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Abstract

Algorithmic Trading, also known as Algorithmic Execution, is the automated
process of trading exogenous orders in electronic (stock) exchanges. It be-
came widely available to all market participants over the last decade. The
execution efficiency was noted early on by market participants and algorith-
mic trading rapidly grew to become a widely utilized product globally within
Equites markets.

There are many aspects to algorithmic trading that make it attractive. As
a user, one has the ability to accurately specify the desired execution profile
with an indicative notion of the associated risk. Algorithmic trading consists
of a whole range of standard algorithms to mimic mainstream execution styles
as well customizable algorithms to to suit individual’s needs.

Execution has become a sensitive area where fund managers are con-
sciously looking to reduce cost. In capital markets where even marginal
competitive edge by one institution is rewarded with disproportionately large
profits, this is an effort worth pursuing. Algorithmic Trading being one of
the largest invested technological arms races in Wall Street today is yet an-
other evidence of its importance. Furthermore, having had the privilege of
working for a range of large investment banks, the insight into current com-
mon practice legitimizes our quest for finding a mathematical solution for
Optimal Execution for Atomic Orders.

Execution itself is an exceptionally complex problem, consisting of many
uncertain factors. Therefore, modeling most of these uncertain factors is a
fundamental part of algorithmic trading. At present, there exists no known
formalism for the optimal execution of atomic orders - the fundamental build-
ing blocks of all algorithmic orders. At its core, like most problems in capital
markets, the problem is that of finding the right balance between desired
reward and associated risk.

On one hand, one could choose a low risk option where one does not want
to miss the prevailing market price and is willing to pay a premium to lock in
this price by trading at market. Alternatively, one could wait a short period
in the hope of getting a better price than the currently prevailing price. This
latter option runs the price-volatility risk of not getting filled - partially or
completely. If one does not get the entire order filled, the residual order has
to trade at a worse price. This seemingly simple trade-off in finding the op-
timal weighting of the gain of waiting, the price volatility during the waiting
period and the premium to pay for the instantaneous trading opportunity
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is riddled with intrinsic complexities surrounding primitive order properties.
The emergence of multiple trading venues has exacerbated this complexity
significantly. In the latter case, a security’s liquidity is fragmented over mul-
tiple liquidity pools or venues. Therefore, one is no longer faced with whether
to trade instantly or wait for a better price, but has to consider which venue
to place passive orders in. Furthermore, if the market conditions change ad-
versely after placing an order in a given venue or move more favorably in
another venue, should one move this order to another venue and if so, to
which one and at what price level.

The primary objective in execution is to achieve the most efficient price.
We propose two optimal strategies for the execution of atomic orders based
on minimization of impact and volatility costs, in both single and multiple
market environments. The first considered strategy is based on a relatively
simple nonlinear optimization model while the second allows re-optimization
at some time point within a given execution time. Finally, we consider how
the model that allows re-optimization perform in a multiple trading venue
environment. In all cases, a combination of market and limit orders are used.

The key innovation in our approach is the introduction of a Fill Prob-
ability function which allows a combination of market and limit orders in
the four optimization models we are discussing in this thesis. Under certain
conditions the objective functions of all considered problems are convex and
therefore standard optimization tools can be applied. The efficiency of the
resulting strategies is tested against two benchmarks representing common
market practice on a representative sample of real trading data.

We first approached the simplest of problems, namely single market and
single period optimization. We were able prove that the problem at hand
could be optimized with an SQP variant procedure. This was followed by
formalizing the objective function. Next, we extended the model to deal with
multiple re-optimization. In our example, we re-optimized once only, how-
ever the procedure is general can be re-optimized more frequently. Finally,
we extended the general multi period problem to an environment consist-
ing of multiple trading venues. This last mentioned problem is a bi-level
nonlinear optimization problem for modeling risks and gains of the decision
variables and the residuals.

The notation adopted is giving in chapter 1 together with definitions and
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theorems. Chapter 2 introduces the key concepts related to financial markets.
The market structures are explained in the context of the research. Chapter
3 introduces the whole notion of algorithmic trading and the key problems
associated with order execution. The key innovation, Fill Probability, is
explored in detail with respect to its functional properties. Constrained
non-linear problems are covered in Chapter 4, with particular emphasis on
SQP method as it was used in our optimizations. In particular, fmincon()
subroutine in Matlab was used in our optimization.

The nucleus of this thesis are presented in Chapters 5 and 6, single-market
and multiple-market respectively. These two chapters contain the original
work presented in this thesis - a novel solutions for hitherto non-existing
formulation for optimal execution of orders in the financial market. The
findings detailed in chapter 5 is published in the Journal of Computational
Optimization and Applications (Kumaresan and Krejić [38]). The findings
in chapter 6 are presented in Kumaresan, Krejic [39].

Chapter 7 defines the parameters and methodology of the optimization
conducted to empirically prove our model. Because the models presented
here are intended for live-trading, there are no assumptions made that would
prevent it from trading. In fact, the models developed in this thesis was
deployed to live trading at a global proprietary trading house. Chapter 8
contains the numerical results of our models clearly showing the performance
characteristics of the different models. The last chapter contains the list of
references.
Key words: nonlinear programming, convex programming, optimal execu-
tion strategy, multiple trading venues, algorithmic trading
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Apstrakt

Algoritamsko trgovanje, poznato i kao automatsko izvršenje, je automatizo-
vani proces izvršavanja naloga na elektronskim berzama (berzama akcija).
Tokom poslednje decenije ovaj vid trgovanja je postao dostupan širokom
krugu učesnika na tržǐstu. Efikasnost ovog načina izvršenja je primećena i
ranije od strane učesnika na tržǐstu i algoritamsko trgovanje se brzo raširilo
do globalno rasprostranjenog proizvoda na trštima kapitala.

Algoritamsko trgovanje je atraktivno po mnogim osobinama. Korisnik
ima mogućnost da precizno definivsse željeni način izvršenja uz inidikativni
pokazatelj rizika. Algoritamsko trgovanje sadrži čitav niz standardizovanih
algoritama koji imitiraju glavne tipove izvršenja kao i mogućnost prilagod-
javanja algoritama pojedinačnim potrebama korisnika.

Izvršenje je postalo osetljiva oblast u kojoj fond menadžeri neprekidno
pokušavaju da smanje troškove. Na tržǐstima kapitala, na kojima čak i
marginalna prednost u načinu izvršenja dovodi do nesrazmerno velikog prof-
ita, trud uložen u smanjenje troškova je veoma isplativ. Algoritamsko tr-
govanje je trenutno jedna od najve’̧ih tehnoloških trka na Wall Street-u što
govori o njegovom značaju. Imajući privilegiju rada za nekoliko velikih inves-
ticionih banaka i stečeno znanje o sadašnjoj standardnoj praksi u izvršenju
naloga, čini pokušaj nalaženja matematičkog rešenja za problem optimalnog
izvršenja atomskih naloga, legitimnim i značajnim.

Izvršenje zavisi od mnoštva slučajnih faktora i predstavlja ekstremno
složen problem. Zbog toga je modeliranje slučajnih faktora fundamentalni
deo algoritamskog trgovanja. U ovom momentu ne postoji formalni okvir za
optimalno izvršenje atomskih naloga - koji su fundamentalni element svih
algoritamskih naloga. U suštini, problem se svodi na nalaženje ravnoteže
izmedju željenog prinosa i pridruženog rizika, , kao i većina problema na
tržǐstu kapitala.

Sa jedne strane, moguće je izabarti opciju niskog rizika u kojoj ne želimo
da propustimo preovladjujuću cenu i spremni smo da platimo premiju da bi
osigurali tu cenu trgujući market nalogom. Druga alternativa je da se sačeka
kratko vreme, davanjem limit naloga, u nadi da će se postići povoljnija cena.
Ova opcija nosi rizik cena-volatilnost koji može dovesti do delimičnog ili
potpunog neizvršenja naloga. Ako ceo nalog nije izvršen onda se rezidualni
nalog izvršava po lošijoj ceni. Ova naizgled jednostavna odluka, koja se
donosi pri odredjivanja optimalnog perioda čekanja radi dobitka, je zapravo
veoma složena zbog volatilnosti cene tokom perioda čekanja i premije koja
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se plaća za trenutno izvršenje naloga. Razvoj trgovanja na vǐse tražǐsta
istovremeno je značajno povećao kompleksnost problema. U ovom slučaju
je likvidnost hartije rasporedjena na vǐse tržǐsta istovremeno. Usled toga,
dilema nije samo da li nalog izvršiti odmah ili čekati bolju cenu već se mora
odlučiti i na kom tržǐstu će se plasirati pasivni nalozi. Sem toga, ukoliko
se tržǐsni uslovi promene u nepovoljnom pravcu nakon što je nalog dat na
jednom tržǐstu, ili se pak na drugom tržǐstu uslovi promene u povoljnom
pravcu, postavlja se pitanje da li premestiti nalog, i ako se vrši promena,
kako je izvršiti - aktivno ili pasivno i na kom cenovnom nivou.

Osnovni cilj u izvršenju je postizanje najefikasnije cene. Ovde su predložene
dve optimalne strategije za izvršenje atomskih naloga zasnovane na mini-
mizaciji troškova impakta i volatilnosti u slučaju jednog tržǐsta i vǐse tržǐsta.
Prva posmatrana strategija je zasnovana na relativno jednostavnom nelin-
earnom optimizacionom modelu, dok druga dozvoljava reoptimizaciju u nekom
trenutku unutar zadatog vremenskog intervala izvršenja. Konačno, posma-
tran je model koji dozvoljava reoptimizaciju u okruženju sa vǐse tržǐsta. U
svim slučajevima koristi se kombinacija market i limit naloga.

Glavna inovacija u našem pristupu je uvodjenje Fill Probability funkcije
koja omogućava kombinaciju market i limit naloga u sva četiri modela disku-
tovana u ovoj tezi. Pod odredjenim uslovima funkcije cilja svih posmatranih
problema su konveksne te se mogu primeniti standardni metodi optimizacije.
Efikasnost predloženih strategija je testirana u odnosu na dve representa-
tivne strategije, koje predstavljaju uobičajenu praksu, na realnom uzorku
podataka sa tržǐsta.

Prvo je posmatran najjednostavniji model - jedno tržǐste i jedna vremen-
ski period. Pokazano je da se ovakav problem može rešiti jednom varijantom
standardnog SQP metoda. Zatim je model proširen na model sa vǐse perioda
tako da dozvoljava reoptimizaciju. U našim primerima reoptimizacija se radi
samo jednom u svakom vremenskom intervalu ali je procedura generalna i
može se primeniti proizvoljan broj puta. Na kraju je model za vǐse perioda
proširen na okruženje sa vǐse tržǐsta. Ovaj poslednji model zahteva rešavanje
bi-level problema nelinearne optimizacije pri modeliranju rizika i dobiti za
osnovne i rezidualne promenljive.

U prvom poglavlju je dat pregled oznaka, definicja i teorema koje su
korǐsćene u radu. U glavi 2 su uvedeni osnovni pojmovi finansijskih tržǐsta
od značaja za posmatrani problem. Koncept algoritamskog trgovanja i opis
osnovnih pojmova su dati u glavi 3. Glavna inovacija u našem pristupu,
Fill Probability funkcija, je detaljno objašnjena. Nelinearni problemi sa
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ograničenjima su razmatrani u glavi 4, sa posebnim naglaskom na SQP
metode koje su korǐsćene u daljem radu. U numeričkim eksperimentima
je korǐsćena Matlab funkcija fmincon().

Suštinski doprinos teze je dat u poglavljima 5 i 6, za jedno tržǐste i za
vǐse tržǐsta redom. Ova dva poglavlja sadrže originalne rezultate ove teze -
formulaciju (ranije nepostojeću) problema optimalnog izvršenja na finansi-
jskim tržǐstima i njegovo rešenje. Rezultati iz poglavlja 5 su publikovani u
Journal of Computational Optimizationa nd Applications (Kumaresan and
Krejić, [38]). Rezultati iz poglavlja 6 su dati u Kumaresan, Krejić [39].

Poglavlje 7 definǐse parametre i metodologiju koja je primenjena u op-
timizaciji pri empirijskom testiranju modela. Kako su predloženi modeli
namenjeni stvarnom trgovanju nisu uvedene nikakve pretpostavke koje bi
onemogućavale direktnu implementaciju u trgovanju. Zapravo, jedan od
modela u tezi iz ove teze se primenjuje u jednoj berzanskoj kući koja tr-
guje globalno. Poglavlje 8 sadrži numeričke rezultate za posmatrane modele
koji jasno pokazuju njihove karakteristike. Poslednje poglavlje sadrži pregled
korǐsćene literature.
Klučne reči: nelinearno programiranje, konveksno programiranje, opti-
malna strategija izvršenja, vǐse tržǐsta, algoritamsko trgovanje.
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jenje za trgovanje VOD na dva tržǐsta. . . . . . . . . . . . . . 114

8.5 Performance comparison of trading AAL in two venues. Pored-
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Chapter 1

Introduction

1.1 Motivation

Mathematical approaches to finance are evident in early research from the
50s by Harry Markowitz in formulating the Modern Portfolio Theory, Bill
Sharpe and others with their work on Capital Asset Pricing Model - to be-
come one of the foundations of financial economics. Significant contributions
were made by Black and Scholes in the early 70s with their ground breaking
pricing model for financial options. While, for instance, complex derivatives
pricing is today a well explored area, a large proportion of the International
Capital Markets are still in their infancy. As such, the use of complex math-
ematical methods in these areas is a relatively rare phenomenon. Most real
world quantitative finance problems involve working with high levels of un-
certainty - hence requiring complex mathematical models. However, given
the prerequisites of a diverse and in-depth domain knowledge a priori by the
Financial Engineers, a somewhat rare combination of skillset, these domains
in general remain less exploited. The outcome of this shortcoming is, un-
surprisingly, the wide usage of rudimentary rules of thumb based on simple
observations. One of the important areas in capital markets that fall into this
category is that of Automated Execution of orders of securities at electronic
exchanges.

Historically, transactions at listed securities exchanges, like stock or fu-
tures exchanges, were conducted by brokers. On receipt of an instruction to
transact on behalf of a client, the broker would execute the order manually
using a dedicated computer terminal, in a piece-wise manner over a longer
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20 CHAPTER 1. INTRODUCTION

period. With the major modernisation of exchanges in the late 90s, member
organisations of these exchanges were provided electronic pipes, open inter-
faces, thus empowering the members to develop their own automatons to ex-
ecute some of the simpler manual orders. Early to capitalise on this emerging
technology were the Quantitative Trading Groups within investment banks.
These groups made their investment decisions based on quantitative models
that recommended buying and selling timing of financial securities. Being
very quantitative in their approach to investment decisions, the automation
allowed them to expand employing their trading models to a large number
of securities and markets. Beside removing the manual execution which was
a logistic overhead, the automation proved to be significantly more cost ef-
ficient, facilitating a new breed of trading models with, small profit margin
strategies, to be employed.

During the years 2000-2003, the rudimentary automation rapidly got
adopted across the wider community in the equities market. By 2008, the
early-stage electronic assistants to human operators had become a major dis-
cipline on their own right. Better known as Algorithmic Trading, this is one
of the largest invested technological arms races in Wall Street today. The
growth of electronic execution of orders in the major stock exchanges in Eu-
rope and the US has been tremendous in the recent years. Stock exchanges
across the globe have had to change their business models to facilitate Al-
gorithmic Trading. In some exchanges, 80% of the transactions are origi-
nated by Algorithms. It is estimated that 40% of the volume traded in 2008
across Europe and the US were algorithmic trades. With such a demand for
electronic trading, new execution venues mushroomed to accommodate the
diverse requirements of execution. These range from alternative exchanges
to traditional exchanges, to new dark liquidity pools, block trading systems,
anonymous crossing engines, liquidity aggregators, and so forth.

There are many reasons for the rapid growth in Algorithmic Trading.
Its emergence coincided with the arrival of smart technology to facilitate
routing orders to multiple venues. Execution is fundamental to most sell side
institutions as this is usually agency business and hence revenue is based
on commission / fee as opposed to revenue generated from taking trading
risk. By using mathematical models to formalise the execution problem, the
quality of execution improved significantly. Automation allowed algorithms
to be customizable, to meet the specific needs of the client and also allowed
them to assess their risks prior to entering into a transaction. The latter
effectively gave the client better control over their orders. Of the dozen
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or so classes of execution algorithms, 90% of the algorithmic market share
is attributed to three types of algorithms only (Volume Weighted Average
Price - VWAP, Participation and Implementation Shortfall).

The fabric of algorithms used in algorithmic trading is deeply entrenched
in multiple disciplines, such as trading, market micro structures, mathemat-
ics, high frequency data, forecasting, stochastic problems, etc. Therefore,
creating advanced algorithms is a task too difficult even for most of the
current breed of financial engineers. This is observable from the share per-
formance of the algorithms offered by the different financial institutions (sell
side).

Algorithms remain relatively basic. Though the behavioural properties
of securities in the equites market, which consists of thousands of securities,
cannot be characterised by mere standard deviation of price and average
daily volume, they often are. Similarly, the Probability of Fill of an order
placed at the best bid/ask price, for a vaguely defined short period, is not
60% for all stocks across all times of the day, contrary to popular belief.
The practice of using static properties of stocks to estimate expected Market
Impact will always either over- or under estimate the true market impact
as market impact is a dynamic factor. At present, there exists no known
formalism for the Optimal Execution of Atomic Orders - the fundamental
building blocks of all algorithmic orders.

In the absence of truly innovative differences among the top tier insti-
tutional competitors in the Algorithmic Trading space, the ranking of the
different providers of algorithms is somewhat ambiguous. This is party due
to the inherent difficulties in accurately measuring performance of the differ-
ent algorithms by the buy-side users. The recent emphasis and investment
by sell side in algorithmic trading has been on the infrastructure technology
to reduce the latency to the market - the time it takes to send an order to
an execution venue. Only a few years ago, reducing the latency from 100+
milliseconds down to single digit milli-seconds delay was much welcomed.
However, the reduction in latency does not necessarily translate into propor-
tionate betterment of execution quality.

With the performance and latency of most serious algorithm providers
being comparable, once again the focus is starting to look towards innovation
in developing more complex variations of the currently popular models. We
are of the belief that this innovation should start at the heart of an algorithm.
Regardless of the objectives of the algorithm used to execute an order, all
orders are decomposed into a sequence of atomic orders. How well these
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atomic orders are executed will directly translate into how well the overall
objectives of the algorithms in question are meet. Therefore, a poor atomic
order execution is guaranteed to have poor overall performance.

In capital markets where even marginal competitive edge by one institu-
tion is rewarded with disproportionately large profits, this is an effort worth
pursuing. Furthermore, having had the privilege of working for a range of
large investment banks, the insight into current common practice legitimizes
our quest for finding a mathematical solution for Optimal Execution for
Atomic Orders.

1.2 Notation

N - set of natural numbers

R - set of real numbers

R+ - set of non-negative real numbers

Rn - set of real n-dimentional vectors

Rm×n - the space of all m-by-n real matrices

x, y . . . n-dimensional vectors with components xi, i = 1, . . . , n i.e. x =
(x1, x2, . . . , xn)T

A,B . . . - set of matrices

A =
[
aij
]
nxm

- an m x n matrix with elements aij, i = 1, . . . , n, j =
1, . . . ,m.

AT - the transpose of the matrix A

A−1 - the inverse of the matrix A

I - the identity matrix
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e1, ..., en - the coordinate vector of Rn

A = diag(a1, a2, ..., an)− diagonal matrix, i.e. aii = ai, i = 1, .., n

aij = 0, i 6= j, i, j = 1, .., n

‖.‖ - vector norm

‖.‖ - matrix norm

‖x‖1 =
∑n

i=1 |xi| − l1 norm

‖x‖2 =
( ∑n

i=1 |xi|2
) 1

2 − l2 norm

‖x‖∞ = max1≤i≤n |xi| − l∞ norm

‖A‖F =
(∑n

i=1

∑n
j=1 |aij|2

) 1
2

- Frobenius norm

1.3 Overview of Definitions and Theorems

Definition 1 Matrix A ∈ Rm×n is called:

- symmetric if AT = A;

- positive definite if xTAx > 0 for all x ∈ Rn;

Definition 2 We say that mapping F : D ⊂ Rn → Rn satisfies a Lipschitz
condition at x ∈ D with constant L > 0 if

‖F (x)− F (y)‖ ≤ L‖x− y‖, for all y ∈ D
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Definition 3 A mapping F : D ⊂ Rn → Rn is Frechet-differentiable at
x ∈ int(D) if there is a linear operator A ∈ Rn×m such that

lim
h→0

‖F (x+ h)− Fx− Ah‖
‖h‖

= 0. (1.1)

The unique linear operator A for which (1.1) holds is denoted by F ′(x), and
is called the F -derivative of F at x. The limit in (1.1) is independent of the
particular norm on Rn. The matrix representation of F ′(x) is given by the
Jacobian matrix, J (x) = [ ∂fi

∂xj
]ij

Lemma 1 [61] Assume that F : D ⊂ Rn → Rm is differentiable on a convex
set D0 ⊂ D. Then, for any x, y ∈ D0,

‖F (y)− F (x)‖ ≤ sup0≤t≤1 ‖J (x+ t(y − x)‖.‖y − x‖.

Lemma 2 [61] Let F : D ⊂ Rn → Rm be continuously differentiable on a
convex set D0 ⊂ D. Suppose that

‖J (y)− J (x)‖ ≤ γ(x)‖y − x‖ for all y ∈ D0.

Then,

‖F (y)− F (x)− J (x)(y − x)‖ ≤ 1
2
γ(x)‖y − x‖2, for all y ∈ D0.

Lemma 3 [61] Let a mapping F : D ⊂ Rn×n → Rn×n be continuously dif-
ferentiable in an open convex set D and F ′ satisfies a Lipschitz condition at
z ∈ D. Then

Then,

‖F (x)−F (y)−J (z)(x− y)‖ ≤ L max{‖x− z‖, ‖y− z‖}‖x− y‖, for all
x and y in D.

Definition 4 Let {xk}∞k=0 ⊂ Rn and limx→∞ k
k = x∗. Then,
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• xk → x∗ q-linearly if exists σ ∈ (0, 1) such that

‖xk+1 − x∗‖ ≤ σ‖xk − x∗‖,

• xk → x∗ q-superlinearly if

limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = 0,

• q-superlinearly with q-order α > 1 if exists K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖α,

• q-quadratically (q-superlinearly with q-order 2) if exists K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2,

for k sufficiently large.

Definition 5 For f : Rn → R and x ∈ Rn we define the gradient as

∇f(x) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 (1.2)

with

∂f
∂xi

= limε→0
f(x+εci)−f(x)

ε
.

The Hessian is defined as

∇2f(x) = [ ∂2f
∂xi∂xj

]

Definition 6 For f : Rn → R and p ∈ Rn the directional derivative of f in
the direction of p is given by

D(f(x); p) = limε→0
f(x+εp)−f(x)

ε
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If f is continuously differentiable then

D(f(x); p) = ∇f(x)Tp.

1.4 Chapter outline

The notation adopted is giving in Chapter 1 together with definitions and
theorems. Chapter 2 introduces the key concepts related to financial mar-
kets, in particular relating to market structures and constructs. Chapter 3
introduces the whole notion of algorithmic trading and the key problems as-
sociated with order execution. Constrained non-linear problems are covered
in Chapter 4, with particular emphasis on SQP method as it was used in our
optimizations.

Chapters 5 and 6 essentially constitute the nucleus of this thesis. These
contain the original work that propose novel solutions for hitherto non-
existing formulation for optimal execution of orders in the financial market
(in the public domain). They cover Single Market Model and Multi Market
model respectively. The findings detailed in chapter 5 is published in the
Journal of Computational Optimization and Applications (Kumaresan and
Krejić [38]). The findings in chapter 6 are presented in Kumaresan, Krejic
[39].

Chapter 7 defines the parameters and methodology of the optimization
conducted to empirically prove our model. Chapter 8 contains the numerical
results of our models clearly showing the performance characteristics of the
different models.



Chapter 2

Market Structure

Transactions in securities can be carried out in many different ways. Traders
at institutional investment houses, regulated by the financial services regula-
tor, could trade with each other via telephone, through exchanges, through
regulated liquidity pools - internal or external, and others. Discussed here
are three key venues that account for significant proportion of market share.

2.1 Evolution of Exchanges

In the context of stock markets, an exchange is a corporation which pro-
vides a trading facility for member organizations to trade shares in its listed
universe of stocks. The non-member organisations access an exchange via
intermediaries, such as stockbrokers. The exchange being a meeting place of
parties interested in buying and selling securities, transactions are the result
of supply and demand.

The first major change was the move away from the pits (floor trading)
with the introduction of computerised order entry terminals and electroni-
cally matching buyers and sellers. The majority of the floor traders could
not adjust to the new rules of the market place when the competitive edge
of the floor vanished, and was replaced with a fairer playing rule applying to
all participants. The order matching process in a stock exchange is based on
price priority and for where there are many participants at a given price, the
priority will be in the order of arrival. As a result, the floor traders mostly
faded away and a new breed of traders/executioners emerged to occupy the
vacuum left by the floor traders. A decade ago, the stock exchange went

27
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through yet another major transformation and offered all member organisa-
tions electronic pipes - providing them the opportunity to develop their own
order entry systems. The first usage of this open interface was in the form
of simple automation of simple repetitive execution tasks usually carried out
by junior traders. Seing the advantage of this automation, the usage spread
with a speed beyond most market practitioners’ expectations.

In the early part of the millennium, member organisations started de-
veloping more complex trading algorithms to execute complete orders au-
tonomously from start to finish. In general, there were only advantages to
be gained with automation, in the form of lower slippage to benchmark and
lower staff requirement. The execution performance improved significantly
and became more consistent than achievable by human operators on average
for small to medium sized orders. The transition from pit trading to elec-
tronic execution has also significantly affected the nature of liquidity and the
market microstructure in general.

An exchange has other roles than merely the mechanical facilitation of
transaction among buyers and sellers. Among other roles, corporate gover-
nance is perhaps one of the most important roles of an exchange.

2.2 Special Venues

Popularly called Dark Pools, these are essentially a stock exchange like
matching engine without visibility of other participants. The primary pur-
pose of dark pools of liquidity is to have anonymity of the participant’s in-
tention in terms of the price and quantity they want to transact and whether
they are a buyer or a seller. This information is important when a trader has
a large order size to execute as this would usually impact the market cost.
Therefore, in order to not give away sensitive infirmation to the marketplace,
anonymity is favored by large players.

Dark pools are becoming common among all major investment banks. In
the interest of avoiding market impact and also to reduce the transaction
fee payable to exchanges, any orders worked on behalf of a client (internal
or external) will be matched off in a dark pool at a price no worse than the
current market price. In a large volume business, the small savings result in
profits of tens of millions of dollars.

The success rate of dark pools and that of crossing engines are dependent
on the careful balance of liquidity makers (providers) and liquidity takers.
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Yet another class of anonymous (and very valuable) form of trading venue
are crossing engines. Crossing engines match off larger market participants
(typically) - wanting to transact without causing excess market impact. As
such, anonymous orders are submitted by traders and crossing usually takes
place at pre-scheduled intervals (typically hourly). Each order may or may
not have a price limit and the matching algorithm employed will match-off
orders such that maximum amount is transacted while adhering the con-
straints imposed at the individual order level. As a result, at the end of the
matching process, there may be many unfilled orders. This can also be the
result of large imbalances in supply and demand. Examples of major crossing
engines are ITG’s Possit, NYFix Millennium, Liquidnet and Pipeline Trading
Systems.

2.3 Successful Venues

A successful venue is one in which there is a good balance between providers
of liquidity and takers of liquidity. If there were fewer liquidity takers (ag-
gressive orders) than liquidity makers (passive orders), then we will have a
situation where the majority of orders are dormant and the market will re-
main static in this particular venue. If the roles were reversed, the venue
would not be of interest to liquidity takers as only a small quantity is avail-
able to trade without causing excess market impact. Venues with visible
orderbook (visibility of all orders at the venue) will allow traders to react
accordingly to realise their order execution aims. However, if the lined up
buyers and sellers are not visible, then the hit rate could be very low. This
could potentially lead to the death of such venues.

The above dilemma of balancing providers and takers of liquidity is the
primary cause for the formation of ”aggregators”, ie. umbrella organisations
that work as liquidity pool gateways by amalgamating liquidity in diverse
pools into one portal. Although aggregators are attractive compared to the
alternative of not having any, the entire arena of multiple liquidity pools is
in the early stages of evolution. The well known Virt-X exchange, recently
renamed SWX, was the first cross border trading platform for pan-European
blue chip stocks. Formed in 2001, it was not a big success until recently.
This is partly due to the lack of Smart Order Routing (SOR) systems until
recently. It is also partly due to the lack of end user sophistication at the time.
In a similar light, the complexity of the liquidity pool cannot be significantly
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more complex than the technology commonly available and the state of the
end user’s ability to utilize the complex functionality that is offered.

An attractive venue is not all about being visible or dark. The visibility
should be a function of one’s intention of engagement. For instance, one of
the key concerns with dark liquidity pools is the use of ”pinging”, a liquidity
spotting method utilized by various market participants, by sending very
small share quantities to many venues as market orders. The fills from the
different dark venues would provide some insight into where there may be a
large availability of liquidity. However, traders placing orders in dark pools
do not want to be pinged because they have large orders to transact and are
looking for traders with similar intentions. As such, pinging will make the
intentions of dark pool participants visible, hence they can be exploited.

It is our belief that an attractive venue is one in which there is a continuity
in the level of visibility to suit a wide range of market participants. However,
each order entering dark pools will have addition attributes, specifying factors
such as clip size for instance, the minimum quantity the trader is willing
to trade with anyone, effectively shielding one from being pinged by small
orders. Other attributes could be laddering of clip sizes, where the trader may
have different limit prices attached to different clip sizes. This would allow
one to transact even very large order sizes with differing prices. Therefore,
a composition of liquidity makers with large and varied orders can co-exist
in a single venue and could potentially facilitate larger hit rates. As in the
case of Virt-X, unless there are enough user wanting to take advantage of the
sophistication of complex venues, there will not be much business in these
venues.

2.4 Market Micro-structure

Whether or not research in quantitative finance is about market microstruc-
ture, this topic will enter the scene directly or indirectly. Market microstruc-
ture has many definitions without being any one specific thing. Actually,
the use of the term ”Market microstructure” in today’s finance is somewhat
ambiguous. The National Bureau of Economic Research’s market microstruc-
ture research group [34] defines it as being ”devoted to theoretical, empirical,
and experimental research on the economics of securities markets, including
the role of information in the price discovery process, the definition, mea-
surement, control, and determinants of liquidity and transactions costs, and
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their implications for the efficiency, welfare, and regulation of alternative
trading mechanisms and market structures”. A better definition is provided
by O’Hara [47], ”Market microstructure studies the effects of market struc-
ture and individual behaviour on the process of price formation”. Madhaven
[41] nicely defines market microstructure as ”the area of finance that studies
the process by which investors’ latent demands are ultimately translated into
price formation and volumes”.

The term Market Microstructure, coined by Garman [26], writes:
”[W]e depart from the usual approach of the theory of exchange by (1)

making the assumption of asynchronous, temporally discrete market activi-
ties on the part of market agents and (2) adopting a viewpoint which treats
the temporal microstructure, i.e., moment-to-moment aggregate exchange
behaviour, as an important descriptive aspect of such markets.”

Although our focus is not on market microstructure per se, the factors
affecting price formation is important to our later discussions.

2.4.1 Orderbook

At the core of any securities exchange is the notion of an Orderbook. A market
place consists of two sets of traders, buys and sells of securities. The two
camps of traders have similar but opposing objectives for a given security.
The collective representation of all buyers and sellers of a given security is
the orderbook. An orderbook is therefore a price-ordered list of buyers and
sellers on two opposing sides. The basic building block of an orderbook is
a Price-Quantity pair. Orders in an orderbook in the stock market, follow
a FIFO queuing convention. That is, there an be multiple orders in a given
price level. Priority is assigned by price and then by arrival time of the
order. Figure 2.1 illustartes an orderbook. There are instruments such as
Euro Dollar or Corn futures where a pro-rated order filling rule is used in
combination with FIFO. A trade takes place when there is an overlap in
supply and demand.

2.4.2 Multiple Orderbooks

In a market place of multiple trading venues, there are multiple orderbooks
for one and the same security as shown in figure 2.2. As can be seen, the two
exchanges or markets do not have the same order quantity or prices, although
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Figure 2.1: A typical orderbook in a single-market. Tipična knjiga naloga
na jednom tržǐstu

they are usually arbitrage free (where one could simultaneously buy and sell
at the two markets, securing an instant risk-less profit). It is however typical
that one market can have a price improvement on its best bid or ask. Another
point to be noted from the two orderbooks is that market A has significantly
more orders (liquidity) than market B for the corresponding or comparable
price levels. Prices in each market can only change in multiples of a defined
minimum quantity called Tick Size.

2.4.3 Bid/Ask Spread

The highest buying price and lowest selling price is called the touch price.
This is the major divide between buyers and sellers. The most aggressive
buying price is often referred to as best bid (denoted in this work as b1), and
similarly for ask. The difference between the best bid and best ask, ie. the
spread, is quoted in basis points (bps) in Europe and Asia (1 basis point is
1/100 of a percent) and typically in cents/share or fractional cents/share in
the US.

The magnitude of spread has been well studied in Demsetz [18], Tinic
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Size # Orders Buy Orders Price Sell Orders # Orders Size

… … …

1.59 … …

1.58 3/11 20,000 

1.57 0/3 30,000 

1.56 3/1 15,000 

1.55 5/0 40,000 

1.54 4/3 25,000 

1.53 5/2 35,000 

1.52 0/3 15,000 

Best Bid 5/2 30,000 

Spread

Best Ask

15,000 0/6 1.5

25,000 3/4 1.49

30,000 5/0 1.48

25,000 1/2 1.47

20,000 7/4 1.46

20,000 0/2 1.45

40,000 8/3 1.44

35,000 12/0 1.43

… … …

Market A Market B

Figure 2.2: A typical orderbook in a multi-market environment. Tipična
knjiga naloga u okruženju sa vǐse tržǐsta
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[54], O’Hara and Oldfield [48], Stoll [52], Amihud and Mendelson [6], Roll
[50], Ho and Stoll [31] and others. However, it should also be noted that
price formation in today’s market place is significantly different to the time
when the above studies were made. The actual cause of different spread size
is not central to this research. Suffice to say, the spread is dependent on
supply and demand of a stock and the granularity of price increments (tick
size, see below).

From a behavioural perspective, the size of the spread will dramatically
affect the nature of the price process of a stock and its liquidity. A good
example of this effect is clearly visible in Vodafone, VOD.L, listed on the
LSE. Prior to March 2007, the typical spread of VOD.L was a single price
increment. However, the size of the price increment changed in March 2007.
There were many side effects due to this change. The otherwise relatively
static orderbook now became noisy and traded in a small noisy channel.
The individual trade sizes diminished, but, the number of trades increased.
Similarly, the order arrival and cancellation patterns also changed. Therefore,
a seemingly small change to a security can have drastic effects on its price
process.

The spread in exceptionally liquid securities is typically a single tick wide.
However, many large market capitalisation securities often have spreads vary-
ing from 1 to 3 ticks. Less liquid stocks tend to have spreads of 10 or more
ticks.

2.4.4 Depth and Detail

Depth is the term commonly used to describe orders queued in the orderbook.
The levels of depth are numbered 1 . . . n, where 1 is the best bid or best ask.
A typical characteristic of the orderbook is that the liquidity is higher the
further down the depth, as there are more traders willing to buy / sell at
prices more favorable to themselves. At each level of a buy side depth, there
is typically an attribute that denotes the number of buyers at that level
making up the liquidity amount. One of the shortcomings of a consolidated
depth orderbook market view is felt in the event of a cancellation of an order
occurring at touch. When the order quantity at touch changes to a smaller
quantity, it is often useful to know whether this was caused by a trade or a
cancellation. In the absence of high precision market data, it is not always
easy to determine the cause of an order size reduction at touch. In short,
some trades can be reported as a sequence of multiple smaller trades, where
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their sum is equal to the actual trade and also the changes in the orderbook
following the trade. Further complexities arise due to the ordering of the
reporting of the trades and changes to the orderbook. In the absence of
accurate data, various matching techniques are sought to match changes to
trades.

In some markets, a more granular market feed exists, providing the com-
position of the consolidated quantity (all of the individual orders). In this
case, when there is a cancellation of an order, the event is tagged with the
exact detail of the order being cancelled. This rich level of information is
often referred to as orderbook detail.

Although the overall effect on the orderbook is the same regardless of
whether the cause of the change was a trade or a cancellation, the information
content of this state transition varies. For instance, whether the first order or
the last one in the Bid1 queue got cancelled has different meaning / intention.
One could possibly argue that some one who has waited in the queue for a
while to advance to the first place will only cancel the order if he/she has come
into some information advantage, thus making this price level less attractive.
The same reasoning may not apply to the one at the back of the queue who
cancelled. Orders at the back of the queue have a lower chance of getting
filled, hence, cancellation could be the result of being risk averse and wanting
to secure the prevailing asking price by cancelling the order and making it a
market order.

Another usefulness of market detail data is that you are able to track
the amount of orders ahead of yourself. With market depth, although you
could record the quantity ahead at the time of placement of an order, a
cancellation can happen either in-front or behind your own order. Therefore,
after a cancellation, the certainty of your own position will be lost.

As discussed under Fill probability below, a forecasting model that is
modelled with both market depth and detail data show that the forecasting
accuracy is significantly higher with market detail as opposed to using market
depth.

2.4.5 Tick Size rule

Price granularity, the rule governing determination of tick sizes of securities
varies from stock exchange to stock exchange. In Europe, tick size is a form
of step function of a security’s price. Interestingly, in some markets, the
granularity changes intraday when the price crosses the tick size defining
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boundary. For instance, a security may have a tick size of 0.25 when its price
range is in a given price range and a tick size of 0.5 when the price range is
in the subsequent range. Technically, the orderbook can be in a state where
all bids are in a given tick size band while all offers are in another.

2.4.6 Orders

Each stock exchange provides a set of valid order types. Each order type
specifies how an order is executed. There are two main classes of orders
as discussed below, namely, limit orders and market orders. In addition
to the exchange provided orders, due to popular demand by traders, Order
Management Systems (OMS) provide a standard set of widely used order
types that are executed at the exchanges as a series of primitive order types,
where the exchanges do not support them. These are usually some form
of contingent orders that are composed of market and limit orders, with
dependance on some market related event.

2.4.7 Market Orders

The simplest form of orders are market orders, used to instantly complete the
transaction. It requires only the quantity Q one wants to execute in a given
security. The instruction will cause the matching engine at the exchange or
venue to swipe through the orderbook until Q is filled. The transaction price,
or execution price, is the weighted average price of all quantities traded at the
different price levels (if any). For instance, in an order to buy Q=1000 shares,
if there are only 500 shares available at the first ask level with a1 = 140 and
5000 at the second ask level a2 = 142, then the fill price will be 141.

A trader chooses to use an aggressive order type such as market order
when he/she is a liquidity taker and wants to avoid any risk of the price
drifting. The fundamental aim in all financial transaction is to buy low and
sell high (the reverse for yield). If a risk neutral trader is crossing the spread
and removing multiple levels of liquidity without any information edge, he
or she will be demonstrating lack of sophistication. Information edge is the
term used to describe traders who have some information advantage on short
term price movement. The key side-effect of market orders is the market
impact ones transactions cause. If the traders have a large Q to transact,
market order will not suffice as there may not be sufficient visible liquidity.
Therefore, the order has to be divided into a number of smaller market orders
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qi. Even then, the temporal effects of poorly constructed multiple market
order trajectories can cause excess market impact resulting in a very poor
execution price. Furthermore, such an execution strategy will also become
very visible to other market participants, thus providing them with an edge.
The longer one takes to execute an order using market order, the lesser the
market impact would be.

2.4.8 Limit Orders

Complementing the market orders are limit orders. These passive orders are
used to provide liquidity to the market. They consist of a Price/Quantity
attribute pair for a given security. Effectively, a limit order shows our inten-
tion to buy or sell a certain quantity at a specified price. In the case of a buy
order, this price is smaller than or the best ask. Technically, an aggressive
limit price will have a similar effect to a market order. Indeed, many practi-
tioners use aggressive limit orders to place market orders - providing a price
cap on the price exposure. This is partly due to liquidity being removed by
someone else at the same instant an order is placed, hence the fill price may
be very poor. It is also to restrict exposure to be gamed (described below)
- a technique used by some market participants to trick other traders with
false prices.

The primary incentive to use limit orders is to capture a better price than
the currently available price on the other side of touch. As such, placing an
order with the hope of being filled within a specific time window T, will
result in an attractive fill price if it is filled. However, if not filled, the price
may have drifted away after time T. This would result in either a missed
opportunity if the trader decided not to trade, and a higher cost if he/she
chases the market and trades at the prevailing market price. Generally, it
is safe to assume that limit orders do not have visible ”negative” market
impact. An example of indirect effect limit orders have on the activity of
the orderbook is when a typical and relatively large order is placed on a very
illiquid stock. This action can lure out liquidity takers - as less liquid stocks
are very sensitive to order visibility. Arrival of a limit order can also have
the opposite effect of scaring sellers away.
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2.4.9 Market vs Limit Orders

The choice of whether to use market or limit orders is rather complex, with
no simple answer. Indeed, the core research presented in this thesis addresses
how to deal with this dilemma in a formal manner. The choice of execution
is decomposed into a series of market and limit orders, by optimising a set of
key features affecting the quality of execution. The problem at hand crudely
depends on whether (1) an information edge is available to the trader, and
(2) his or her aversion to risk.

As also addressed by O’Hara [48], traders with and without information
edge have significantly different execution strategies. Uninformed traders
tend to place limit orders early in the execution period and rapidly convert
to market orders in order to complete their orders. Informed traders trade
to capture a certain value they know about the security. Therefore, they
demonstrate a very complex pattern of execution consisting of both market
and limit orders. Intuitively, there seem to be a complex relationship between
gain and risk associated with the choice of orders in order to capture the
expected value of the security.

2.4.10 Smart Order Routing

In a multiple venue market place, Smart Order Routing is a relatively new
technology that has emerged to take away some of the technological complex-
ity involved in sending market orders to the venue with the most attractive
price. The best price can be defined in terms of the actual price only, or
a combination of factors. These factors can range, from broker commission
fee payable to that exchange, exchange fees etc, to latency to the market.
This is a transparent routing problem defined by a number of clearly defined
parameters.

SORs are critical to the success of multi-venue market places. Although
very useful, SORs are somewhat restricted in their value. When a trader
wants to trade a quantity Q, he or she may use SOR to take the liquidity up
to a quantity q1 within a given price limit and place the remaining quantity
q2 as a limit order. If there are multiple venues to place an order, one may
wonder, at which venue should q2 be placed? Customarily, this has been
with the primary exchange at which the order is listed. With the example
of Vodafone, LSE will be the destination chosen above Chi-X for instance.
Although LSE may have a higher liquidity than Chi-X on average, the in-
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traday fluctuations in liquidity may be such that Chi-X is at times a better
choice. Furthermore, Chi-X credits one for providing liquidity, provided the
order gets filled. Today’s SOR technology cannot deal with these situations.
Therefore, Smart Order Routing’s usefulness is restricted to market orders
only.

2.4.11 Need for better Smart Order Routing

The dilemma of where to place the residual order in the case of SOR above,
poses the problem of dynamic evaluation of the attractiveness of venues. If
the SOR was to dynamically pick Chi-X as being the better choice and place
the limit order there, the question is when does it have to re-evaluate the
situation and perhaps move the order to LSE? Any modification to an order
would put the order at the back of the orderbook queue at that particular
price level. Therefore, one is disadvantaged by any change to a limit order
unless the probability of being filled improves with the change. In order to
assess the fill probability, if such a measure existed, one would need to know
the duration T a trader is willing to let the order work passively to get filled.
Since the fill probability is rarely 1, one is faced with yet another dilemma of
what to do after T. That is, if at T, the order is not completed, what action
needs to be taken? In fact, the price would most likely have drifted away.
Therefore, when determining the duration T, the price drift risk should be
one of the key drivers.

Therefore, the so-called intelligent order routers would require a much
more complex drivers and most users of such a hypothetical technology would
have to provide most of this information. Without key information, such as
Fill Probability for instance, the router would no longer be intelligent.

2.5 Visible and Hidden Liquidity

There is a range of loose definitions of liquidity and widely accepted usage
of the terms. All of these are vaguely defined terms to describe the temporal
supply (and demand) of an asset. Essentially, liquidity is a key factor in com-
pleting a transaction with minimal price impact. Therefore, it is a problem
of three dimensions, namely, Price, Quantity and Time-frame. Given that
supply is finite at a given price level, there will be some form of market im-
pact as a result of executing a non-trivial order. The larger the liquidity, the
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greater availability of counterparties to transact with over time, the smaller
the impact the transaction will have on the price. Hasbrouck [30] summarises
liquidity as being:

”Liquidity is a summary quality or attribute of a security or asset market.
There are no formal definitions, except those that are very context-specific.”

Liquidity, a core concept in our research, is believed to be affected by
many factors - including, in particular ticksize and bid/ask spread. The size
of the spread is critical to the stationarity property of an orderbook, which
will again affect the fill probability. Also, important to orderbook liquidity
are the liquidity arrival time and quantity distributions. Put differently, if
one were to remove liquidity by placing a market order, how much time will
elapse before a certain amount of new liquidity arrives? A high refill rate will
imply less market impact, allowing one to follow with more liquidity taking
orders, if so wished, to complete the entire quantity.

With electronic trading gaining significance in exchanges, there are struc-
tural changes in the liquidity arrival and removal patterns. The average ar-
rival order size today is approximately a fifth the typical arrival size of 6-8
years ago. This is despite a significantly larger turnover in securities today.
Prior to electronic trading, most orders were entered manually. As such, for
practical reasons, a natural and typical order size for each stock was estab-
lished to balance manual convenience versus cost. With electronic trading,
where one has to disguise one’s intent, the amount shown on the orderbook is
sufficient to attract interest, but small enough not to betray your intention.
When liquidity is removed, it will be quickly replaced by new liquidity. This
type of hidden liquidity is very difficult to quantify.

The structural changes to the arrival pattern, size and price of liquidity
will invariably affect the price formation process of the security in ways quite
dissimilar to before. Once again, the mere change in tick size of Vodafone
transformed the intraday price formation process instantly - going from being
piecewise static to a noisy price process.

2.6 Market Impact

Market Impact (MI) consideration is of fundamental importance to all fi-
nancial transactions conducted in exchanges, whether executed manually or
electronically. In general, all orders placed in an orderbook will have some
level of impact on the price process. A very large passive limit order, a
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provider of liquidity can also has negative price impact by the share pres-
ence. Such a large buy limit order sends out the signal to the market place
that one has a need to complete a large order and this information could
make the sellers move their limit orders further away from the touch, with
all other factors assumed to be constant. However, we will in this work as-
sume that limit orders will not have any indirect price impact of this nature
as our order quantity is cautiously constructed. Instead, we focus on the
impact caused by aggressive market orders.

All market orders remove liquidity from the orderbook. This causes a
temporary and permanent market impact of varying magnitude to the price.
Intuitively, if a significantly large order is to be executed, it will be divided
into a number of atomic orders and worked over a period. Execution of each
of the atomic orders will cause an impact on the market, ie. it moves the
price further away. This is partly due to the visible liquidity being exhausted.
But, liquidity replenishes itself and the price will revert somewhat and find
new price equilibrium. This impact and price movement is often referred to
as temporary impact. Permanent impact is much less intuitive and is the
impact on price that is persistent - perhaps even for days. The magnitude of
permanent versus temporary impact is approximately an order of magnitude,
with temporary impact being the larger one.

The magnitude of the impact is dependent on the intensity of a trade.
Intensity λ, in its static form is defined as being a relative measure of quantity
traded versus the Average Daily Volume (ADV). Therefore, if a large order
is excuted as a trajectory of smaller market orders over time, there will be
a temporal effect of market impact on the price process arising from each of
the smaller orders.

When building an algorithmic trading model, market impact too has to
be included. The difficulty is in how one quantifies the market impact or
rather the expected market impact. Market impact is a widely used term
in algorithmic trading circles, at times with obscure meaning. This is a
particularly difficult problem to comprehend despite its apparent simplistic
nature. It is not exactly measurable since the decomposition of noise and
impact is unclear. Each institution has its own flavor of market impact
model, most being very rudimentary. There are many models in the literature
studied and published mostly by academics, where most of them base the
analysis on publically available trades and quotes information. These works
include Breen et al. [56] with their work on net market move and buy/sell
imbalance over a time window. Kissel and Glantz [37] work in similar line
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while Rydberg and Shephard [51] propose an econometric framework for
changes in price affected by market impact. Others include Dufour and
Engle [19] with their study of waiting time between successive trades and a
statistical physics approach by Lillo, Farmer and Mantegna in [40]. Bouchaud
et al [11] study the serial correlation in volume and price data - an interesting
work successfully used by some banks in an altogether different context to
spot the presence of undefined algorithmic orders in the market.

Trying to quantify market impact without identifying the source of the
orders makes it very difficult to distinguish market impact from noise. There-
fore, in order to better understand market impact, Chan and Lakonishok [13],
Holthausen et al. [32], Madhavan [36] and others have studied trades with
limited information edge over other academic research on public data. In
these cases, trades conducted by specific asset managers with date stamp
but no other additional information, were studied.

2.6.1 Impact Measure

Execution of any order is subject to two costs - volatility and market impact.
We adopt Almgren’s market impact model, Almgren [1]. Market impact is
any deviation (even a fractional one) from the equilibrium price due to one’s
own trading activity. It can be divided into permanent and temporary im-
pact. Temporary impact disappears in a relatively short time according to
the liquidity pattern while permanent impact can stay well after the trade
is executed. Temporary impact, according to Almgren [1], is larger than
permanent by an order of magnitude and hence is significantly more impor-
tant for our model. Impact function depends on two parameters, spread ε
and intensity of trade λ. Intensity of trade is defined with respect to ADV
(Average Daily Volume) and the market impact function is given by

f(q) = ε+ µ̄λb, λ = λ(q), (2.1)

where ε is the spread and µ̄ is a stock-specific parameter, λ is trading in-
tensity, b ∈ [0, 1] and q is the size of market order. Market impact function
f gives the value of impact in money/share units and thus the total impact
cost of trading q shares is

π(q) = f(q)q (2.2)

For more details see Almgren [1], Almgren and Chriss [4].
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Figure 2.3: Impact and volatility costs versus time. Troškovi impakta i
volatilnosti u vremenu

A market order of a reasonable size, meaning of non negligible volume,
is never executed as a single trade. So the Almgren model is assuming some
kind of optimal execution of market orders in a given time frame. Dividing
an order into a sequence of small suborders we have several possibilities for
their time schedule. One obvious possibility is uniform schedule within the
time window. Another possibility is optimization of schedule with respect to
implementation shortfall i.e. taking into account market impact and volatil-
ity. The relationship between volatility and impact which yields optimal
duration for market orders is shown by Figure 2.3. We will assume uniform
execution of market orders and use the temporary market impact function
(2.2) as suggested in Almgren and Chriss [4].

2.7 Price Process

Let us denote the bid prices as b1(t), . . . , bn(t) and ask prices a1(t), . . . an(t)
for any given time t. The difference

ε = a1(t)− b1(t)

is called the spread. The size of spread is again dependent on stock liquidity.
Placing a market order actually means crossing the spread and buying at
a1(t) or greater price, depending on order size and available ask volume.
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A number of additional properties is available from the orderbook. If
M denotes the current orderbook (current market conditions) then one can
determine bid and ask prices, quantities, number of participants at each
price level, volatility, VWAP price, cancellation pattern and so on. In further
consideration we will denote byM an unspecified number of these properties
since traders differ in their choice of relevant parameters and these differences
will not influence our model.

In this thesis we will assume that all prices follow an arithmetic random
walk without drift,

bi(t) = bi(0) + σ
√
tξi, (2.3)

ai(t) = ai(0) + σ
√
tγi, (2.4)

P (t) = P (0) + σ
√
tζ, (2.5)

where P denotes the mid-price, P = (a1+b1)/2, volatility is denoted by σ and
the noise is Gaussian for bid and ask prices, ξi, γi : N (0, 1), i = 1, . . . , n and
consequently ζ : N (0, (

√
1/2)2). Since our time window is small there is no

crucial difference between arithmetic random walk and geometrical Brownian
motion. Due to a number of well calibrated models for intraday volatility,
see Dacorogna et al. [17], the volatility parameter σ in (2.3)-(2.5) can be
estimated in a satisfactory way in normal market conditions.

2.8 High Frequency data

Main properties of high frequency financial data (HFFD)are irregular tem-
poral spacing, discreteness, diurnal patterns and temporal dependence. Fur-
thermore multiple transactions occur within a second with different trans-
action prices and transaction volumes. These properties make HFFD more
difficult to analyze and built reliable forecasting models. On the other hand
HFFD are an extremely rich source of information that has been widely used
in recent years for understanding market dynamics and building models.

Fundamental questions that arise which we can take for granted in the ho-
mogenous data world are, how does one calculate return between two points?
In homogenous data, the time interval between all consecutive data points
are equally space. This interval may have a large number of non-homogenous
ticks or there may be no ticks. If one does not have a return number, then
how can volatility or correlation be calculated?
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In order to answer these questions, one needs to perform an analysis of
HFFD that will provide deep insight into market dynamics. This is crucial
for building reliable models for price process, calculating returns at arbitrary
time interval and volatility. Yet once again, this is beyond the scope of this
research. However, extensive analysis of this form went into building the
continuous fill probability model as discussed below.

The first property of HFFD which makes it different from classical time
series is irregular temporal spacing. Market ticks arrive at random times
and transactions occur at different frequencies. Therefore each stock has its
own temporal pattern. In general temporal pattern depends heavily on the
liquidity of a stock. There are two basic approaches to resolve the irregular
temporal spacing. The first one is homogenization i.e. transformation of
nonhomogeneous time series into homogenous ones. In this transformation,
some average information is extracted for each time interval of fixed length.
The key issues are how to choose time intervals of fixed length and then how
to define ”average” information that will represent whole intervals. The time
interval should be small enough to capture all micro-changes but it should
not be too small. The homogenous time series will be the subject of analysis
and modeling that include serious computational effort and its size must be
manageable in a computational sense. Clearly the type of observation we
are transforming into homogeneous series determines the choice of ”average”
value that will serve for a whole time interval.

Another possibility is to use stochastic time intervals when dealing with
non-homogeneous time series. In that case we transform the raw time se-
ries into a new one (also non-homogeneous) but with new variables. Such
a procedure has its advantages as discussed in Engle and Russell [21] and
Dacorogna et al. [17] but it is not possible to judge which one is better.

An additional complication is the fact that irregular spacing is even more
complex when dealing with multiple time series where each one has its own
transaction frequency.

All financial data is discrete. The trading prices, depending on a particu-
lar market, take only discrete values. In general, transaction prices take only
a couple of pre-specified values. Bid and ask prices obey the same restric-
tions. Volume is always given as an integer number. It is well known that
discreteness also introduces a high degree of kurtosis in the data, see Engle
and Russell [21].

HFFD exhibit strong diurnal patterns. For most stock markets volatil-
ity, frequency of trades, volumes typically have a U-shaped pattern over the
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course of a day. Volatility is systematically higher near opening and close.
On the other hand duration (time between two consecutive transactions) has
an inverse pattern since the time between two trades are shortest near open
and just prior to close. Therefore all analysis must include some deseasonal-
ization. It should be noted that the U-shaped pattern of trading activity is
more typical in the US than it is in Europe or Asia.

One more important property of HFFD is temporal dependence. High
frequency financial returns typically display strong dependence. This de-
pendence is caused by price discreteness and spread in price paid by buyer
and seller initiated trades - the so-called bid-ask bounce. There is also the
common practice of breaking larger orders up into a sequence of smaller or-
ders in hopes of transacting a better overall price. These sequential buys
(or sells) might lead to a sequence of transactions that move the price in
the same direction with the data exhibiting positive autocorrelations. Such
autocorrelation is present both at transaction rates and volumes.



Chapter 3

Algorithmic Trading

Algorithmic trading is the automated process of the execution of orders in
an electronic market place. The orders are typically originated by portfolio
managers, traders or automated trading systems. These orders are either
sent electronically or verbally over the telephone. The figure 3.1 describes a
typical algorithmic trading architecture.

3.1 Algorithms

The algo marketplace is flooded with a large variety of algorithms to choose
from. One of the current challenges faced by users of algorithms is to under-
stand the nuances of all of the exotically named algorithms such as Stealth
Hunter, Guerilla, Wait & Pounce, Night Hawke, etc. to mention a few. In
an extremely competitive environment, it is difficult for the user to differen-
tiate between what is hype and what is real. In general, for liquid stocks,
algorithms can be divided into two main variants, VWAP and Arrival Price.

VWAP and Arrival Price are merely two main classes of benchmarking.
In the first case, the execution quality is measured relative to the volume
weighted average price of the execution window, while the latter is measured
relative to the market price at the start of the execution.

The performance of all mainstream algorithms are measured first by their
mean slippage to benchmark, followed closely by variation in slippage.

47
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Figure 3.1: High level algorithmic trading architecture. Arhitektura algori-
tamskog trgovanja.

3.1.1 VWAP

There are a number of flavours of VWAP algorithm. In general, execution
is defined over a fixed time window and the aim is to trade proportionately
(relative to the traded volume) throughout the trading window. Typically, a
static / historic volume profile for the time window in question is used in most
VWAP algorithms as a proxy for expected volume pattern in the currently
working window. Although there is sufficient empirical evidence of U-shaped
historical volume profiles over a trading day Madhavan [42], this approach is
far too simplistic. Furthermore, despite the historic volume profile, the daily
variations can be very large. This is particularly so in less liquid stocks. The
variation around historic distribution also differs considerably across stocks.

The more advanced VWAP algorithms tend to use some form of dynamic
volume forecasting models. Performance benchmarking of VWAP algorithms
with and without volume forecasting shows a significant difference in vari-
ation in performance although their mean slippage is often very similar. It
is worth noting that VWAP algorithms are not sensitive to drift in price
relative to the start price of the execution - their sensitivity is mostly to the
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Figure 3.2: VWAP execution profile. VWAP profil izvršenja.

evolving volume profile.

Regardless of how one determines the expected volume profile, a time
window is divided into a number of bins, with bin size dependent on the
volume profile estimation method. Given a bin, all other logic of efficient
execution is still valid. In fact, the order / quantity to be executed in a given
bin is an an atomic order. The primary aim of the execution within a bin is to
obtain the best possible price, followed closely by minimize the market impact
caused. As such, we are faced once again with the dilemma of providing
liquidity and capturing spread at the potential risk of increasing tracking
error around VWAP in the case of execution not taking place, versus causing
market impact and better track volume pattern. Intuitively, a combination
of these two types of orders are required. Shown in figure 3.2 is a volume
profile and typical bins for a VWAP order.

Interestingly, VWAP is a moving benchmark. The benchmark itself is
affected by our own trading action. Therefore, a large order traded with
excess market impact would not show up as a bad execution because the
traded prices of this order would have significant impact on the benchmark.
This is perhaps one of the biggest shortcomings of VWAP benchmark.
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Figure 3.3: Implementation Shortfall execution profile

3.1.2 Implementation Shortfall

The main contender to VWAP type algorithms are arrival price based algo-
rithms. The primary objective of this algorithm is to minimize the slippage
relative to the arrival price / the prevailing price when the order started.

While volume profile and consequently market impact are still impor-
tant, Implementation Shortfall (IS or arrival price) is mostly concerned with
the price process during the execution window. Intuitively, given a stock’s
volatility, the longer an order is worked, the further the price could move
away from the reference price, although this could work in one’s favor as
well. This potential variation in price will translate itself into variation in
slippage as well, although it does not imply any worse mean slippage.

The general shape of the execution profile of an IS is shown in figure 3.3.
It aims to trade more intensely at the start to reduce the effect of price drift.

Not unlike VWAP algorithms, IS also slices the trading window into a
number of bins, ie. a number of atomic order-windows where the primary
objective is to obtain the lowest price in the window. In contrast to VWAP,
a great deal of care is needed to ensure that no excess market impact is
caused - thus keeping the price as favourable as possible for the subsequent
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bin. The last mentioned is important to all algorithms. However, the effect
of poor execution in an atomic order window will have a larger impact on
arrival price type algorithms in their benchmarking, although the effect on
the actual price process and its quality is the same.

Arrival price type strategies are considered particularly difficult - partic-
ularly for large orders. While with VWAP, very large orders help define the
benchmark ie. effectively reducing the influence of one’s own market impact,
the opposite is the case in IS. Larger orders will have larger market impact
and larger impacts will have larger price slippage to reference price. In the
case of larger orders, the optimal execution window of the IS order will also
be larger.

3.1.3 Exotic Algos

There are a whole range of smaller algorithms that are popular among
traders. These are specialist algorithms whose performance is difficult to
quantity. In fact, some brokers do not even provide or define the benchmark
for this class of algos. To understand why this is so, one needs to look at the
objective of the algorithm in question. In the case of VWAP or IS, there was
a clearly defined objective, namely slippage relative to a benchmark price. In
the case of exotic algos, the primary objective of the best price is indirectly
achieved since the same rules of execution may not apply. For instance, trad-
ing illiquid stocks is very difficult due to the inherent thinness of the visible
orderbook. In these stocks, showing one’s hand by displaying an order will
quickly be observed by market participants with one of two main outcomes:
(1) arrival of new liquidity takers, (2) liquidity on the opposite side being re-
moved. The reasoning is as follows: By providing liquidity, one may be able
to attract a trade waiting to take a significant amount of liquidity to enter
into the market. If there was no such significant liquidity taker awaiting, the
sellers will look at the newly arrived liquidity on the bid as a large buy order
and remove the better offers.

Therefore, when trading these stocks, clever methods to disguise one’s
intention is considered as critical to success as best price, and benchmark
price becomes less relevant.
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3.2 Pre and Post Trade Analysis

Transaction cost analysis (TCA) has been very well researched during the
past few decades. It is well explained in Kissell and Glantz [37]. The primary
purpose of this type of analysis is to quantify and decompose the relationships
between expected execution price, the realized execution price and the desired
benchmark price.

Prior to executing an order, a trader has a vast amount of options as to
how best to execute the order. He also will have some expectation of what it
will cost to transact the order in each case with the help of pre-trade analysis
tools. In short, a pre-trade analysis allows a trader to find the optimal trad-
ing window for the different algorithms, and estimate the expected market
impact cost for the various risks he/she is willing to take.

Figure 2.3 illustrates an optimal execution duration for a Implementation
Shortfall Algorithm. It depicts the relationship between the market impact as
a function of time for a fixed order quantity and the volatility risk curve under
the same conditions. The market impact curve here is the price retardation
caused by the entire order being traded instantly vs stretching it over a longer
period. Similarly, the volatility curve is the potential price risk over the same
period. Although the price could move in the trader’s favor, only the worst
case is considered. The optimal execution duration is the minima of the
combined curves, defining the balance between risk and gain.

Another important part of pre-trade analysis is to look at the history
of execution of the chosen class of execution algorithms and interpolate the
historic performance to obtain the expected mean transaction cost and stan-
dard deviation of slippage for the order one wishes to execute. Suffice it to
say, although this approach is very widely used, the regression methods used
yield a very low R2. In order to get reasonable results from such a method,
one needs a large trade history in order to have a good statistical sampling
of the wide order range. Even then, the market conditions under which the
orders were executed can be so vast that the problem requires a far more
sophisticated solution.

The average executed price could be compared with the associated bench-
mark price in order to determine the slippage. For most traders this simple
number would suffice, as this is the outcome of the execution. However, from
a knowledgable trader’s or a corporate wide perspective, it is important to
probe into the execution details. One may want to decompose the resultant
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cost into a number of cost contributing factors.
Kissell [37] identifies nine key components of transaction cost. They are:

• Commission: payment to the executing broker

• Fees: exchange fee, etc.

• Taxes: various government taxes

• Spreads: percentage of orders that crossed the spread (market order)

• Delay Cost: delay between the investment decision and start of execu-
tion

• Volatility Cost: price trend, drift, momentum or alpha.

• Market Impact Cost: change in price caused by these orders

• Timing Risk: uncertainty created with executing the order over many
days

• Missed Opportunity Cost: the true cost of un-completed orders

For a portfolio of orders, these basic categories of cost attributes can
be aggregated across industry groups, sectors, exchanges and country. By
performing this type of cost decomposition, one may be able to focus on
where improvements can be made, or devise more suitable algorithms.

3.3 Fill Probability

When a trader decides to place an order in the market, he or she has some
level of urgency to complete that order. Depending on their sensitivity to
price fluctuations, the length of the window will also vary - a risk aversion
factor. This risk aversion will directly translate into the price level at which
to place the order into the orderbook in order to complete within the ex-
pected time. Experienced traders develop, over the years, an intuitive feel
for estimating the probability of getting their orders filled, which aids their
manual execution task well enough. However, in the realm of algorithmic
trading, since all decision making has to be formal, estimation of many of
the factors needed to make decisions, including probability of fill, becomes a
major problem.
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Figure 3.4: Negative Selection caused by a asymmetry in the payoff. Nega-
tivna selekcija uzrokovana nesimetrijom isplativosti.

Accurately estimating of probability of fill is an exceptionally difficult
problem. As a result, the overwhelming majority of quantitative trading
professionals devise crude models, which can be summaried as:

”The probability of getting filled on an order placed at the best bid/ask is
approximately 60% within a reasonable time.”

Even in the absence of an information edge, like a model to forecast fill
probability, the current practice is far from logical even if the vague factors
were rectified. The primary aim of all execution is to maximise price quality.
Generally, given that in any small arbitrary window of time, the price moving
up or down is virtually random, the execution algorithm should also utilize
this property of the price process. The logical flaw with the above rule
of execution is the asymmetry in payout resulting from always staying at
touch. For instance, a buy order at the best bid will get filled instantly at
the specified price if the market were to drift downwards. However, if it
moved up the same amount, one would chase the market and get filled at a
price much higher up. Therefore, we are exposed to a skew in payoff.

In essence, we have a classical case of negative selection as shown in figure
3.4, where we get filled when we least want to - with no gain if the price



3.3. FILL PROBABILITY 55

moves down as we were filled too early and lose out when the price rallies
and taking a fill price that is significantly away from the initial order price.
This type of asymmetry is clearly evident when analyzing the quality of past
fills when orders were submitted to brokers to execute manually. Typically, a
broker with a basket of stocks to execute will determine a suitable execution
schedule (unless otherwise specified by the client). Next, small chunks of
orders in all the stocks will be placed passively in the market. If orders get
filled, the broker will be swift in replenishing with new passive supply at the
prevailing bid. If the market moves away, they will wait in the anticipation
that the price will come back.

The net effect of the ”constant 60% expect fill mode” as described above
and that of a typical broker execution are that they both subscribe to negative
selection.

The quality of an order’s fill price is very much dependent on maximizing
the opportunity arising from price symmetry. Intuitively, in order to do
this, extending the above approaches by breaking up an order into many
sub-orders and placing them at many different price levels may seem logical.
This should result in a better average fill price when the price moves in
our favour. In the event of price moving away, all orders could be shifted
upwards, much like in the original case.

The core of our research is centred around how one can decompose an
atomic order, the fundamental building block of a large order, into multiple
price levels across multiple markets in order to achieve optimal execution.
Before embarking on the quest to construct an optimal execution framework,
it is essential to understand the notion of fill probability, as this is singularly
the most important factor determining the quality of fill in an optimisation
problem.

The fill probability model used in this research is a proprietary math-
ematical model and its inner workings cannot be disclosed. However, we
will address all key properties of the model as required for the analysis. It
should be noted that the optimisation framework we propose herein is not
dependent on this particular implementation of a fill probability model.

3.3.1 Definition of Fill Probability

Unlike market orders, limit orders do not produce market impact, but face
uncertainty of execution. Placing an order of size q at any bid level is thus
subject to volatility risk: If the price drifts away before the order is filled we
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have opportunity cost, and since we we want the order executed, it has to be
placed at a higher price. On the other hand, if the order got filled there is a
clear gain in price compared with market order. Therefore, for any bid level
we define gain coefficients as

ci = a1 − bi, i = 1, . . . , n. (3.1)

Obviously the gain ci (3.1) occurs only if the order is filled within given
time. We will define gain function for limit orders as follows. For any fixed
bid level i and order of size q we define βi(q) as a random variable of Bernoulli
type which takes value 1 if the order is filled within time interval [0, t]. Then

βi(q) :

(
1 0

pi(q) 1− pi(q)

)
. (3.2)

Clearly pi is the probability that the order will be filled and it is dependent
on M and T. Keeping T fixed and placing an order at t = 0 with the price
bi = bi(0) we therefore expect that the filled amount will be qpi. Using (3.2)
we define the set of functions Fi(q) for all i = 1, . . . , n as

Fi(q) = pi(q), (3.3)

assuming that T is fixed and M is available when we place the order at the
ith bid level. Functions Fi will be called Fill Probability functions in this
document. In further considerations we will assume that given T andM, all
Fill Probability functions Fi(q) are smooth enough for q ≥ 0. If q0 denotes
the volume ahead of us at bid levels k = 1, . . . , i then

lim
q0+q→0

Fi(q) = 1, and lim
q0+q→∞

Fi(q) = 0.

Also Fi(q) > Fi+1(q). Using the above defined functions we can define the
success functions of the considered limit order as

Hi(q) = qFi(q) (3.4)

and gain functions as
Gi(q) = ciHi(q). (3.5)

Clearly functions Hi, Gi are smooth if Fi are smooth. Although we have no
analytical expression for Fi(q) we are able to use an estimate of reasonable
quality as will be demonstrated by numerical examples in chapter 8. The
empirical data also gives us reason to believe that Fi are convex functions
(see Figure 3.5.)
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Chapter 4

Constrained Non-linear
Problems

4.1 The Problem and Optimality Conditions

The general formulation of constrainted optimization on the variables is given
as

min
x∈Rn

f(x) (4.1)

s.t. gi(x) = 0, i ∈ ε
gi(x) ≥ 0, i ∈ I

where f and the function gi are all smooth, real-valued functions on a subset
of Rn, and I and ε are two finite sets of indices. We call f the objective
function, while, gi, i ∈ ε are the equality constraints and gi, i ∈ I are the
inequality constraints. We define the feasibile set Ω to be the set of points x
that satisfy the constraints; that is,

Ω = {x | gi(x) = 0, i ∈ ε; gi(x) ≥ 0, i ∈ I} (4.2)

so that we can rewrite the equation (4.1) more compactly as

min
x∈Ω

f(x) (4.3)

There are two types of optimality conditions, namely, necessary and suffi-
cient conditions. All solution points must satisfy necessary conditions (under

59
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certain assumptions). Sufficient conditions on other hand guarantee that x∗

is a solution, provided the conditions were satisfied at a certain point x∗.

Local solutions in constrained cases are restricted to the feasible points
in the neighborhood of x∗. It should be noted that although isolated local
solutions are strict, the reverse does not hold. We have the following defini-
tion types of local solutions

A vector x∗ is a local solution of the problem (4.3) if x∗ ∈ Ω and there is
a neighborhood N of x∗ such that f(x) ≥ f(x∗) for x ∈ N∩ Ω.

A vector x∗ is a strict local solution if x∗ ∈ Ω and there is a neighborhood
N of x∗ such that f(x) > f(x∗) for x ∈ N∩ Ω with x 6= x∗.

A point x∗ is an isolated local solution if x∗ ∈ Ω and there is a neighbor-
hood N of x∗ such that x∗ is the only local solution in N∩ Ω.

A fundamental concept that provides a great deal of insight as well as sim-
plifying the required theoretical development is that of an active constraint.
An inequality constraint gi(x) ≤ 0 is said to be active at a feasible point x
if gi(x) = 0 and inactive at x if gi(x) < 0. By convention, we refer to any
equality constraint gi(x) = 0 as active at any feasible point. The constraints
active at a feasible point x restrict the domain of feasibility in neighborhoods
of x, while the other, inactive constraints, have no influence in neighborhoods
of x. Therefore, in studying the properties of a local minimum point, it is
clear that attention can be restricted to the active constraints. The active
set is formally defined as

Definition 7 The active set A(x) at any feasible x consists of the equality
constraint indices from ε together with the indices of the inequality constraints
i for which gi(x) = 0; that is,

A(x) = ε ∪ {i ∈ I | gi(x) = 0}. (4.4)

In order to proceed, we will need to define the tangent cone. Given a
feasible point x, we call {zk} a feasible sequence approaching x if zk ∈ Ω for
all k sufficiently large and zk → x. A tangent is a limit in the direction of a
feasible sequence.
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Definition 8 The vector d is said to be a tangent (or tangent vector) to Ω at
a point x if there are a feasible sequence {zk} approaching x and a sequence
of positive scalars {tk} with tk → 0 such that

lim
k→∞

zk − x
tk

= d

The set of all tangents to Ω at x∗ is called the tangent cone and is denoted
by TΩ(x∗).

We will also use a linearized feasible direction set which we define as
follows:

Definition 9 Given a feasible point x and the active constraint set A(x) of
Definition 7, the set of linearized feasible directions F(x) is

F(x) =

{
d :

dT∇gi(x) = 0, for all i ∈ ε,
dT∇gi(x) ≥ 0, for all i ∈ A(x) ∩ I

}
(4.5)

Tangent cone definition relies only on the geometry of the feasible set
while the linearized feasible direction set depend on the definition of the
constraint functions.

Constraint qualification are conditions under which the linearized feasible
set F(x) is similar to the tangent cone TΩ(x). Most constraints actually
ensure that these two sets are identical. These conditions ensure that F(x),
which is constructed by linearizing the algebraic description of the set Ω at
x, captures the essential geometric features of the set Ω in the vicinity of x,
as represented by TΩ(x).

The constraint quantification most often used in the design of algorithms
is the subject of the following definition

Definition 10 Given a point x and the active set A(x) defined in Definition
7, we say that the linear independence constraint qualification (LICQ) holds if
the set of active constraint gradients ∇gi(x), i ∈ A(x) is linearly independent.

We define the Lagrangian function for the general problem (4.1),

L(x, λ) = f(x)−
∑
i∈ε∪I

λigi(x), (4.6)

The necessary conditions defined in the following theorem are called first-
order-conditions because they are concerned with properties of the gradients
(first-derivative vectors) of the objective and constraint functions.
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Theorem 1 First-Order Necessary Conditions.
Suppose that x∗ is a local solution of (4.1), that the functions f and gi in
(4.1) are continuously differentiable, and that the LICQ holds at x∗. Then
there is a Lagrange multiplier vector λ∗, with components λ∗i , i ∈ ε ∪ I, such
that the following conditions are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0, (4.7)

gi(x
∗) = 0, for all i ∈ ε, (4.8)

gi(x
∗) ≥ 0, for all i ∈ I, (4.9)

λ∗i ≥ 0, for all i ∈ I, (4.10)

λ∗i gi(x
∗) = 0, for all i ∈ ε ∪ I, (4.11)

The conditions (4.7 - 4.11) are often known as the Karush-Kuhn-Tucker con-
ditions, or KKT conditions for short. The conditions 4.11 are complementary
conditions; they imply that either constraint i is active or λ∗i = 0, or possi-
bly both. In particular, the Lagrange multipliers corresponding to inactive
inequality constraints are zero, we can omit the terms for indices i 6∈ A(x∗)
from (4.7) and rewrite this condition as

0 = ∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗i∇gi(x∗). (4.12)

Satisfaction of the strict complementarity property usually makes it easier
for algorithms to determine the A(x∗) and converge rapidly to the solution
x∗. For a given problem (4.1) and solution point x∗, there may be many
vectors λ∗ for which the conditions (4.7-4.11) are satisfied. When the LICQ
holds, however, the optimal λ∗ is unique.

Definition 11 Strict Complementarity.
Given a local solution x∗ of (4.1) and a vector λ∗ satisfying (4.7 - 4.11), we

say that the strict complementarity condition holds if exactly one of λ∗i and
gi(x

∗) is zero for each index i ∈ I. In other words, we have that λ∗i > 0 for
each i ∈ I ∩ A(x∗).

The KKT conditions tell us how the first derivative of f and the active
constraints gi are related to each other at a solution x∗. When these condi-
tions are satisfied, a move along any vector w from F(x∗) either increases the
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first-order approximation to the objective function (that is, wT∇f(x∗) > 0,
or else keeps this value the same (that is, wT∇f(x∗) = 0).

The second derivative plays a ”tiebreaking” role. For the direction w ∈
F(x∗) for which wT∇f(x∗) = 0, first derivative alone is not sufficient to de-
termine whether a move along this direction will increase or decrease the
objective function f . Second-order conditions examine the second order
derivative terms in the Taylor series expansions of f and gi, to see whether
this extra information resolves the issue of increase or decrease in f .The
second-order conditions are essentially concerned with the curvature of the
Lagrangian in the ”undecided” directions - the directions w ∈ F(x∗) for
which wT∇f(x∗) = 0. Stronger smoothness assumptions are needed since we
are now discussing second-order derivatives. Therefore, f and gi, i ∈ ε ∪ I,
are all assumed to be twice as continuously differentiable.

Given F(x∗) from definition 4.3 and some Lagrange multiplier vector
λ∗ satisfying the KKT conditions (4.7 - 4.11), we define the critical cone
C(x∗, λ∗) as follows:

C(x∗, λ∗) = {w ∈ F(x∗) | ∇gi(x∗)Tw = 0, all i ∈ A(x∗) ∩ I with λ∗i > 0}

Equivalently, w ∈ C(x∗, λ∗ if and only if
∇gi(x∗)Tw = 0, for all i ∈ ε,
∇gi(x∗)Tw = 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0,
∇gi(x∗)Tw ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i = 0.

(4.13)

The critical cone g(x∗, λ∗) contains direction w with the property

w ∈ g(x∗, λ∗) ⇒ λ∗i∇gi(x∗)Tw = 0 for all i ∈ ε ∪ I (4.14)

and the KKT conditions imply

w ∈ g(x∗, λ∗) ⇒ wT∇f(x∗) =
∑
i∈ε∪I

λ∗iw
T∇gi(x∗) = 0. (4.15)

Hence the critical cone g(x∗, λ∗) contains directions for which it is not clear
whether f will increase or decrease. Therefore, second-order information is
necessary.



64 CHAPTER 4. CONSTRAINED NON-LINEAR PROBLEMS

Theorem 2 Second-Order Necessary Conditions.
Suppose that x∗ is a local solution of (4.1) and that the LICQ condition
is satisfied. Let λ∗ be the Lagrange multiplier vector for which the KKT
conditions (4.7 - 4.11), are satisfied. Then

wT∇2
xxL(x∗, λ∗)w ≥ 0, for all w ∈ C(x∗, λ∗). (4.16)

Unlike necessary conditions, which assume that x∗ is a local solution and
deduce properties of f and gi, for the active indices i, Sufficient Conditions
are conditions on f and gi, i ∈ ε ∪ I, that ensure that x∗ is a local solution
of the problem (4.1). The second-order sufficient condition below looks very
much like the necessary condition discussed above, however, it differs in that
the constraint qualification is not required, and the inequality of (4.16) is
replaced by a strict inequality.

Theorem 3 Second-Order Sufficient Conditions.
Suppose that for some feasible point x∗ ∈ Rn there is a Lagrange multiplier

vector λ∗ such that the KKT conditions (4.7 - 4.11) are satisfied. Suppose
also that

wT∇2
xxL(x∗, λ∗)w > 0, for all w ∈ C(x∗, λ∗), w 6= 0. (4.17)

Then x∗ is a strict local solution for (4.9).

One situation in which the linearized feasible direction set F(x∗) is ob-
viously an adequate representation of the actual feasible set occurs when all
the active constraints are linear. Since the model we are considering in the
following chapters is of that kind, we state the lemma 4 below.

Lemma 4 Suppose that at some x∗ ∈ Ω, all active constraints gi(.), i ∈
A(x∗), are linear functions. Then F(x∗) = TΩ(x∗).

4.2 SQP Method

We consider the equality-constrained problem

minf(x) (4.18)

subject to g(x) = 0,
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where f : Rn → R and c : Rn → Rm are smooth functions. The idea
behind the SQP approach is to model (4.18) at the current iterate xk by
a quadratic programming subproblem, then use the minimizer of this sub-
problem to define a new iterate xk+1. Yielding a good step for the nonlinear
optimization problem is the main challenge in the design of the quadratic
problem. The simplest derivation of SQP methods is to consider an applica-
tion of Newton’s method to the KKT optimality conditions for (4.18).

From (4.6), we know that the Lagrangian function for this problem is
L(x, λ) = f(x)− λTg(x). We use A(x) to denote the Jacobian matrix of the
constraints, that is,

A(x)T = [∇g1(x), ∇g2(x), ..., ∇gm(x)], (4.19)

where gi(x) is the ith component of the vector g(x). The first-order (KKT)
conditions (4.7 - 4.11) of the equality-constrained problem (4.18) can be
written as a system of n + m equations with the n + m unknowns x and
λ:

F (x, λ) =

 ∇f(x)− A(x)Tλ

g(x)

 = 0. (4.20)

Any solution (x∗, λ∗) of the equality-constrained problem (4.18) for which
A(x∗) has full rank satisfies (4.20). One approach that suggests itself is to
solve the nonlinear equations (4.20) by using Newton’s method.
The Jacobian of (4.20) with respect to x and λ is given by

F ′(x, λ) =

 ∇2
xxL(x, λ) −A(x)T

A(x) 0

 (4.21)

The Newton step from the iterate (xk, λk) is thus given by[
xk+1

λk+1

]
=

[
xk
λk

]
+

[
pk
pλ

]
, (4.22)

where pk and pλ solve the Newton-KKT system ∇2
xxLk −ATk

Ak 0

 pk

pλ

 =

−∇fk + ATk λk

−gk

 (4.23)
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This Newton iteration is well defined when the KKT matrix in (4.23) is
nonsingular.

Assumptions 1 (a) The constraint Jacobian A(x) has full row rank;
(b) The matrix ∇2

xxL(x, λ) is positive definite on the tangent space of the
constraints, that is, dT∇2

xxL(x, λ)d > 0 for all d 6= 0 such that A(x)d = 0.

There is an alternative way to view the iteration (4.22) - (4.23). Suppose
that at the iterate (xk, λk) we model problem (4.18) using the quadratic
program

min
p

fk + ∇fTk p + 1
2
pT∇2

xxLkp (4.24)

s.t. Akp+ gk = 0.

If Assumptions 1 hold, then this problem has a unique solution (pk, lk) that
satisfies

∇2
xxLkpk + ∇fk − ATk lk = 0, (4.25)

Akp+ gk = 0. (4.26)

The vectors pk and lk can be identified with the solution of the Newton
equations (4.23). If we subtract ATk λk from both sides of the first equation
in (4.23), we obtain ∇2

xxLk −ATk

Ak 0

 pk

λk+1

 =

−∇fk
−gk

 (4.27)

Hence, by nonsingularity of the coefficient matrix, we have that λk+1 = lk
and that pk solves (4.24 ) and (4.23 ). Therefore, (xk+1, λk+1) can be seen
either as the solution of (4.24) or as the Newton iteration (4.22) - (4.23). The
latter approach facilitates the convergence analysis while the SQP framework
allows us to define the following practical algorithm.

The SQP method in its simplest form is given below.

Algorithm 1 Local SQP Algorithm for solving (4.18)
Choose an initial pair (x0, λ0); set k ← 0;
repeat until a convergence test is satisfied

Evaluate fk,∇fk,∇2
xxLk, gk, and Ak;

Solve (4.24) to obtain pk and lk;
Set xk+1 ← xk + pk and λk+1 ← lk;

end(repeat)
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4.3 Inequality Constraints

The SQP framework can be extended easily to the general nonlinear pro-
gramming problem

min f(x) (4.28)

s.t. gi(x) = 0, i ∈ ε (4.29)

gi(x) ≥ 0, i ∈ I (4.30)

Linearizing both the inequality and equality constraints, we get

min
p
fk + ∇fTk p +

1

2
pT∇2

xxLkp (4.31)

s.t. ∇gi(xk)Tp+ gi(xk) = 0, i ∈ ε (4.32)

∇gi(xk)Tp+ gi(xk) ≥ 0, i ∈ I (4.33)

The following theorem connects this problem with the previously consid-
ered equality constrained problem.

Theorem 4 Suppose that x∗ is a local solution of (4.28) at which the KKT
conditions are satisfied for some λ∗. Suppose, too, that the linear indepen-
dence constraint qualification (LICQ), the strict complementarity condition,
and the second-order sufficient conditions hold at (x∗, λ∗). Then if (xk, λk)
is sufficiently close to (x∗, λ∗), there is a local solution of the subproblem
(4.31)-(4.34) whose active set Ak is the same as the active set A∗(x) of the
nonlinear program (4.28)-(4.30) at x∗.

The problem we are going to model and solve in this thesis has equality,
box and non-negativity constraints. Box constraints are relatively easy to
solve, so we will concentrate on the problem

min f(x) (4.34)

s.t. Ax = b (4.35)

In SQP framework, our problem will be approximated by the quadratic
model as usual but Ak and gk appearing in (4.24) are the same through the
whole process, i.e. Ak = A, gk = −b.
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Algorithm 1 is stated using ∇2
xxLk in the quadratic model and assumes

that (4.24) is solved to obtain the direction pk (and the Lagrange multiplier
lk). We will look at these issues in more detail. First of all, step compu-
tation should be performed in a computationally affordable way and steps
should yield global convergence. Derivation or calculation of exact ∇2xxLk
can be cumbersome so some approximation of the Hessian is often used. Step
computation is determined by KKT system (4.25)-(4.26). One obvious alter-
native is to solve the full (n+m)× (n+m) system with symmetric indefinite
factorization or using some iterative method.

The matrix∇2
xxLk in the quadratic model (4.24) (being the exact Hessian)

implies equivalence between SQP and Newton method applied to the first
order optimality conditions. However, this matrix does not need to be easy
to compute. So, alternative choices of the quadratic model can be quite
useful. We will consider here Quasi-Newton approximations.

4.4 Full Quasi-Newton Approximations

The quadratic model (4.24) can be replaced by

mk(p) = fk +∇fTk β +
1

2
pTBkp (4.36)

where Bk is some approximation of ∇2
xxLk. Quasi-Newton methods are quite

a popular approach since they require only the gradient of the objective func-
tion - in our case the Lagrange function L, to be supplied at each iteration.
By measuring the changes in gradients, they construct a model of the objec-
tive function that is good enough to produce superlinear convergence. The
most popular quasi-Newton method is the BFGS method while SR1 is a
simpler rank-1 update. We will describe theoretical properties and imple-
mentational issues for these two quasi-Newton methods here.

Let Bk be a symmetric positive definite matrix that will be updated at
every iteration. The minimizer pk of (4.36) is clearly

pk = −B−1
k ∇f

T
k (4.37)

so using it as a search direction, the new iterate is

xk+1 = xk + αkpk (4.38)
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for the step length αk approximately chosen. The new quadratic model,
constructed at xk+1, is of the same form

mk+1(p) = fk+1 +∇fTk+1p+
1

2
pBk+1p (4.39)

Reasonable conditions to be imposed on Bk+1 are that the gradient of mk+1

should match the gradient of the objective function f at the latest two iterates
xk+1 and xk. Since ∇mk+1(0) = ∇fk+1 and

∇mk+1(−αkpk) = ∇fk+1 − αkBk+1pk = ∇fk. (4.40)

we obtain

Bk+1αkpk = ∇fk+1 −∇fk. (4.41)

With notation
sk = xk+1 − xk, yk = ∇fk+1 −∇fk, (4.42)

(4.40) becomes
Bk+1sk = yk, (4.43)

what is known as the secant equation.
Imposing the condition of Bk+1 being a symmetric and positive definite

matrix, we end up with the curvature condition

sTk yk > 0. (4.44)

Therefore we can deduce that if the curvature condition is satisfied, the secant
equation (4.43) always has a solutionBk+1, but it is not unique. In fact, (4.43)
still admits an infinite number of solutions. To determine Bk+1 uniquely, we
impose the additional condition that among all symmetric matrices satisfying
the secant equation, Bk+1 is closest to the current matrix Bk. In other words
we are solving the problem

min
B
‖B −Bk‖ (4.45)

s.t. B = BT , Bsk = yk.

The solution of (4.45) depends on the norm one uses. Taking the weighted
Frobenius norm defined by the average Hessian, the unique solution to (4.45)
is

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
. (4.46)
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Clearly, the new update update differs from Bk by a rank-2 matrix.
There is a simpler rank-1 update that maintains symmetry of the matrix

and allows it to satisfy the secant equation. But, this symmetric rank-1, up-
date SR1 does not necessarily maintain positive definitiveness of the matrices
Bk+1.

Starting from the general form

Bk+1 = Bk + σvvT , σ ∈ {1,−1} (4.47)

and choosing σ and v such that Bk+1 satisfies the secant equation we get

yk = Bksk + [σvT sk]v (4.48)

so v must be a multiple of yk −Bksk. Therefore, the only symmetric rank-1
updating formula that satisfies the secant equation is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)Tyk
(4.49)

Both Quasi-Newton updates, BFGS and SR1 have advantages and dis-
advantages. For a detailed overview one can see Nocedal and Wright [44].

In SQP context, we are interested in minimizing the Lagrange function
at each iteration i.e. our quadratic Quasi-Newton method should correspond
to (4.24). Therefore, we will update Bk using (4.43) or (4.49) with

sk = xk+1 − xk, yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1) (4.50)

We can view this process as the application of quasi-Newton updating to
the case in which the objective function is given by the Lagrangian L(x, λ)
(with λ fixed). This viewpoint immediately reveals the strengths and weak-
nesses of this approach.

If ∇2
xxL is positive definite in the region where the minimization takes

place, then the BFGS quasi-Newton approximation Bk will reflect some of
the curvature information of the problem, just as in the unconstrained BGFS
method, and the iteration will converge robustly and rapidly. If, however,
∇2
xxL contains negative eigenvalues, then the BFGS approach of approximat-

ing it with a positive definitive matrix may be problematic. A requirement
of BFGS updating is that sk and yk satisfy the curvature condition sTk yk > 0,
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which may not hold when sk and yk are defined by (4.50), even when the
iterates are close to the solution.

To overcome this difficulty, we could skip the BFGS update if the condi-
tion

sTk yk ≥ θsTkBksk (4.51)

is not satisfied, where θ is a positive parameter (10−2, say). A more effective
modification ensures that the update is always well defined by modifying the
definition of yk.

Procedure 1 Damped BFGS Updating
Given: symmetric and positive definite matrix Bk;
Define sk and yk as in (4.50) and set

rk = θkyk + (1− θk)Bksk, (4.52)

where the scalar θk is defined as

θk =


1, if sTk yk ≥ 0.2sTkBksk,

(0.8sTkBksk)/(s
T
kBksk − sTk yk), if sTk yk < 0.2sTkBksk,

(4.53)

Update Bk as follows:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
rkr

T
k

sTk rk
(4.54)

The formula (4.54) is simply the standard BFGS update formula, with yk
replaced by rk. It guarantees that Bk+1 is positive definite, since it is easy
to show that when θk 6= 1 we have

sTk rk = 0.2sTkBksk > 0. (4.55)
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4.5 Merit Functions

To determine whether or not a trial should be accepted by SQP methods, a
merit function is often used to make this decision. The merit function controls
size of the step in the case of line search methods. In trust region methods it
determines whether the step is accepted or rejected and whether the trust-
region radius should be adjusted. A whole range of merit functions have been
used in SQP methods, including augmented Lagrangians and nonsmooth
penalty functions. We focus on exact, nonsmooth merit functions.

For the purpose of step computation and evaluation of a merit function,
inequality constraints g(x) ≥ 0 are often converted to the form

g̃(x, s) = g(x)− s = 0.

where s ≥ 0 is a vector of slacks. (The condition s ≥ 0 is typically not
monitored by the merit function.) Therefore, in the discussion that follows
we assume that all constraints are in the form of equalities, and we focus our
attention on problem (4.18).

The l1 merit function for (4.18) takes the form

φ1(x;µ) = f(x) + µ‖g(x)‖1. (4.56)

In a line search method, a step αkpk will be accepted if the following sufficient
decrease condition holds:

φ1(xk + αkpk;µk) ≤ φ1(xk;µk) + ηαkD(φ1(xk;µ); pk), η ∈ (0, 1), (4.57)

where D(φ1(xk;µ); pk) denotes the directional derivative of φ1 in the direction
pk. This condition is analogous to the Armijo conditions for unconstrained
problems assuming that pk is a descent direction, D(φ1(xk;µ); pk) < 0. The
condition holds for the penalty parameter µ large enough, as stated below.

Theorem 5 . Let pk and λk+1 be generated by the SQP iteration (4.27).
Then directional derivative of φ1 in the direction pk satisfies

D(φ1(xk;µ); pk) = ∇fTk pk − µ‖gk‖1. (4.58)

Moreover, we have that

D(φ1(xk;µ); pk) ≤ −pTk∇2
xxLkpk − (µ− ‖λk+1‖∞)‖gk‖1 (4.59)

.
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4.6 Line Search and Trust-Region SQP Meth-

ods

There is a large variety of SQP methods depending on the way the Hessian
approximation is computed, the choice of the merit function and the step-
computation procedure. The algorithm presented below is a practical quasi-
Newton algorithm for solving the problem (4.1) with equality and inequality
constraints.

Algorithm 2 Line Search SQP algorithm

Choose parameters η ∈ (0, 0.5), τ ∈ (0, 1), and an initial pair (x0, λ0);
Evaluate f0,∇f0, g0, A0;
If a quasi-Newton approximation is used, choose an initial n× n symmetric
positive definite Hessian approximation B0, otherwise compute ∇2

xxL0;
repeat until a convergence is satisfied

Compute pk by solving (4.13); let λ̂ be the corresponding multiplier;
Set pλ ← λ̂− λ;
Choose µk to satisfy

µ ≥ ∇fTk pk+(σ/2)pTk∇
2
xxLkpk

(1−p)‖gk‖1
with σ = 1;

Set αk = 1;
while φ1(xk + αkpk;µk) > φ1(xk;µk) + ηαkD1(φ(xk;µk)pk)

reset αk ← τααk for some τα ∈ (0, τ ];
end (while)
Set xk+1 ← xk + αkpk and λk+1 ← λk + αkpλ;
Evaluate fk+1,∇fk+1, gk+1, Ak+1, (and possibly ∇2

xxLk+1);
If a quasi-Newton approximation is used, set

sk ← αkpk and yk ← ∇xL(xk+1, λk+1)−∇xL(xk, λk+1)
and obtain Bk+1 by updating Bk usign a quasi-Newton formula;

end (repeat)

In the algorithm presented above, the choice of quasi-Newton method for
updating Bk as well as the choice of the merit function are left unspecified.

Another possibility for globalization of a local SQP method is to use a
trust-region approach. This approach allows direct use of second-derivative
information and can treat the case where active constraint gradients are
linearly dependent.
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Starting from the equality constrained problem and adding a trust-region
constraint, we obtain the new model

min
p

fk +∇T
k p+

1

2
pT∇2

xxLkp (4.60)

s. t. ∇gi(xk)Tp+ gi(xk) = 0, i ∈ ε (4.61)

∇gi(xk)Tp+ gi(xk) ≥ 0, i ∈ I (4.62)

‖p‖ ≤ ∆k, (4.63)

The trust-region constraint (4.63) might imply that the problem does not
have a solution. To resolve the possible conflict between the linear constraints
(4.61)-(4.62)and the trust region constraint (4.63) one might argue that there
is no reason to satisfy the linearized constraints at every step. We should
aim to improve the feasibility of these constraints and satisfy them exactly
only if the trust region constraints permit it. This argument leads to the
three classes of methods: relaxation methods, penalty methods and filter
methods. Details can be seen in Nocedal and Wright [44]. Here we will state
a relaxation method for equality constrained optimization.

At the iterate xk we compute the SQP step by solving the subproblem

min
p

fk +∇T
k p+

1

2
pT∇2

xxLkp (4.64)

s. t. Akp+ gk = rk, (4.65)

‖p‖2 ≤ ∆k, (4.66)

One should try to choose rk as the smallest vector such that (4.65)-(4.66)
are consistent for some reduced value of trust region radius Ak. Therefore,
we first solve the subproblem

min
v
‖Akv + gk‖2

2 (4.67)

s. t. ‖v‖2 ≤ 0.8∆k. (4.68)

If vk is the solution of this subproblem, we define

rk = Akvk + gk (4.69)

A merit function that fits well with this approach is the nonsmooth l2
function φ2(x;µ) = f(x) + µ‖g(x)‖2. We model it by

qµ(p) = fk +∇fTk p+
1

2
pT∇2

xxLkp+ µm(p) (4.70)
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where

m(p) = ‖gk + Akp‖2. (4.71)

We define the ratio to be monitored in the usual way,

pk =
aredk
predk

=
φ2(xk, µ)− φ2(xk + pk, µ)

qµ(0)− qµ(pk)
(4.72)

the trust region due to Byrd-Omojokun is defined as follows.

Algorithm 3 Byrd-Omojokun Trust-Region SQP Method
Choose constants ε > 0 and η, γ ∈ (0, 1];

Choose starting point x0, initial trust region ∆0 > 0;
for k = 0, 1, 2, ...

Compute fk, gk,∇fk, Ak;
Compute multiplier estimates λ̂k = A(k−1A

T
k−1)−1Ak−1∇fk−1

if ‖∇fk − ATk λ̂k‖∞ < ε and ‖gk‖∞ < ε
stop with approximate solution xk;

Compute normal subproblem (4.67)-(4.68) for vk and rk from (4.69)
Compute ∇2

xxLk or a quasi-Newton approximation;
Compute pk by applying the projected CG method to

min
p

fk +∇T
k p+

1

2
pT∇2

xxLkp

s. t. Akp+ gk = rk,

‖p‖2 ≤ ∆k,

Choose µk to satisfy

qµ(0)− qµ(pk) ≥ ρµ[m(0)−m(pk)], for ρ ∈ (0, 1).

Choose pk = aredk/predk;
if ρk > η

Set xk+1 = xk + pk;
Choose ∆k+1 to satisfy ∆k+1 ≥ ∆k;

else
Set xk+1 = xk;
Choose ∆k+1 to satisfy ∆k+1 ≤ γ‖pk‖;

end (for).



76 CHAPTER 4. CONSTRAINED NON-LINEAR PROBLEMS

4.7 Convergence Analysis

Consider an SQP method that computes a search direction pk by solving the
quadratic program (4.31). We assume that the Hessian ∇2

xxLk is replaced in
(4.31) by some symmetric and positive definite approximation Bk. The new
iterate is defined as xk+1 + αkpk, where αk is computed by a backtracking
line search, starting from the unit step length, and terminating when

φ1(xk + αkpk;µ) ≤ φ1(xk;µ)− ηαk(qµ(0)− qµ(pk)),

where η ∈ (0, 1), with φ1 as defined in

φ1(x;µ) = f(x) + µ
∑
i∈ε

|gi(x)|+ µ
∑
i∈I

[gi(x)]−

and qµ as defined in

min
p

qµ(P ) ≡ fk +∇T
k p+

1

2
pT∇2

xxLkp+ µ
∑
i∈ε

|gi(x) + (4.73)

∇gi(xk)Tp|+ µ
∑
i∈I

[gi(x) +∇gi(xk)Tp]−

s. t. ‖p‖∞ ≤ ∆k,

for some penalty parameter µ, where we use the notation [y]− = max{0,−y}.
To establish the convergence result, we assume that each quadratic program
(4.31) is feasible and determines a bounded solution pk. We also assume that
the penalty parameter µ is fixed for all k and is sufficiently large.

Theorem 6 Suppose that the SQP algorithm just described is applied to the
nonlinear program (4.28). Suppose that the sequence {xk} and {xk + pk} are
contained in a closed, convex region of Rn in which f and gi have continuous
first derivatives. Suppose that the matrix Bk and multipliers are bounded and
that µ satisfies µ ≥ ‖λk‖∞+ρ for all k, where ρ is a positive constant. Then
all limit points of the sequence {xk} are KKT points of the nonlinear program
(4.28)-(4.30).

In order to prove superlinear and quadratic convergence we need to as-
sume the following.
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Assumptions 2 The point x∗ is a local solution of problem (4.18) in which
the following conditions hold.

(a) The function f and c are twice differentiable in a neighborhood of x∗

with Lipschitz continuous second derivatives.

(b) The linear independence constraint qualification holds at x∗. This
condition implies that the KKT conditions (4.7) - (4.11) are satisfied for
some vector of multipliers λ∗.

(c) The second-order sufficient conditions hold at (x∗, λ∗).

Theorem 7
Suppose that Assumptions 2 hold. Then, if (x0, λ0) is sufficiently close to
(x∗, λ∗) the pairs {(xk, λk)} generated by Algorithm 1 converge quadratically
to (x∗, λ∗).

Theorem 8
Suppose that Assumptions 2 hold and that the iterates {xk} generated by
Algorithm 1 with quasi-Newton approximate Hessian Bk converge to x∗. The
{xk} converges superlinearly if and only if the Hessian approximation Bk

satisfies

lim
k→∞

‖Pk(Bk −∇2
xxL∗)(xk+1 − xk)‖

‖xk+1 − xk‖
= 0 (4.74)

Theorem 9 Suppose that Assumption 2 hold. Assume also that ∇2
xxL∗ and

B0 are symmetric and positive definite. If ‖x0 − x∗‖and‖B0 − ∇2
xxL∗‖ are

sufficiently small, the iterates {xk} generated by Algorithm 1 with BFGS
Hessian approximation Bk defined by (4.50) and (4.54) (with rk = sk)satisfy
the limit (4.74). Therefore, the iterates {xk} converge superlinearly to x∗.

lim
k→∞

[
Pk(Bk−∇2

xxL∗)Pk(xk+1−xk)

‖xk+1−xk‖
+ Pk(Bk−∇2

xxL∗)(I−Pk)(xk+1−xk)

‖xk+1−xk‖

]
= 0,

Theorem 10 Suppose that Assumption 2(a) holds and that the matrices Bk

are bounded. Assume also that the iterate {xk} generated by Algorithm 1
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with approximate Hessian Bk converge to x∗, and that

lim
k→∞

Pk(Bk −∇2
xxL∗)Pk(xk+1 − xk)
‖xk+1 − xk‖

= 0,

Then the sequence xk converges to x∗ two-step superlinearly, that is,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖

= 0



Chapter 5

Optimal Execution:
Single-Market Orders

5.1 Preliminaries

The main objective in execution is to achieve the most efficient price. We
propose two optimal strategies for the execution of atomic orders based on
the minimization of impact and volatility costs. The first considered strategy
is based on a relatively simple nonlinear optimization model while the second
allows re-optimization at some time point within a given execution time. In
both cases a combination of market and limit orders is used. Under certain
conditions the objective functions of both considered problems are convex
and therefore standard optimization tools can be applied. The efficiency of
the resulting strategies is tested against two benchmarks representing com-
mon market practice on a representative sample of real trading data.

The model we present herein is based on minimization of execution costs
of atomic orders consisting of limit and market orders. The key innovation
in our model is the introduction of a Fill Probability function that gives the
probability of being filled (executed) for limit orders. Such a function is not
available analytically but it can be reasonably well estimated given a set of
market conditions. It should be noted that the optimization framework we
propose herein is not dependent on this particular implementation of a Fill
Probability model. Fill Probability function is incorporated into the objective
function together with volatility and impact costs. We explain the necessary

79
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simplifications of trading process and reasoning that yields a deterministic
nonlinear optimization problem. The strategy obtained from the model is
risk-averse and the model is solvable by standard optimization tools in real
time due to its simplicity. Given the differences in market properties of a
large universe of stocks (mainly differences in volatility and liquidity) we also
introduce a two-period optimization model that allows re-optimization of the
strategy at mid (or some other appropriately chosen) point in time interval.
This procedure appears to be particularly useful for liquid and volatile stocks.

5.2 Single-period model

Let us consider an atomic buy order with given size Q and execution time
within [0, T ]. In this context atomic means that Q is up to a certain percent-
age of the average traded quantity within time window [0, T ] and T is small,
say 10 minutes or similar. We want to formulate and solve an optimization
problem which yields an optimal combination of market and limit orders for
buying Q within a given time. We will assume that the order book has n vis-
ible levels with price trajectories following the arithmetic random walk given
by (2.3)-(2.5). Our execution strategy will be a combination of market and
limit orders that minimizes expected costs in terms of volatility and market
impact.

We assume that the volatility parameter σ is available, as well as market
impact functions defined in Almgren and Chriss [4] and explained with (2.2).
Furthermore, given the market conditions M, we are able to state the Fill
Probability functions Fi(q) for any order size q and any bid level i = 1, . . . , n
for time interval [0, T ], see (3.3).

If x = (x1, . . . , xn) then we will initially place limit order xi at ith bid
level for i = 1, . . . , n and trade market orders of size y. Since the order size
is Q we naturally have

y +
n∑
i=1

xi = Q. (5.1)

The execution of limit orders is an uncertain event. Let Γ = (Γ1, . . . ,Γn) be
a stochastic variable which denotes the filled quantity (in relative terms) at
each bid level during [0, T ] and let γ = (γ1, . . . , γn) be a realization of Γ. At
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the end of time window, t = T, we are left with the unfilled residual

R = Q−
n∑
i=1

γixi − y (5.2)

and we will trade that residual as market order in a short time afterwards,
say within a fraction of T.

Our objective is to minimize the execution cost of the above strategy, so
let us describe all possible costs. Initial market order y is causing market
impact and therefore its execution cost is

π(y) = f(y)y. (5.3)

Limit orders have gains according to their respective gain coefficients if they
are filled, and an opportunity cost if unfilled within [0, T ]. The residual given
by (5.2) is subject to volatility risk and since we need to execute it fast at
t = T (usually within a fraction of T ) its execution will cause a larger impact
due to the larger intensity of trade (smaller average traded volume within
that time window). Let Π(R) denote that impact. With Gi(q) defined by
(3.5) as Gi(xi) = cixiFi(xi), ci = ai(0) − bi(0) and with the assumptions
made in the previous section, we can formulate the gain of limit orders as

n∑
i=1

Gi(xi). (5.4)

Residual R is clearly a stochastic variable depending on Γ. Volatility
risk is dependent on price trajectories (2.3)-(2.5) and we will denote it by
V (R), V (R) = (P (T )− P (0))R. Putting together all these costs we are fac-
ing a two-stage stochastic problem - decision variables x, y are determined at
t = 0 taking into account the expected value of the residual R and the costs
that will be caused by fast execution of the residual. Two-stage stochastic
problems are solvable under additional assumptions for Γ and the price tra-
jectory P, (see Birge and Louveaux [8].) The distribution of Γ is not known.
Furthermore Γ and P are not independent since the fill rate depends di-
rectly on P , but Γ also depends on the whole set of variables in M. Solving
the above problem is not a realistic task without further simplifications and
assumptions that are questionable in real life. Furthermore, one needs to de-
termine an optimal strategy in real time and for a large universe of different
stocks, so solving a two-stage stochastic problem is not an affordable option.
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Because of all these reasons we will define a deterministic model which has
good theoretical properties and agrees with intuitive risk averse behaviour of
traders.

Instead of considering the volatility risk of the residual as a stochastic
value dependent on price movement we can assume that during the time
window [0, T ] the price will drift away for one whole volatility σ. In fact,
the expected price drift is zero under assumption (2.5) but volatility of price
plays a more important role within a short time framework. Assuming that
the price will move away from us for σ we are actually being risk-averse in
more than 90% of cases under the assumption 5.3 since Φ(1) > 0.9, with Φ
cumulative distribution function for ζ.

Similarly to the gain function (3.5), instead of considering the residual
as a stochastic variable, we define the residual function as a deterministic
function,

r(x, y) = Q−
n∑
i=1

Hi(xi)− y (5.5)

with Hi(xi) = xiFi(xi). These simplifications and taking the linear impact
function we are able to state the impact and volatility costs as follows,

V (r(x, y)) = σ
√
Tr(x, y) (5.6)

and

π(y) = (ε+ µy)y, Π(r) = (ε+ ηr)r. (5.7)

The constants µ and η are dependent on the time duration for execution
of the corresponding market orders and the average traded volumes within
these time windows. Therefore a larger intensity of trade (shorter execution
time) of the residual implies η > µ, while ε is the average1 historical spread
value. Putting together all analyzed costs and gains with

φ(x, y) = −
n∑
i=1

Gi(xi) + π(y) + σ
√
Tr(x, y) + Π(r(x, y)), (5.8)

1Using the average historical spread value is slightly less precise than the actual spread
in function π, but in line with already introduced simplifications since ε(T ) is not known
at t = 0.
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our problem is

min
x,y

φ(x, y) (5.9)

s.t. Q =
n∑
i=1

xi + y (5.10)

x ≥ 0, y ≥ 0

Problem (5.9)-(5.10) is a nonlinear optimization problem with a single lin-
ear constraint and nonnegativity constraints. It can be solved by standard
optimization tools. We will show that the Hessian matrix of the objective
function is positive definite under some conditions. The simple structure of
the problem and positive definitness of the Hessian then implies the appli-
cation of second order conditions and every KKT point is a minimizer of
(5.9)-(5.10). Let R0 be the set of nonnegative real numbers.

Theorem 11 Let Hi ∈ C2(R0) and concave (H ′′i < 0) for all i. Then
∇2φ(x, y) is a positive definite matrix.

Proof. Let fij denote the elements of ∇2φ(x, y). Elementary calculations
give us

fn+1,n+1 = 2µ+ 2η,

fii = 2η(H ′i(xi))
2 − AiH ′′i (xi), Ai = σ

√
T + ci + ε+ 2ηr(x, y), i = 1, . . . , n,

fn+1,j = fj,n+1 = 2ηH ′j(xj), j = 1, . . . , n

fij = 2ηH ′i(xi)H
′
j(xj), i 6= j.

Therefore we can write

∇2φ(x, y) = D + uuT , D = diag(−A1H
′′
1 (x1), . . . ,−AnH ′′n(xn), 2µ)

with
u = [

√
2ηH ′1(x1), . . . ,

√
2ηH ′n(xn),

√
2η]T .

Since uuT is positive semi-definite, it is sufficient to prove that D is positive
definite. As D is diagonal we must infer that each entry of the diagonal is
positive, but that is clear since Ai > 0 and H ′′i (xi) < 0. So, we can conclude
that ∇2φ(y, x) is a positive definite matrix. �
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Figure 5.1: Empirical Success function. Empirijska funkcija uspešnosti

We can not claim that the concave condition from this theorem is satisfied
for success functions Hi as defined by Fill Probability functions Fi without
analytical expression for Fi. By definition, H ′′i (q) = qF ′′i (q) + 2F ′i (q) and Fi
is decreasing and convex for q ∈ R0. Clearly, the sign of H ′′i cannot be deter-
mined from this information. But empirical results give us good reasons to
believe that the functions Hi are indeed concave, at least for q smaller than
the average traded volume. Atomic orders are always significantly smaller
than the average traded volume (up to one third of that volume) so it seems
reasonable to assume that Hi satisfy the conditions from the previous theo-
rem. One typical empirical example is shown in Figure 5.1.

5.3 Multi-period model

The time window for execution of an atomic order is generally small, say
around 10 minutes. However if we are buying a liquid but volatile stock we
might find that too long a time window to be waiting to see if orders will
be filled according to our expectations. The market conditions can change
significantly and the strategy obtained from (5.9)-(5.10) might be subject to
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re-optimization at a certain time point τ within (0, T ). On the other hand
re-optimization cannot be performed too often because the passive nature of
limit orders requires some time for them to be realized. Taking into account
both possibilities, we will present a two-period model without any loss of
generality, since the two-period model could be easily translated into a multi-
period model with as many re-optimizations as appropriate.

Let τ ∈ (0, T ) be the point when we start the re-optimization procedure.
Clearly market conditions M0 at t = 0 and Mτ at t = τ can differ sig-
nificantly due to price changes, cancellations, new liquidity arrivals, trading
activity, announcement of important news etc.

Let B0 = {i1, . . . , in} be the set of visible bid levels at t = 0. The optimal
market and limit orders obtained from (5.9)-(5.10) at t = 0 are denoted by
y0 and x0, while the Fill Probability functions for [0, T ] are Fi.

At t = τ we know the volume that is already traded so we have to trade
some Qτ , Qτ ≤ Q, within [τ, T ]. Also, for all x0

i initially posted at bid levels
i ∈ B0, the unfilled amount x̃i, x̃ ≤ x0

i is known. Reasoning the same way
at t = 0, we can distribute Qτ between market and limit orders taking into
account the existing limit orders that are still unfilled but potentially have
progressed in their queues. We can also consider cancellation of initially
posted limit orders x0

i ifMτ is significantly different fromM0 or if the price
has moved so the level i is no longer visible. When canceling unfilled orders
we are losing our place in the queue. Placing a new limit order means that we
would be going to the end of the existing queue. Clearly, unfilled orders that
are orders originally placed at t = 0 and a new order placed at t = τ at the
same bid level will have different Fill Probability functions for the same time
interval [τ, T ]. For the existing but unfilled x̃i, the Fill Probability function
has changed due to the transition from M0 to Mτ . Therefore, we will have
two sets of Fill Probability functions, F τ

i (q) for orders placed at t = τ and
F̃ τ
i (q), for unfilled orders posted at t = 0, both of them depending on Mτ

and considering time [τ, T ] but depending on the order’s queue position.
Furthermore, F̃ τ

i will be different from the initial function F 0
i .

Let `τi , i ∈ B0 denote the volume we are keeping at the initial position.
Then clearly

`τi ≥ 0, `τi ≤ x̃i i ∈ B0. (5.11)

These orders will have success rate functions

H̃τ
i (`τi ) = F̃ τ

i (`τi )`
τ
i (5.12)
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and gain functions G̃τ
i (`i) = cτi H̃

τ
i (`i) with gain coefficients

cτi = a1(τ)− bi(τ), i ∈ B0. (5.13)

Due to price movement, the set of visible bid levels might have changed,
so let

Bτ = {k1, . . . , kn}

be the set of visible bid levels at t = τ. If xτk, k ∈ Bτ are new limit orders to
be placed at t = τ then their success functions are

Hτ
k (xτk) = F τ

k (xτk)x
τ
k, (5.14)

while the gain functions are Gτ
k(x

τ
k) = cτkH

τ
k (xτk) with

cτk = a1(τ)− bk(τ), k ∈ Bτ . (5.15)

Finally let yτ denote the volume we will trade as market orders in [τ, T ].
Then the impact cost with the linear impact function is

πτ (yτ ) = (ε+ µτy
τ )yτ

with µτ being a stock specific constant dependent on time T − τ. The new
residual function analogously to (5.5) is:

ρ(lτ , xτ , yτ ) = Qτ −
∑
i∈B0

H̃τ
i (`τi )−

∑
k∈Bτ

Hτ
k (xτk)− yτ . (5.16)

The optimization problem now becomes

min
lτ ,xτ ,yτ

Φ(`τ , xτ , yτ ) (5.17)

s.t. `τi ∈ [0, x̃i], i ∈ B0 (5.18)

Qτ = yτ +
∑
i∈B0

`τi +
∑
k∈Bτ

xτk

xτ , yτ ≥ 0

with

Φ(`τ , xτ , yτ ) = −
∑
i∈B0

G̃τ
i (`

τ
i )−

∑
k∈Bτ

Gτ
k(x

τ
k) + πτ (yτ ) + (5.19)

σρ(lτ , xτ , yτ )
√
T − τ + Πτ (ρ(lτ , xτ , yτ ))
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and
Πτ (ρ) = (ε+ ητρ)ρ

with ητ > µτ due to faster execution of the residual at the end of time window,
i.e., smaller average traded volume within shorter execution window for the
residual ρ.

The problem (5.16)-(5.19) has the same structure as (5.9)-(5.10) except
for the box constrains for lτ and larger dimension. Therefore the objective
function again has positive definite Hessian under the conditions stated be-
low.

Theorem 12 Let Hτ
k , H̃

τ
i ∈ C2(R0) and Hτ

k , H̃
τ
i concave for all k ∈ Bτ and

i ∈ B0. Then ∇2Φ(`, x, y) is a positive definite matrix.

One important issue deserves additional clarification here. The proposed
two-period model is not equivalent to the application of (5.9)-(5.10) on con-
secutive time intervals [0, τ ] and [τ, T ]. Re-optimization of the execution tra-
jectory according to (5.16)-(5.19) allows an important advantage due to the
fact that we can keep initially placed orders in the queue if the chances of
being filled are good enough. Since

F̃ τ
i (q) > F τ

i (q)

due to different positions in the corresponding queue it is clear that solving
(5.9)-(5.10) at t = 0 and then (5.16)-(5.19) at t = τ is better than apply-
ing (5.9)-(5.10) twice due to the passive nature of limit orders and queue
positions. Furthermore the fill probability is an increasing function of time.
Therefore, overlapping time windows [0, T ] and [τ, T ] is preferable to dis-
jointed [0, τ ] and [τ, T ]. On the other hand, market orders y0 and yτ are
always realized according to some predefined schedule, (see Almgren and
Chriss [4]), and their executions bear no time risk. So any change between
initially planned y0 and second period yτ is actually capturing market move-
ments.

As already mentioned, it is quite easy to perform the re-optimization
procedure as many times as we want within [0, T ]. We report numerical
results for τ = T/2 in a later section. We have also tested three-period
models but the results made us stick to the initial idea of one re-optimization
at τ = T/2. It appears that more frequent re-optimization actually chases
high-frequency noise and thus loses the main advantage of this approach: Fill
Probability function and a combination of market and limit orders.
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Chapter 6

Optimal Execution:
Multi-Market Orders

6.1 Preliminaries

Without any loss of generality we will assume that the trading is done on two
markets, say A and B. Therefore all variables and functions that correspond
to the markets A and B will be denoted with superscripts A and B respec-
tively. If the same is true for both markets we will not use any subscript.

For a given security in a two venue environment, we will have two sets
of market conditions MA,MB. Each would have their respective queue
of buying price levels bAi (t), bBi (t), and selling price levels aAi (t), aBi (t) for
any time t. Time dependence will be dropped occasionally if no confusion is
implied.

The spreads are defined as

εA = aA1 − bA1 , εB = aB1 − bB1

for the two orderbooks in market A and B. Because two venues could work
with different price granularity, tick size, the spreads in the two markets most
often differ. However, in any two liquid securities in liquid venues, the spread
is expected to be similar. But there are clear examples of tick size being
significantly different, as in the case of for instance Deutsche Telecom (ticker:
DTEGn.DE), where the tick size on the small venue Chi-X is 0.001 with a
typical quote like 9.594/9.595 for 1500X1700 shares. The same security
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which trades at the primary exchange, Xetra, with 0.005 in tick size, may
have a quote of say 9.590/9.595 for 18000X21000 shares. As can be seen,
although the Chi-X spread is much tighter, if one wishes to trade non-trivial
size, one would have to trade through many price levels to complete the order
in Chi-X, while it could be done at the same level on Xetra.

Due to the efficiency of the market, risk free arbitrage is a rare event,
an opportunity where one could buy at one venue and sell at a higher price
at another venue instantly. Although completely independent, both markets
track each other very closely - hence their volatility is also near identical.

Most securities have a liquidity pattern associated with the time of the
day. However, the ratio of liquidity in one market versus another is not
constant. At times, there can be disproportionately larger liquidity in the
smaller venue. This excess liquidity could last for an extended period. Since
this is a seemingly unpredictable process, market participants would gain by
moving their orders from the queue in one market to the queue on another
in order to maximize the probability of being filled - even if it meant joining
at the back of the queue at the same price level.

In two-market situation we are dealing with two sequences of gain coeffi-
cients

cAi = aA1 − bAi , cBi = aB1 − bBi , i = 1, . . . , n. (6.1)

Obviously gain (6.1) occurs only if the order is filled within given time.
We will define gain function for limit orders as follows.

Clearly each market has its own set of Fill Probability functions, FA
i and

FB
i . The fill probability function for each of the markets are calculated inde-

pendently of the others.

Using the above defined functions we can define the success functions of
the considered limit order as

HA
i (q) = qFA

i (q), HB
i (q) = qFB

i (q), i = 1, . . . , n (6.2)

and gain functions as

GA
i (q) = cAi H

A
i (q), GB

i (q) = cBi H
B
i (q), i = 1, . . . , n (6.3)

Clearly functions Hi, Gi are smooth if Fi are smooth. Although we have no
analytical expression for Fi(q) we are able to use an estimate of reasonable
quality as will be demonstrated by numerical results chapter.
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6.2 Single-period model

The problem we consider is that of executing an order to buy some volume Q
within time window [0, T ] of a given security. The sell case is clearly opposite
so we will not consider it here. Our execution strategy will be a combination
of market and limit orders at both venues A and B that minimizes estimated
costs in terms of volatility and market impact. We will follow the general idea
successfully applied to a single venue in Kumaresan and Krejić [38] but tak-
ing into consideration additional possibilities arising from two venues. The
principal aim is to obtain an optimization model that is computationally af-
fordable in real time for a large portfolio of securities. As already mentioned
the price process is not deterministic nor is any of the other market micro
properties (liquidity arrival, cancellation pattern, changes in spread etc.) that
determine the market conditions. The existence of multiple trading venues
with mutual dependency makes the trading environment even more complex.

The strategy we want to pursue consists of distribution of orders into
market and limit orders at both venues within [0, T ] with the aim of buying
Q. Market orders are causing the costs represented as market impact and
limit orders are facing uncertainty of being filled within [0, T ] and providing
possible gain governed by their gain coefficients. Thus the question we are
facing is distribution between market and limit orders and distribution be-
tween venues A and B. Both costs and gains are clearly stochastic values.
At t = T we have the residual amount coming from the unfilled limit orders.
As we have a fixed trade window, the residual needs to be executed at t = T
relatively fast and in aggressive manner i.e. using only market orders. This
will produce larger impact and is subject to volatility risk since the prices
P (0) and P (T ) will very likely be different. Furthermore, the residual volume
can be traded at one or both of the venues. Putting all these considerations
together one is facing a two stage stochastic problem with the objective func-
tion being impact and volatility costs of market orders and negative gain of
limit orders. Such problems are not computationally feasible for real time use
and large portfolio of securities. Hence the same simplifications in modeling
as in the previous chapter are necessary.

We will adopt the gain and success functions as already defined in the
previous chapter. Thus the distribution of limit orders between two venues
and different bid levels will be determined by the corresponding fill prob-
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ability functions. The impact costs will be modeled as the deterministic
functions (2.2) for each of the venues separately. Possible price and liquid-
ity improvements at one of the venues are thus taken into account and will
result in different distribution of market orders between A and B. There-
fore we are actually treating two venues as a single combined venue with
additional bid-ask levels and two impact functions if compared with strat-
egy from Kumaresan and Krejić [38]. The key difference in the two venue
situation is coming from the residual carrying its volatility risk and impact
costs. The residual is clearly an unknown stochastic value at t = 0. To sim-
plify the problem we will introduce the residual function as a deterministic
function available at t = 0 following the logic of the success and gain func-
tions. The volatility risk can be simplified adopting the risk averse attitude
and assuming that the price will move away from us for the whole σ. With
such assumption we are covering more than 90% of cases under the process
(2.5). The total impact cost of the residual will be the sum of impact costs at
both markets assuming that the residual is divided between them. The exact
ratio of the split between A and B is obtained minimizing the total impact
costs. As the residual impact and volatility costs influence the distribution
of Q between limit and market orders as well as the distribution between
the venues, the resulting optimization problem will be a bi-level problem as
stated in this Section.

We assume that the volatility parameter σ is available as well as market
impact functions defined in Almgren and Chriss [4] and explained with (2.2).
Risk free arbitrage opportunities will force the prices in the two venues to be
aligned and as such the volatilities of the different venues will be virtually
identical. Furthermore, given the market conditions MA,MB we are able
to state the Fill Probability functions FA

i (q), FB
i (q) for any order size q and

any bid level i = 1, . . . , n for time interval [0, T ] at any of the markets A and
B.

If xA = (xA1 , . . . , x
A
n ) then we will initially place limit order xAi at ith bid

level for i = 1, . . . , n and trade market orders of size yA at market A and
analogously for xB = (xB1 , . . . , x

B
n ) and yB. We will also use the notation

x = (xA, xB) ∈ R2n, y = (yA, yB) ∈ R2.
At t = T we are left with the residual that has not been filled

R̄ = Q−
n∑
i=1

γAi x
A
i −

n∑
i=1

γBi x
B
i − yA − yB (6.4)
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where Γ = (γA1 , . . . , γ
A
n , γ

B
1 , . . . , γ

B
n ) is a stochastic variable showing the rela-

tive value of each limit order that was filled, i.e. γi ∈ [0, 1]. We will trade that
residual as a market order at any of the markets depending on the market
conditions at t = T. The residual will be executed in a short time afterwards,
say within a fraction of T.

Initial market order yA is causing market impact and therefore its execu-
tion cost is

πA(yA) = (εA + µAyA)yA, (6.5)

The same is true for market B and yB,

πB(yB) = (εB + µByB)yB. (6.6)

Here µA and µB are stock specific parameters.
Limit orders have their gains according to their respective gain coefficients

if filled and opportunity cost if unfilled within [0, T ]. The residual given by
(6.4) is subject to volatility risk and since we need to execute it fast at t = T
its execution will cause larger impact due to larger intensity of trade (larger
traded volume within that time window). Let ΠA(R),ΠB(R) denote these
impact costs. With Gi(q) defined by (6.3) as

Gi(xi) = cixiFi(xi), ci = a1(0)− bi(0)

and assumptions made in the previous section, we can formulate the gain of
limit orders as

GA(xA) =
n∑
i=1

GA
i (xAi ), GB(xB) =

n∑
i=1

GB
i (xBi ). (6.7)

Instead of considering the volatility risk of the residual as stochastic value
dependent on price movement we can assume that during the time window
[0, T ] the price will drift away for one whole volatility σ. In fact the expected
price drift is zero under assumption (2.5) but volatility of price plays a more
important role within short time framework and therefore we adopt this risk
averse attitude.

Analogously to gain function (6.3), instead of considering the residual as a
stochastic variable, we define the residual function as deterministic function,

R(x, y) = Q−HA(xA)−HB(xB)− yA − yB, (6.8)
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HA(xA) =
n∑
i=1

HA
i (xAi ), HB(xB) =

n∑
i=1

HB
i (xBi ).

The residual has to be executed within a fraction of T in a manner that will
minimize the total impact cost. Hence we need to split it to rA and rB such
that rA is executed at A and rB is executed at B. So rA and rB are the
solutions of

min
r
φ(r)

under constraints
rA + rB = R(x, y), rA, rB ≥ 0,

with r = (rA, rB). Given that the residuals are executed faster than y they
are causing larger impact than stated by fA and fB. So we model the impact
of the residual orders as

ΠA(q) = (εA + ηAq)q, ΠA(q) = (εB + ηBq)q

with ηA > µA, ηB > µB, and

φ(r) = Π(rA) + Π(rB).

Denoting

ϕ(x, y) = πA(yA) + πB(yB)−GA(xA)−GB(xB) + (6.9)

σ
√
TR(x, y) + ΠA(rA) + Π(rB),

our problem yields the following bi-level optimization problem

min
x,y

ϕ(x, y) (6.10)

s.t. HA(xA)−HB(xB)− yA − yB −Q = 0 (6.11)

r = argminr φ(r(x, y)) (6.12)

rA + rB = R(x, y) (6.13)

x, y, r ≥ 0 (6.14)

Function φ(r) is quadratic and the lower level problem is a strictly convex
quadratic problem with linear and nonnegativity constraints. Therefore it
admits a unique solution so we are able to prove the following statement.
Let R0 be the set of nonnegative real numbers.
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Theorem 13 Let (HA
i ), (HB

i ) ∈ C2(R0) be concave functions for i = 1, . . . , n
and r be the optimal solution of 6.12-6.13. Then ∇2ϕ(x, y) is a positive def-
inite matrix.

Proof. For ΠA(q) = (εA + ηAq)q, ΠB(q) = (εB + ηBq)q we have

φ(r) = rTBr + rTd

with B = diag(ηA, ηB) and d = (εA, εB). As B is positive definite the mini-
mizer of (6.12)-(6.14) is given by

r =
R + eTd

eTB−1e
B−1e− d, e = (1, 1)T (6.15)

with R = R(x, y) = Q−HA(xA)−HB(xB)− yA − yB. Plugging (6.15) back
to (6.10) - (6.11), after some elementary calculations we can show that for

η = ηAηB

ηA+ηB

∂2ϕ

∂(xAi )2
= −(cAi + σ

√
T +

εAηB + εBηA

ηA + ηB
)(HA

i )′′(xAi )R + η((HA
i )′(xAi ))2

∂2ϕ

∂(xBi )2
= −(cBi + σ

√
T +

εAηB + εBηA

ηA + ηB
)(HB

i )′′(xBi )R + η((HB
i )′(xBi ))2

∂2ϕ

∂(yA)2
= µA + η,

∂2ϕ

∂(yB)2
= µB + η

∂2ϕ

∂(yA)∂(xAi )
= η(HA

i )′(xAi ),
∂2ϕ

∂(yB)∂(xAi )
= η(HA

i )′(xAi )

∂2ϕ

∂(yA)∂(xBi )
= η(HB

i )′(xBi ),
∂2ϕ

∂(yA)∂(xBi )
= η(HB

i )′(xBi ).

Thus ∇2ϕ(x, y) can be expressed as

∇2ϕ = D + uuT

where D is the diagonal matrix with elements

dk = −(cAk + σ
√
T +

εAηB + εBηA

ηA + ηB
)(HA

k )′′(xAk )R, k = 1, . . . , n
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dk = −(cBk + σ
√
T +

εAηB + εBηA

ηA + ηB
)(HB

k )′′(xBk )R, k = n+ 1, . . . , 2n

d2n+1 = µA, d2n+2 = µB

and

u =
√
η[(HA

1 )′(xA1 ) . . . (HA
n )′(xAn ) (HB

1 )′(xB1 ) . . . (HB
n )′(xBn ) 1 1].

As uuT ≥ 0 the statement follows if all elements of D are positive which is
clearly true. �

Without an analytical expression for the Fill Probability function Fi, one
cannot claim that the success function Hi which is defined by Fi, satisfies the
concave condition from this theorem. However, the empirical results give us
reasons beyond any doubt that for q smaller than the average traded volume,
Hi is indeed concave. Atomic orders rarely are more than 33% of the average
traded volume.

6.3 Multi-period model

After placing the orders at t0, if the market price moved away, one may
then want to revise ones’ initial order placements by finding another optimal
placement strategy - taking into consideration these changes to the market
conditions.

Let τ ∈ (0, T ) be the point when we start the re-optimization procedure.
The goal of the re-optimization is to improve the performance of the initially
planned execution strategy defined by x0,A, x0,B, y0,A and y0,B which are the
optimal values obtained by solving (6.10)-(6.14) at t = 0. Let us denote by
superscript 0 the corresponding Fill Probability functions F 0,A

i and F 0,B
i and

gain function G0,A
i , G0,B

i . These functions are assumed to be available at t = 0
considering time execution window [0, T ]. At t = τ several informations are
available. Firstly, for all x0,A

i and x0,B
i initially placed at bid levels i ∈ B0 the

unfilled amounts x̃Ai ≤ x0,A
i , x̃Bi ≤ x0,B

i are known. The amount traded as
market orders at both exchanges is also known and therefore the remaining
quantity Qτ is known. The basic idea of re-optimization procedure is to take
advantage of new market conditionsMτ,A andMτ,B if they are significantly
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different from the initial conditions M0,A and M0,B. Thus starting with Qτ

and the execution window [τ, T ] one can repeat the reasoning which yields
(6.10) - (6.14) with one important difference. Namely the unfilled part of the
limit orders x0,A and x0,B i.e. x̃Ai and x̃Bi can be either canceled or left at
their position in the corresponding queues at t = τ.

The situation is essentially different from t = 0 since the orders which are
not filled at t = τ have very likely progressed in their respective queues and
hence have different fill probability than new limit orders one might place
at t = τ. Furthermore their fill probability functions are different from the
initial F 0

i since the market conditions as well as the execution window are
different. So we will have two sets of fill probability functions, F̃ τ,A

i and F̃ τ,B
i

for the orders placed at t = 0 that we keep at their positions and F τ,A
i , F τ,B

i

for the new limit orders that will be placed at the end of the corresponding
queues at t = τ. To distinguish between these two sets of limit orders we
introduce a new set of variables `τ,Ai , `τ,Bi i ∈ B0 denoting the volume we
are keeping at the initial positions, while xτ,Ai and xτ,Bi are the limit orders
submitted at t = τ..

Clearly we can not rule out the possibility of a significant change of the
market conditions contrary to our aims which yields a decrease in the fill
probability functions if compared with the initial fill probability functions
i.e. F̃ τ,A

i < F 0,A
i and F̃ τ,B

i < F 0,B
i nor a significant (although temporary)

change in liquidity distribution between A and B. The change of prices could
be of such magnitude that the set of available bid levels change at t = τ. So
cancellation of the initially posted but unfilled orders has to be taken as a
possibility. All these implies the following inequality conditions on the limit
orders we will keep as initially placed

`τ,Ai ≥ 0, `τ,Ai ≤ x̃Ai `
τ,B
i ≥ 0, `τ,Bi ≤ x̃Bi i ∈ B0. (6.16)

These orders will have success functions

H̃τ,A
i (`τ,Ai ) = F̃ τ,A

i (`τ,Ai )`τ,Ai , H̃τ,B
i (`τ,Bi ) = F̃ τ,B

i (`τ,Bi )`τ,Bi (6.17)

and gain functions G̃τ,A
i (`Ai ) = cτ,Ai H̃τ,A

i (`Ai ), G̃τ,B
i (`Bi ) = cτ,Bi H̃τ,B

i (`Bi ) with
gain coefficients

cτ,Ai = aA1 (τ)− bAi (τ), cτ,Bi = aB1 (τ)− bBi (τ), i ∈ B0. (6.18)

The price process might yield a new set of the available bid levels at t = τ,
say Bτ . If xτ,Ak and xτ,Bk , k ∈ Bτ are the new limit orders to be placed at t = τ
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at markets A and B then their success functions are

Hτ,A
k (xτ,Ak ) = F τ,A

k (xτ,Ak )xτ,Ak , Hτ,B
k (xτ,Bk ) = F τ,B

k (xτ,Bk )xτ,Bk , (6.19)

while the gain functions are

Gτ,A
k (xτ,Ak ) = cτ,Ak Hτ,A

k (xτ,Ak ), Gτ,B
k (xτ,Bk ) = cτ,Bk Hτ,B

k (xτ,Bk )

with

cτ,Ak = aA1 (τ)− bAk (τ), cτ,Bk = aB1 (τ)− bBk (τ), k ∈ Bτ . (6.20)

Clearly F τ,A
k (q) ≤ F̃ τ,A

k (q) and F τ,B
k (q) ≤ F̃ τ,B

k (q) due to different positions
in the queues for k ∈ B0 ∩ Bτ . The distribution of the new limit orders will
depend on improvement (deterioration) of F̃ τ

k compared to F 0
i as well as the

relationship between F̃ τ,A
k (q) and F̃ τ,B

k (q).

Finally let yτ,A, yτ,B denote the volumes we will trade as market orders in
[τ, T ] in both markets. Then the impact costs with the linear impact function
are

πτ,A(yτ,A) = (εA + µτ,Ayτ,A)yτ,A, πτ,B(yτ,B) = (εB + µτ,Byτ,B)yτ,B

with µτ,A, µτ,B being a stock specific constants dependent on time T −τ. The
new residual function is analogously to (6.8),

ρ(lτ , xτ , yτ ) = Qτ−H̃τ,A(`τ,A)−H̃τ,B(`τ,B)−Hτ,A(xτ,A)−Hτ,B(xτ,B)−yτ,A−yτ,B,
(6.21)

with

H̃τ,A(`τ,A) =
∑
i∈B0

H̃τ,A
i (`τ,Ai ), H̃τ,B(`τ,B) =

∑
i∈B0

H̃τ,B
i (`τ,Bi ),

Hτ,B(xτ,B) =
∑

k∈Bτ,B

Hτ,B
k (xτ,Bk ), Hτ,B(xτ,B) =

∑
k∈Bτ,B

Hτ,B
k (xτ,Bk ).

Denoting `τ = (`τ,A, `τ,B), xτ = (xτ,A, xτ,B), yτ = (yτ,A, yτ,B) and splitting the
residual ρ(lτ , xτ , yτ ) into two parts, rτ,A and rτ,B to be executed at A and B,
with rτ = (rτ,A, rτ,B) we are again facing the two level bilevel problem.
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The optimization problem now becomes

min
lτ ,xτ ,yτ

Φ(`τ , xτ , yτ ) (6.22)

s.t. `τi ∈ [0, x̃i], i ∈ B0 (6.23)

Qτ = yτ,A + yτ,B +
∑
i∈B0

(`τ,Ai + `τ,Bi ) +
∑
k∈Bτ

(xτ,Ak + xτ,Bk )

rτ ∈ argmin Πτ,A(rτ,A) + Πτ,B(rτ,B) (6.24)

ρτ = rτ,A + rτ,B (6.25)

xτ , yτ ≥ 0

with

Φ(`τ , xτ , yτ ) = −G̃τ,A(`τ,A)− G̃τ,B(`τ,B)−Gτ,A(xτ,A)−Gτ,B(xτ,B) +

πτ,A(yτ,A) + πτ,B(yτ,B) + σρ(lτ , xτ , yτ )
√
T − τ +

+Πτ,A(rτ,A) + Πτ,B(rτ,B)

and Gτ,A, Gτ,B, G̃τ,A, G̃τ,B defined analogously to the success functions H
functions, i.e. summing up all components. Due to faster execution of the
residual, the impact costs of the residuals are

Πτ,A(q) = (εA + ητ,Aq)q, Πτ,B(q) = (εB + ητ,Bq)q

with ητ,A > µτ,A and ητ,B > µτ,B.
The problem (6.22)-(6.25) has the same structure as (6.10)-(6.14) except

for the box constrains for lτ and larger dimension. Therefore the objective
function again has positive definite Hessian under the conditions stated be-
low.

Theorem 14 Let Hτ,A
k , Hτ,B

k , H̃τ,A
i , H̃τ,B

i ∈ C2(R0) and Hτ,A
k , Hτ,B

k , H̃τ,A
i , H̃τ,B

i

concave for all k ∈ Bτ and i ∈ B0. Then ∇2Φ(`, x, y) is a positive definite
matrix.
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Chapter 7

Simulation Framework

All numerical results presented here are derived from simulations. A simula-
tor was written in Java and MATLAB for this purpose. Since our research
topic originated from the urgent need of a framework for optimal execu-
tion, we have endeavored to be as faithful as possible to the real-time usage
of the proposed model. There are no assumptions made in the simulation
framework that would prevent deployment to production to be used in actual
trading. 1

7.1 Tick Data

The data used in the simulation is European level-1 and level-2 tick data
provided by Reuters. This consists of 5 levels of orderbook depth with con-
solidated volume on each price level as well as traded price and quantity. Se-
curities considered are the following five: VOD, AAL, KGF, SDR and SASY.
The period in question is January - March 2008 and August - October 2009.
Simulations were run from 08:15 until 16:30 everyday with continuous tick
steam - every single tick was considered.

7.2 Simulated Orderbook

The simulator requires the state of the market in the form of an orderbook
providing a snapshot of the market with tick level granularity. The simulator

1In fact, the models formulated here are actually in use at TransMarket Group globally.

101



102 CHAPTER 7. SIMULATION FRAMEWORK

then decomposes the orderbook into a stream of tick changes. These ticks
are then used to recreate the orderbook. When recreating the orderbook, we
maintain the changes to a given price level as a sequence of individual orders.
This will effectively evolve into reflecting the size of the individual orders at
a given price level. This level of distinction is particularly important for the
fill probability model.

When the trading models within the simulator harness place an order, the
order is added to the back of the queue and tagged. The tag will record the
position and quantity ahead. For all subsequent trades on that price level,
the quantity ahead is reduced by the traded amount. However, a cancellation
may or may not change the ahead quantity as one does not know whether
the canceled order was in front or behind our order in question. We choose
the worst case scenario, and assume that all canceled orders were behind
ours if there were any, hence not change ahead quantity. Otherwise, if the
cancellation took place ahead of us, naturally the ahead quantity will be
reduced.

7.3 Fill Assumptions

In our simulated orderbook, an order xi at price level i is filled when the
quantity traded at that price level exceeds the ahead quantity (Xi). If the
volume behind is less than xi, naturally, Xi+xi will not take place. Therefore,
we will look to the price level j right below i (i.e. i+1) for the residual trades
to take place.

In the event of multiple orders working in the same price level or at
different price levels, the same logic is applied. However, our order quantity
will be included in the criteria for how much must trade before orders start
filling.

7.4 Re-Streaming

The data streamed from different exchanges contain some noise. In essence,
orderbook changes are not disseminated chronologically. At time, the time
stamping of the events are also somewhat arbitrary within a small window
of time from when the event in question took place. For instance, a trade of
100 shares on the bid should reduce the volume on best bid by 100 shares.
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However, this is not always the case.

Since the only way to tell whether a change to the orderbook is a trade or
a cancellation is from whether there was trade for the same quantity at the
same price level or not, the task of determining changes to the touch is due to
a cancellation or a trade becomes very difficult. The interleaving of changes
to the orderbook and a potential corresponding trade with other changes
makes the problem even worse. This is particularly problematic when one
consider that there can be tens or even hundreds of trades and changes to
orderbook taking place within a one second duration at busy times.

To further complicate the matter, some exchanges such as Euronext some-
times reports a single trade broken into two or three smaller trades. However,
the change to the orderbook will be a single change equivalent to the sum of
the smaller trades. These are merely some of the many intricate peculiarities
of the exchanges.

We use a proprietary data cleaning filter to re-stream the data in real-
time in the correct chronological order and change attribution. The success
rate of this filter varies from exchange to exchange. For LSE, 98% of the
tick changes are correctly identified and re-streamed. With Euronext for
instance, this number is approximately 90%.

It should be stressed that re-streaming of this type is critical to the success
of most high frequency models.

7.5 Static Variables

The optimisation uses a number of key static variables. There are defined
as:

• Average Daily Volume (ADV)
ADV is used by the Market Impact Model to measure the relative size
of an order. A simple 90 day average is used in this calculation.

• Intraday Volatility
The objective functions in our models use the intraday volatility to
estimate the short term volatility risk. We calculate this from 90 days
of historic data for non-overlapping 15 minute intervals. The sample
of 15-minutely time-of-day sensitive volatility estimates are further in-
terpolated to cater for arbitrary time of day. Return numbers in the
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volatility calculation are calculated between two mid-prices at the start
and end of the 15-minute time slice.

• Market Impact Model Coefficients
Based on thousands of actual trades of the stocks in question, we use a
method similar to Almgren as discussed above to estimate the model’s
coefficients with a proprietary modification. Nevertheless, following
Almgren’s algorithm for calibration will also work.

7.6 Benchmarking

Accurately measuring the performance of trading algorithms is a very difficult
task due to a number of random variables involved in the execution task.
In the case of implementation shortfall, the arrival price is the reference
benchmark price. If the price moved away during the execution period, we
would expect the fill price to be worse than the reference price. In the event
the price came in the order’s favor, we would naturally expect an average
fill price better than that of the reference price. The overall performance of
the algorithm can therefore only be obtained by calculating the mean from
a large sample of execution. Any single user of an algorithm will usually
not have a sufficient number of trade samples to calculate the mean. The
performance measurement is further complicated by structural changes in
the market and the continuous evolution of the algorithms.

We are faced with two key obstacles when looking to benchmark our
proposed optimal framework. Firstly, the proposed framework has to be
better than market practice. This is a near impossibility since the trading
algorithms are proprietary. Even the claimed performance numbers are not
valid as they are marketing material as opposed to being factual. Secondly,
unlike real life, the simulated algorithm does not distort the orderbook, it
instead quantifies the disturbance caused by the order as additional impact
costs.

Herein, we have only considered order sizes up to 15% of ADV. Order
quantities larger than this will cause significant market impact. The effect
of this impact is difficult to quantify. The market impact itself will become
non-linear. The excess impact will affect the liquidity arrival pattern in the
orderbook. This will further affect other quantitative models such as fill
probability, etc. Therefore, although simulated results for larger ADV orders
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will look attractive, not incorporating the significant effects of our trades into
the simulation will make the results depart from our aim to be consistent with
real trading.

We propose a benchmarking scheme that makes a fairer measure, taking
into consideration the price process when estimating slippage to the bench-
mark price. The primary aim of all atomic orders is to get the best possible
price within a small window. As such, we define the universal reference price
Pperfect. This reference price is theoretically the best possible that we could
have achieved if we had complete foresight of where the market was to trade
during the window. With this foresight, the quantity that would not have
been filled will be traded using a uniform profile over the entire window.

We introduce two measures, PB and PM , to closely reflect market practice.
PB is achieved through an algorithm that always places the entire order on
the first bid level and trades the residual as a market order at the end, while
PM is obtained from the uniform trajectory of market orders only.

All execution costs are calculated as the relative difference between Pperfect
and the individual algorithm’s performance, expressed in basis points (1bp =
10−4).
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Chapter 8

Numerical results

We tested all the previously mentioned algorithms for 5 stocks chosen to
cover the whole spectrum of liquidity with VOD being very liquid, SDR very
illiquid, AAL and KGF medium liquid and SASY fluctuating between quite
liquid to medium liquid. In terms of volatility, less liquid is usually more
volatile so these 5 stocks cover the whole range with SDR being the most
volatile one. The mean spreads are also quite different, varying from 23bp
for SDR with standard deviation of 18 bp to 8 bp for VOD with standard
deviation of 4 bp. The size of spread and its deviation directly influences the
gain coefficients in our models.

8.1 Single-Market

The results are given in Tables 1-5. We considered 3 months worth of data
(January to March 2008), with each day sliced into 61 time slots of 8 minutes,
from 08:16 to 16:24 hrs. In all these tables, the first column gives the order
size expressed as a percentage of average traded quantity of the execution
period. The second column gives the mean execution costs of uniform tra-
jectory of market orders, i.e M = (PM − Pperfect)/Pperfect, while in column 3
we have B = (PB − Pperfect)/Pperfect, where PB is the best bid. The cost of
optimal strategy coming from (5.9)-(5.10) is SMSP (Single Market Single
Period) given in column four and the cost of two-period optimal strategy
(5.16)-(5.19), SMMP (Single Market Multi period), is reported in column
5. All values are expressed in basis points. The last two columns give the
differences between the corresponding strategies. The quality of Fill Prob-
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Figure 8.1: Mean error of the Fill Probability model. Srednja greška Fill
Probability modela.

ability we are using is illustrated in Figure 8.1. For 10% of ADV of VOD
we plot the mean error between forecasted Fi by our model and the realized
fill rate for the whole tested range. The cumulative results for the whole
considered period are illustrated graphically at Figure 8.2 for 10% of ADV
for VOD

In addition to the mean execution costs, one is naturally interested in the
standard deviation of execution costs. We report these numbers in Table 6
for all considered stocks and 10% of ADV as a representative example of all
simulations, again comparing all four algorithms. The strategies proposed
in this paper have smaller variance numbers and are preferable to common
market practice (algorithms M and B) for these criteria.

The difference between the performance of the single period model and
two-period model is evident when we looks in Tables 1-5. We give more
details taking the example of 10% ADV for SASY order as a typical example.
All reported numbers are given as a percentage of the initial order size. At
t = 0 mean values of market and limit orders are y0 = 3.7% and x0

1 =
64.1%, x0

2 = 21.5%, x0
3 = 5.9%, x0

4 = 0.9%, x0
5 = 0.4%. At τ = T/2 one half

of y0 was realized while the unrealized limit orders were x̃1 = 14.8%, x̃2 =
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Figure 8.2: Performance comparison for VOD for trading 10% of ADV.
Poredjenje za VOD za trgovanje 10% ADV.

11.9%, x̃3 = 3.6%, x̃4 = 0.4% and x̃5 = 0.1% with respect to the total
order size. The order size for the second period was Qτ = 34.5% of the
initial order and that value was distributed as y1 = 3.4%, xτ1 = 23.1%, xτ2 =
5.3%, xτ3 = 0.2%, while we kept at initial bid positions lτ1 = 2.0%, lτ2 = 0.4%
and lτ3 = 0.2%. Therefore the total amount of cancellations was 28%, and new
orders account for 28.5% of the initial order size Q with yτ = 3.4%. At the
end of time window t = T , we had average residual size of 8.8% which was
executed as a market order within roughly 3 minutes. Looking at the same
example with the single period model we get the same values initially with
y = 7.4%. The realized quantities during the whole time period [0, T ] are
different - filled quantity at bid level 1 is 59.9% and then 6.8%, 1.3%, 0.2%
and 0.2% at the lower bid levels. The residual is 24.2%

We can see that both optimization models are significantly better than
common market practice. In addition, they are indeed generating distribu-
tion of volume between different bid levels and re-optimization procedure
leads to new limit orders as well as preserving some initially posted limit
orders as expected. The share of market orders is relatively small (7.3%
within time frame and 8.8% for residual) in the two period optimization pro-
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cedure against 31.6% for single period and that is the key reason for small
execution costs. Another important observation is the high rate of success
of limit orders at lower levels of depth which yields significantly higher gain
than putting everything at best bid position. The gain from the optimal
trajectory is increasing with the size of atomic order. This is caused by the
quadratic impact cost, so any decrease in cost due to the decrease of market
orders and increase of limit orders is more significant.

The same behaviour can be seen if we consider the gain achieved by the
two-period procedure against single period for four stocks but not for SDR.
For this stock the single period trajectory has the best performance of all
considered stocks. However the two-period model performs worse than the
single period one for larger orders. This behaviour is due to high volatility
and sparse trading pattern. As a results the Fill Probability model overes-
timates the real probability for the best bid, and at mid point we have a
large unfilled amount. By re-optimization we are actually chasing the noise
since 4 minutes is not an optimal point for re-evaluation of the market condi-
tions. Therefore we end up sending a large amount as a market order which
yields large impact costs. On the other hand, in the single time procedure
we benefit from keeping the initial position at limit orders since the effect
of volatility disappears and the fill rate is significantly better than the rate
within 4 minutes.

% of ADV M B SMSP SMMP B − SMSP SMSP − SMMP
1 13.8 11.4 10.0 9.6 1.4 0.5
2 14.6 11.7 10.3 9.6 1.4 0.7
3 15.4 12.1 10.6 9.7 1.5 0.9
4 16.2 12.5 10.9 9.8 1.7 1.1
5 17.0 13.0 11.1 9.8 1.9 1.3
6 17.8 13.5 11.4 9.9 2.1 1.5
7 18.6 13.9 11.6 10.0 2.3 1.6
8 19.4 14.4 11.9 10.1 2.6 1.7
9 20.2 14.9 12.1 10.3 2.8 1.8
10 21 15.4 12.4 10.5 3.0 1.9
11 21.8 15.9 12.7 10.7 3.2 2.0
12 22.6 16.5 13.1 11.0 3.4 2.1
13 23.4 17.0 13.4 11.2 3.6 2.2
14 24.2 17.5 13.8 11.5 3.8 2.3
15 24.9 18.1 14.1 11.8 4.0 2.4

Table 1: VOD
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% of ADV M B SMSP SMMP B − SMSP SMSP − SMMP
1 14.9 11.9 10.7 9.2 1.2 1.5
2 16.3 12.4 11.1 9.0 1.3 2.1
3 17.9 12.9 11.6 9.1 1.3 2.5
4 19.5 13.5 12.1 9.1 1.4 3.0
5 21 14.1 12.7 9.2 1.4 3.5
6 22.5 14.7 13.2 9.2 1.5 4.0
7 24.1 15.3 13.7 9.3 1.5 4.4
8 25.7 15.9 14.2 9.4 1.6 4.8
9 27.2 16.5 14.8 9.5 1.7 5.2
10 28.8 17.1 15.3 9.7 1.8 5.7
11 30.4 17.8 15.9 9.9 1.8 6.1
12 31.9 18.4 16.5 10.1 1.9 6.4
13 33.5 19.1 17.0 10.3 2.0 6.8
14 35.1 19.8 17.6 10.5 2.1 7.1
15 36.6 20.5 18.3 10.8 2.2 7.5

Table 2: AAL

% of ADV M B SMSP SMMP B − SMSP SMSP − SMMP
1 21.5 16.2 14.7 13.4 1.5 1.3
2 22.1 16.6 15 13.5 1.6 1.6
3 22.8 17 15.3 13.5 1.8 1.8
4 23.5 17.5 15.5 13.6 1.9 1.9
5 24.2 17.9 15.8 13.7 2.2 2.0
6 24.9 18.4 16.0 13.9 2.4 2.1
7 25.6 18.8 16.2 14.0 2.6 2.2
8 26.3 19.3 16.5 14.2 2.8 2.2
9 27 19.8 16.7 14.4 3.0 2.3
10 27.7 20.3 17.0 14.6 3.3 2.4
11 28.4 20.8 17.3 14.9 3.5 2.4
12 28.4 21.3 17.6 15.1 3.7 2.5
13 29.8 21.9 18 15.4 3.9 2.6
14 30.5 22.5 18.4 15.7 4.1 2.7
15 31.2 23.1 18.8 16.0 4.3 2.8

Table 3: KGF
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% of ADV M B SMSP SMMP B − SMSP SMSP − SMMP
1 16.7 12.0 11.1 9.9 0.9 1.2
2 17.0 12.4 11.0 9.9 1.4 1.1
3 17.4 13.0 11.1 10.1 1.9 1.0
4 17.9 13.6 11.2 10.4 2.4 0.8
5 18.4 14.3 11.4 10.8 2.9 0.6
6 18.9 15.0 11.6 11.3 3.4 0.4
7 19.5 15.8 11.9 11.7 3.9 0.2
8 20.0 16.5 12.2 12.2 4.3 0.0
9 20.6 17.3 12.5 12.8 4.8 −0.3
10 21.2 18.1 12.9 13.4 5.2 −0.5
11 21.7 18.9 13.2 14.0 5.7 −0.7
12 22.3 19.7 13.6 14.6 6.1 −1.0
13 22.9 20.6 14.0 15.3 6.6 −1.2
14 23.4 21.4 14.4 15.9 7.0 −1.5
15 24.0 22.3 14.8 16.6 7.4 −1.7

Table 4: SDR

% of ADV M B SMSP SMMP B − SMSP SMSP − SMMP
1 11.7 9.0 8.3 7.2 0.8 1.0
2 13.1 9.7 8.7 7.2 1.0 1.5
3 14.6 10.4 9.2 7.4 1.2 1.8
4 16.0 11.1 9.7 7.5 1.4 2.1
5 17.3 11.8 10.2 7.7 1.6 2.5
6 18.8 12.6 10.8 8.0 1.9 2.8
7 20.2 13.5 11.3 8.2 2.1 3.1
8 21.6 14.3 11.9 8.6 2.4 3.4
9 23.0 15.1 12.5 8.9 2.6 3.6
10 24.4 16.0 13.2 9.3 2.8 3.9
11 25.8 16.8 13.8 9.7 3.1 4.1
12 27.2 17.7 14.4 10.0 3.3 4.3
13 28.6 18.6 15 10.4 3.6 4.6
14 29.9 19.5 15.7 10.9 3.9 4.8
15 31.3 20.5 16.4 11.4 4.1 5.0

Table 5: SASY

* M B SMSP SMMP
VOD 14.4 12.8 10.3 9.9
AAL 18.7 15.4 15.6 11.4
SASY 15.4 14.8 11.5 11.4
KGF 21.7 18.1 15.6 15.8
SDR 21.3 16.9 12.5 13.5

Table 6: Standard deviation of execution costs
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Figure 8.3: Mean Error of the Fill Probability Model for multiple venues.
Srednja greška Fill Probability modela za vǐse tržǐsta

8.2 Multi-Market

The results are given in Tables 7-11. We considered 3 months worth of data
(August to October 2009) from LSE and Euronext. Each day is sliced into
61 time slots of 8 minutes, from 8.16 to 16.24. In all those tables, the first
column gives the order size which is defined as a percentage of period average
traded quantity. Therefore our atomic order is defined with 8 minutes and
first column quantity. The terms MMSP and MMMP are acronyms for
Multi-Market Single-Period and Multi-Market Multi-Period optimal execu-
tion strategies strategies.

% of ADV M B MMMP
1 47 28 12
3 53 30 17
5 61 32 22
8 70 37 29
10 75 39 31
12 77 40 36
15 75 37 33

% of ADV M B MMMP
1 53 15 8
3 61 15 9
5 65 15 9
8 76 19 14
10 80 19 16
12 81 19 17
15 82 17 16

Table 7: VOD Table 8: AAL
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Figure 8.4: Performance comparison of trading VOD in two venues. Pored-
jenje za trgovanje VOD na dva tržǐsta.

% of ADV M B MMMP
1 35 25 7
3 58 28 15
5 73 32 20
8 87 35 25
10 88 30 22
12 90 29 20
15 89 25 18

% of ADV M B MMMP
1 60 18 4
3 66 20 8
5 64 19 9
8 64 20 10
10 61 19 9
12 61 20 11
15 57 17 10

Table 9: SASY Table 10: KGF

% of ADV M B MMMP
1 61 5 3
3 62 5 5
5 57 2 0
8 56 2 -2
10 52 0 -5
12 49 -1 -7
15 41 -5 -10

Table 11: SDR
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Figure 8.5: Performance comparison of trading AAL in two venues. Pored-
jenje za trgovanje AAL na dva tržǐsta.
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Figure 8.6: Performance comparison of trading SASY in two venues. Pored-
jenje za trgovanje SASY na dva tržǐsta.
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Figure 8.7: Performance comparison of trading KGF in two venues. Pored-
jenje za trgovanje KGF na dva tržǐsta.
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Figure 8.8: Performance comparison of trading SDR in two venues. Pored-
jenje za trgovanje SDR na dva tržǐsta.
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The columns 2 to 4 are the relative performance of the three basic alter-
native benchmarks, namely, Market, All on Bid and single period optimal
trajectory. The performance of these benchmarks are given as percentage
worse than the optimal multi-market multi-period optimization method. The
choice of the above three measures as benchmarks is rooted in the fact the the
finance industry does not have any valid benchmarks for measuring perfor-
mance. Furthermore, as discussed earlier, benchmarks can be affected by the
way in which once trades. Therefore, we have chosen two benchmarks that
are common market practise. In a multi-market environment, the market
place could be thought of as an aggregated single market, hence performance
of optimal execution in a single market is included. In addition to these
three benchmarks, included also is a single point benchmark of single market
multi-period.

The difference between single period model and two-period model is well
addressed in earlier chapters. The objective of multi-market execution was
to further improve the execution performance by tapping into the additional
liquidity provided by the alternative venues to the primary market. We give
more details taking the example of 10% ADV for VOD order as a typical
example. Intuitively, this model resembles the single market multi-period
model in terms of split between market and limit orders. Both models have
a mid-point re-balancing opportunity to cancel orders and reconsider better
alternatives. In the case of multi-market, one will have the option of not only
choosing a better price to place the new orders, also the option to choose a
different venue.

All reported numbers are given as a percentage of the initial order size.
Orders are split among two venues, A and B. At t = 0, mean values of mar-
ket orders are y0,A = 6.8% and y0,B = 1.6%. Limit orders in the two markets
are x0,A

1 = 59.2%, x0,B
1 = 16.7%, x0,A

2 = 10.6%, x0,B
2 = 3.3%, x0,A

3 =
0.6%, x0,B

3 = 0.2%, x0,A
4 = 0.1%, x0,B

4 = 0.1%, x0,A
5 = 0.8%, x0,B

5 = 0.1%.
At τ = T/2, one half of y0 is realized while the unrealized limit orders were
x̃0,A

1 = 14.1%, x̃0,B
1 = 4.1%, x̃0,A

2 = 5.3%, x̃0,B
2 = 1.6%, x̃0,A

3 = 0.4%, x̃0,B
3 =

0.1%, x̃0,A
4 = 0.1%, x̃0,B

4 = 0.1%, x̃0,A
5 = 0.8%, x̃0,B

5 = 0.1% with respect to
the total order size.
The order size for the second period was Qτ = 30.9% of the initial or-
der and that value was distributed as y1,A = 2.8% and y1,B = 0.7% for
market orders. New limit orders for the second period were distributed as
xτ,A1 = 13.6%, xτ,B1 = 4.5%, xτ,A2 = 1.0%, xτ,B2 = 0.4%, xτ,A3 = 0.0%, xτ,B3 =
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0.0%, xτ,A4 = 0.0%, xτ,B4 = 0.0%, xτ,A5 = 0.0%, xτ,B5 = 0.0%. While we kept
at initial bid positions lτ,A1 = 5.3%, lτ,B1 = 0.9%, lτ,A2 = 1.0%, lτ,B2 = 0.4%.
Therefore the total amount of cancelations was 19% across both markets,
given as sτ,A1 = 8.8%, sτ,B1 = 3.2%, sτ,A2 = 4.3%, sτ,B2 = 1.2%, sτ,A3 =
0.4%, sτ,B3 = 0.1%, sτ,A4 = 0.1%, sτ,B4 = 0.1%, sτ,A5 = 0.8%, sτ,B5 = 0.1% and
new limit orders account for 19.7% of the initial order size Q.

At the end of time window t = T , we had average residual size of 7.1%
which was executed as a market order within roughly 3 minutes divided
among both markets, dictated by price improvement and liquidity.

Figures 6-10 show the performance of the different benchmarks. We can
see that the multi-market multi-period optimization models are not only
significantly better than common market practice but are indeed generat-
ing distribution of volume between different bid levels and venues. The re-
optimization procedure leads to new limit orders as well as preserving some
initially posted limit orders as expected.

The share of market orders split among the two venues is relatively small
(7.7% within time frame and 7.1% for residual). Another important obser-
vation is the high rate of success of limit orders at lower levels of depth as
found in single market, multi-period. The gain from the optimal trajectory
is increasing with the size of atomic order. That is caused by the quadratic
impact cost, so any decrease in cost due to decrease of market orders and
increase of limit orders is more significant.

Although the average daily volume traded on the security VOD on venue
B is approximately 25% of that of VOD traded on A, the split of new limit
orders between venues A and B at t = 0 are A = 71.3 and B = 20.3 of
the total available quantity for execution. Essentially, B is given 28.4% of
the order size of A. At τ = T/2, B is given 30.5%. Interestingly, when
re-balancing at τ = T/2, a smaller amount of 62.5% was cancelled at A as
opposed to 77.6% at B. This difference however in absolute terms is a mere
0.64%. We argue that the general fill properties of A and B as well as the
marginally better estimation of fill probability at venue B is the cause of this
difference.

Unlike the other securities considered, for SDR, the performance charac-
teristics is somewhat different. In the single market scenario, after a certain
order size, the single period performed better than multi-period optimiza-
tion. Even in a multi-market scenario, single period optimal trajectory has
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the best performance, for say order size greater than 8% of ADV. The rea-
sons for this as explained before, due to high volatility and sparse trading
pattern. As a result the Fill Probability model overestimates the real prob-
ability for the best bid and at mid point we have large unfilled amount. By
re-optimization we are actually chasing the noise since 4 minutes is not an
optimal reevaluation point of the market conditions. Therefore we end up
sending large amount as a market order which yields large impact costs. On
the other hand, in the single time procedure we benefit from keeping the
initial position at limit orders since the effect of volatility disappears and the
fill rate is significantly better that the rate within 4 minutes.
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Chapter 9

Conclusions

The research project we undertook was to find an optimization procedure for
algorithmic trading and to this end we conclude that our research has meet
it’s aims.

Atomic Orders are the basic elements of any algorithm for automated
trading in electronic stock exchanges. The main concern in their execution is
achieving the most efficient price. We propose two optimal strategies for the
execution of atomic orders based on minimization of impact and volatility
costs, in both single and multiple market environments. The first considered
strategy is based on a relatively simple nonlinear optimization model while
the second allows re-optimization at some time point within a given execu-
tion time. Finally, we consider how the model that allows re-optimization
perform in a multiple trading venue environment. In all cases, a combination
of market and limit orders are used. The key innovation in our approach is
the introduction of a Fill Probability function which allows a combination of
market and limit orders in the three optimization models we are discussing
in this thesis. Under certain conditions the objective functions of all consid-
ered problems are convex and therefore standard optimization tools can be
applied. The efficiency of the resulting strategies is tested against two bench-
marks representing common market practice on a representative sample of
real trading data.

We first approached the simplest of problems, namely single market and
single period optimization. We were able prove that the problem at hand
could be optimized with an SQP variant procedure. This was followed by
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formalizing the objective function. Next, we extended the model to deal with
multiple re-optimization. In our example, we re-optimized once only, however
the procedure is general can be re-optimized more frequently. Finally, we
extended the general multi period problem to an environment consisting of
multiple trading venues. This last mentioned problem required a bi-level
optimization method for the estimation of residuals.

In all of this research, the most significant problem we ran into was that
the fill probability model could not be calibrated well enough for less liquid
stocks. This is an inherent short-coming of the Fill Probability model and not
an obstacle in our research. Beside that, the calibration of market impact
coefficients from real traded data was quite tedious and time consuming.
In the early part of the research, we had minor problems with finding the
correct scale for variables used in fmincon(). Further, we had numerous small
problems with bad prints in the tick data used - a common problem in high
frequency data. Finally, the most difficult part of the simulation work was to
validate whether all variables used in the optimization and evaluation were
correct. The simulation output consisted of 150+ columns of numbers for
each window and it was a painful process to validate the correctness of it.

Overall, with the exception of very illiquid stocks for which the Fill Prob-
ability model did not perform too well, our results were in line with initial
expectation. The models performed significantly better than the common
market practice. Among models themselves, the multi-market multi-period
worked best as expected than single-market multi-period. In similar way,
among the single market model, the multi-period performed better than sin-
gle period.

We embarked on this research due to lack for formalism in this discipline.
To that end, we have achieved our objectives in formalizing a general opti-
mization framework that enhances performance relative to market practice.
Therefore, any bank or broker should be able to combine their fill probabil-
ity model with the rest of the framework proposed herein. It is our sincere
view that the algorithmic trading community will gain from this work. The
only recommendations we can make to potential user is to build a solid back-
testing framework. Without that, wrong fill assumptions would affect the
results to the extend of making the results invalid.

Findings from the first part of this thesis, single market model, is already
published. The multi-market results are presented in Kumaresan and Krejic
[39]. Further, we are currently adding to our ongoing research ways in which
we could quantify the quality of order placement.
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Algorithmic trading is a complex problem and there are endless amounts
of improvements one could make. One aspect in particular that we think is
important and have not yet looked into in greater detail is that the window
size should be dynamic. It is our belief that by dynamically estimating this
variable one could improve the performance even more. Each stock will
have a different execution window reflecting fundamental properties of the
security.

In our work, we proposed a general framework for multiple re-optimizations.
However, too frequent re-optimization can give poor results as limit orders
won’t get to mature. Therefore, it would be an interesting challenge to link
the security level properties with how and when to perform re-optimization.

Due to lack of a formal framework of optimizing execution of algorith-
mic orders, we embarked on a challenging task for creating different mod-
els. We have successfully shown that the most sophisticated of the models,
multi-period-multi-market model is indeed significantly better than common
market practice. Because the whole model was created to be faithful to live
trading in terms of assumptions used, deploying this model into production
is straight forward.

Above all else, this has been a frightfully enjoyable project.
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MR
Jezik publikacije:Engleski (latinica)
JP
Jezik izvoda: s / e
JI
Zemlja publikovanja: Republika Srbija
ZP
Uže geografsko područje: Vojvodina
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Naučna disciplina: Numerička matematika
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zasnovana na relativno jednostavnom nelinearnom optimizacionom modelu,
dok druga dozvoljava reoptimizaciju u nekom trenutku unutar zadatog vre-
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