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Abstract

In many cases in which one wishes to minimize a complicated or expensive function, it is
convenient to employ cheap approximations, at least when the current approximation to the
solution is far from the solution. Adequate strategies for deciding the accuracy desired at
each stage of optimization are crucial for the global convergence and overall efficiency of the
process. A recently introduced procedure [E. G. Birgin, N. Krejić, and J. M. Mart́ınez, On
the employment of Inexact Restoration for the minimization of functions whose evaluation
is subject to errors, Mathematics of Computation 87, pp. 1307-1326, 2018] based on Inexact
Restoration is revisited, modified, and analyzed from the point of view of worst-case evalu-
ation complexity in this work.
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1 Introduction

During more than 50 years, proving global convergence for continuous optimization algorithms
involved to show that, independently of the initial approximation, limit points of the the gener-
ated sequence satisfy some optimality condition. After 2006, starting with the Nesterov-Polyak
paper [37], it became consensual that complexity results, which state the worst-case computer
work being necessary to achieve a given precision, are relevant. In unconstrained optimization,
Newton-like algorithms that use regularized or adapted trust-regions supbproblems with proven
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complexity O(ε−3/2) were given in [8, 14, 15, 16, 19, 21, 36, 37]. The sharpness of the complex-
ity O(ε−3/2) was proved in [16]. All these papers employ, in an explicit or implicit form, cubic
regularization ideas [27], and assume Lipschitz-continuity of second derivatives.

In [6], a generalization of cubic regularization to arbitrary p-th regularization for uncon-
strained optimization was given. At each iteration, the method introduced in [6] approximately
minimizes a p-th Taylor polynomial around the current point plus a regularization term of
order p + 1. Using Lipschitz conditions on the derivatives of order p, it was proved that the
method achieves a gradient norm smaller than ε in at most O(ε−(p+1)/p) iterations and functional
evaluations. In [25], the Lipschitz-continuity assumption on second-derivatives was relaxed to
Hölder-continuity. In [17] and [34], this approach was generalized in order to consider approxi-
mations of order p of the objective function and Hölder-continuity of p-th derivatives.

This state of facts motivates the complexity analysis of existing algorithms for solving dif-
ferent continuous optimization problems as well as the introduction of new algorithms with
promising worst-case complexity results. See, for example, [7]. The objective of the present pa-
per is to analyze, from the point of view of complexity, suitable modifications of the algorithms
introduced in [30] and [11] for the minimization of functions whose evaluation is intrinsically
affected by errors.

The algorithms introduced in [30] and [11] are based on the Inexact Restoration framework [1,
3, 5, 12, 13, 23, 29, 33, 35]. Inexact Restoration (IR) is a family of techniques for solving
continuously constrained optimization problems where feasibility and optimality are handled
separately in order to better exploit problem structure. The employment of IR in the cases
of uncertain evaluation of the objective relies on the analogy between restoring feasibility and
improving accuracy. IR techniques put some rationality in the process of evaluating the objective
function with reasonable accuracy, according to an implicit estimation of the distance of the
current approximation to a solution. In [30], the problem of minimizing an unconstrained
function with a finite number of inaccuracy levels was considered. For the minimization of f(x),
the equivalence with the minimization of z subject to z = f(x) was employed; and the IR scheme
was applied to this problem. Following the traditional IR approach, the optimization phase of
the algorithm begins with the determination of a guaranteed descent direction and a line-search
procedure is used. It was proved that the maximal accuracy is reached and that the size of
the search direction converges to zero, implying optimality for some directional choices. An
application concerning an electronic calculation problem in which the objective function comes
from an iterative process was given. In [11], the problem of minimizing a continuous function
whose evaluation is subject to errors onto a closed and convex set was considered. In contrast
to [30], an infinite number of inaccuracy levels was considered. As in [30], an IR approach was
considered and a descent direction that guarantees termination of the IR optimization phase was
employed together with a simple line-search procedure. The convergence theory guarantees that
full accuracy of the objective function is achieved in the limit and that the projected gradient
of an approximate objective function onto the convex domain tends to zero. Applications were
given to classification and portfolio optimization problems. In the present work, a suitable
modification of the algorithms introduced in [30] and [11] is considered. On the one hand, the
main algorithm introduced in the present work generalizes the ones introduced in [30] and [11]
by defining feasibility with respect to an abstract set Y . On the other hand, by employing
regularization techniques in the optimization phase of the IR approach, in substitution of the
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line-search procedures considered in [30] and [11], complexity results for the introduced algorithm
will be obtained.

Let us start by firstly introducing a new formulation of the problem of minimizing a function
whose evaluation is intrinsically affected by errors. In the proposed formulation, minimization
occurs with respect to a continuous variable x and an abstract variable y that may represent the
variations of the problem that lead to solutions with different accuracies. Assume that Y is a
set, h : Y → R+, f : Rn × Y → R, and Ω ⊂ Rn is defined by the set of equations cE(x) = 0 and
inequations and cI(x) ≤ 0, where cE : Rn → Rm and cI : Rn → Rp. The problem considered in
this work is given by

Minimize (with respect to x) f(x, y) subject to h(y) = 0 and x ∈ Ω, (1)

where
Ω = {x ∈ Rn | cE(x) = 0 and cI(x) ≤ 0}. (2)

In other words, we will try to find x ∈ Ω and y ∈ Y such that h(y) = 0 and f(x, y) ≤ f(z, y) for
all z ∈ Ω. An obvious algorithm for solving (1) could proceed by means of two global phases.
In the first phase, one should find y ∈ Y such that h(y) = 0. In the second phase, with y fixed,
one should solve the optimization problem that consists of minimizing f(x, y) subject to Ω. In
this work, we are interested in problems of the form (1) in which this “obvious algorithm” is not
affordable. The main reason for this is that the evaluation of f(x, y) may become very expensive
when h(y) is close to zero. Assuming that it makes sense to think about a true function ftrue(x),
we may think that f(x, y) approaches ftrue(x) when h(y)→ 0, uniformly with respect to x, i.e.

lim
h(y)→0

|f(x, y)− ftrue(x)| = 0

uniformly with respect to x. The non-uniform case, in which δ depends on x cannot be addressed
by the present approach.

Assume that Y is a collection of model schemes that aim to represent a physical phenomenon.
As a trivial example, an element of Y could be “Try linear regression”. The vector x represents
parameters, probably with physical meaning, that are present in all the models that compound
the collection Y . To each y ∈ Y , we associate a quantity h(y) ≥ 0 that represents its “simplicity”.
Therefore, big values of h(y) correspond to very simple model schemes and h(y) = 0 represents
maximal model complexity. Simple models are easier to fit than complex models and cheaper
to run in the context of simulation. In this type of applications, the function f(x, y) is the error
in the reproduction of data obtained after fitting the model y using the physical parameters x.

In [18], a computer model for particle-like simulation in broiler houses is presented, the fitting
process of which corresponds to the description above. In this model, a 45-days period of the
life of approximately 35,000 broilers in a broiler house 40 meters wide and 200 meters long is
simulated. Interactions of broilers are considered emulating attraction and repulsion rules in a
similar way as done in Molecular Dynamics. Running this model is expensive. The simulation of
a 45-days period with 35,000 chickens takes almost a day in a computer environment compatible
with the industrial employment of the model. The simulation model has approximately 15
parameters that need to be fitted using available data. In the fitting process, each evaluation of
the error involves to run the model at least once; and obtaining the optimal parameters may need

3



many evaluations of the error (functional evaluations). Therefore, it is crucial to approximate
the optimal parameters by means of suitable model simplifications. The obvious simplification
consists in reducing the size of the broiler house and the number of broilers, preserving the
relation between number of broilers and area of the house.

As a second example, consider now that we wish to optimize a process that depends on the
control variables x and the environmental variables y, which are hard, or even impossible, to
measure accurately. The precision on the measurement y is given by h(y). One possible reason
for the lack of precision may be the fact that the true y is its value at some future period of
time. Therefore the true value of the cost f(x, y) may be obtained only when the expiration
time arrives. The problem has the form (1) and the obvious algorithm is impracticable because
one cannot wait until having the true y before taking decisions about x.

Another example related to the development of algorithms follows. The efficiency of an
algorithm for solving a mathematical problem depends on the judicious choice of parameters x.
This efficiency may be measured taking into account the behavior of the algorithm for solving
a possibly large number of problems. Assume that each y ∈ Y is a subset of problems, h(y) is
inversely related to the number of problems in y, and f(x, y) is a measure of the efficiency of the
algorithm when running the problems in y with the parameters x. Again, this is an example of
a problem of the form (1).

Many additional practical applications come from the minimization of a function F (x) whose
exact evaluation is not known or is meaningless in different senses. As a consequence, each time
that we need to compute F (x) we obtain a value f(x, y), where y lies in some unspecified set Y .
Some examples follows:
• If F (x) is computed in multiple precision floating point arithmetic, y may be the number

of digits used for the computations.
• If F (x) comes from taking the average of some quantity over a sample, y may be the

sample. Note that here Y is not necessarily a numerical set.
• If F (x) is a quantity computed only approximately by means of an iterative process, y may

be a limit on the number of iterations or the computer time, or a combination of both.
• Consider the case in which F (x) is in fact a function f(x, y) but y is not known. In other

words, we do not know if the value of y that we are taking for the evaluation of F is
the correct one or not. This happens, in Economic models, when one considers that the
variable represented by F (x) depends on a vector of variables x although being aware
that other variables y intervene on its determination. In some economic theories [2], it is
considered that the level of aggregated production and employment is determined (in the
sense of “causa causans”) by investment (x); although it also depends on other variables
as the propensions to saving and spending, the monetary policy, and the confidence with
respect to rentability of capital assets. In the fitting process of economic models that
consider that (say) the gross national product is a function of investment, the variables y
involved in data are known with considerable uncertainty and obtaining them with good
accuracy involves computer time and human effort. Similar considerations may be done
with respect to models that use fitted production functions [28].

Finally, it is interesting to consider also the case in which F (x) is f(x, y) where x is a real vector
but y has a completely different structure which requires an algorithmic approach that handles
it separability.
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The rest of this paper is organized as follows. In Section 2, we define a basic algorithm,
we prove that, for given εfeas, εopt ≥ 0, after at most O(1/εfeas) iterations we obtain that
h(y) ≤ εfeas, and we obtain a bound for the number iterations at which the increment in the
variable x is bigger than εopt. In Section 3, we described two algorithms for the optimization

phase, which differ in the order of regularization. Complexity results O(ε−2
opt) and O(ε

−3/2
opt ) are

obtained for the gradient-like and the Newton-like versions of the algorithm, respectively. Final
remarks are given in Section 4.

Notation. N+ denotes the non-negative integer numbers; while R+ denotes the non-negative
real numbers. The symbol ‖ · ‖ denotes the Euclidean norm of vector and matrices.

2 Main algorithm

We begin introducing a merit function related to problem (1). The merit function Φ : Rn×Y ×
(0, 1)→ R is defined by

Φ(x, y, θ) = θf(x, y) + (1− θ)h(y).

Algorithm 2.1 below is the main model algorithm that generalizes the ones introduced in [30]
and [11] by defining feasibility with respect to an abstract set Y . Moreover, as it will be described
in Section 3, in contrast to the line-search procedures employed in the optimization phase of the
algorithms in [30] and [11], the optimization phase of Algorithm 2.1 will employ regularization
techniques, which enables the obtention of complexity results.

Algorithm 2.1 will be stated without stopping criterion. This means that, in principle, the
algorithm produces an infinite sequence of iterates. The stopping tolerances that are used in
practice are not algorithmic parameters. Theoretical arguments related to this algorithm may
refer to infinite sequences and meaningful results for the case in which a stopping criterion is
included are obtained without contradictions. Given an arbitrary ε > 0, the typical complexity
result will report the total number of iterations (and evaluations) that may occur along the com-
putation of the sequence of iterates until the satisfaction of the stopping criterion based on ε. It
is easy to see that, when such a result takes place, the consequence for the infinite sequence is
that every accumulation point is stationary (which means satisfying the stopping criterion with
tolerance ε = 0). In other optimization algorithms, the tolerance ε is an algorithmic parameter
and the typical convergence result says that, after a proven number of iterations, the algorithm
stops. In this case, we can also think about the infinite sequence generated by the algorithm,
but the property of this sequence will be only that some accumulation point is stationary. In
our case, the analysis of the potentially infinite sequence simplifies the proofs.

Algorithm 2.1. Let x0 ∈ Ω, y0 ∈ Y , θ0 ∈ (0, 1), ν > 0, r ∈ (0, 1), α > 0, and β > 0 be given.
Set k ← 0.

Step 1. Restoration phase

Define yre
k ∈ Y in such a way that

h(yre
k ) ≤ rh(yk) (3)
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and
f(xk, y

re
k ) ≤ f(xk, yk) + βh(yk). (4)

Step 2. Updating the penalty parameter

If

Φ(xk, y
re
k , θk) ≤ Φ(xk, yk, θk) +

1− r
2

(h(yre
k )− h(yk)) , (5)

set θk+1 = θk. Otherwise, set

θk+1 =
(1 + r) (h(yk)− h(yre

k ))

2
(
f(xk, y

re
k )− f(xk, yk) + h(yk)− h(yre

k )
) . (6)

Step 3. Optimization phase

Compute yk+1 ∈ Y and sk ∈ Rn such that xk + sk ∈ Ω,

f(xk + sk, yk+1) ≤ f(xk, y
re
k )− α‖sk‖ν (7)

and

Φ(xk + sk, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk)) . (8)

Define xk+1 = xk + sk, update k ← k + 1, and go to Step 1.

Assume that xk is the current set of parameters that aim to fit a given phenomenon and yk
is the model with which the error is f(xk, yk). At Step 1, we choose a more complex model
given by yre

k . The condition (4) states that the current parameters xk with the new model yre
k

can not provide an error much worse than the one defined by xk and the previous model yk.
At Step 2, we define a penalty term that will help to decide acceptance or rejection of a new
pair model-parameters. At Step 3, the choice of a new yk+1 that may be different from yre

k is
crucial because, in practice, yk+1 may represent a simpler model than yre

k (and even simpler
than yk) thus avoiding computing work. For example, yk and yre

k could involve simulations with
≈ 10,000 chickens in the Broiler House problem, for which a good error has not been obtained
yet. Therefore, it may be interesting to improve the error employing less computational effort,
represented by a simulation with ≈ 1,000 chickens. However, the new model yk+1 needs to satisfy
the requirements (7) and (8). In this section, we will show that (7) and (8) can be fulfilled and
we will deduce complexity results coming from this fact.

Note that yk+1 ∈ Y chosen at the optimization phase (Step 3) does not need to satisfy
h(yk+1) ≤ h(yk). Instead, yk+1 must only fulfill conditions (7) and (8), which impose descent to
the objective function and to the merit function, respectively. Therefore, many different heuris-
tics may be admissible for the choice of the first trial of yk+1 (called yk,0 in the forthcoming
Algorithm 3.1). For example, since the cost of the objective function, or the subproblem solu-
tion, generally increases when h(y) tends to zero, we may try to maintain yk+1 = y0 as far as
possible. Algorithm 2.1 allows us such a choice while conditions (7) and (8) are satisfied (taking,
say, h(yre

k ) ≈ 1
2h(yk)) for a suitable x-increment sk. Therefore, we may solve many (possibly

easy) optimization subproblems with a low-precision yk+1, employing (possibly easy) function
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evaluations. However, our results in this section will show that this strategy cannot continue for
ever. It will be shown that, although conditions (7) and (8) are tolerant, they ultimately force,
for a given tolerance εfeas > 0, that h(yk) ≤ εfeas, preventing more than O(1/εfeas) iterations
such that h(yk) > εfeas.

Recall that Algorithm 2.1 has been defined without a stopping criterion. This means that,
as defined, the algorithm does not stop when sufficient feasibility and sufficiently optimality,
according to some given tolerances, are obtained. From the pure mathematical point of view, the
algorithm continues iterating so that the generated sequence involves infinitely many iterates. In
this context, given arbitrary tolerancies εfeas and εopt, in Corollary 2.2, it will be proved that the
number of iterations such that h(yk) > εfeas is smaller than O(1/εfeas); while, in Theorem 3.1, it
will prove that, in the case ν = 2, the number of iterations such that ‖∇xf(xk, yk)+∇cE(xk)λk+
∇cI(xk)µk‖ > εopt is smaller than O(1/ε2

opt). As a consequence, the number of iterations at
which

h(yk) > εfeas or ‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ > εopt

will be proved to be smaller than O(1/εfeas) +O(1/ε2
opt). This implies that a possible stopping

criterion given by

h(yk) ≤ εfeas and ‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ ≤ εopt

would be satisfied in less than O(1/εfeas) +O(1/ε2
opt) iterations. Similar considerations may be

done for the case ν = 3, with O(ε
−3/2
opt ) replacing O(1/ε2

opt). One should notice here that we
are discussing two tolerance levels, εfeas and εopt. In general, εfeas = εopt is possible but we will
explain later the benefits of allowing different tolerances for the feasibility and optimality.

Lemma 2.1 is a technical result related to the definition of the penalty parameter.

Lemma 2.1 For all k ∈ N+, the choice of the penalty parameter θk+1 at Step 2 of Algorithm 2.1
guarantees that

Φ(xk, y
re
k , θk+1) ≤ Φ(xk, yk, θk+1) +

1− r
2

(h(yre
k )− h(yk)) . (9)

Proof: For all k ∈ N+, if (5) takes place then we have that θk+1 = θk and, therefore, (9) follows
from (5). For all k ∈ N+, if (5) does not hold, it turns out that

Φ(xk, y
re
k , θ) > Φ(xk, yk, θ) +

1− r
2

(h(yre
k )− h(yk)) (10)

for θ = θk. On the other hand, since, by (3), h(yre
k ) < h(yk) and, thus,

h(yre
k )− h(yk) <

1− r
2

(h(yre
k )− h(yk)),

we have that the negation of (10) holds strictly for θ = 0. Since Φ is a linear function on θ, this
means that there exists θ ∈ (0, θk) that verifies

Φ(xk, y
re
k , θ) = Φ(xk, yk, θ) +

1− r
2

(h(yre
k )− h(yk)) . (11)
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This θ is the quantity θk+1 given by (6), computed at Step 2 when (5) does not hold, meaning
that in this case (9) holds by equality. This completes the proof. 2

Lemma 2.2 guarantees that, taking the (almost surely inefficient) choice yk+1 = yre
k and

sk = 0 the conditions (7) and (8) are satisfied, which guarantees that Step 3 is well defined.

Lemma 2.2 For all k ∈ N+, the choice yk+1 = yre
k and sk = 0 at Step 3 of Algorithm 2.1

satisfies (7) and (8).

Proof: For all k ∈ N+, the fact that yk+1 = yre
k and sk = 0 satisfy (7) is trivial and the fact that

yk+1 = yre
k and sk = 0 satisfy (8) follows from Lemma 2.1. 2

In Assumption A1, we state that a model yre
k satisfying (3) and (4) can always be found.

Note that (3) states that a model better than yk can be found and (4) states that, at such a
model, the fitting error must not grow excessively.

Assumption A1 At Step 1 of Algorithm 2.1, for all k ∈ N+ it is possible to compute, in finite
time, yre

k satisfying (3) and (4).

In many situations, satisfying condition (3) is trivial. This is the case of the examples
considered in [30], [11], and the present contribution, where one controls a precision criterion
represented by h(y). The fulfillment of (4), on the other hand, is highly problem-dependent.
When y is a continuous variable and f satisfies a Lipschitz condition with respect to y, a
sufficient condition for (4) is given by ‖yk − yre

k ‖ ≤ β̄h(yk), where β̄ is an algorithmic parameter
that replaces β. In turn, this condition is satisfied, under suitable assumptions, when one uses
some iterations of a Newton scheme for solving h(y) = 0. In the abstract case y ∈ Y , common
sense leads to computing the sequence

max
k=0,1,2,...

{[βk]+} ,

where

βk ≡
f(xk, y

re
k )− f(xk, yk)

h(yk)

and [·]+ = max{0, ·} and verifying whether this sequence appears to be bounded above (meaning
that Assumption A1 holds) or not.

Lemma 2.3 Suppose that Assumption A1 holds. Then, Algorithm 2.1 is well defined.

Proof: For all k ∈ N+, yre
k satisfying (3) can be computed in finite time at Step 1 by Assump-

tion A1. Lemma 2.2 shows that yk+1 = yre
k and sk = 0 is a possible choice at Step 3. This

completes the proof. 2

In the following lemma, we prove that the parameters θk are bounded away from zero.
Therefore, the merit function Φ(x, y, θ) is always meaningfully affected by the functional value
f(x, y).
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Lemma 2.4 Suppose that Assumption A1 holds. Then, the sequence {θk} generated by Algo-
rithm 2.1 is non-increasing, remains in (0, 1), and is bounded below by θmin > 0 defined by

θmin = min

{
θ0,

1− r2

2 (1 + β − r)

}
. (12)

Proof: For all k ∈ N+, if (5) does not hold then we have that

Φ(xk, y
re
k , θk) > Φ(xk, yk, θk) +

1− r
2

(h(yre
k )− h(yk)) .

Substituting Φ by its definition and isolating θk, we obtain

θk >
(1 + r) (h(yk)− h(yre

k ))

2
(
f(xk, y

re
k )− f(xk, yk) + h(yk)− h(yre

k )
) . (13)

The right-hand-side of (13) coincides with the definition (6) of θk+1 that is used in the case in
which (5) does not hold. Thus, in this case, we have that θk+1 < θk. Since, when (5) holds,
θk+1 = θk, we have that θk+1 ≤ θk for all k ≥ 0 as we wanted to prove.

We now need to show that θk+1 defined by (6) is bounded away from zero. By the defini-
tion (6) of θk+1, (3), and (4), we have that

1

θk+1
=

2

1 + r

[
f(xk, y

re
k )− f(xk, yk)

h(yk)− h(yre
k )

+ 1

]
≤ 2

1 + r

[
βh(yk)

(1− r)h(yk)
+ 1

]
=

2

1 + r

[
β

(1− r)
+ 1

]
.

This means that, for all k ≥ 0, if (5) does not hold and, in consequence, θk+1 is defined by (6)
then we have that

θk+1 ≥
1− r2

2 (1 + β − r)
; (14)

while θk+1 = θk if (5) hold. Therefore, (12) follows from (14) and the fact that θ0 ∈ (0, 1) is
arbitrary and it may be below the computed lower bound (in this case we have θk = θ0 for all
k). The fact that θmin > 0 follows directly from θ0 > 0, β > 0, and r ∈ (0, 1). Finally, the fact
that {θk} remains in (0, 1) follows from θk ∈ [θmin, θ0] ⊂ (0, 1). 2

Corollary 2.1 Suppose that Assumption A1 holds. Let {θk} be the sequence generated by Al-
gorithm 2.1 and define

ρk =
1

θk
− 1. (15)

Then, {ρk} is non-decreasing and ρk ≤ ρmax for all k ∈ N+, where ρmax = 1/θmin − 1 is a
quantity that only depends on β, r, and θ0.

Proof: This is a direct consequence of Lemma 2.4. 2

In the following lemma, we prove that, in the case that yk+1 = yre
k , the fulfillment of (7)

implies the fulfillment of (8). Clearly, this is not the case for an arbitrary choice of yk+1 ∈ Y .

Lemma 2.5 For all k ∈ N+, if the choice yk+1 = yre
k and sk ∈ Rn at Step 3 of Algorithm 2.1 is

such that (7) holds then (8) holds as well.
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Proof: Since yk+1 = yre
k and by the definition of Φ, we have that

Φ(xk + sk, yk+1, θk+1) = Φ(xk + sk, y
re
k , θk+1)

= θk+1f(xk + sk, y
re
k ) + (1− θk+1)h(yre

k )

≤ θk+1 (f(xk, y
re
k )− α‖sk‖ν) + (1− θk+1)h(yre

k )

≤ θk+1f(xk, y
re
k ) + (1− θk+1)h(yre

k )

= Φ(xk, y
re
k , θk+1),

where the first inequality follows from (7) and the fact that, by Lemma 2.4, θk+1 > 0. Thus, (8)
follows from Lemma 2.1. 2

Assumption A2 There exist hmax > 0 and fmin ∈ R such that, for all y ∈ Y and x ∈ Ω we
have that h(y) ≤ hmax and f(x, y) ≥ fmin.

The following lemma states that the series
∑
h(yk) is convergent.

Theorem 2.1 Suppose that Assumptions A1 and A2 hold. The series
∑∞

k=0 h(yk) and
∑∞

k=0 h(yre
k )

are convergent. Moreover,

∞∑
k=0

h(yk) ≤
2

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
. (16)

Proof: By (3), for proving that
∑∞

k=0 h(yre
k ) is convergent, we only need to prove that

∑∞
k=0 h(yk)

is convergent. By Corollary 2.1,

∞∑
k=0

(ρk+1 − ρk) = lim
k→∞

ρk+1 − ρ0 ≤ ρmax − ρ0 <∞. (17)

Now, since {h(yk)} is bounded, (17) implies that

∞∑
k=0

(ρk+1 − ρk)h(yk) ≤ (ρmax − ρ0)hmax <∞. (18)

By the definition of the algorithm and (3), we have that

Φ(xk+1, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk))

≤ Φ(xk, yk, θk+1)− (1− r)2

2
h(yk),

(19)

that is equivalent to

f(xk+1, yk+1) + ρk+1h(yk+1) ≤ f(xk, yk) + ρk+1h(yk)−
(1− r)2

2θk+1
h(yk).

10



Adding and subtracting ρkh(yk) and rearranging, since θk+1 ∈ (0, 1), we get

(1− r)2

2
h(yk) ≤ (ρk+1 − ρk)h(yk)+((

f(xk, yk) + ρkh(yk)
)
−
(
f(xk+1, yk+1) + ρk+1h(yk+1)

))
.

Summing for k = 0, 1, . . . ,m, we obtain

m∑
k=0

(1− r)2

2
h(yk) ≤

m∑
k=0

(ρk+1 − ρk)h(yk)+((
f(x0, y0) + ρ0h(y0)

)
−
(
f(xm+1, ym+1) + ρm+1h(ym+1)

))
.

Therefore, since ρm+1h(ym+1) ≥ 0 and f(xm+1, ym+1) ≥ fmin, we have that

m∑
k=0

(1− r)2

2
h(yk) ≤

m∑
k=0

(ρk+1 − ρk)h(yk) +
((
f(x0, y0) + ρ0h(y0)

)
− fmin

)
.

Thus, by (18), taking limits for m→∞,

∞∑
k=0

(1− r)2

2
h(yk) ≤ (ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

from which (16) follows. 2

Given an arbitrary εfeas > 0, the following result establishes a bound for the number of
iterations k such that h(yk) > εfdeas. It is shown that, after O(1/εfeas) iterations, all the
iterates are such that h(yk) ≤ εfeas.

Corollary 2.2 Suppose that Assumptions A1 and A2 hold. Given εfeas > 0, the number of
indices k such that h(yk) > εfeas is bounded above by

1

εfeas

[
2

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)]
. (20)

Proof: Let K ⊂ N+ be the subset of indices such that h(yk) > εfeas. By Theorem 2.1, we have
that ∑

k∈K
εfeas ≤

2

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
,

from which (20) follows. 2

Of course, the mere obtention of yk such that h(yk) < εfeas in short time is not an achieve-
ment at all. In Corollary 2.2 it was proved that this can be achieved by means of a process that
admits to increase h(y) when a condition concerning the objective function is satisfied. In other
words, the question is “Can we accept yk+1, perhaps not satisfying h(yk+1) < h(yk)?”; and the
answer to this question is positive, provided that the descent conditions (7) and (8) are satisfied.
In other words, a precision degradation is admissible if it can be compensated with sufficient
progress in the objective function.

11



Theorem 2.2 Suppose that Assumptions A1 and A2 hold. The series
∑∞

k=0 ‖sk‖ν is convergent.
Moreover,

∞∑
k=0

‖sk‖ν ≤
1

α

(
2β

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
.

(21)

Proof: By (4) and (7),

f(xk+1, yk+1)− f(xk, yk) = f(xk+1, yk+1)− f(xk, y
re
k ) + f(xk, y

re
k )− f(xk, yk)

≤ −α‖sk‖ν + βh(yk).

Summing for k = 0, 1, . . . ,m, we obtain

f(xm+1, ym+1)− f(x0, y0) ≤ −α
m∑
k=0

‖sk‖ν + β
m∑
k=0

h(yk).

Therefore, since f(xm+1, ym+1) ≥ fmin,

m∑
k=0

‖sk‖ν ≤
1

α

(
β

m∑
k=0

h(yk)− fmin + f(x0, y0)

)
.

Taking limits for m→∞, by Theorem 2.1, we obtain (21). This completes the proof. 2

The following result establishes that the number of iterations at which ‖sk‖ > ε is O(1/εν).
This will be the final result of this section.

Corollary 2.3 Suppose that Assumptions A1 and A2 hold. Given εopt > 0, the number of
iterates k at which ‖sk‖ > εopt is not bigger than

1

ενopt

[
1

α

(
2β

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)]
. (22)

Proof: Let K ⊂ N+ be the subset of indices such that ‖sk‖ > εopt. By Theorem 2.2, we have
that∑
k∈K

ενopt ≤
1

α

(
2β

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
from which (22) follows. 2
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3 Algorithms for the optimization phase

In Section 2, we showed that after a well determined finite number of iterations Algorithm 2.1
finds yk ∈ Y such that h(yk) ≤ εfeas. Moreover, eventually all the iterates satisfy this inequality
and the number of iterations that are necessary for its fulfillment is O(1/εfeas). Obviously,
this result cannot be considered satisfactory because it tells nothing about the optimality with
respect to x. In this section we will show that, with adequate choices of yk+1 and sk at Step 3 of
Algorithm 3.1, and under suitable assumptions, we obtain that a reasonable optimality condition
is achieved after a finite number of iterations and employing a finite number of evaluations of
f . Moreover, we will prove that the computational effort in terms of iterations and evaluations

of f is O(ε−2
opt) or O(ε

−3/2
opt ), depending on the chosen value of ν ∈ {2, 3}.

From now on, we assume that the functions cE : Rn → Rm and cI : Rn → Rp that define
the feasible set Ω in (2) are continuously differentiable for all x ∈ Rn. Their Jacobians will
be denoted c′E(x) and c′I(x), respectively. Consequently, we denote ∇cE(x) = [c′E(x)]T and
∇cI(x) = [c′I(x)]T . Moreover, for all y ∈ Y we assume that f(x, y) is continuously differentiable
with respect to x.

Algorithm 3.1 describes how to compute yk+1 and sk at Step 3 of Algorithm 2.1.

Algorithm 3.1. Assume that δ > 0, κ > 0 , σmin > 0, and τ > 1 are given independently of k.

Step 1. Compute Hk ∈ Rn×n symmetric and yk,0 ∈ Y and set σk,0 = 0 and j ← 0.

Step 2. If possible, find an approximate solution sk,j to

Minimize ∇xf(xk, yk,j)
T s+

1

2
sTHks+ σk,j‖s‖ν

s∈Rn

subject to cE(xk + s) = 0 and cI(xk + s) ≤ 0

(23)

in the sense that

∇xf(xk, yk,j)
T sk,j +

1

2
sTk,jHksk,j + σk,j‖sk,j‖ν ≤ 0, (24)

cE(xk + sk,j) = 0, cI(xk + sk,j) ≤ 0, (25)

and there exist vectors of multipliers λk,j ∈ Rm, µk,j ∈ Rp+ such that∥∥∇xf(xk, yk,j) +Hksk,j +∇[σk,j ||s||ν ]|s̄k,j +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j
∥∥ ≤ κ‖sk,j‖ν−1

(26)
and

‖min{−cI(xk + sk,j), µk,j}‖ ≤ δ. (27)

Step 3. If sk,j satisfying (24,25,26,27) was not found, define yk,j+1 = yre
k and σk,j+1 =

max{σmin, τσk,j}, set j ← j + 1, and go to Step 2.

Step 4. Consider the conditions

f(xk + sk,j , yk,j) ≤ f(xk, y
re
k )− α‖sk,j‖ν (28)
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and

Φ(xk + sk,j , yk,j , θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk)) . (29)

If (28) does not hold or (29) does not hold, define yk,j+1 = yre
k , σk,j+1 = max{σmin, τσk,j}, set

j ← j + 1, and go to Step 2. Otherwise, define yk+1 = yk,j , sk = sk,j , σk = σk,j , λk+1 = λk,j ,
and µk+1 = µk,j and return.

Note that it is assumed that xk is feasible and the algorithm tries to find an approximate
solution xk + sk,j to (23) satisfying (24) that (i) preserves feasibility (25), (ii) satisfies com-
plementarity (27) with tolerance δ, and (iii) annihilates the gradient of the Lagrangian with
tolerance κ‖sk,j‖ν−1 (26). At a global solution to (23), that obviously satisfies (25), since xk + 0
is feasible, we have that (24) holds. Moreover, assuming that the constraints satisfy some con-
straint qualification, (26) and (27) hold at a global solution to (23) for any δ ≥ 0. Therefore,
the practicality of this algorithm depends on the simplicity of the constraints. In general, the
approximate minimization of the objective function of the subproblem (23) preserving feasi-
bility of xk + s is not easy to achieve. Only in special cases (that include boxes, polytopes,
balls, spheres, intersections of sets of these types [32], and, in the matricial world, under or-
thonormality, idempotency, or positive semidefiniteness), there are algorithms that find feasible
minimizers of the subproblem (23), at least when ν = 2. If the constraints are arbitrary and
one uses a standard nonlinear programming algorithm for minimizing the subproblem, the ful-
fillment of (24) and (25), as well as the complementary condition (27), can be expected under
reasonable assumptions.

On the other hand, exact feasibility may fail to be satisfied. A remedy could be to project the
output of the nonlinear programming algorithm onto the feasible region, if this is possible, with
the hope that (24), (26), and (27) will be maintained. However, there are no guarantees that such
procedure will be successful. Among the algorithms that could be employed with that purpose,
the ones that guarantee optimal complexity (involving the constraints in this case) should be
preferable [7]. If the projections to the feasible region are not exact the problem of preserving
feasibility would persist as approximate feasibility with respect to the constraints on x (x ∈ Ω)
is not enough. Let us explain why. Assume, for a moment, that xk ∈ Ω and, when solving the
subproblem (23), we tolerate some infeasibility, say, ‖cE(xk + sk,j)‖ ≤ η, ‖cI(xk + sk,j)+‖ ≤ η,
with η > 0 small. As a consequence of this, it is possible that xk+1 violates the constraints
with an error η. This means that in the next iteration (k ← k + 1), xk /∈ Ω but belongs
to an expanded set, say, Ω(η). But now, at the new iteration, we must find xk + sk ∈ Ω
satisfying (7) and (8). But, since xk /∈ Ω we have no guarantee that such point exists. This
would lead to relax the requirement xk + sk ∈ Ω to xk + sk ∈ Ω(η). But these are new
constraints that could not be exactly satisfied again, so that we should need to relax them to
‖cE(xk + sk,j)‖ ≤ 2η, ‖cI(xk + sk,j)+‖ ≤ 2η and so on. The solution to this inconvenient could
be to relax with η/2, η/2 + η/4, η/2 + η/4 + η/8, . . . so that, ultimately, all the iterates belong
to Ω(η). However, we found this procedure cumbersome and rather impractical to deserve its
inclusion in the main algorithm of this paper.

Algorithm 3.1 may be viewed as an independent algorithm that seeks the fulfillment of the
sufficient descent conditions (28) and (29) for the objective function and the merit function,
respectively. For ν = 2, the evaluation complexity of this algorithm under a Lipschitz condition
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on ∇f (Assumption A4) will be given in Lemma 3.1. It will be shown that the algorithm
returns (i.e. stops its execution at Step 4) after a finite number of evaluations of f . Analogously,
for ν = 3, the evaluation complexity of Algorithm 3.1 under a Lipschitz condition on ∇2f
(Assumption A7) will be given in Lemma 3.3.

3.1 Case ν = 2

When ν = 2 and σk,j > ‖Hk‖ the objective function of (23) is a strictly convex quadratic.
Therefore, problem (23) admits a global minimizer. If the constraints are simple enough, in
particular, if they satisfy some constraint qualification, the KKT conditions are satisfied at any
minimizer. Therefore, it is reasonable to state Assumption A3, which concerns the solvability
of (24)–(27).

Assumption A3 For all xk and yk,j computed by Algorithm 2.1 and Algorithm 3.1 with ν = 2,
respectively, an approximate solution to (23) satisfying (24)–(27) can be computed whenever
σk,j > ‖Hk‖.

Assumption A4 below state the Lipschitz-like assumptions that must be satisfied by f and
∇f in order to prove worst-case complexity of Algorithm 2.1 when it uses Algorithm 3.1 with
ν = 2 for computing sk at Step 3.

Assumption A4 There exists γ1 > 0 such that for all xk computed by Algorithm 2.1 and all
yk,j, sk,j, and sk computed by Algorithm 3.1 with ν = 2,

‖∇xf(xk + sk, yk,j)−∇xf(xk, yk,j)‖ ≤ γ1‖sk‖ (30)

and
f(xk + sk,j , yk,j) ≤ f(xk, yk,j) +∇xf(xk, yk,j)

T sk,j + γ1‖sk,j‖2. (31)

In Lemma 3.1, we prove that after a given finite number of evaluations of f , Algorithm 3.1
finds sk and yk+1 satisfying the conditions (28) and (29). This lemma also provides a bound for
the regularization parameter. In the proof of this lemma we use (31) but we do not use (30).

Lemma 3.1 Suppose that Assumptions A1–A4 hold. Then, for all k ∈ N+, Algorithm 3.1 with
ν = 2 is well defined and finishes after at most dlogτ (‖Hk‖/2 + γ1 + α)e + 1 evaluations of f
with

σk ≤ τ (‖Hk‖/2 + γ1 + α) .

Proof: By (31) and (24),

f(xk + sk,j , yk,j) ≤ f(xk, yk,j) +∇xf(xk, yk,j)
T sk,j + γ1‖sk,j‖2

≤ f(xk, yk,j)−
1

2
sTk,jHksk,j − σk,j‖sk,j‖2 + γ1‖sk,j‖2

≤ f(xk, yk,j) + (‖Hk‖/2− σk,j + γ1) ‖sk,j‖2.

Therefore, if
σk,j ≥ ‖Hk‖/2 + γ1 + α,
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we have that
f(xk + sk,j , yk,j) ≤ f(xk, yk,j)− α‖sk,j‖2.

Thus, since, by the definition of the algorithm, σk,j = τ j−1σmin and yk,j = yre
k for all j ≥ 1, we

have that (28) holds for all j satisfying

j ≥
⌈

logτ

(
‖Hk‖/2 + γ1 + α

σmin

)⌉
+ 1.

Finally, by the definition of the algorithm, yk,j = yre
k for all j ≥ 1. Thus, by Lemma 2.5, for all

j ≥ 1 such that (28) holds, we have that (29) holds as well. This completes the proof. 2

In Lemma 3.2, we prove that the gradient of the Lagrangian is bounded by a multiple of the
increment sk.

Lemma 3.2 Suppose that Assumptions A1–A4 hold. Then, for all k ∈ N+, yk+1 and sk com-
puted by Algorithm 3.1 with ν = 2 satisfy

‖∇xf(xk + sk, yk+1) +∇cE(xk + sk)λk+1 +∇cI(xk + sk)µk+1‖

≤ [γ1 + ‖Hk‖+ 2τ (‖Hk‖/2 + γ1 + α) + κ] ‖sk‖.
(32)

Proof: For all k and j, by (26) for the case ν = 2 and since ∇[σk,j‖s‖2]|sk,j = 2σk,jsk,j , we have
that

‖∇xf(xk, yk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ − ‖Hksk,j + 2σk,jsk,j‖
≤ ‖∇xf(xk, yk,j) +Hksk,j + 2σk,jsk,j +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ ≤ κ‖sk,j‖,

or, equivalently,

‖∇xf(xk, yk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ ≤ (‖Hk‖+ 2σk,j + κ) ‖sk,j‖. (33)

On the other hand,

‖∇xf(xk + sk, yk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖
≤ ‖∇xf(xk + sk, yk,j)−∇xf(xk, yk,j)‖+

∥∥∇xf(xk, yk,j) +∇cE(xk + sk,j)λ̄k,j +∇cI(xk + sk,j)µk,j
∥∥ .

(34)
Therefore, since, by Lemma 3.1,

σk ≤ τ (‖Hk‖/2 + γ1 + α) ,

we obtain that (32) follows from (33), (34), (30), and the definition of the algorithm. 2

Assumption A5 There exists Hmax > 0 such that for all k ∈ N+, ‖Hk‖ ≤ Hmax.

In Theorem 3.1, we prove that a possible stopping criterion given by h(yk) ≤ εfeas and

‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ ≤ εopt

with cE(xk) = 0, cI(xk) ≤ 0, and ‖min{−cI(xk), µk}‖ ≤ δ is necessarily fulfilled in O(ε−1
feas) +

O(ε−2
opt) iterations and evaluations of f .
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Theorem 3.1 Suppose that Assumptions A1–A5 hold and that Algorithm 3.1 with ν = 2 is used
to compute sk and yk+1 at Step 3 of Algorithm 2.1. Then, Algorithm 2.1 generates an infinite
sequence {(xk, yk, λk, µk)} and, given arbitrary εfeas, εopt > 0:

1. The number of iterations such that h(yk) > εfeas is not bigger than

1

εfeas

[
2

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)]
. (35)

2. For all k ≥ 1, we have that
cE(xk) = 0, cI(xk) ≤ 0, (36)

and
‖min{−cI(xk), µk}‖ ≤ δ. (37)

3. The number of iterations such that

‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ > εopt

is not bigger than

1

ε2
opt

 1
α

(
2β

(1−r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
[γ1 +Hmax + 2τ (Hmax/2 + γ1 + α) + κ]−2

 .
(38)

Moreover, at each iteration, no more than⌈
logτ

(
Hmax/2 + γ1 + α

σmin

)⌉
+ 1 (39)

evaluations of f are performed.

Proof: The upper bound (35) on the number of iterations required to achieve the desired value
of h is given by Corollary 2.2. The feasibility and δ-complementarity of all the iterates xk (for
k ≥ 1), given by (36) and (37), are a direct consequence of the definition of Algorithm 3.1.
The upper bound (38) on the number of iterations required to achieve the εopt-optimality is
a direct consequence of Corollary 2.3, Lemma 3.2, and Assumption A4. Finally, the upper
bound on the number of evaluations of f per iteration is a direct consequence of Lemma 3.1 and
Assumption A4. 2

3.2 Case ν = 3

At Step 2 of Algorithm 3.1 we find an approximate minimizer of a quadratic approximation of
f(x, yk,j) plus a regularization term σk,j‖s‖ν . The case ν = 2, studied in the previous subsection,
corresponds to the situation in which the quadratic ∇xf(xk, yk,j)

T s + 1
2s
THks guaranteedly

approximates f(xk + s) up to first order. So, the matrix Hk does not need to be a good
approximation of the Hessian of f in the case ν = 2. On the other hand, in the case ν = 3 we will
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essentially assume that first and second derivatives of the quadratic coincide with first and second
derivatives of the objective function, respectively, thus providing second-order approximation.
Roughly speaking ν = 2 corresponds to gradient-like and quasi-Newton schemes; whereas ν = 3
resembles Newton-like approaches.

In the case ν = 3, the global minimizer of (23) necessarily exists if σk,j > 0. Therefore, the
following Assumption A6 is plausible.

Assumption A6 For all xk and yk,j computed by Algorithm 2.1 and Algorithm 3.1 with ν =
3, respectively, an approximate solution to (23) satisfying (24)–(27) can be computed except,
perhaps, when j = 0 (in which case σk,j = 0). In this case, the impossibility of computing an
approximate solution to (23) satisfying (24)–(27) can be detected in finite time, independently
of k.

Assumption A7 states a weak version of the fact that the quadratic in (23) approximates
f(xk + s, yk,j) in a similar way as the second-order Taylor approximation does.

Assumption A7 There exists γ2 > 0 such that for all xk computed by Algorithm 2.1 and all
yk,j, sk,j, and sk computed by Algorithm 3.1 with ν = 3,

‖∇xf(xk + sk, yk,j)− [∇xf(xk, yk,j) +Hksk] ‖ ≤ γ2‖sk‖2 (40)

and

f(xk + sk,j , yk,j) ≤ f(xk, yk,j) +∇xf(xk, yk,j)
T sk,j +

1

2
sTk,jHksk,j + γ2‖sk,j‖3. (41)

In Lemma 3.3 we prove that, when the regularization parameter is bigger than a constant
that only depends on γ2 and α, the sufficient descent conditions (28) and (29) take place.

Lemma 3.3 Suppose that Assumptions A1, A2, A6, and A7 hold. Then, for all k ∈ N+,
Algorithm 3.1 with ν = 3 is well defined and it finishes after at most dlogτ ((γ2 + α)/σmin)e+ 1
evaluations of f with σk ≤ τ(γ2 + α).

Proof: By (41) and (24),

f(xk + sk,j , yk,j) ≤ f(xk, yk,j) +∇xf(xk, yk,j)
T sk,j + 1

2s
T
k,jHksk,j + γ2‖sk,j‖3

≤ f(xk, yk,j)− (σk,j − γ2) ‖sk,j‖3.

Therefore, if σk,j ≥ γ2 + α, we have that

f(xk + sk,j , yk,j) ≤ f(xk, yk,j)− α‖sk,j‖3.

Thus, since, by the definition of the algorithm, σk,j = τ j−1σmin and yk,j = yre
k for all j ≥ 1, we

have that (28) holds for all j satisfying

j ≥
⌈

logτ

(
γ2 + α

σmin

)⌉
+ 1.
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Finally, by the definition of the algorithm, yk,j = yre
k for all j ≥ 1. Thus, by Lemma 2.5, for all

j ≥ 1 such that (28) holds, we have that (29) holds as well. This completes the proof. 2

In Lemma 3.4, we prove that the gradient of the Lagrangian computed at every iteration is
smaller than a multiple of ‖sk‖2. This fact will be essential to prove that the complexity result
in terms of ‖sk‖ given in Corollary 2.3 implies complexity O(ε−3/2) in terms of the gradient of
the Lagrangian.

Lemma 3.4 Suppose that Assumptions A1, A2, A6, and A7 hold. Then, for all k ∈ N+, yk+1

and sk computed by Algorithm 3.1 with ν = 3 satisfy

‖∇xf(xk + sk, yk+1) +∇cE(xk + sk)λk+1 +∇cI(xk + sk)µk+1‖ ≤ (κ+ 3τ(γ2 + α) + γ2)‖sk‖2
(42)

Proof: On the one hand, for all k and j, by the triangle inequality, we have that

‖∇xf(xk + sk,j , yk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖

−‖∇xf(xk, yk,j) +Hksk,j −∇xf(xk + sk, yk,j)‖ − 3σk,j‖sk,j‖2

≤ ‖∇xf(xk, yk,j) +Hksk,j + (3σk,j‖sk,j‖sk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ .
(43)

On the other hand, for all k and j, by (26) for the case ν = 3 and since ∇[σk,j‖s‖3]|sk,j =
3σk,j‖sk,j‖sk,j , we have that

‖∇xf(xk, yk,j) +Hksk,j + (3σk,j‖sk,j‖sk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ ≤ κ‖sk,j‖2.
(44)

Therefore, by (43), (44), and (40), we have that

‖∇xf(xk + sk,j , yk,j) +∇cE(xk + sk,j)λk,j +∇cI(xk + sk,j)µk,j‖ ≤ (κ+ 3σk,j + γ2)‖sk,j‖2.

Thus, (42) follows from the definition of the algorithm and the fact that, by Lemma 3.3, for all
k and j, σk ≤ τ(γ2 + α). 2

Theorem 3.2 is the final result of this section. It will be proved that the number of iterations
and evaluations of f that are necessary to obtain that the gradient of the Lagrangian is smaller

than εopt is O(ε
−3/2
opt ). This result, combined with the complexity O(ε−1

feas) with respect to h(y),
completes the complexity analysis of the algorithm for ν = 3.

Theorem 3.2 Suppose that Assumptions A1, A2, A6, and A7 hold and that Algorithm 3.1 with
ν = 3 is used to compute sk and yk+1 at Step 3 of Algorithm 2.1. Then, Algorithm 2.1 generates
an infinite sequence {(xk, yk, λk, µk)} and, given arbitrary εfeas, εopt > 0:

1. The number of iterations such that h(yk) > εfeas is not bigger than

1

εfeas

[
2

(1− r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)]
. (45)
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2. For all k ≥ 1 we have that
cE(xk) = 0, cI(xk) ≤ 0, (46)

and
‖min{−cI(xk), µk}‖ ≤ δ. (47)

3. The number of iterations such that

‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ > εopt

is not bigger than

1

ε
3/2
opt

 1
α

(
2β

(1−r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
[κ+ 3τ(γ2 + α) + γ2]−3/2

 .
(48)

Moreover, at each iteration, no more than⌈
logτ

(
γ2 + α

σmin

)⌉
+ 1 (49)

evaluations of f are performed.

Proof: The upper bound (45) on the number of iterations required to achieve the desired value
of h is given by Corollary 2.2. The feasibility and δ-complementarity of all the iterates xk (for
k ≥ 1), given by (46) and (47), are a direct consequence of the definition of Algorithm 3.1.
The upper bound (48) on the number of iterations required to achieve the εopt-optimality is a
direct consequence of Corollary 2.3 and Lemma 3.4. Finally, the upper bound on the number of
evaluations of f per iteration is a direct consequence of Lemma 3.3. 2

Let us now explain the reasoning behind considering feasibility and optimality tolerance,
εfeas and εopt, separately. Naturally one should try to approach as much as possible the solution
x using low precision in y, in such a way that few expensive iterations with high precision y should
be performed and taking εfeas = εopt might cause high precision prematuraly. Our algorithm
tries to keep low precision in two ways: On the one hand, at Step 1 of Algorithm 3.1 the choice
of yk,0 is arbitrary, which means that the precision h(yk,0) could be not very strict. However,
the corresponding trial point is accepted if the conditions (28) and (29) are fulfilled. Therefore,
in specific implementations we can define a coarse value for yk,0 (for example, yk,0 = yk). The
criterion for such a decision comes from our estimation of how far we are from the solution. On
the other hand, if the value of the parameter r in Algorithm 2.1 is close to 1, even the precision
of yrek may be only slightly better than the one of yk, which, in practice, will delay the speed in
which h(y) tends to zero.

The estimation of how far we are from the solution may come from the actual value of the
norm of the gradient of the Lagrangian. Recall that the complexity result reports the maximal
number of iterations at which that quantity is bigger than εopt. Putting this observation together
with the one above, it is natural to implement the method in such a way that, when the gradient
of the Lagrangian is big, we choose both h(yrek ) close to y(k) and yk,0 = yk.
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Our method may be interpreted as a minimization method for f(x, y), with respect to
x, where y changes from one iteration to another. As a consequence, the complexity results
are related to the complexity results enjoyed by algorithms for minimizing ordinary functions
that only depend on x. Roughly speaking, the worst-case complexity results inherited by our

method are O(ε−2
opt) for gradient-like methods with quadratic regularization and O(ε

−3/2
opt ) for

Newton-like methods with cubic regularization. In practice, these estimatives are very pes-
simistic. Gradient-like methods under reasonable assumptions usually enjoy linear convergence
(complexity O(| log εopt|) and Newton-like methods exhibit quadratic convergence (complexity
O(log | log εopt|)). The complexity results that we prove in the paper do not assume the condi-
tions that would produce more optimistic complexity results. This is the reason why it seems
that the computer time used to obtain optimality is much bigger than the one used for getting
feasibility if we consider εfeas = εopt. Roughly speaking, in our case the speed of convergence
to feasibility with respect to h(y) in completely monitored by the algorithm, in such a way that
the worst case is the that effectively occurs. On the other hand, the worst-case in terms of
optimality is a lot worse than the one that occurs in most cases.

However, one can interpret the results in term of real complexity using the following reason-
ing. In general, we cannot give a general rule for estimating the cost of a function evaluation in
terms of h(yk). But in many cases we can re-paramenterize h(y) in such a way that the cost of
one function evaluation f(x, y) is 1/y. If, in Algorithm 3.1 we have that, for all k, yk+1 = yrek , we
have that h(yk+1) ≤ rh(yk) for all k and, so, the number of iterations such that h(yk) > εfeas is
bounded above by log(εfeas/h(y0))/ log(r). This could represent an undesirable quick decrease,
leading very soon to h(y) < εfeas, where the cost of every function evaluation should be smaller
than 1/εfeas. Fortunately, the possibility of choosing yk+1 different from yrek implies that the
number of iterations such that h(yk) > εfeas could reach O(1/εfeas). This is proved in Theo-
rem 3.1, formula (35). Now, at the optimization phase of every iteration k we call Algorithm 3.1
for performing one iteration of a (quadratic or cubic) regularization method with the objective
of decreasing f and the merit function. The maximal number of function evaluations computed
at these iterations is given by Theorem 3.1 (38) or Theorem 3.2 (48). Both estimations are very
pessimistic because when we use gradient-like methods in the optimization phase we expect to
achieve the desired precision in O(| log εopt|) iterations and when we use Newton-like methods we
expect O(| log | log εopt||) iterations with, ultimately, only one function evaluation per iteration.
In general,

O(| log | log εopt||) < O(| log εopt|) < O(1/εfeas),

which means that, in general, optimality will be reached before reaching h(y) ≤ εfeas. (In
practice this will be reflected in a null or almost null increment sk,0.) Since, at each optimization
phase, the number of evaluations of f is O(1), it turns out that the expected computer effort in
terms of function evaluations is going to be less than∑

k≤O(log εopt)

1

yk
.

Now, assuming that h(yrek ) = rh(yk),

1/yk = h(yk) ≥ h(yrek−1) = h(y0)rk−1.
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Therefore, the expected computed number of function evaluations to achieve precisions εfeas
and εopt is ∑

k≤O(log εopt)

rk−1h(y0) = h(y0)
1− rO(log εopt)

1− r
.

3.3 Sample Average Approximation

In this section, we consider the stochastic optimization problem given by

Minimize E[g(x, ξ)] subject to x ∈ Ω, (50)

where Ω is given by (2), ξ ∈ Rq is a random vector with probability distribution P , g : Rn×Rq →
R, and E[g(x, ξ)] =

∫
g(x, ξ)P (dξ). The case of interest is the one in which E[g(x, ξ)] can not

be analytically computed and, under reasonable assumptions, there exists N > 0 such that a
solution to problem (50) can be approximated by a solution to the deterministic optimization
problem given by

Minimize
1

N

N∑
i=1

g(x, ξi) subject to x ∈ Ω, (51)

where ξ1, . . . , ξN is an identically distributed (i.i.d.) random sample of N realizations of the
random vector ξ. Problem (51), that is a deterministic problem, is known as Sample Average
Approximation (SAA) problem; and solving it would provide an approximation to a solution
to (50). However, N is in general large, making a method that at every iteration performs one
or more evaluations of the objective function of (51) unaffordable.

The Sample Average Approximation (SAA) method (see, for example, [42]) is a Monte Carlo
simulation-based approach that applies to problem (51). At iteration k, a subsample ξ1, . . . , ξNk

with, hopefully, Nk � N is considered; and the sample average function

f̂Nk
(x) =

1

Nk

Nk∑
i=1

g(x, ξi)

is approximately minimized subject to x ∈ Ω by a deterministic optimization method. Iterations
proceed until Nk = N is satisfied. The sequence of natural numbers N0, N1, N2, . . . is known as
schedule. By letting Y be a set of subsamples y such that if |y| = ` then y = {ξ1, . . . , ξ`} and
defining h(y) = N − |y| and

f(x, y) = f̂|y|(x), (52)

we have that problem (51) can be seen as a particular case of problem (1). Therefore, Algo-
rithms 2.1–3.1 can be used to find a solution to problem (51). This means that Algorithm 2.1–3.1
can be seen as an SAA method that possesses the theoretical properties given in Sections 2 and 3.
These properties are summarized in the two theorems below.

The key feature of Algorithms 2.1–3.1 when interpreted as an SAA method is that its frame-
work allows the reduction of the sample size, providing a theoretical framework for opportunistic
heuristics that may reduce the computational cost of the objective function being evaluated.
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Theorems 3.3 and 3.4 correspond to the cases in which Algorithm 3.1 is used with ν = 2 and
ν = 3, respectively. On the one hand, both theorems say that after a finite number of iterations
the sample size is equal to the desired size N . On the other hand, Theorem 3.3 says that finding
an optimal to problem (51) with precision ε requires O(ε−2

opt) functional evaluations when ν = 2;

while Theorem 3.4 says that this task takes O(ε
−3/2
opt ) functional evaluations when ν = 3.

Theorem 3.3 Suppose that Assumptions A1–A5 hold and that Algorithm 3.1 with ν = 2 is used
to compute sk and yk+1 at Step 3 of Algorithm 2.1. Then, Algorithm 2.1 generates an infinite
sequence {(xk, yk, λk, µk)} such that

1. For all k ≥ k0, we have that |yk| = N , where

k0 =

[
2

1− r2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)]
.

2. For all k ≥ 1, we have that

cE(xk) = 0, cI(xk) ≤ 0, and ‖min{−cI(xk), µk}‖ ≤ δ.

3. Given an arbitrary εopt > 0, the number of iterations such that

‖∇xf(xk, yk) +∇cE(xk)λk +∇cI(xk)µk‖ > ε

is not bigger than

1

ε2
opt

 1
α

(
2β

(1−r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
[γ1 +Hmax + 2τ (Hmax/2 + γ1 + α) + κ]−2

 .
(53)

Moreover, at each iteration, no more than⌈
logτ

(
Hmax/2 + γ1 + α

σmin

)⌉
+ 1 (54)

evaluations of f are performed.

Theorem 3.4 Suppose that Assumptions A1, A2, A6, and A7 hold and that Algorithm 3.1 with
ν = 3 is used to compute sk and yk+1 at Step 3 of Algorithm 2.1. Then, Algorithm 2.1 generates
an infinite sequence {(xk, yk, λk, µk)} and we have that items 1 and 2 of Theorem 3.3 follow;
while, given an arbitray ε > 0, item 3 of Theorem 3.3 follows substituting (53) and (54) with

1

ε
3/2
opt

 1
α

(
2β

(1−r)2

(
(ρmax − ρ0)hmax + f(x0, y0) + ρ0h(y0)− fmin

)
− fmin + f(x0, y0)

)
[κ+ 3τ(γ2 + α) + γ2]−3/2


and ⌈

logτ

(
γ2 + α

σmin

)⌉
+ 1,

respectively.
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In Theorems 3.3 and 3.4, f(x, y) corresponds to (52), i.e. to f̂|y|. This means that the
theorems are counting all together evaluations with different computational costs. However, as a
consequence of the fact that inexact evaluations are being done a finite number of times, the SAA
method described by Algorithms 2.1–3.1 possesses the same worst-case evaluation complexities
already described in, for example, [6, 7, 34], for methods that perform exact evaluations of the
objective function only. No need to say that, in practice, most of the evaluations are inexact, i.e.
evaluations of a cheap objective funcion (see, for example, the numerical experiments in [11]);
while the number of iterations remains the same. Several assumptions can be made about
the cost of evaluating f(x, y) in terms of the size of the sample (h(y)). Combined with suitable
assumptions on the variability of f with respect to the sample size, optimal choices can be
given for the size of the sample and the precision required at each subproblem, by means of
which even one-shot choices of the sample are efficient (see [38], [41]). We do not have that
type of information in the general case but, again, we believe that we can take advantage for its
availability in particular situations in order to optimize the choice of parameters of our method.

4 Final remarks

In this paper we proved worst-case iteration and evaluation complexity results for algorithms
inspired in our previous contributions [30, 11]. The new algorithms share the Inexact-Restoration
flavor of [30] and [11], but may be studied and analyzed disregarding classical IR theories. In any
case, our analysis here is self-contained so that the theoretical results may be followed by readers
not aware of typical IR papers. The modifications of the new algorithms with respect to the
previous ones rely, as usually in complexity theories, on the employment of regularization. We
studied separately the case ν = 2, which is suitable to analyze gradient-like and quasi-Newton
approaches [26] and ν = 3, which corresponds to the celebrated cubic regularization. Algorithms
with ν > 3 may be considered along the lines of [6, 17, 34] although they do not seem to be
promising for improving this particular approach in practice.

Extensive numerical examples of applications of the methods revisited in the present work
were given in [30] and [11]. In particular, the popular family of problems in which f(x, y) is the
average of a random variable over a given sample denoted by y was considered in [30, 11]. In
this case, Y is the set of samples and h(y)−1 is the sample size. In the so called diagonalization
approach [39, 40], one solves a sequence of Sample Average Approximation (SAA) subproblems
corresponding to samples of sizes Nk, taking the solution of the k-th subproblem as an ini-
tial approximation for solving the (k + 1)-th subproblem and employing variable precisions εk.
The sample sizes Nk are determined either heuristically or solving an additional nonlinear pro-
gramming subproblem [39]. The additional nonlinear subproblem is defined assuming that the
convergence rate of the solver used for each SAA subproblem is known. The approach presented
in this paper allows us to take the decisions that are inherent to the SAA strategy, i.e. to deter-
mine the sample sizes of the SAA subproblems, with proven worst-case complexity. Notice that
the proposed framework allows us to deal with the case of arbitrary N , i.e. the presented theory
stands valid for the case of unbounded samples as well. Covering both cases, bounded and
unbounded sample sizes, is, to best of our knowledge, a unique property of the IR scheduling.

When y is a continuous variable and h(y) is a continuous function, problem (1) admits
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several different interpretations. On the one hand, it may be seen as a particular Nash Equilib-
rium problem [31] with two players, in which the first player minimizes ‖h(y)‖ and the second
one minimizes f(x, y) with respect to x. On the other hand, problem (1) can also be seen as a
Bilevel Programming problem [20] in which the master minimizes ‖h(y)‖ subject to the fact that
f(x, y) is minimized, with respect to x, in the lower level. The fact that complexity results can
be obtained for an IR algorithm that tackles simplified versions of Nash Equilibrium and Bilevel
Optimization problems suggests that similar IR techniques may be useful to prove complexity
of general Bilevel Programming and Equilibrium algorithms. The application to Stochastic Op-
timization is immediate, specially in the case in which one minimizes risk measures as VaR and
CVaR, which are recommendable in the case of catastrophic events and consequent determina-
tion of insurance policies [22]. IR techniques allow one to avoid “oversampling”, providing a
rational balance between accuracy and optimization, which is crucial in this type of problems.
(Note that we are using the term “oversampling” according to its intuitive meaning, not in the
algorithmic sense of image processing problems.) Robust Optimization [4] also provides a good
number of potential applications of IR, perhaps with suitable modifications in order to cope
uncertainty in the constraints, with an economic computation of scenarios.

From the technical point of view, considering that filter methods were used for globalization of
Inexact Restoration algorithms in [24], it may be conjectured that filter techniques could be also
employed for solving (1), replacing our regularization strategies and, perhaps, also providing
complexity bounds. The techniques of [7] for constrained optimization, for which iteration
and evaluation complexity can be proved, are connected in spirit to Inexact Restoration but,
according to our knowledge, were not yet implemented in order to provide practical algorithms.

We believe that the main field of challenging applications of the techniques introduced in this
paper corresponds to the problem of fitting parameters of expensive simulations, that cannot
be solved without the help of clever reduced versions of the models. Of course, opportunistic
heuristics may be employed that can be useful in specific applications, but the theoretically
oriented algorithm developed here should probably be the first approach with applicability to a
broad scope of situations.
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