Gershgorin type theorem for block matrices is needed for the first
part of convergence analysis.

Theorem 3.2 (see [11]). For any C ∈ Rnp×np partitioned into blocks Cij of size
p× p, each eigenvalue µ of C satisfies

1

‖(Cii − µI)−1‖2
≤
∑
i 6=j

‖Cij‖2(17)

for at least one i ∈ {1, . . . , n}.
Using the above theorem we can prove the following lower bound for all eigenvalues

of a symmetric block matrix.

Corollary 3.3. Let C ∈ Rnp×np be a symmetric matrix partitioned into blocks
Cij of size p× p. Then each eigenvalue µ of C satisfies

µ ≥ min
i=1,...,n

λmin(Cii)−
∑
j 6=i

‖Cij‖2

 ,

where λmin(Cii) is the smallest eigenvalue of Cii.

Proof. Given that C is symmetric, all its eigenvalues are real. Also, Cii is sym-
metric and has only real eigenvalues. Now, fix one eigenvalue µ of the matrix C. By
Theorem 3.2, there exists i ∈ {1, . . . , n}, such that (17) holds. Next, we have

‖(Cii − µI)−1‖2 =
1

minj=1,...,p |λj(Cii)− µ|
,

where λj(Cii) is the jth eigenvalue of Cii. Thus

min
j=1,...,p

|λj(Cii)− µ| ≤
∑
j 6=i

‖Cij‖2.

We have just concluded that for any eigenvalue µ of C there exists i ∈ {1, . . . , n} and
j ∈ {1, . . . , p} such that µ lies in the interval

[λj(Cii)−
∑
i 6=l

‖Cil‖2, λj(Cii) +
∑
i 6=l

‖Cil‖2].

1180 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Hence, for each µ for which (17) holds for some fixed i, we have

µ ≥ λmin(Cii)−
∑
l 6=i

‖Cil‖2

and the statement follows.

We are now ready to prove that the search direction (11) is descent.

Theorem 3.4. Suppose that A1–A3 hold. Let

0 ≤ ρ ≤ αµ+ (1 + θ)(1− wmax)

(1− wmin)(1 + θ)

(
1

αL+ (1 + θ)(1− wmin)
− δ
)

(18)

for some δ ∈ (0, 1/(αL + (1 + θ)(1 − wmin))). Then sk defined by (11) is a descent
direction and satisfies

∇TΦ(xk)sk ≤ −δ‖∇Φ(xk)‖22.

Proof. Let us first show that sk is descent search direction. As

∇TΦ(xk)sk = −∇TΦ(xk)(I− LkG)A−1
k ∇Φ(xk),

sk is descent if vT (I − LkG)A−1
k v > 0 for arbitrary v ∈ Rnp×np. Given that (I −

LkG)A−1
k is not symmetric in general, we know the above is true if and only if the

matrix

Ck =
1

2
((I− LkG)A−1

k + A−1
k (I−GLk))

is positive definite. Ck is symmetric and thus it should be positive definite if all of its
eigenvalues are positive. The matrix Ck is partitioned in the blocks

Ckii = (Aki)−1 − 1

2
θ(1− wii)(Λki (Aki)−1 + (Aki)−1Λki), i = 1, . . . , n,

Ckij = −1

2
wij(Λ

k
i (Akj)−1 + (Aki)−1Λkj), i 6= j.

Corollary 3.3 implies that

λmin(Ck) ≥ min
i=1,...,n

(λmin(Ckii)−
∑
j 6=i

‖Ckij‖2).

The definition of Ak implies

(αµ+ (1 + θ)(1− wii))I � Aki � (αL+ (1 + θ)(1− wii))I(19)

so

(αµ+ (1 + θ)(1− wmax))I � Aki � (αL+ (1 + θ)(1− wmin))I

and therefore for every i = 1, . . . , n

‖(Aki)−1‖2 ≤
1

αµ+ (1 + θ)(1− wmax)
.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1181

Moreover, it follows that

λmin(Ckii) ≥
1

αL+ (1 + θ)(1− wmin)
− θ(1− wii)ρ
αµ+ (1 + θ)(1− wmax)

and

‖Ckij‖2 ≤
wijρ

αµ+ (1 + θ)(1− wmax)
.

Now,

λmin(Ck) ≥ min
i=1,...,n

 1

αL+ (1 + θ)(1− wmin)
− θ(1− wii)ρ
αµ+ (1 + θ)(1− wmax)

−
∑
j∈Oi

wij
ρ

αµ+ (1 + θ)(1− wmax)


= min
i=1,...,n

(
1

αL+ (1 + θ)(1− wmin)
− ρ(1− wii)(1 + θ)

αµ+ (1 + θ)(1− wmax)

)
≥ 1

αL+ (1 + θ)(1− wmin)
− ρ (1− wmin)(1 + θ)

αµ+ (1 + θ)(1− wmax)

≥ δ.(20)

Since δ > 0 we conclude that Ck is positive definite. Moreover, vTCkv = vT (I −
LkG)A−1

k v for any v ∈ Rnp×np and

∇TΦ(xk)sk = −∇TΦ(xk)(I− LkG)A−1
k ∇Φ(xk)

= −∇TΦ(xk)Ck∇Φ(xk)

≤ −δ‖∇Φ(xk)‖22.(21)

The next lemma corresponds to the standard property of descent direction meth-
ods that establish the relationship between the search vector and the gradient.

Lemma 3.5. Suppose that A1–A3 hold. Then

‖sk‖2 ≤ β‖∇Φ(xk)‖2,

where

β =
1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
.(22)

Proof. For matrix Ak, there holds that

‖A−1
k ‖2 ≤

1

αµ+ (1 + θ)(1− wmax)
.(23)

This can be shown similarly as the upper bound on ‖(Aki)−1‖2 below (19). Further-
more,

‖G‖2 ≤ (1 + θ)(1− wmin).(24)

1182 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

This is true as

‖G‖2 = ‖Zu + θ(I− Zd)‖2 ≤ ‖Zu‖2 + θ‖I− Zd‖2
≤ ‖I− Zd‖2 + θ‖I− Zd‖2 ≤ (1 + θ)(1− wmin),

where we used Zu = Z− Zd � I− Zd � (1− wmin)I. Therefore, we have

‖sk‖2 ≤ ‖(I− LkG)A−1
k ‖2‖∇Φ(xk)‖2

≤ (1 + ‖Lk‖2‖G‖2)‖A−1
k ‖2‖∇Φ(xk)‖2

≤ 1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
‖∇Φ(xk)‖2.

Let us now show that there exists a step size ε > 0 such that the sequence {xk}
generated by algorithm DQN converges to the solution of (4). Notice that (4) has a
unique solution, say, x∗. Assumption A1 implies that ∇Φ(x) is Lipschitz continuous
as well, i.e., with L̃ := αL+ 2(1− wmin), there holds

‖∇Φ(x)−∇Φ(y)‖2 ≤ L̃‖x− y‖2, x, y ∈ Rnp.(25)

Furthermore,

µ̃

2
‖x− x∗‖22 ≤ Φ(x)− Φ(x∗) ≤ 1

µ̃
‖∇Φ(x)‖22(26)

for µ̃ = αµ and all x ∈ Rnp. The main convergence statement is given below.

Theorem 3.6. Assume that the conditions of Theorem 3.4 are satisfied. Define

ε =
δ

β2L̃
(27)

with β given by (22). Then algorithm DQN generates a sequence {xk} such that

lim
k→∞

xk = x∗

and the convergence is at least linear with

Φ(xk+1)− Φ(x∗) ≤
(

1− δ2µ̃

2L̃β2

)(
Φ(xk)− Φ(x∗)

)
, k = 0, 1,

Proof. The mean value theorem, the Lipschitz property of ∇Φ, Theorem 3.4, and
Lemma 3.5 yield

Φ(xk+1)− Φ(x∗) = Φ(xk + εsk)− Φ(x∗)

= Φ(xk) +

∫ 1

0

∇TΦ(xk + tεsk)εskdt− Φ(x∗)± ε∇TΦ(xk)sk

≤ Φ(xk)− Φ(x∗) + ε

∫ 1

0

‖∇TΦ(xk + tεsk)−∇TΦ(xk)‖2‖sk‖2dt

+ ε∇TΦ(xk)sk

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1183

≤ Φ(xk)− Φ(x∗) + ε

∫ 1

0

L̃tε‖sk‖22dt+ ε∇TΦ(xk)sk

= Φ(xk)− Φ(x∗) +
1

2
ε2L̃‖sk‖22 + ε∇TΦ(xk)sk

≤ Φ(xk)− Φ(x∗) + β2 L̃

2
ε2‖∇Φ(xk)‖22 − εδ‖∇Φ(xk)‖22

= Φ(xk)− Φ(x∗) +

(
β2L̃

2
ε2 − εδ

)
‖∇2Φ(xk)‖22.(28)

Define

φ(ε) =
β2L̃

2
ε2 − εδ.

Then φ(0) = 0, φ′(ε) = L̃εβ2 − δ, and φ′′(ε) > 0. Thus, the minimizer of φ is
ε∗ = δ/(β2L̃) and

φ(ε∗) = − δ2

2β2L̃
.(29)

Now, (28) and (29) give

Φ(xk+1)− Φ(x∗) ≤ Φ(xk)− Φ(x∗)− δ2

2β2L̃
‖∇Φ(xk)‖22.

From (26), we also have

Φ(xk)− Φ(x∗) ≤ 1

µ̃
‖∇Φ(xk)‖22

and

− δ2

2β2L̃
‖∇Φ(xk)‖22 ≤ −

(
Φ(xk)− Φ(x∗)

) δ2µ̃

2β2L̃
,

so

Φ(xk+1)− Φ(x∗) ≤
(

1− δ2µ̃

2β2L̃

)(
Φ(xk)− Φ(x∗)

)
.

Given that µ̃ = αµ ≤ αL < L̃, we have µ̃/L̃ < 1. Moreover,

δ <
1

αL+ (1 + θ)(1− wmin)
≤ 1

αµ+ (1 + θ)(1− wmax)

≤ 1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
= β

and

ξ := 1− δ2µ̃

2β2L̃
∈ (0, 1).

1184 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

We conclude with

Φ(xk+1)− Φ(x∗) ≤ ξ
(
Φ(xk)− Φ(x∗)

)
and

lim
k→∞

Φ(xk) = Φ(x∗).

As Φ ∈ C2(Rn), the above limit also implies

lim
k→∞

xk = x∗.

The proof of the above theorem clearly shows that for any ε ∈ (0, δ/(β2L̃)] algo-
rithm DQN converges. However, taking ε as large as possible implies larger steps and
thus faster convergence.

3.3. Local linear convergence. We have proved global linear convergence for
the specific step length ε given in Theorem 3.6. However, local linear convergence
can be obtained for the full step size, using the theory developed for inexact Newton
methods [8]. The step sk can be considered as an inexact Newton step and we are
able to estimate the residual in Newton equation as follows.

Theorem 3.7. Suppose that A1–A3 hold. Let xk be such that ∇Φ(xk) 6= 0.
Assume that sk is generated in step 2 of Algorithm 1 with

0 ≤ ρ < αµ

(1 + θ)(1− wmin) (αL+ 2(1 + θ)(1− wmin))
.

Then there exists t ∈ (0, 1) such that

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖.

Proof. First, notice that the interval for ρ is well defined. The definition of the
search direction (11) and the splitting of the Hessian (9) yield

∇Φ(xk) +∇2Φ(xk)sk = (GA−1
k + AkLkGA−1

k −GLkGA−1
k)∇Φ(xk) := Qk∇Φ(xk).

Therefore,

‖Qk‖ ≤ ‖GA−1
k ‖+ ‖GA−1

k ‖‖Lk‖‖Ak‖+ ‖GA−1
k ‖‖Lk‖‖G‖.

Moreover,

‖GA−1
k ‖ = max

j
(θ(1− wjj)‖(Akj)−1‖+

∑
i∈Oj

wij‖(Akj)−1‖)

≤ max
j

θ(1− wjj) + 1− wjj
αµ+ (1 + θ)(1− wjj)

.

Recalling (19) and the fact that the expression above is decreasing with respect to
wjj , we get

‖GA−1
k ‖ ≤

(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmin)
=: γ,(30)

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1185

and there holds ‖Ak‖ ≤ αL+(1+θ)(1−wmin). Furthermore, (23), (24), and ‖Lk‖ ≤ ρ
imply

‖Qk‖ ≤ γ + γρ(1 + θ)(1− wmin) + γρ(αL+ (1 + θ)(1− wmin))

= γ + ργ(αL+ 2(1 + θ)(1− wmin))(31)

< γ + 1− γ = 1.

Thus, the statement is true with

t = γ + ργ(αL+ 2(1 + θ)(1− wmin)).(32)

Theorem 3.4 introduces an upper bound on the safeguard parameter ρ different
from the one considered in Theorem 3.2. The relation between the two bounds de-
pends on the choice of δ in Theorem 3.2. Taking a sufficiently small δ in Theorem 3.2,
we obtain that ρ in Theorem 3.2 is larger. However, taking δ < 1

αL+(1+θ)(1−wmin)

sufficiently close to 1
αL+(1+θ)(1−wmin) , ρ in Theorem 3.4 eventually becomes larger.

One way to interpret the relation between Theorems 3.2 and 3.3 on one hand and
Theorem 3.4 on the other hand, as far as ρ is concerned, is as follows. Taking a very
small δ, Theorem 3.3 allows for a quite large ρ but on the other hand it significantly
decreases the admissible step size ε. At the same time, Theorem 3.4 corresponds in
a sense to an opposite situation where ε is allowed to be quite large (in fact, equal
to one), while ρ is quite restricted. Therefore, the two results exploit the allowed
“degrees of freedom” in a different way.

For the sake of completeness we list here the conditions for local convergence of
inexact Newton methods.

Theorem 3.8 (see [8]). Assume that A1 holds and that sk satisfies the inequality

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖, k = 0, 1, . . . ,

for some t < 1. Furthermore, assume that xk+1 = xk + sk, k = 0, 1, Then there
exists η > 0 such that for all ‖x0 − x∗‖ ≤ η, the sequence {xk} converges to x∗. The
convergence is linear,

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, k = 0, 1, . . . ,

where ‖y‖∗ = ‖∇2Φ(x∗)y‖.
The two previous theorems imply the following corollary.

Corollary 3.9. Assume that the conditions of Theorem 3.7 hold. Then there
exists η > 0 such that for every x0 satisfying ‖x0 − x∗‖ ≤ η, the sequence {xk}
generated by algorithm DQN and ε = 1 converges linearly to x∗ and

‖∇2Φ(x∗)(xk+1 − x∗)‖ ≤ t‖∇2Φ(x∗)(xk − x∗)‖, k = 0, 1, . . . ,

holds with t ∈ (0, 1).

For (strongly convex) quadratic functions fi, i = 1, . . . , n, we can also claim global
linear convergence as follows.

Theorem 3.10. Assume that all loss functions fi are strongly convex quadratic
and that the conditions of Theorem 3.7 are satisfied. Let {xk} be a sequence generated
by algorithm DQN with ε = 1. Then limk→∞ xk = x∗ and

‖xk+1 − x∗‖∗ ≤ t ‖xk − x∗‖∗, k = 0, 1, . . . ,

for t defined in Theorem 3.7.

1186 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Proof. Given that the penalty term in (4) is convex quadratic, if all local cost func-
tions fi are strongly convex quadratic, then the objective function Φ is also strongly
convex quadratic, i.e., it can be written as

Φ(x) =
1

2
(x− x∗)TB(x− x∗),(33)

for some fixed, symmetric positive definite matrix B ∈ Rnp×np. Recall that x∗ is the
global minimizer of Φ. Then

∇Φ(x) = B(x− x∗) and ∇2Φ(x) = B.

Starting from

sk = −(∇2Φ(xk))−1∇Φ(xk) + ek,

we get

‖∇2Φ(xk)ek‖ = ‖∇2Φ(xk)
(
sk + (∇2Φ(xk))−1∇Φ(xk)

)
‖

= ‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖

by Theorem 3.7. Next,

xk+1 = xk + sk = xk − (∇2Φ(xk))−1∇Φ(xk) + ek

= xk − B−1∇Φ(xk) + ek

and

xk+1 − x∗ = xk − x∗ − B−1∇Φ(xk) + ek.

Therefore,

B(xk+1 − x∗) = B(xk − x∗)−∇Φ(xk) + Bek.

Now,

‖Bek‖ = ‖∇2Φ(xk)ek‖ < t‖∇Φ(xk)‖ = t‖B(xk − x∗)‖

and

‖B(xk+1 − x∗)‖ = ‖Bek‖ ≤ t‖B(xk − x∗)‖.

4. Variants of the general DQN. Let us now discuss the possible alternatives
for the choice of Lk. Subsection 4.1 presents three different variants of the general
DQN algorithm which mutually differ in the choice of matrix Lk. We refer to the
three choices as DQN-0, DQN-1, and DQN-2. All results established in section 3 hold
for these three alternatives. Subsection 4.1 also provides local linear convergence rates
for DQN-2 without safeguarding. Subsection 4.2 gives a discussion on the algorithms’
tuning parameters, as well as on how the required global knowledge by all nodes can
be acquired in a distributed way.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1187

4.1. Algorithms DQN-0, 1, and 2. The analysis presented so far implies only
that the diagonal matrix Lk has to be bounded. Let us now look closer at different
possibilities for defining Lk, keeping the restrictions stated in Theorems 3.4 and 3.7.

DQN-0. We first present the method DQN-0 which sets Lk = 0. Clearly, for
DQN-0, Theorems 3.2 and 3.4 hold, and thus we get linear convergence with the
proper choice of ε and local linear convergence with ε = 1. The approximation of
the Hessian inverse in this case equals A−1

k , i.e., the Hessian is approximated by its
block diagonal part only. The method DQN-0 corresponds to Algorithm 1 with only
steps 1–4 and 7–9 executed, with Λki = 0 in step 7. Clearly, choice Lk = 0 is the
cheapest possibility among the choices of Lk if we consider the computational cost
per iteration k. The same holds for communication cost per k, as each node needs
to transmit only xki per each iteration, i.e., one p-dimensional vector per node, per
iteration is communicated. We note that DQN-0 resembles NN-0, but the difference
in general is that DQN-0 uses a different splitting, parameterized with θ ≥ 0; actually,
NN-0 represents the special case with θ = 1.

DQN-1. Algorithm DQN-1 corresponds to setting Lk = L, k = 0, 1, . . . , where L
is a constant diagonal matrix. Assuming that L is chosen such that ‖L‖ ≤ ρ, with ρ
specified in Theorem 3.4, global linear convergence for a proper step size ε and local
linear convergence for the full step size ε = 1 again hold. Algorithm DQN-1 is given
by Algorithm 1, where each node utilizes a constant, diagonal matrix Λi. There are
several possible ways of choosing the Λi’s. In this paper, we focus on the following
choice. In the first iteration k = 0, each node i sets matrix Λ0

i through algorithm
DQN-2, stated in the sequel, and then it keeps the same matrix Λ0

i throughout the
whole algorithm. The computational cost per iteration of DQN-1 is higher than the
cost of DQN-0. At each iteration, each node i needs to compute the corresponding
inverse of the ith block of Ak and then to multiply it by the constant diagonal matrix
Λi. Regarding the communication cost, each node transmits two p-dimensional vectors
per iteration – xki and dki (except in the first iteration k = 0, when it also transmits
an additional vector u0

i ; see Algorithm 3). Although the focus of this paper is on
the diagonal Lk’s, we remark that setting θ = 1 and Lk = −A−1

k recovers the NN-1
method.

DQN-2. Algorithm DQN-2 corresponds to an iteration-varying, diagonal matrix
Lk. Ideally, one would like to choose matrix Lk such that search direction sk resembles
the Newton step as much as possible, with the restriction that Lk is diagonal. The
Newton direction skN satisfies the equation

∇2Φ(xk)skN +∇Φ(xk) = 0.(34)

We seek Lk such that it makes residual M(Lk) small, where M(Lk) is defined as
follows:

M(Lk) = ‖∇2Φ(xk)sk +∇Φ(xk)‖.(35)

Notice that

M(Lk) = ‖∇2Φ(xk)sk +∇Φ(xk)‖
= ‖ − ∇2Φ(xk)(I − LkG)A−1

k ∇Φ(xk) +∇Φ(xk)‖
= ‖ − ∇2Φ(xk)A−1

k ∇Φ(xk) +∇2Φ(xk)LkGA−1
k ∇Φ(xk) +∇Φ(xk)‖

= ‖ − (Ak −G)A−1
k ∇Φ(xk) +∇2Φ(xk)LkGA−1

k ∇Φ(xk) +∇Φ(xk)‖
= ‖GA−1

k ∇Φ(xk) +∇2Φ(xk)LkGA−1
k ∇Φ(xk)‖.

1188 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Therefore,

∇2Φ(xk)sk +∇Φ(xk) = uk +∇2Φ(xk)Lkuk,(36)

where

uk = GA−1
k ∇Φ(xk).

The minimizer of M(Lk) is clearly achieved if Lk satisfies the equation

Lkuk = −(∇2Φ(xk))−1uk,(37)

but (37) involves the inverse Hessian. Thus we approximate (∇2Φ(xk))−1 by the
Taylor expansion as follows. Clearly,

(∇2Φ(xk))−1 = (α∇2F (xk) + I− Z)−1 = (I− Vk)−1, Vk = Z− α∇2F (xk).(38)

Assume that α < (1 + λn)/L with λn being the smallest eigenvalue of W. Then

Vk � (λn − αL) I � −I.

Similarly,

Vk � (1− αµ) I ≺ I.

Hence,

ρ(Vk) ≤ ‖Vk‖2 < 1.

Therefore, I− Vk is nonsingular,

(I− Vk)−1 = I + Vk +

∞∑
i=2

Vik,

and the approximation

(∇2Φ(xk))−1 = (I− Vk)−1 ≈ I + Vk(39)

is well defined. So, we can take Lk, which satisfies the following equation:

Lkuk = −(I + Vk)uk.(40)

Obviously, Lk can be computed in a distributed manner. We refer to the method which
corresponds to this choice of Lk as DQN-2. The algorithm is given by Algorithm 2,
where step 6, the choice of Lk = diag(Λ1, . . . ,Λn), involves the steps presented below
in Algorithm 3. Denote by uki the ith p× 1 block of uk—the block which corresponds
to node i.

Algorithm 3: Choosing Lk with DQN-2.
6.1. Each node i is calculated

uki =
∑
j∈Ōi

Gij d
k
j .

6.2. Each node i transmits uki to all its neighbors j ∈ Oi and receives ukj from all
j ∈ Oi.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1189

6.3. Each node i calculates Λki —the solution to the following system of equations
(where the only unknown is the p× p diagonal matrix Λki):

Λki u
k
i = −

[
(1 + wii)I − α∇2fi(x

k
i)
]
uki −

∑
j∈Oi

wij u
k
j .

6.4. Each node i projects each diagonal entry of Λki onto the interval [−ρ, ρ].
Note that step 6 with algorithm DQN-2 requires an additional p-dimensional

communication per each node, per each k (the communication of the uki ’s). Hence,
overall, with algorithm DQN-2 each node transmits three p-dimensional vectors per
k – xki , dki , and uki .

We next show that algorithm DQN-2 exhibits local linear convergence even when
safeguarding (step 6.4 in Algorithm 3) is not used.

Theorem 4.1. Suppose that A1–A3 hold and let xk be an arbitrary point such
that ∇Φ(xk) 6= 0. Assume that

α < min

{
1 + λn
L

,
wmin
2L

,
2µ

L2

}
(41)

and sk is generated by (11) and Algorithm 2, steps 6.1–6.3. Then there exists t ∈ (0, 1)
such that

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖.

Proof. Using (36) and (40) we obtain

‖∇2Φ(xk)sk +∇Φ(xk)‖ = ‖uk +∇2Φ(xk)Lkuk‖
= ‖uk −∇2Φ(xk)(I + Vk)uk‖
= ‖(I−∇2Φ(xk)(I + Z− α∇2F (xk)))uk‖
= ‖Pkuk‖,(42)

where

Pk = I−∇2Φ(xk)(I + Z− α∇2F (xk))

= I−
(
I + α∇2F (xk)− Z

) (
I + Z− α∇2F (xk)

)
= Z2 − α(Z∇2F (xk) +∇2F (xk)Z) +

(
α∇2F (xk)

)2
.

Since ‖∇2fi(xi)‖ ≤ L, there follows ‖∇2F (xk)‖ ≤ L and the previous equality implies

‖Pk‖ ≤ ‖Z2 − α(Z∇2F (xk) +∇2F (xk)Z)‖+ α2L2 := ‖Uk‖+ α2L2.(43)

Now,

Ukij =

n∑
k=1

wikwkjI − α(wij∇2fj(x
k
j) + wij∇2fi(x

k
i)).

Furthermore, the assumption α < wmin/(2L) implies

n∑
k=1

wikwkj ≥ wiiwij ≥ wijwmin ≥ wij2αL ≥ wij2αµ.

1190 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Moreover, ∇2fj(x
k
j) � µI and

‖Ukij‖2 ≤
n∑
k=1

wikwkj − 2αµwij .

Therefore,

‖Uk‖ ≤ max
j=1,...,n

n∑
i=1

(
n∑
k=1

wikwkj − 2αµwij

)

= max
j=1,...,n

n∑
k=1

wkj

n∑
i=1

wik − 2αµ

n∑
i=1

wij

= 1− 2αµ.

So,

‖Pk‖ ≤ h(α),(44)

where h(α) = 1− 2αµ+ α2L2. This function is convex and nonnegative since µ ≤ L
and therefore

min
α
h(α) = h

(µ
L2

)
= 1− µ2

L2
> 0.

Moreover, h(0) = h
(

2µ
L2

)
= 1 and we conclude that for all α ∈ (0, 2µ/L2) there holds

h(α) ∈ (0, 1). As

uk = GA−1
k ∇Φ(xk),

we have

‖uk‖ ≤ ‖GA−1
k ‖‖∇Φ(xk)‖.(45)

Now,

‖GA−1
k ‖ = max

j
(θ(1− wjj)‖(Akj)−1‖+

∑
i∈Oj

wij‖(Akj)−1‖)

≤ max
j

θ(1− wjj) + 1− wjj
αµ+ (1 + θ)(1− wjj)

=
(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmin)
< 1.

Therefore,

‖uk‖ < ‖∇Φ(xk)‖.(46)

Putting together (42)–(46), for θ ≥ 0 and α satisfying (41) we obtain

‖∇Φ(xk) +∇2Φ(xk)sk‖ ≤ h(α)‖uk‖ < h(α)‖∇Φ(xk)‖,

i.e., the statement holds with

t = h(α) = 1− 2αµ+ α2L2.(47)

Applying Theorem 3.8 once again, we get the local linear convergence as stated
in the following corollary.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1191

Corollary 4.2. Assume that the conditions of Theorem 4.1 hold. Then there
exists η such that for every x0 satisfying ‖x0 − x∗‖ ≤ η the sequence {xk}, generated
by the DQN-2 method with steps 6.1–6.3 of Algorithm 3 and ε = 1, converges linearly
to x∗ and

‖∇2Φ(x∗)(xk+1 − x∗)‖ ≤ t‖∇2Φ(x∗)(xk − x∗)‖, k = 0, 1, . . . ,(48)

holds with t given by (47).

We remark that for strongly convex quadratic fi’s, the result analogous to Theo-
rem 3.10 holds in the sense of global linear convergence, i.e., inequality (48) holds for
all k and arbitrary initial point x0.

Remark 4.3. An interesting future research direction is to adapt and analyze con-
vergence of the DQN methods in asynchronous environments, as it has been already
numerically studied recently in [10]. Therein, it is shown that the studied second order
methods still converge in an asynchronous setting, though with a lower convergence
speed.

4.2. Discussion on the tuning parameters. Let us now comment on the
choice of the involved parameters—matrix W and scalars α, ρ, ε, θ, and δ. We first
consider the general DQN method in Algorithm 1, i.e., our comments apply to all
DQN-` variants, ` = 0, 1, and 2.

Matrix W only needs to satisfy that (1) the underlying support network is con-
nected and (2) all diagonal entries wii lie between wmin and wmax, where 0 < wmin ≤
wmax < 1. Regarding the latter condition, it is standard and rather mild; it is only
required for (7) to hold, i.e., to ensure that solving (4) gives an approximate solution
to the desired problem (1). Regarding the second condition, it can be easily fulfilled
through simple weight assignments, e.g., through the Metropolis weights choice; see,
e.g., [39].

We now discuss the choice of the parameters α, ρ, θ, ε, and δ. First, α defines the
penalty reformulation (4), and therefore, it determines the asymptotic error that the
algorithm achieves. The smaller the α, the smaller the limiting (saturation) error of
the algorithm, but the slower the convergence rate. Thus, the parameter should be
set a priori according to a given target accuracy; see also [40]. A practical guidance,
as considered in [13], is to set α = 1/(KL), where L is the Lipschitz gradient constant
as in the paper, and K = 10-100. Next, parameter θ ≥ 0 determines the splitting of
the Hessian. It can simply be taken as θ = 0, and a justification for this choice can be
found in section 5. Next, the role of δ is mainly theoretical. Namely, Theorems 3.2
and 3.3 consider generic choices of Lk’s, and they are worst-case type results. Therein,
δ essentially trades off the guaranteed worst-case (global linear) convergence factor
with the size of admissible range of the Lk’s (size of the maximal allowed ρ). As
per (18), a reasonable choice to balance the two effects is δ = 1

2(αL+(1+θ)wmin) . Having

set δ, the remaining two parameters, ε and ρ, can be set according to (27) and (18),
respectively. As noted, the described choice of the triple (δ, ρ, ε) is a consequence of
the worst case, conservative analysis with Theorems 3.2 and 3.3 (which still have a
theoretical significance, though). In practice, we recommend setting δ = 0, ε = 1,
and ρ as the upper bound in (18) with δ = 0.

Discussion on distributed implementation. The algorithm’s tuning param-
eters need to be set beforehand in a distributed way. Regarding weight matrix W ,
each node i needs to store beforehand the weights wii and wij , j ∈ Oi, for all its
neighbors. The weights can be set according to the Metropolis rule, e.g., [39], where

1192 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

each node i needs to know only the degrees of its immediate neighbors. Such weight
choice, as noted before, satisfies the imposed assumptions.

In order to set the scalar tuning parameters α, θ, ε, and ρ, each node i needs to
know beforehand global quantities wmin, wmax, µ, and L. Each of these parameters
represents either a maximum or a minimum of nodes’ local quantities. For example,
wmax is the maximum of the wii’s over i = 1, . . . , n, where node i holds quantity wii.
Hence, each node can obtain wmax by running a distributed algorithm for maximum
computation beforehand; for example, nodes can utilize the algorithm in [34].

5. Simulations. This section shows numerical performance of the proposed
methods on two examples, namely, the strongly convex quadratic cost functions and
the logistic loss functions.

Simulation setup. Two simulation scenarios with different types of nodes’ cost
functions fi’s are considered: (1) strongly convex quadratic costs and (2) logistic
(convex) loss functions. Very similar scenarios have been considered in [22, 23, 24].
With the quadratic costs scenario, fi : Rp → R is given by

fi(x) =
1

2
(x− ai)>Bi(x− ai),

where Bi ∈ Rp×p is positive definite (symmetric matrix) and ai ∈ Rp is a vector.
Matrices Bi, i = 1, . . . , n, are generated mutually independent, and so are the vectors
ai’s; also, Bi’s are generated independently from the ai’s. Each matrix Bi is generated
as follows. First, we generate a matrix B̂i whose entries are drawn mutually indepen-
dently from the standard normal distribution, and then we extract the eigenvector
matrix Q̂ ∈ Rp×p of matrix 1

2 (B̂ + B̂>). We finally set Bi = Q̂Diag(ĉi)Q̂
>, where

ĉi ∈ Rp has the entries generated mutually independently from the interval [1, 101].
Each vector ai ∈ Rp has mutually independently generated entries from the inter-
val [1, 11]. Note that ai—the minimizer of fi—is clearly known beforehand to node i,
but the desired global minimizer of f is not known by any node i.

The logistic loss scenario corresponds to distributed learning of a linear classifier;
see, e.g., [1] for details. Each node i possesses J = 2 data samples {aij , bij}Jj=1. Here,

aij ∈ R3 is a feature vector, and bij ∈ {−1,+1} is its class label. We want to learn a
vector x = (x>1 , x0)>, x1 ∈ Rp−1, and x0 ∈ R, p ≥ 2, such that the total logistic loss
with l2 regularization is minimized:

n∑
i=1

J∑
j=1

Jlogis

(
bij(x

>
1 a+ x0)

)
+ τ‖x‖2.

Here, Jlogis(·) is the logistic loss

Jlogis(z) = log(1 + e−z),

and τ is a positive regularization parameter. Note that, in this example, we have

fi(x) =

J∑
j=1

Jlogis

(
bij(x

>
1 a+ x0)

)
+
τ

n
‖x‖2,

f(x) =
∑n
i=1 fi(x). The aij ’s are generated independently over i and j, where each

entry of aij is drawn independently from the standard normal distribution. The “true”
vector x? = ((x?1)>, x?0)> is obtained by drawing its entries independently from stan-
dard normal distribution. Then, the class labels are bij = sign

(
(x?1)>aij + x?0 + εij

)
,

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1193

where εij ’s are drawn independently from normal distribution with zero mean and
standard deviation 0.1.

The network instances are generated from the random geometric graph model:
nodes are placed uniformly at random over a unit square, and the node pairs within

distance r =
√

ln(n)
n are connected with edges. All instances of networks used in the

experiments are connected. The weight matrix W is set as follows. For a pair of
nodes i and j connected with an edge, wij = 1

2 max{di,dj}+1 , where di is the degree

of the node i; for a pair of nodes not connected by an edge, we have wij = 0; and
wii = 1−

∑
j 6=i wij for all i. For the case of regular graphs, considered in [22, 23, 24],

this weight choice coincides with that in [22, 23, 24].
The proposed methods DQN are compared with the methods NN-0, NN-1 and

NN-2 proposed in [22]. The methods NN-` with ` ≥ 3 are not numerically tested in [22]
and require a large communication cost per iteration. Recall that the method proposed
in this paper are denoted DQN-` with Lk = 0 as DQN-0; it has the same communi-
cation cost per iteration k as NN-0, where each node transmits one (p-dimensional)
vector per iteration. Similarly, DQN-1 corresponds to NN-1, where two per-node
vector communications are utilized, while DQN-2 corresponds to NN-2 (three vector
communications per node).

With both the proposed methods and the methods in [22], the step size ε = 1
is used. Step size ε = 1 has also been used in [22, 23, 24]. Note that both classes
of methods—NN and DQN—guarantee global convergence with ε = 1 for quadratic
costs, while neither of the two groups of methods has guaranteed global convergence
with logistic losses. For the proposed methods, safeguarding is not used with quadratic
costs. With logistic costs, the safeguarding is not used with DQN-0 and 2 but it is
used with DQN-1, which diverges without the safeguard on the logistic costs. The
safeguard parameter ρ defined as the upper bound in (18) with δ = 0 is employed.
Further, with all DQNs, θ = 0 is used. With all the algorithms, each node’s solution
estimate is initialized by a zero vector.

The error metric

1

n

n∑
i=1

∥∥xki − x?∥∥2

‖x?‖2
, x? 6= 0,

is used and referred to as the relative error at iteration k.
Figure 1, left, plots the relative error versus the number of iterations k for a

network with n = 30 nodes, and the quadratic costs with the variable dimension p =
4. First, we can see that the proposed DQN-` methods perform better than their
corresponding counterparts NN-`, ` = 0, 1, 2. Also, note that the performance of
DQN-1 and DQN-2 in terms of iterations match in this example. Figure 1, right,
plots the relative error versus total number of communications. We can see that,
for this example, DQN-0 is the most efficient among all methods in terms of the
communication cost. Further, interestingly, the performance of NN-0, NN-1, and
NN-2 is practically the same in terms of communication cost on this example. The
clustering of the performance of NN-0, NN-1, and NN-2 (although not so pronounced
as in our examples) emerges also in simulations in [22, 23, 24]. Also, the performance
of DQN-0 and NN-1 practically matches. In summary, method DQN-0 shows the best
performance in terms of communication cost on this example, while DQN-1 and 2 are
the best in terms of the number of iterations k.

The improvements of DQN over NN are mainly due to the different splitting
parameter θ = 0. Actually, our numerical experience suggests that NN-` may perform

1194 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

0 500 1000 1500 2000

10-2

10-1

100

number of iterations, k

re
l.
 e

rr
o

r

DQN-2
DQN-1
DQN-0
NN-2
NN-1
NN-0

DQN-2; DQN-1

NN-1;
DQN-0

0 500 1000 1500 2000

10-2

10-1

100

number of per-node communications

re
l.
 e

rr
o

r

DQN-2
DQN-1
DQN-0
NN-2
NN-1
NN-0

NN-0; NN-1; NN-2

Fig. 1. Relative error versus number of iterations k (left) and versus number of communications
(right) for quadratic costs and n = 30-node network.

better than DQN-` with θ = 1 for ` = 1, 2. We provide an intuitive explanation for the
advantages of choice θ = 0, focusing on the comparison between NN-0 and DQN-0.
Namely, the adopted descent directions with both of these methods correspond to the
quality of the zeroth order Taylor expansion of the following matrix:(

I− (Ak(θ))−1G
)−1 ≈ I.(49)

In (49), with NN-0, we have Ak(θ) = Ak(θ = 1), while with DQN-0, we have that
Ak(θ) = Ak(θ = 0); note that these two matrices are different. Now, the error
(remainder) of the Taylor approximation is roughly of size ‖(Ak(θ))−1G‖. In view of
the upper bound in (30), we have with NN-0 that the remainder is of size

‖(Ak(1))−1G‖ ≈ 1− αµ

2(1− wmin)
(50)

for small αµ. On the other hand, we have that the DQN-0’s remainder is

‖(Ak(0))−1G‖ ≈ 1− αµ

1− wmin
.

Therefore, the remainder is (observed through this rough, but indicative, estimate)
larger with NN-0, and that is why DQN-0 performs better. We can similarly compare
NN-1 (which corresponds to the first order Taylor approximation of the matrix in (49))
with DQN-0. The remainder with NN-1 is roughly ‖(Ak(1))−1G‖2 ≈ 1 − αµ

1−wmin
,

which equals the remainder estimate of DQN-0. This explains why the two methods
perform very similarly. Finally, note that the upper bound on ‖GA−1

k ‖ in (30) is an
increasing function of θ ≥ 0 (the lower the θ, the better the bound), which justifies
the choice θ = 0 adopted here for DQN.

Figure 2 (left and right) repeats the plots for the network with n = 400 nodes,
quadratic costs, and the variable dimension p = 3. One can see that again the
proposed methods outperform their respective NN-` counterparts. In terms of com-
munication cost, DQN-0 and DQN-1 perform practically the same and are the most
efficient among all methods.

Figure 3 plots the relative error versus number of iterations (left) and number of
per-node communications (right) for the logistic losses with variable dimension p = 4

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1195

0 200 400 600 800 1000

10-1

100

number of iterations, k

re
l.
 e

rr
o

r

NN-2
DQN-0
DQN-2
DQN-1
NN-1
NN-0

NN-1;
DQN-0

DQN-1;
DQN-2

0 200 400 600 800 1000

10-1

100

number of per-node communications

re
l.
 e

rr
o

r

NN-0
NN-1
NN-2
DQN-1
DQN-2
DQN-0NN-0; NN-1;

NN-2

Fig. 2. Relative error versus number of iterations k (left) and versus number of communications
(right) for quadratic costs and n = 400-node network.

0 1000 2000 300010-2

10-1

100

number of iterations, k

re
l.
 e

rr
o

r

NN-2
NN-1
NN-0
DQN-2
DQN-1
DQN-0

DQN-0;
NN-1

0 1000 2000 3000 400010-2

10-1

100

number of per-node communications

re
l.
 e

rr
o

r

NN-2
NN-1
NN-0
DQN-2
DQN-1
DQN-0NN-0; NN-1;

NN-2

Fig. 3. Relative error versus number of iterations k (left) and versus number of communications
(right) for logistic costs and n = 30-node network.

and the network with n = 30 nodes. One can see that again the proposed methods
perform better than the NN-` counterparts. In terms of the communication cost,
DQN-0 is the most efficient among all methods, while DQN-2 is fastest in terms of
the number of iterations. Finally, Figure 4 repeats the plots for variable dimension
p = 4 and the network with n = 200 nodes, and it shows similar conclusions: among
all DQN and NN methods, DQN-0 is the most efficient in terms of communications,
while DQN-2 is fastest in terms of the number of iterations.

6. Extensions. As noted before, DQN methods converge not to the exact solu-
tion of (1) but to a solution neighborhood controlled by the step size α. As such, for
the high solution accuracies required, they may not be competitive with distributed
second order methods which converge to the exact solution [28, 38, 27].

However, we can exploit the results of [28] and “embed” the DQN algorithms
in the framework of PMMs, just like [28] embeds the NN methods into the PMM

1196 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

0 500 1000 1500 2000 2500

10-1

100

number of iterations, k

re
l.
 e

rr
o

r

NN-2
NN-1
NN-0
DQN-2
DQN-1
DQN-0

NN-1;
DQN-0

0 2000 4000 6000

10-1

100

number of per-node communications
re

l.
 e

rr
o

r

NN-2
NN-1
NN-0
DQN-2
DQN-1
DQN-0

Fig. 4. Relative error versus number of iterations k (left) and versus number of communications
(right) for logistic costs and n = 200-node network.

framework. We refer to the resulting algorithms as PMM-DQN-`, ` = 0, 1, 2. (Here,
PMM-DQN-` parallels DQN-` in terms of complexity of approximating Hessians, and
in terms of the communication cost per iteration.) It is worth noting that the contri-
bution to embed distributed second order methods into the PMM framework is due to
[28]. Here we extend [28] to demonstrate (by simulation) that the DQN-type Hessian
approximations within the PMM framework yield efficient distributed second order
methods.

We now briefly describe a general PMM-DQN method; for the methodology to
devise distributed second order PMM methods, we refer to [28]. See also the appendix
for further details. We denote by x̂ k =

(
x̂ k1 , . . . , x̂

k
n

)
∈ Rnp the current iterate,

where x̂ ki ∈ Rp is node i’s estimate of the solution to (1) at iteration k. Besides x̂ k

(the primal variable), the PMM-DQN method also maintains a dual variable q̂ k =(
q̂ k1 , . . . , q̂

k
n

)
∈ Rn p, where q̂ ki ∈ Rp is node i’s dual variable at iteration k. Quantities

Ĥk, Âk, Ĝ, and ĝk defined below play a role in the PMM-DQN method and are,
respectively, the counterparts of ∇2Φ(x k), Ak, G, and ∇Φ(x k) with DQN:

Ĥk = ∇2F (x̂ k) + β (I− Z) + εpmm I = Âk − Ĝ,(51)

Âk = ∇2F (x̂ k) + β (I− Zd) + εpmm I + β θ (I− Zd) ,(52)

Ĝ = β Zu + β θ (I− Zd) ,(53)

ĝk = ∇F (x̂ k) + β (I− Z)x̂ k + q̂ k.(54)

Here, θ ≥ 0 is the splitting parameter as with DQN, β > 0 is the dual step size, and
εpmm > 0 relates to the proximal term of the corresponding augmented Lagrangian;
see [28] for details. We now present the general PMM-DQN algorithm. Note from
step 2 in Algorithm 4 the analogous form of the Hessian inverse approximation as
with DQN; the approximation is again parameterized with an (np) × (np) diagonal

matrix L̂k.
Algorithm 4: PMM-DQN in vector format. Given x0 = 0, β, εpmm, ρ >

0, θ ≥ 0. Set k = 0.
Step 1. Chose a diagonal matrix L̂k ∈ Rnp×np such that

‖L̂k‖ ≤ ρ.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1197

Step 2. Set

ŝ k = −(I− L̂kĜ)Â−1
k ĝk.

Step 3. Set

x̂ k+1 = x̂ k + ŝ k.

Step 4. Set

q̂ k+1 = q̂ k + (I− Z) x̂ k+1; k = k + 1.

The same algorithm is presented below from the distributed implementation per-
spective. (Note that here we adopt notation similar to DQN, i.e., the (i, j)th p × p
block of Ĝ is denoted by Ĝij ; the ith p × p diagonal block of L̂k is denoted by Λ̂ k

i ;

and the ith p× p diagonal block of Âk is denoted by Â k
i .)

Algorithm 5: PMM-DQN—distributed implementation. At each node i,
require β, ρ, εpmm > 0, θ ≥ 0.

1. Initialization: Each node i sets k = 0 and x̂0
i = q̂0

i = 0.
2. Each node i calculates

d̂ ki =
(
Â k
i

)−1
[
∇fi(x̂ ki) + β

∑
j∈Oi

wij
(
x̂ ki − x̂ kj

)
+ q̂ ki

]
.

3. Each node i transmits d̂ ki to all its neighbors j ∈ Oi and receives d̂ kj from all
j ∈ Oi.

4. Each node i chooses a diagonal p× p matrix Λ̂ k
i such that ‖Λ̂ k

i ‖ ≤ ρ.
5. Each node i calculates

ŝ ki = −d̂ ki + Λ̂ k
i

∑
j∈Ōi

Ĝij d̂
k
j .

6. Each node i updates its solution estimate as

x̂ k+1
i = x̂ ki + ŝ ki .

7. Each node i transmits x̂ k+1
i to all its neighbors j ∈ Oi and receives x̂ k+1

j

from all j ∈ Oi.
8. Each node i updates the dual variable q̂ki as follows:

q̂ k+1
i = q̂ ki +

∑
j∈Oi

wij
(
x̂ k+1
i − x̂ k+1

j

)
.

9. Set k = k + 1 and go to step 2.
Note that, at step 2, each node i needs the neighbors’ estimates x̂kj , j ∈ Oi. For

k ≥ 1, the availability of such information is ensured through step 7 of the previous
iteration k − 1; at k = 0, step 2 is also realizable as it is assumed that x̂0

i = 0 for all
i = 1, . . . , n. As with the DQN methods, different variants PMM-DQN-` mutually
differ in the choice of matrix L̂k. With PMM-DQN-0, we set L̂k = 0; with PMM-
DQN-2, L̂k is set as described below; with PMM-DQN-1, we set L̂k = L̂ = const to
L̂0, i.e., to the value of L̂k from the first iteration of PMM-DQN-2.

1198 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

We now detail how L̂k is chosen with PMM-DQN-2. The methodology is com-
pletely analogous to DQN-2: the idea is to approximate the exact Newton direction ŝkN
which obeys the following Newton-type equation:

Ĥk ŝ k + ĝk = 0(55)

through Taylor expansions. Using (55) and completely analogous steps as with DQN-

2, it follows that L̂k is obtained through solving the following system of linear equa-
tions with respect to L̂k:

L̂k û k = −
(

1

β + εpmm
I +

β

(β + εpmm)2
Z− 1

(β + εpmm)2
∇2F (x̂k)

)
û k,

where û k = Ĝ Â−1
k ĝk.(56)

The overall algorithm for setting L̂k with PMM-DQN-2 (step 4 of Algorithm 5) is
presented below.

Algorithm 6: Computing L̂k with PMM-DQN-2.
4.1. Each node i calculates

û ki =
∑
j∈Ōi

Ĝij d̂
k
j .

4.2. Each node i transmits û ki to all its neighbors j ∈ Oi and receives û kj from all
j ∈ Oi.

4.3. Each node i calculates Λ̂ k
i —the solution to the following system of equations

(where the only unknown is the p× p diagonal matrix Λ̂i):

Λ̂i û
k
i = −

[(
1

β + εpmm
+

β wii
(β + εpmm)2

)
I − 1

(β + εpmm)2
∇2fi(x̂

k
i)

]
× û ki −

β

(β + εpmm)2

∑
j∈Oi

wij û
k
j .

4.4. Each node i projects each diagonal entry of Λ̂ki onto the interval [−ρ, ρ].
Simulations. We now compare by simulation the PMM-DQN-` methods with

the ESOM-` algorithms proposed in [28], the DQM algorithm in [27], and different
variants of the Newton Raphson consensus (NRC) algorithm proposed in [38].

The simulation setup is as follows. The network is an instance of the random
geometric graph with n = 30 nodes and 166 links. The optimization variable dimen-
sion is p = 4, and the local nodes costs are strongly convex quadratic, generated at
random in the same way as with the quadratic costs examples in section 5. With all
methods which involve weighted averaging (ESOM-`, PMM-DQN-`, and NRC), we
use the Metropolis weights. We consider the ESOM-` and PMM-DQN-` methods for
` = 0, 1, 2. With the methods ESOM-` and PMM-DQN-`, we set the proximal con-
stant εpmm = 10 (see [28] for details). Further, we tune the dual step size β separately
for each of these methods to the best by considering the following candidate values:
β ∈ {10−4, 10−3.5, 10−3, . . . , 103.5, 104}, i.e., a grid of points equidistant on the log10

scale with the half-decade spacing. The algorithm DQM has the tuning step size
parameter c > 0 (see [27] for details) which we also tune to the best using the same
grid of candidate values. Regarding the methods proposed in [38], we consider both
the standard (NRC) and the accelerated (FNRC) algorithm variant. These methods

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1199

have a communication cost per node, per iteration which is quadratic in p, due to
exchanging local Hessian estimates. (Specifically, as it is sufficient to transmit the
upper-triangular part of a local Hessian (due to the matrix symmetry), each node per
iteration transmits p × (p + 1)/2 scalars for the Hessian exchange.) This is different
from the ESOM, DQM, and PMM-DQN methods which have a cost linear in p. We
also consider the Jacobi variants in [38] (both the standard, JC, and the accelerated,
FJC, variant) which approximate local Hessians through diagonal matrices and hence
their communication cost per node, per iteration reduces to a cost linear in p. With
NRC, FNRC, JC, and FJC, we set their step size ε to unity (see [38] for details), as
this (maximal possible) step size value yielded fastest convergence. We observed that
JC and FJC converged with a nonzero limiting error, while decreasing the value of
ε did not improve the limiting error of the method while slowing down the methods.
Hence, with all the methods considered, we tune their step sizes to the best (up to
the finite candidate grid points resolution). With FNRC and FJC, we set the acceler-
ation parameter φ in the same way as in [38] (see p. 10 of [38].) With all PMM-DQN
methods, we do not use safeguarding (ρ = +∞), and we set θ = 0. With all the
methods considered, the primal variables—solution estimates (and dual variables, if
they exist)—are initialized with zero vectors. The error metric is the same as with
the quadratic example in section 5.

Figure 5 compares the PMM-DQN-` algorithms and the ESOM-` algorithms
in [28] in terms of the number of iterations (left) and the number of per-node com-
munications (right). We can see that, in terms of iterations, for each fixed `, the
corresponding PMM-DQN method performs better than the corresponding ESOM
method. The exception is the case ` = 0, where the two methods are comparable.
The same conclusions hold for the number of communications also. Further, in terms
of the number of iterations, PMM-DQN-1 and PMM-DQN-2 are the best among all
methods; in terms of communications, PMM-DQN-1 is the best method among all
PMM-DQN and ESOM method considered.

In Figure 6, we compare the best among the PMM-DQN-` methods, the best
among the ESOM-` methods (in terms of iterations, the best are PMM-DQN-1 and

0 20 40 60 80 10010-8

10-6

10-4

10-2

100

number of iterations, k

re
l.
 e

rr
o

r

PMM-DQN-2
ESOM-2
PMM-DQN-1
ESOM-1
PMM-DQN-0
ESOM-0

0 50 100 150 20010-8

10-6

10-4

10-2

100

number of per-node communications

re
l.
 e

rr
o

r

PMM-DQN-2
ESOM-2
PMM-DQN-1
ESOM-1
PMM-DQN-0
ESOM-0

Fig. 5. Comparison between the PMM-DQN-` algorithms and the ESOM-` algorithms in [28].
The figures plot relative error versus number of iterations k (left) and versus number of communi-
cations (right) for quadratic costs and n = 30-node network.

1200 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

0 50 100 15010-8

10-6

10-4

10-2

100

number of iterations, k

re
l.
 e

rr
o

r

ESOM-2
PMM-DQN-1
DQM
NRC
JC
FJC
FNRC

0 50 100 150 20010-8

10-6

10-4

10-2

100

number of per-node communications
re

l.
 e

rr
o

r

ESOM-0
PMM-DQN-1
DQM
JC
FJC
FNRC
NRC

Fig. 6. Comparison between the DQM algorithm in [27], the NRC algorithm in [38], the best
among the PMM-DQN-` algorithms, and the best among the ESOM-` algorithms. The figures plot
relative error versus number of iterations k (left) and versus number of communications (right) for
quadratic costs and n = 30-node network.

ESOM-2, while in terms of communications, the best are PMM-DQN-1 and ESOM-0),
DQM, and the NRC methods group (NRC, FNRC, JC, and FJC). We can see that
the PMM-DQN-1 method converges faster than all other methods, in terms of both
iterations and communications.

7. Conclusions. The problem under consideration is defined by an aggregate,
networkwide sum cost function across nodes in a connected network. It is assumed
that the cost functions are convex and differentiable, while the network is character-
ized by a symmetric, stochastic matrix W that fulfills standard assumptions. The
proposed methods are designed by exploiting a penalty reformulation of the original
problem and rely heavily on the sparsity structure of the Hessian. The general method
is tailored as a Newton-like method, taking the block diagonal part of the Hessian as
an approximate Hessian and then correcting this approximation by a diagonal ma-
trix Lk. The key point in the proposed class of methods is to exploit the structure of
Hessian and replace the dense part of the inverse Hessian by an inexpensive linear ap-
proximation, determined by matrix Lk. Depending on the choice of Lk, one can define
different methods, and three of such choices are analyzed in this work. An important
characteristic of the whole class of DQN methods is global linear convergence with a
proper choice of the step size. Furthermore, we have shown local linear convergence
for the full step size using the convergence theory of inexact Newton methods as well
as global convergence with the full step size for the special case of strictly convex
quadratic loss functions.

The three specific methods are analyzed in detail, termed DQN-0, DQN-1, and
DQN-2. They are defined by the three different choices of matrix Lk—the zero ma-
trix, a constant matrix, and the iteration-varying matrix that defines a search di-
rection which mimics the Newton direction as much as possible under the imposed
restrictions of inexpensive distributed implementation. For the last choice of the time-
varying matrix, we have shown local linear convergence for the full step size without
safeguarding.

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1201

The cost in terms of computational effort and communication of these three meth-
ods correspond to the costs of the state-of-the-art network Newton methods, NN-0,
NN-1, and NN-2, which are used as the benchmark class in this paper. The sim-
ulation results on two relevant problems, the quadratic loss and the logistic loss,
demonstrate the efficiency of the proposed methods and compare favorably with the
benchmark methods. Finally, applying the recent contributions of [28], the proposed
distributed second order methods were extended to the framework of PMM. Unlike
DQN, the modified methods converge to the exact solution and further enhance the
performance when high solution accuracies are required.

Appendix. Following [28], we briefly explain how we derive the PMM-DQN
methods. The starting point for PMM-DQN is the quadratically approximated PMM
method, which takes the following form (see [28] for details and derivations):

x̂ k+1 = x̂ k − Ĥ−1
k

(
∇F (x̂ k) + q̂ k + β(I− Z)x̂ k

)
,(57)

q̂ k+1 = q̂ k + β(I− Z)x̂ k+1.(58)

Here, β > 0 is the (dual) step size, Ĥk is given in (51), and x̂ k ∈ Rnp and q̂ k ∈ Rnp
are respectively the primal and dual variables at iteration k = 0, 1, . . . , initialized
by x̂ 0 = q̂ 0 = 0.

The challenge for distributed implementation of (57)–(58) is that the inverse of Ĥk
does not respect the sparsity pattern of the network. The ESOM methods, proposed
in [28], approximate the inverse of Ĥk following the NN-type approximations [22].

Here, we extend such possibilities and approximate the inverse of Ĥk through the
DQN-type approximations. This is defined in (51)–(53) and algorithm PMM-DQN in
section 6.

As noted, the matrix Lk = 0 with PMM-DQN-0, and it is Lk = L0 = const with
PMM-DQN-1, where L0 is the matrix from the first iteration of the DQN-2 method.
It remains to derive Lk for PMM-DQN-2, as given in section 6. As noted in section 6,
we approximate the Newton equation in (55). The derivation steps are the same as

with DQN-2, with the following identification: ∇2Φ(xk) in (34) is replaced with Ĥk
in (55), and ∇Φ(xk) with ĝ k in (55). Then, (37) with DQN-2 transforms into the
following equation with PMM-DQN-2:

L̂k û k = −Ĥ−1
k û k,(59)

where û k is given in (56). Finally, it remains to approximate Ĥ−1
k through a first

order Taylor approximation, as follows:

Ĥ−1
k =

[
(β + εpmm)

(
I−

(
β

β + εpmm
Z− 1

β + εpmm
∇2F (x̂ k)

))]−1

≈ 1

β + εpmm

[
I +

β

β + εpmm
Z− 1

β + εpmm
∇2F (x̂ k)

]
.

The above Taylor approximation is well defined if the spectral radius of matrix
(β
β+εpmm

Z− 1
β+εpmm

∇2F (x̂ k)) is strictly less than one. It is easy to verify that this will

be the case if the (positive) parameters β and εpmm satisfy β > 1
2 max{0, L− εpmm}.

1202 BAJOVIĆ, JAKOVETIĆ, KREJIĆ, AND JERINKIĆ

Acknowledgment. We are grateful to the anonymous referees whose comments
and suggestions helped us to improve the quality of this paper.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and sta-
tistical learning via the alternating direction method of multipliers, Found. Trends Machine
Learning, 3 (2011), pp. 1–122.

[2] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian
information in optimization methods for machine learning, SIAM J. Optim., 21 (2011),
pp. 977–995.

[3] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization
methods for machine learning, Math. Program., 134 (2012), pp. 127–155.

[4] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method
for large-scale optimization, SIAM J. Optim., 26 (2016), pp. 1008–1031.

[5] F. Cattivelli and A. H. Sayed, Diffusion LMS strategies for distributed estimation, IEEE
Trans. on Signal Process., 58 (2010), pp. 1035–1048.

[6] I.-A. Chen and A. Ozdaglar, A fast distributed proximal gradient method, in Proceedings of
Allerton Conference on Communication, Control and Computing, Monticello, IL, 2012.

[7] A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari, Hybrid ran-
dom/deterministic parallel algorithms for nonconvex big data optimization, IEEE Trans.
Signal Process., 63 (2014), pp. 3914–3929.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steinhaug, Inexact Newton method, SIAM J. Numer.
Anal., 19 (1982), pp. 400–409.

[9] J. R. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Classics in Appl. Math., SIAM, Philadelphia, 1996.

[10] M. Eisen, A. Mokhtari, and A. Ribeiro, A Decentralized Quasi-Newton Method for Dual
Formulations of Consensus Optimization, in Proceedings of the IEEE Conference on De-
cision and Control, 2016.

[11] D. G. Feingold and R. S. Varga, Block diagonally dominant matrices and generalizations
of the Gershgorin circle theorem, Pacific J. Math., 12 (1962), pp. 1241–1250.

[12] M. P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data fitting,
SIAM J. Sci. Comput., 34 (2012), pp. 1380–1405.

[13] D. Jakovetić, D. Bajović, N. Krejić, and N. Krklec Jerinkić, Distributed gradient meth-
ods with variable number of working nodes, IEEE Trans. Signal Process., 64 (2016),
pp. 4080–4095.

[14] D. Jakovetić, J. Xavier, and J. M. F. Moura, Fast distributed gradient methods, IEEE
Trans. Automat. Control, 59 (2014), pp. 1131–1146.

[15] D. Jakovetić, J. M. F. Moura, and J. Xavier, Distributed Nesterov-like gradient algorithms,
in Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, 2012, pp.
5459–5464.

[16] S. Kar, J. M. F. Moura, and K. Ramanan, Distributed parameter estimation in sensor net-
works: Nonlinear observation models and imperfect communication, IEEE Trans. Inform.
Theory, 58 (2012), pp. 3575–3605.

[17] N. Krejić and N. Krklec, Variable sample size methods for unconstrained optimization, J.
Comput. Appl. Math., 245 (2013), pp. 213–231.

[18] N. Krejić and N. Krklec Jerinkić, Nonmonotone line search methods with variable sample
size, Numer. Algorithms 68 (2015), pp. 711–739.

[19] N. Krejić and Z. Lužanin, Newton-like method with modification of the right-hand side vector,
Math. Comp., 71 (2002), pp. 237–250.

[20] I. Lobel, A. Ozdaglar, and D. Feijer, Distributed multi-agent optimization with state-
dependent communication, Math. Program., 129 (2014), pp. 255–284.

[21] C. Lopes and A. H. Sayed, Adaptive estimation algorithms over distributed networks, in
Proceedings of the 21st IEICE Signal Processing Symposium, Kyoto, Japan, 2006.

[22] A. Mokhtari, Q. Ling, and A. Ribeiro, An approximate Newton method for distributed
optimization, Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, Brisbane, Australia, 2015, pp. 2959–2963.

[23] A. Mokhtari, Q. Ling, and A. Ribeiro, Network Newton—Part I: Algorithm and Conver-
gence, arXiv:1504.06017, 2015.

[24] A. Mokhtari, Q. Ling, and A. Ribeiro, Network Newton–Part II: Convergence Rate and
Implementation, arXiv:1504.06020, 2015.

https://arxiv.org/abs/1504.06017
https://arxiv.org/abs/1504.06020

NEWTON-LIKE METHOD WITH DIAGONAL CORRECTION 1203

[25] A. Mokhtari and A. Ribeiro, Regularized stochastic BFGS method, IEEE Trans. Signal Pro-
cess., 62 (2014), pp. 6089–6104.

[26] A. Mokhtari and A. Ribeiro, Global convergence of online limited memory BFGS method,
J. Mach. Learn. Res., 17 (2016), pp. 1–35.

[27] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, DQM: Decentralized quadratically approxi-
mated alternating direction method of multipliers, IEEE Trans. Signal. Process., 64 (2016),
pp. 5158–5173.

[28] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, A decentralized second order method with
exact linear convergence rate for consensus optimization, IEEE Trans. Signal Inform. Pro-
cess. Netw., 2 (2016), pp. 507–522.

[29] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, Distributed optimization with local do-
mains: Applications in MPC and network flows, IEEE Trans. Automat. Control, 60 (2015),
pp. 2004–2009.

[30] A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization,
IEEE Trans. Automat. Control, 54 (2009), pp. 48–61.

[31] S. Ram and A. Nedić, and V. Veeravalli, Distributed stochastic subgradient projection al-
gorithms for convex optimization, J. Optim. Theory Appl., 147 (2011), pp. 516–545.

[32] S. S. Ram, A. Nedić, and V. Veeravalli, Asynchronous gossip algorithms for stochastic
optimization, in Proceedings of the 48th IEEE International Conference on Decision and
Control, Shanghai, China, 2009, pp. 3581–3586.

[33] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, Consensus in ad hoc WSNs with noisy
links – Part I: Distributed estimation of deterministic signals, IEEE Trans. Signal Process.,
56 (2009), pp. 350–364.

[34] G. Shi and K. H. Johansson, Finite-Time and Asymptotic Convergence of Distributed Aver-
aging and Maximizing Algorithms, arXiv:1205.1733, 2012.

[35] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, On the linear convergence of the ADMM in
decentralized consensus optimization, IEEE Trans. Signal Process., 62, 2013.

[36] W. Shi, Q. Ling, G. Wu, and W. Yin, EXTRA: An exact first-order algorithm for decentral-
ized consensus optimization, SIAM J. Optim., 25 (2015), pp. 944–966.

[37] E. Wei, A. Ozdaglar, and A. Jadbabaie, A distributed Newton method for network
utility maximization I: Algorithm, IEEE Trans. Automat. Control, 58 (2013), pp.
2162–2175.

[38] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato, Newton-
Raphson consensus for distributed Convex optimization, IEEE Trans. Automat. Control,
61, 2016.

[39] L. Xiao, S. Boyd, and S. Lall, A scheme for robust distributed sensor fusion based on average
consensus, in Proceedings of Information Processing in Sensor Networks, Los Angeles, CA,
2005, pp. 63–70.

[40] L. Yuan, Q. Ling, and W. Yin, On the Convergence of Decentralized Gradient Descent,
arXiv:1310.7063, 2013.

[41] M. Zargham, A. Ribeiro, and A. Jadbabaie, Accelerated dual descent for constrained convex
network flow optimization, in Proceedings of the IEEE 52nd Annual Conference on Decision
and Control, 2013, pp. 1037–1042.

https://arxiv.org/abs/1505.00965
https://arxiv.org/abs/1310.7063

	Introduction
	Preliminaries
	Distributed quasi-Newton method
	The proposed general DQN method
	Global linear convergence rate
	Local linear convergence

	Variants of the general DQN
	Algorithms DQN-0, 1, and 2
	Discussion on the tuning parameters

	Simulations
	Extensions
	Conclusions
	References

